Qiao, LiangLiu, YunHudson, SarahYang, PengyuanMagner, EdmondLiu, Baohong2012-03-012012-03-01200710.1002/chem.200701102https://infoscience.epfl.ch/handle/20.500.14299/78309A nanoreactor based on mesoporous silicates is described for efficient tryptic digestion of proteins within the mesochannels. Cyano-functionalized mesoporous silicate (CNS), with an average pore diameter of 18 nm, is a good support for trypsin, with rapid in situ digestion of the model proteins, cytochrome c and myoglobin. The generated peptides were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Proteolysis by trypsin-CNS is much more efficient than in-solution digestion, which can be attributed to nanoscopic confinement and concentration enrichment of the substrate within the mesopores. Proteins at concentrations of 2 ng μL−1 were successfully identified after digestion for 20 min. A biological complex sample extracted from the cytoplasm of human liver tissue was digested by using the CNS-based reactor. Coupled with reverse-phase HPLC and MALDI-TOF MS/MS, 165 proteins were identified after standard protein data searching. This nanoreactor combines the advantages of short digestion time with retention of enzymatic activity, providing a promising way to advance the development of proteomics.A nanoporous reactor for efficient proteolysistext::journal::journal article::research article