Rezaei, MojtabaVillalobos, Luis FranciscoHsu, Kuang-JungAgrawal, Kumar Varoon2022-03-282022-03-282022-03-282022-03-1610.1002/anie.202200321https://infoscience.epfl.ch/handle/20.500.14299/186595WOS:000769506500001A controlled manipulation of graphene edges and vacancies is desired for molecular separation, sensing and electronics applications. Unfortunately, available etching methods always lead to vacancy nucleation making it challenging to control etching. Herein, we report CO2-led controlled etching down to 2-3 angstrom per minute while completely avoiding vacancy nucleation. This makes CO2 a unique etchant for decoupling pore nucleation and expansion. We show that CO2 expands the steric-hindrance-free edges with an activation energy of 2.71 eV, corresponding to the energy barrier for the dissociative chemisorption of CO2. We demonstrate the presence of an additional configurational energy barrier for nanometer-sized vacancies resulting in a significantly slower rate of expansion. Finally, CO2 etching is applied to map the location of the intrinsic vacancies in the polycrystalline graphene film where we show that the intrinsic vacancy defects manifest mainly as grain boundary defects where intragrain defects from oxidative etching constitute a minor population.Chemistry, MultidisciplinaryChemistryco2 based etchinggrain-boundary defectsintrinsic vacancy defectssingle-layer graphenevacancy defectsvacancy expansionvacancy nucleationcarbon dioxide reactionraman-spectroscopykineticsoxidationgasificationfabricationmechanismsDemonstrating and Unraveling a Controlled Nanometer-Scale Expansion of the Vacancy Defects in Graphene by CO2text::journal::journal article::research article