Chen, Y. Q.Li, L. K.Yan, W. B.Adachi, IAihara, H.Al Said, S.Asner, D. M.Atmacan, H.Aulchenko, VAushev, T.Ayad, R.Babu, VBadhrees, IBahinipati, S.Behera, P.Bennett, J.Bhardwaj, VBilka, T.Biswal, J.Bozek, A.Bracko, M.Browder, T. E.Campajola, M.Cao, L.Cervenkov, D.Chang, M-CChekelian, VChen, A.Cheon, B. G.Chilikin, K.Cho, H. E.Cho, K.Choi, S-KChoi, Y.Choudhury, S.Cinabro, D.Cunliffe, S.Dash, N.De Nardo, G.Di Capua, F.Dolezal, Z.Dong, T., VEidelman, S.Epifanov, D.Fast, J. E.Ferber, T.Ferlewicz, D.Fulsom, B. G.Garg, R.Gaur, VGabyshev, N.Garmash, A.Giri, A.Goldenzweig, P.Golob, B.Guan, Y.Hartbrich, O.Hayasaka, K.Hayashii, H.Hou, W-SHsu, C-LInami, K.Inguglia, G.Ishikawa, A.Itoh, R.Iwasaki, M.Iwasaki, Y.Jacobs, W. W.Jang, E-JJeon, H. B.Jia, S.Jin, Y.Joo, K. K.Kang, K. H.Karyan, G.Kawasaki, T.Kim, D. Y.Kim, S. H.Kimmel, T. D.Kinoshita, K.Kodys, P.Korpar, S.Krizan, P.Kroeger, R.Krokovny, P.Kuhr, T.Kulasiri, R.Kumar, R.Kuzmin, A.Kwon, Y-JLalwani, K.Lange, J. S.Lee, I. S.Lee, S. C.Li, Y. B.Li Gioi, L.Libby, J.Lieret, K.Liventsev, D.MacNaughton, J.MacQueen, C.Masuda, M.Matvienko, D.Merola, M.Miyabayashi, K.Mizuk, R.Mohanty, S.Mrvar, M.Mussa, R.Nakao, M.Natkaniec, Z.Nayak, M.Nishida, S.Ogawa, S.Ono, H.Oskin, P.Pakhlov, P.Pakhlova, G.Pardi, S.Park, H.Patra, S.Paul, S.Pedlar, T. K.Pestotnik, R.Piilonen, L. E.Podobnik, T.Popov, VPrencipe, E.Prim, M. T.Rabusov, A.Ritter, M.Rohrken, M.Rout, N.Russo, G.Sahoo, D.Sakai, Y.Sanuki, T.Savinov, VSchneider, O.Schnell, G.Schueler, J.Schwanda, C.Schwartz, A. J.Seino, Y.Senyo, K.Sevior, M. E.Shapkin, M.Shebalin, VShiu, J-GSokolov, A.Solovieva, E.Staric, M.Stottler, Z. S.Sumihama, M.Sumiyoshi, T.Sutcliffe, W.Takizawa, M.Tanida, K.Tenchini, F.Trabelsi, K.Uchida, M.Uglov, T.Uno, S.Urquijo, P.Varner, G.Vorobyev, V.Waheed, E.Wang, C. H.Wang, E.Wang, M-ZWang, P.Watanabe, M.Won, E.Xu, X.Yang, S. B.Ye, H.Yin, J. H.Yuan, C. Z.Yusa, Y.Zhang, Z. P.Zhilich, VZhukova, VZhulanov, V2020-07-182020-07-182020-07-182020-07-0610.1103/PhysRevD.102.012002https://infoscience.epfl.ch/handle/20.500.14299/170235WOS:000545547000001We present the results of the first Dalitz plot analysis of the decay D-0 -> K-pi(+)eta. The analysis is performed on a data set corresponding to an integrated luminosity of 953 fb(-1) collected by the Belle detector at the asymmetric-energy e(+)e(-) KEKB collider. The Dalitz plot is well described by a combination of the six resonant decay channels (K) over bar*(892)(0)eta, K(-)a(0)(980)(+), K(-)a(2)(1320)+, K(-)a(2)(1410)(0)eta, K*(1680)(-)pi(+) and K-2*(1980)(-)pi(+), together with K pi and eta K eta S-wave components. The decays K* (1680)(-)-> K-eta and K-2* (1980)--> K-eta are observed for the first time. We measure ratio of the branching fractions, B(D-0 -> K-pi(+)eta)/B(D-0 -> K-pi(+)) = 0.500 +/- 0.002(stat) +/- 0.020(syst) +/- 0.003(B-PDG). Using the Dalitz fit result, the ratio B(K*(1680)-> K eta)/B(K*(1680)-> K pi) is measured to be 0.11 +/- 0.002(stat)(-0.04)(+0.06)(syst) +/- 0.04(B-PDG); this is much lower than the theoretical expectations (approximate to 1) made under the assumption that K*(1680) is a pure 1(3)D(1) state. The product branching fraction B(D-0 -> [K-2*(1980)- -> K-eta]pi(+)) = (2.2-1.9+1.7) x 10(-4) is determined. In addition, the pi eta' contribution to the a(0)(980)(+/-) resonance shape is confirmed with 10.1 sigma statistical significance using the three-channel Flatte model. We also measure B(D-0 -> (K) over bar*(892)(0)eta) = (1.41(-0.12)(+0.13))%. This is consistant with, and more precise than, the current world average (1.02 +/- 0.30)%, deviates with a significance of more than 3 sigma from the theoretical predictions of (0.51-0.92)%.Astronomy & AstrophysicsPhysics, Particles & FieldsPhysicsDalitz analysis of D-0 -> K- pi(+)eta decays at Belletext::journal::journal article::research article