Kramer, Illan J.Pattantyus-Abraham, Andras G.Barkhouse, Aaron R.Wang, XihuaKonstantatos, GerasimosDebnath, RatanLevina, LarissaRaabe, InesNazeeruddin, Md. K.Graetzel, MichaelSargent, Edward H.2011-12-162011-12-162011-12-16201110.1016/j.tsf.2010.12.121https://infoscience.epfl.ch/handle/20.500.14299/73494WOS:000295347700054Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processibility with quantum size-effect tunability to match absorption with the solar spectrum. Recent advances in CQD photovoltaics have led to 3.6% AM1.5 solar power conversion efficiencies. Here we report CQD photovoltaic devices on transparent conductive oxides and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation. The resultant depleted-heterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS colloidal quantum dots, enabling broadband harvesting of the solar spectrum. (C) 2010 Elsevier B.V. All rights reserved.Quantum dotSolar cellPbSTitanium dioxideDepleted heterojunctionExciton dissociationElectron transferPolymer Photovoltaic CellsInfrared PhotovoltaicsPbs NanocrystalsNanoparticlesEfficiencyAdvances in colloidal quantum dot solar cells: The depleted-heterojunction devicetext::journal::journal article::research article