Lizarbe, BlancaCherix, AntoineDuarte, João M. N.Cardinaux, Jean-RenéGruetter, Rolf2018-10-292018-10-292018-10-29201910.1038/s41366-018-0224-9https://infoscience.epfl.ch/handle/20.500.14299/14951830301962BACKGROUND/OBJECTIVES: High-fat diet consumption is known to trigger an inflammatory response in the hypothalamus, which has been characterized by an initial expression of pro-inflammatory genes followed by hypothalamic astrocytosis, microgliosis, and the appearance of neuronal injury markers. The specific effects of high-fat diet on hypothalamic energy metabolism and neurotransmission are however not yet known and have not been investigated before. SUBJECTS/METHODS: We used (1)H and (13)C magnetic resonance spectroscopy (MRS) and immunofluorescence techniques to evaluate in vivo the consequences of high-saturated fat diet administration to mice, and explored the effects on hypothalamic metabolism in three mouse cohorts at different time points for up to 4 months. RESULTS: We found that high-fat diet increases significantly the hypothalamic levels of glucose (P < 0.001), osmolytes (P < 0.001), and neurotransmitters (P < 0.05) from 2 months of diet, and alters the rates of metabolic (P < 0.05) and neurotransmission fluxes (P < 0.001), and the contribution of non-glycolytic substrates to hypothalamic metabolism (P < 0.05) after 10 weeks of high-fat feeding. CONCLUSIONS/INTERPRETATION: We report changes that reveal a high-fat diet-induced alteration of hypothalamic metabolism and neurotransmission that is quantifiable by (1)H and (13)C MRS in vivo, and present the first evidence of the extension of the inflammation pathology to a localized metabolic imbalance.CIBM-AITHigh-fat diet consumption alters energy metabolism in the mouse hypothalamustext::journal::journal article::research article