Kazi, IbrahimMeinerzhagen, Pascal AndreasGaillardon, Pierre-Emmanuel Julien MarcSacchetto, DavideBurg, Andreas PeterDe Micheli, Giovanni2013-06-022013-06-022013-06-02201310.1109/NEWCAS.2013.6573586https://infoscience.epfl.ch/handle/20.500.14299/92532WOS:000327392600025The total power budget of Ultra-Low Power (ULP) VLSI Systems-on-Chip (SoCs) is often dominated by the leakage power of embedded memories and pipeline registers, which typically cannot be power-gated during sleep periods as they need to retain data and program state, respectively. On the one hand, supply voltage scaling down to the near-threshold (near-VT) or even to the sub-threshold (sub-VT) domain is a commonly used, efficient technique to reduce both leakage power and active en- ergy dissipation. On the other hand, emerging CMOS-compatible device technologies such as Resistive Memories (ReRAMs) enable non-volatile, on-chip data storage and zero-leakage sleep periods. For the first time, we present a ReRAM-based non-volatile flip- flop which is optimized for sub-VT operation. Writing to the ReRAM devices works with a CMOS-compatible supply voltage. Thanks to near-VT and sub-VT operation and as compared to the write energy, which depends on the ReRAM technology, the read consumes only 5.4% of the total read+write energy. Monte Carlo simulations accounting for parametric variations in both the MOS transistors and the ReRAM devices confirm reliable data restore operation from the ReRAM devices at a sub-VT voltage as low as 400mV, and a standard deviation of up to 5% of the nominal value of the ReRAM resistance.Zero standby-leakage storage elementsResistive Memory (ReRAM)Subthreshold operationA ReRAM-Based Non-Volatile Flip-Flop with Sub-VT Read and CMOS Voltage-Compatible Writetext::conference output::conference proceedings::conference paper