Ajani, V.Baldi, M.Barthelemy, A.Boyle, A.Burger, P.Cardone, V. F.Cheng, S.Codis, S.Giocoli, C.Harnois-Deraps, J.Heydenreich, S.Kansal, V.Kilbinger, M.Linke, L.Llinares, C.Martinet, N.Parroni, C.Peel, A.Pires, S.Porth, L.Tereno, I.Uhlemann, C.Vicinanza, M.Vinciguerra, S.Aghanim, N.Auricchio, N.Bonino, D.Branchini, E.Brescia, M.Brinchmann, J.Camera, S.Capobianco, V.Carbone, C.Carretero, J.Castander, F. J.Castellano, M.Cavuoti, S.Cimatti, A.Cledassou, R.Congedo, G.Conselice, C. J.Conversi, L.Corcione, L.Courbin, F.Cropper, M.Da Silva, A.Degaudenzi, H.Di Giorgio, A. M.Dinis, J.Douspis, M.Dubath, F.Dupac, X.Farrens, S.Ferriol, S.Fosalba, P.Frailis, M.Franceschi, E.Galeotta, S.Garilli, B.Gillis, B.Grazian, A.Grupp, F.Hoekstra, H.Holmes, W.Hornstrup, A.Hudelot, P.Jahnke, K.Jhabvala, M.Kummel, M.Kitching, T.Kunz, M.Kurki-Suonio, H.Lilje, P. B.Lloro, I.Maiorano, E.Mansutti, O.Marggraf, O.Markovic, K.Marulli, F.Massey, R.Mei, S.Mellier, Y.Meneghetti, M.Moresco, M.Moscardini, L.Niemi, S. -M.Nightingale, J.Nutma, T.Padilla, C.Paltani, S.Pedersen, K.Pettorino, V.Polenta, G.Poncet, M.Popa, L. A.Raison, F.Renzi, A.Rhodes, J.Riccio, G.Romelli, E.Roncarelli, M.Rossetti, E.Saglia, R.Sapone, D.Sartoris, B.Schneider, P.Schrabback, T.Secroun, A.Seidel, G.Serrano, S.Sirignano, C.Stanco, L.Starck, J. L.Tallada-Crespi, P.Taylor, A. N.Toledo-Moreo, R.Torradeflot, F.Tutusaus, I.Valentijn, E. A.Valenziano, L.Vassallo, T.Wang, Y.Weller, J.Zamorani, G.Zoubian, J.Andreon, S.Bardelli, S.Boucaud, A.Bozzo, E.Colodro-Conde, C.Di Ferdinando, D.Fabbian, G.Farina, M.Gracia-Carpio, J.Keihanen, E.Lindholm, V.Maino, D.Mauri, N.Neissner, C.Schirmer, M.Scottez, V.Zucca, E.Akrami, Y.Baccigalupi, C.Balaguera-Antolinez, A.Ballardini, M.Bernardeau, F.Biviano, A.Blanchard, A.Borgani, S.Borlaff, A. S.Burigana, C.Cabanac, R.Cappi, A.Carvalho, C. S.Casas, S.Castignani, G.Castro, T.Chambers, K. C.Cooray, A. R.Coupon, J.Courtois, H. M.Davini, S.de la Torre, S.De Lucia, G.Desprez, G.Dole, H.Escartin, J. A.Escoffier, S.Ferrero, I.Finelli, F.Ganga, K.Garcia-Bellido, J.George, K.Giacomini, F.Gozaliasl, G.Hildebrandt, H.Munoz, A. JimenezJoachimi, B.Kajava, J. J. E.Kirkpatrick, C. C.Legrand, L.Loureiro, A.Magliocchetti, M.Maoli, R.Marcin, S.Martinelli, M.Martins, C. J. A. P.Matthew, S.Maurin, L.Metcalf, R. B.Monaco, P.Morgante, G.Nadathur, S.Nucita, A. A.Popa, V.Potter, D.Pourtsidou, A.Pontinen, M.Reimberg, P.Sanchez, A. G.Sakr, Z.Schneider, A.Sefusatti, E.Sereno, M.Shulevski, A.Mancini, A. SpurioSteinwagner, J.Teyssier, R.Valiviita, J.Veropalumbo, A.Viel, M.Zinchenko, I. A.2023-09-112023-09-112023-09-112023-07-0710.1051/0004-6361/202346017https://infoscience.epfl.ch/handle/20.500.14299/200646WOS:001030296600010Recent cosmic shear studies have shown that higher-order statistics (HOS) developed by independent teams now outperform standard two-point estimators in terms of statistical precision thanks to their sensitivity to the non-Gaussian features of large-scale structure. The aim of the Higher-Order Weak Lensing Statistics (HOWLS) project is to assess, compare, and combine the constraining power of ten different HOS on a common set of Euclid-like mocks, derived from N-body simulations. In this first paper of the HOWLS series, we computed the nontomographic (Omega(m), sigma(8)) Fisher information for the one-point probability distribution function, peak counts, Minkowski functionals, Betti numbers, persistent homology Betti numbers and heatmap, and scattering transform coefficients, and we compare them to the shear and convergence two-point correlation functions in the absence of any systematic bias. We also include forecasts for three implementations of higher-order moments, but these cannot be robustly interpreted as the Gaussian likelihood assumption breaks down for these statistics. Taken individually, we find that each HOS outperforms the two-point statistics by a factor of around two in the precision of the forecasts with some variations across statistics and cosmological parameters. When combining all the HOS, this increases to a 4.5 times improvement, highlighting the immense potential of HOS for cosmic shear cosmological analyses with Euclid. The data used in this analysis are publicly released with the paper.Astronomy & AstrophysicsAstronomy & Astrophysicsgravitational lensing: weakmethods: statisticalsurveyslarge-scale structure of universecosmological parametersaperture-mass statisticsprobability-distribution function3-point correlation-functioncosmic-sheardark-energycosmological constraintsmodified-gravitynon-gaussianitypeak statisticslight-conesEuclid preparation: XXVIII. Forecasts for ten different higher-order weak lensing statisticstext::journal::journal article::research article