Sohier, ThibaultCampi, DavideMarzari, NicolaGibertini, Marco2018-12-132018-12-132018-12-132018-11-2910.1103/PhysRevMaterials.2.114010https://infoscience.epfl.ch/handle/20.500.14299/151944WOS:000451590700002We present a first-principles approach to compute the transport properties of 2D materials in an accurate and automated framework. We use density-functional perturbation theory in the appropriate bidimensional setup with open-boundary conditions in the third direction. The materials are charged by field effect via planar countercharges. In this approach, we obtain electron-phonon matrix elements in which dimensionality and doping effects are inherently accounted for, without the need for post-processing corrections. This treatment highlights some unexpected consequences, such as an increase of electron-phonon coupling with doping in transition-metal dichalcogenides. We use symmetries extensively and identify pockets of relevant electronic states to minimize the number of electron-phonon interactions to compute; the integrodifferential Boltzmann transport equation is then linearized and solved beyond the relaxation-time approximation. We apply the entire protocol to a set of much studied materials with diverse electronic and vibrational band structures: electrondoped MoS2, WS2, WSe2, phosphorene, arsenene, and hole-doped phosphorene. Among these, hole-doped phosphorene is found to have the highest mobility, with a room temperature value around 600 cm(2) V-1 s(-1). Last, we identify the factors that affect most phonon-limited mobilities, such as the number and the anisotropy of electron and hole pockets, to provide a broader understanding of the driving forces behind high mobilities in two-dimensional materials.Materials Science, MultidisciplinaryMaterials Scienceelectron-phonon interactionsfield-effect transistorstransportpseudopotentialssemiconductorsapproximationperformancetransitionbreakdownlayersMobility of two-dimensional materials from first principles in an accurate and automated frameworktext::journal::journal article::research article