Fercher, A. F.Hitzenberger, C. K.Sticker, M.Zawadzki, R.Karamata, B.Lasser, T.2006-10-032006-10-032006-10-03200110.1364/OE.9.000610https://infoscience.epfl.ch/handle/20.500.14299/234905WOS:0001724882000021924Dispersive samples introduce a wavelength dependent phase distortion to the probe beam. This leads to a noticeable loss of depth resolution in high resolution OCT using broadband light sources. The standard technique to avoid this consequence is to balance the dispersion of the sample by arranging a dispersive material in the reference arm. However, the impact of dispersion is depth dependent. A corresponding depth dependent dispersion balancing technique is diffcult to implement. Here we present a numerical dispersion compensation technique for Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) based on numerical correlation of the depth scan signal with a depth variant kernel. It can be used a posteriori and provides depth dependent dispersion compensation. Examples of dispersion compensated depth scan signals obtained from microscope cover glasses are presented. (C) 2001 Optical Society of America.Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomographytext::journal::journal article::research article