BOSS CollaborationAubourg, EricBailey, StephenBautista, Julian E.Beutler, FlorianBhardwaj, VaishaliBizyaev, DmitryBlanton, MichaelBlomqvist, MichaelBolton, Adam S.Bovy, JoBrewington, HowardBrinkmann, J.Brownstein, Joel R.Burden, AngelaBusca, Nicols G.Carithers, WilliamChuang, Chia-HsunComparat, JohanCroft, Rupert A. C.Cuesta, Antonio J.Dawson, Kyle S.Delubac, TimotheeEisenstein, Daniel J.Font-Ribera, AndreuGe, JianLe Goff, J. -M.Gontcho, Satya Gontcho A.Gunn, James E.Guo, HongGuy, JulienHamilton, Jean-ChristopheHo, ShirleyHonscheid, KlausHowlett, CullanKirkby, DavidKitaura, Francisco S.Kneib, Jean-PaulLee, Khee-GanLong, DanLupton, Robert H.Magana, Mariana VargasMalanushenko, ViktorMalanushenko, ElenaManera, MarcMaraston, ClaudiaMargala, DanielMcbride, Cameron K.Miralda-Escude, JordiMyers, Adam D.Nichol, Robert C.Noterdaeme, PasquierNuza, Sebastian E.Olmstead, Matthew D.Oravetz, DanielParis, IsabellePadmanabhan, NikhilPalanque-Delabrouille, NathaliePan, KaikePellejero-Ibanez, MarcosPercival, Will J.Petitjean, PatrickPieri, Matthew M.Prada, FranciscoReid, BethRich, JamesRoe, Natalie A.Ross, Ashley J.Ross, Nicholas P.Rossi, GrazianoRubino-Martin, Jose AlbertoSanchez, Ariel G.Samushia, LadoGenova Santos, Ricardo TanausuScoccola, Claudia G.Schlegel, David J.Schneider, Donald P.Seo, Hee-JongSheldon, ErinSimmons, AudreySkibba, Ramin A.Slosar, AnzeStrauss, Michael A.Thomas, DanielTinker, Jeremy L.Tojeiro, RitaVazquez, Jose AlbertoViel, MatteoWake, David A.Weaver, Benjamin A.Weinberg, David H.Wood-Vasey, W. M.Yeche, ChristopheZehavi, IditZhao, Gong-Bo2016-02-162016-02-162016-02-16201510.1103/PhysRevD.92.123516https://infoscience.epfl.ch/handle/20.500.14299/123907WOS:000366502800004We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. In particular, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-alpha forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an "inverse distance ladder" yields a measurement of H-0 = 67.3 +/- 1.1 km s(-1) Mpc(-1), with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat Lambda CDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Lambda), our BAO + SN + CMB combination yields matter density Omega(m) = 0.301 +/- 0.008 and curvature Omega(k) = -0.003 +/- 0.003. When we allow more general forms of evolving dark energy, the BAO + SN + CMB parameter constraints are always consistent with flat Lambda CDM values at approximate to 1 sigma. While the overall chi(2) of model fits is satisfactory, the LyaF BAO measurements are in moderate (2-2.5 sigma) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H-0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, Sigma m(nu) < 0.56 eV (95% confidence), improving to Sigma m(nu) < 0.25 eV if we include the lensing signal in the Planck CMB power spectrum. In a flat Lambda CDM model that allows extra relativistic species, our data combination yields N-eff = 3.43 +/- 0.26; while the LyaF BAO data prefer higher N-eff when excluding galaxy BAO, the galaxy BAO alone favor N-eff approximate to 3. When structure growth is extrapolated forward from the CMB to low redshift, standard dark energy models constrained by our data predict a level of matter clustering that is high compared to most, but not all, observational estimates.Cosmological implications of baryon acoustic oscillation measurementstext::journal::journal article::research article