Majdik, Andras L.Albers-Schoenberg, YvesScaramuzza, Davide2014-06-162014-06-162014-06-16201310.1109/IROS.2013.6696925https://infoscience.epfl.ch/handle/20.500.14299/104422We tackle the problem of globally localizing a camera-equipped micro aerial vehicle flying within urban environments for which a Google Street View image database exists. To avoid the caveats of current image-search algorithms in case of severe viewpoint changes between the query and the database images, we propose to generate virtual views of the scene, which exploit the air-ground geometry of the system. To limit the computational complexity of the algorithm, we rely on a histogram-voting scheme to select the best putative image correspondences. The proposed approach is tested on a 2km image dataset captured with a small quadroctopter flying in the streets of Zurich. The success of our approach shows that our new air-ground matching algorithm can robustly handle extreme changes in viewpoint, illumination, perceptual aliasing, and over-season variations, thus, outperforming conventional visual place-recognition approaches.MAV Urban Localization from Google Street View Datatext::conference output::conference proceedings::conference paper