Descharmes, NicolasDharanipathy, Ulagalandha PerumalDiao, ZhaoluTonin, MarioHoudre, Romuald2013-10-012013-10-012013-10-01201310.1039/c3lc50447fhttps://infoscience.epfl.ch/handle/20.500.14299/95926WOS:000321856800015We demonstrate a resonant optical trapping mechanism based on two-dimensional hollow photonic crystal cavities. This approach benefits simultaneously from the resonant nature and unprecedented field overlap with the trapped specimen. The photonic crystal structures are implemented in a 30 mm x 12 mm optofluidic chip consisting of a patterned silicon substrate and an ultrathin microfluidic membrane for particle injection and control. Firstly, we demonstrate permanent trapping of single 250 and 500 nm-sized particles with sub-mW powers. Secondly, the particle induces a large resonance shift of the cavity mode amounting up to several linewidths. This shift is exploited to detect the presence of a particle within the trap and to retrieve information on the trapped particle. The individual addressability of multiple cavities on a single photonic crystal device is also demonstrated.Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystalstext::journal::journal article::research article