
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. R. Guerraoui, président du jury
Prof. K. Aberer, directeur de thèse

Prof. T. Hara, rapporteur
Prof. M. Hauswirth, rapporteur

Prof. S. Spaccapietra, rapporteur

Design and Implementation of an Efficient Data Stream
Processing System

THÈSE NO 4611 (2010)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 29 MARS 2010

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE DE SYSTÈMES D'INFORMATION RÉPARTIS

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2010

PAR

Ali SALEHI

Résumé

Dans le cadre standard de l’utilisation de bases de données, les données brutes
telles que celles produites par un réseau de capteur sans fils (Wireless Sensors
Networks) sont stockées en tous temps et peuvent être traitées simplement par
l’intermédiaire de requêtes SQL ou de procédures stockées dont la complexité est
arbitraire.

Cependant dans le cadre d’applications impliquant des flux de données (Data
Streams), la quantité de données produite est si importante que le stockage puis le
traitement de ces données est irréalisable pratiquement car les temps de traitement
et les coûts de stockage deviennent trop conséquents.

Cette thèse décrit les résultats de nos travaux de recherche portant sur la con-
ception et la mise en uvre d’une solution efficace de gestion en temps réel et
à postériori de flux de données issus de mesures environnementales. Bien que
nous nous sommes concentrés sur un domaine d’application précis, le résultat
de nos recherches ont une portée générale et sont présentés dans cette thèse de
manière générique afin que nos résultats puissent être appliqués à un large éventail
d’applications impliquant le traitement de flux de données.

Cette thèse commence par dresser l’état de l’art de la recherche sur le traite-
ment des flux de données. Les concepts de traitement par fenêtre (window process-
ing), les requêtes continues (Continuous Queries), les languages de filtres pour flux
de données (Stream Filtering Query Languages) ainsi que les méthodes de traite-
ment à la source (in-network processing) sont présentés en détail. Nous présentons
les principaux systèmes de traitement disponibles, leur architecture interne et leur
comparaison avec notre système nommé : Global Sensor Network (GSN) middle-
ware.

GSN offre une méthode flexible et rapide permettant de déployer des réseaux
de capteurs et de les interconnecter entre eux. GSN offre un accès simple et stan-
dardisé à un ensemble complet de technologies hétérogènes. De plus, GSN offre
un déployment simplifié à l’extrême (Zero-Programming), peut se reconfigurer et

i

ii

s’étendre dynamiquement. Nous présentons le concept de capteur virtuel (Virtual
Sensor), une abstraction permettant de représenter tout type de source de données et
offrant des outils performants de recherche. Finalement, nous décrivons en détail
les décisions concernant la conception, l’architecture et l’optimization de GSN.
Un ensemble d’algorithmes groupant et traitant intelligemment différents types
de requêtes continues et permettant le traitement de grandes quantités de flux de
données sera principalement présenté.

La mise en uvre de GSN sur des réseaux comprenant un nombre important de
nuds a dévoilé différents problêmes de performances liés au passage à l’échelle.
Ainsi, nous avons pu définir un méthode permettant d’améliorer concidérablement
les performances d’exécution des requêtes en les groupant par similarités afin que
les coûts de traitements et de mémoire soient réduits au maximum. Aussi, nous
avons pu définir un ordonnanceur de requêtes efficace, permettant dans le cas de
requêtes continues, d’augmenter les performances de plus d’un ordre de grandeur
tout en réduisant le temps de réponse et l’espace en mémoire.

Finalement, nous présentons comment la plateforme GSN peut être intégrée
avec un système externe de partage et de visualisation de données tel que la plate-
forme SensWeb de Microsoft. Cette dernière offre une infrastructure de collection
et de visualisation globalements accessible par les utilisateurs. Cette intégration
démontre non seulement la capacité de passage à l’échelle de GSN mais aussi sa
flexibilité.

Mots clefs:

Traitement de Flux de Données (Data Stream Processing), Global Sensor Net-
works, GSN, Traitement de Requêtes Continues (Continuous Query Processing),
Traitement de Données par fenêtres (Window-Based Data Processing), Traitement
Distribué de Flux de Données (Distributed Data Stream Processing)

Abstract

In standard database scenarios, an end-user assumes that all data (e.g., sensor read-
ings) is stored in a database. Therefore, one can simply submit any arbitrary com-
plex processing in the form of SQL queries or stored procedures to a database
server.

Data stream oriented applications are typically dealing with huge volumes of
data. Storing data and performing off-line processing on this huge dataset can be
costly, time consuming and impractical.

This work describes our research results while designing and implementing an
efficient data management system for online and off-line processing of data streams
in the field of environmental monitoring. Our target data sources are wireless sen-
sor networks. Although our focus is on a specific application domain, the results of
this thesis are designed in a generic way, so that they can be applied to wide variety
of data stream oriented applications.

This thesis starts by first presenting the state-of-the-art in data stream process-
ing research specifically window processing concepts, continuous queries, stream
filtering query languages and in-network data processing (particular focus on TinyOS-
based approaches). We present key existing data stream processing engines, their
internal architecture and how they are compared to our platform, namely Global
Sensor Network (GSN) middleware.

GSN middleware enables fast and flexible deployment and interconnection of
sensor networks. It provides simple and uniform access to a comprehensive set
of heterogeneous technologies. Additionally, GSN offers zero-programming de-
ployment and data-oriented integration of sensor networks and supports dynamic
re-configuration and adaptation at runtime. We present the virtual sensor concept,
which offers a high-level view of arbitrary stream data sources, its powerful declar-
ative specification and query tools. Furthermore, we describe design, conceptual,
architectural and optimization decisions of GSN platform in detail.

In order to achieve high efficiency while processing large volumes of stream-

iii

iv

ing data using window-based continuous queries, we present a set of optimization
algorithms and techniques to intelligently group and process different types of con-
tinuous queries.

While adapting GSN to large scale sensor network deployments, we have en-
countered several performance bottlenecks. One of the challenges we faced was
related to scalable delivery of streaming data for high data rate streams. We found
out that we could dramatically improve the performance of a query processor by
performing simple grouping of user queries hence sharing both the processing and
memory costs among similar queries. Moreover, we encountered a similar perfor-
mance issue while scheduling continuous queries. Problem of efficiently schedul-
ing the execution of continuous queries with window and sliding parameters is not
addressed in depth in literature. This problem becomes severe when one considers
large volumes of high data rate streams. In these cases, an efficient query sched-
uler not only increases the performance at least by an order of magnitude but also,
decreases the response time and memory requirements.

Finally, we present how our GSN platform can get integrated with an exter-
nal data sharing and visualization framework namely Microsoft’s SenseWeb plat-
form. Microsoft’s SenseWeb platform, provides a sensor network data gathering
and visualization infrastructure which is globally accessible to the end users. This
integration (which is initiated by the Swiss Experiment project and demanded by
GSN users) not only shows the scalability of GSN platform when combined with
optimized algorithms, but also demonstrates its flexibility.

Keywords:

Data Stream processing, Global Sensor Network, GSN, Continuous Query Pro-
cessing, Window-Based Data Processing, Distributed Data Stream Processing.

Contents

1 Introduction 1

1.1 Preface . 1

1.2 Global Sensor Network . 3

1.3 A Simple Sensor Data Integration Example 6

1.4 Contribution of this Thesis . 8

1.4.1 Chapter 2: Related Work 9

1.4.2 Chapter 3: Global Sensor Network 9

1.4.3 Chapter 4: Efficient Sliding Window Management 10

1.4.4 Chapter 5: Delivering Popular Streaming Data Efficiently 10

1.4.5 Chapter 6: Sensor Data Sharing and Visualization 11

1.5 List of Publications . 11

2 Related Work 13

2.1 Data Stream Processing Techniques 13

2.2 Data Stream Processing Engines 16

2.3 Data Stream Management Platforms 19

2.3.1 HiFi . 19

2.3.2 IrisNet . 20

2.3.3 HourGlass . 21

2.3.4 TinyDB and Cougar . 21

2.4 Continuous Query Languages 22

2.4.1 Data Flow Based Languages 23

2.4.2 SQL Based Languages 23

2.4.3 Declarative SQL Based Languages 24

2.5 Distributed Publish/Subscribe Systems 24

v

vi CONTENTS

3 Global Sensor Network 27
3.1 Introduction . 28

3.2 Virtual sensors . 29

3.3 Data stream processing and time model 35

3.3.1 Window Size and Sliding Values inside GSN 38

3.3.2 Continuous Query Language and GSN 42

3.4 System architecture . 43

3.5 Implementation . 44

3.5.1 Adding new sensor platforms 45

3.5.2 Dynamic Resource Management 46

3.5.3 Query planning and execution 48

3.6 GSN-to-GSN communication Protocol 49

3.6.1 local wrapper . 52

3.7 Evaluation . 53

3.7.1 Internal processing time 54

3.7.2 Scalability in the number of queries and clients 56

3.8 Summary . 58

4 Efficient Sliding Window Management 59
4.1 Introduction . 60

4.2 Motivating Scenarios . 61

4.3 Related Work . 63

4.4 System Model . 65

4.5 Algorithms . 66

4.5.1 Sliding Graph . 67

4.5.2 Sliding for Count based Sliding Windows 68

4.5.3 Sliding for Local Time based Sliding Windows 70

4.5.4 Sliding for Remote Time based Sliding Windows 70

4.5.5 Optimizing the sliding graph 72

4.6 Evaluation Results . 74

4.7 Conclusion and Future Work . 78

5 Scalable Delivery of Stream Query Result 79
5.1 Introduction . 80

5.1.1 Motivating Scenario . 80

5.1.2 Contributions . 82

5.1.3 Roadmap . 83

CONTENTS vii

5.2 Related Work . 83
5.3 Preliminaries . 84

5.3.1 DPSS . 85
5.3.2 Continuous Stream Queries 85
5.3.3 Approach Overview . 86

5.4 Query Merging . 87
5.4.1 Stream Query Containment 87
5.4.2 Query Merging Algorithms 91

5.4.2.1 Merging SPJ Queries 92
5.4.2.2 Merging Aggregate Queries 94

5.4.3 Subscription Generation 94
5.5 Query Grouping . 95

5.5.1 Benefit Estimation . 95
5.5.2 Query Groups Maintenance 96

5.5.2.1 New query insertion. 97
5.5.2.2 Query termination. 99
5.5.2.3 Query group re-optimization 99

5.6 Performance Study . 102
5.6.1 Query Insertion . 103
5.6.2 Query Grouping Re-optimization 105
5.6.3 Efficiency of the Query Tree 108

5.7 Conclusion . 109

6 Sensor Data Sharing and Visualization 111
6.1 Introduction . 112
6.2 Application Scenarios . 113
6.3 System Description . 114

6.3.1 Data Acquisition: Global Sensor Network (GSN) 114
6.3.2 Data Sharing and Exploration: SenseWeb/SensorMap . . . 115
6.3.3 Integration . 116

6.4 GSN/SensorMap In Practise . 118

7 Conclusion and Future Work 121

Bibliography 122

viii CONTENTS

Chapter 1

Introduction

1.1 Preface

Recent advances in embedded systems and mobile communication have led to the
emergence of wireless sensor and actuator technologies. These new smart com-
puting platforms based on wireless sensor network technology are paving the way
for the next revolution in ubiquitous computing which is known as the “Internet
of Things”. In 1999, Business Week named networked micro-sensor technology
as one of the 21 most important technologies of the 21st century. In 2009, Gart-
ner group has predicted that by 2012, more than 20% of Internet traffic will be
generated by sensor data streams.

Thanks to the small size of these devices, the pervasive computing concept
is now far from just an imaginary idea. Wireless sensors (also known as motes
and smart dust) are now available off-the-shelf from numerous vendors around
the world. These new emerging computers are providing the base to enable the
integration of the physical and the digital world.

Once started as a research tool for scientists, they are now becoming an in-
dispensable part of the monitoring infrastructure in sensing, engineering and in-
dustry (e.g., monitoring the environment, infrastructure, supply chain,...). Today,
cheap and smart devices with multiple on-board sensors, networked with wireless
links are available from several research groups and companies (e.g., the MICA
Motes from Crossbow Solutions[2], TMotes from MoteIV[8] and BTNodes from
ETHZ[1]).

As smart dust is deployed in the environment, not only wireless sensor network
technology brings a tangible value to the day-to-day lives of the people by provid-
ing detailed and real-time observations of the physical world, but also, it leads to

1

2 CHAPTER 1. INTRODUCTION

novel and challenging research problems. One of the interesting class of research
problems is related to the management of sensor data generated by this new tech-
nology. For example, how one can integrate readings from different type of sensors
in order to make more precise decisions. As another example, how one can process
high volumes of incoming sensor readings in real-time and provide early warning
information on-time and close to real-time as the events occur in the real world.

Another aspect related to the management of the devices is that, the motes are
based on new software platforms[47][49] and networking technologies[90], which
are specifically designed to enable low cost, high volume and low powered setups.
These requirements result from the applications in which motes are used. Simply
put, as the price of these devices is decreasing the demand for using this technology
is increasing. In this situation, the maintenance cost has the potential of becoming
one of the major factors and obstacles toward their large scale adaption. In the
ideal case, theses smart devices should support adaptive and ad-hoc deployment
with long battery life and a re-programming/configuration interface over the air.

As of today, sensors run specialized operating systems such as TinyOS[49]
and Contiki[47]. For accessing sensor measurements (e.g., data stream of sensor
measurements), there exists a variety of interfaces including, but not limited to,
query based APIs such as the TinySQL and TAG[68]. While these interfaces are
crucial to benefit from wireless sensors and are the bases for any advanced data
management approach, research on data stream management for sensor networks
is in its early stages.

Compared to the Internet, the infrastructure for processing, maintaining and
publishing sensor data to a wide public is fairly limited. The main obstacles are the
lack of standardization and the continuous development of novel sensor network
technologies. As the price of sensors and motes are decreasing rapidly and given
the current growth rate, we may expect to arrive at a situation comparable to the
publication of documents on the Web, whose success is mainly based on sharing a
few simple logical abstractions (URI, hyperlinks) and basic communication proto-
cols (HTTP, more recently Web Services) to provide universal access and linking
among autonomously published data sources. To translate the success of the Web’s
core technologies into wireless sensor network, one has to address the following
requirement for any sensor data management solution:

Simplicity. A platform with a minimal set of powerful abstractions which can
be configured and adapted easily to the user’s needs.

Adaptivity. Allowing the user to add new types of sensor networks and facili-

1.2. GLOBAL SENSOR NETWORK 3

tating dynamic (re-) configuration of the system during run-time without having to
interrupt ongoing system operation.

Scalability. Supporting very large numbers of (distributed) data producers and
consumers with a variety of application requirements.

Light-weight implementation. Having a software platform deployable in
standard computing environments (no excessive hardware requirements, standard
network connectivity, etc.) and portable (virtual machine based implementation)
with minimal initial configuration.

To address these requirements, a carefully designed sensor data stream pro-
cessing platform is necessary. Traditional database technology is not sufficient for
handling the requirements of this new technology. This is because of the huge data
volumes and real-time processing needs imposed by the applications of wireless
sensor networks.

The research community have proposed various platforms for management and
processing of streaming data such as [10][20][32][52][83][94] (a detailed discus-
sion is provided in Chapter 2). However, we find that they frequently not match
the above mentioned requirements of simplicity, Adaptivity and scalability. This
motivated us to develop a novel data stream processing platform, Global Sensor
Networks (GSN), with these objectives in mind. We will provide an overview of
GSN in the following section 1.2 and illustrate its use in Section 1.3. While devel-
oping and using GSN we identified specific performance problems related to the
processing of large numbers of time-based queries.

Despite a large research literature on data stream processing (see Chapter 2 for
a detailed overview) this specific issue has not received sufficient attention. There-
fore we developed as part of GSN novel techniques for processing large numbers
of time-based queries and distributing efficiently the query results to large user
communities, as described in Section 1.4.

1.2 Global Sensor Network

Since 2005, we are involved in multitude of sensor network data management
projects involving several research institutes, different types of sensor networks
and data capturing instruments. During this period, we are introduced to numerous
deployments of sensor networks.

In order to address data stream management and processing needs of these
applications, we gathered the major requirements of our users which are mainly

4 CHAPTER 1. INTRODUCTION

environmental scientists and hydrologists. These requirements are critical in order
to propose a solution which can be adapted to real-world deployments. In the
following, we present key challenges we identified in order to have an effective
solution for managing and processing data streams for sensor networks.

Flexible resource management. A sensor network creates a dynamic environ-
ment in which nodes may join or leave at anytime during the deployment. This
behavior is partly due to external factors such as being battery powered, erroneous
code, and mobility of the device. Smooth resource management is an essential fac-
tor in adapting existing and limited resources of a middleware to current status of a
sensor network dynamically. Adaption includes but not limited to, having unused
resources freed and reallocated to other nodes, change of processing priority dy-
namically based on predefined exceptional events (e.g., avalanche warning in a ski
resort) and finally identifying and exploiting shared computation.

Integrated data acquisition and processing. In sensor networks, data acqui-
sition and processing are deeply coupled. Compared to off-the-shelf acquisition
devices which normally don’t have a programmable unit, a sensor node comes
with a programmable unit which has a limited yet valuable processing and storage
capabilities. In most of the real-world applications, streaming data generated by a
sensor node also known as a mote, has to be cleaned, pre-processed (e.g., calibra-
tion, etc.) before data stream can be used effectively (e.g., getting integrated with
other data sources). To this end, having a middleware which has the data acqui-
sition layer integrated with a data stream processing engine is a decisive factor in
expediting deployment and adaption process of wireless sensor networks.

Runtime reconfiguration. Application requirements may change several times
during the life cycle of a sensor network deployment. We believe a middleware
for sensor data should expedite the process of adapting an existing deployment
with emerging needs. A middleware achieves this by providing means of recon-
figuration. Such reconfigurations shouldn’t be disruptive with regard of existing
deployment. Middleware which can achieve adaptability in runtime can signifi-
cantly assist mission critical applications by making sure that the middleware is
run continuously without interruptions while addressing new needs through a run-
time reconfiguration interface.

1.2. GLOBAL SENSOR NETWORK 5

Flexible data stream acquisition layer. Domain of data acquisition instruments
is wide and full of custom standards, proprietary protocols and interfaces. Data
stream management middleware should be designed based on well-defined ab-
stractions which are general enough to handle wide variety of data stream sources.
These abstractions are key success factors in a wide adaption of any middleware for
sensor networks. A system, which can be extended to be used with new emerging
data sources would create a significant impact through bringing new technologies
to existing deployments. Such a middleware saves resources through maintaining
existing development and measurements while being integrated with new products,
technologies and data sources.

Common services in one package. In practise, wireless sensor network deploy-
ments are not only about measuring several physical phenomena but also involve a
full set of services. These services not only increase the value of measurements, but
also, they provide essential building blocks for using sensor data with an existing
infrastructure. To name a few key services, one may consider authentication ser-
vices, storage and integration of streaming data with existing databases, multiple
access APIs, etc.

Peer-to-peer data streaming. Extensive deployments of wireless nodes have
generated a large number of streaming data around the Internet. Empowering data
stream applications inside a middleware through bring the opportunity of integrat-
ing multiple data sources to provide rich services demands a careful design. Peer-
to-peer topology can create a distributed stream processing environment in which
nodes adhere a flat topology where each node is capable of acting both as a data
producer and as a data consumer.

As presented in more detail in Chapter 2, research community in data stream
processing and management have proposed a comprehensive set of solutions for
different problems in this domain. While these solutions are proven to be valuable
for specific problems under a certain circumstance, they are not naturally designed
to be compatible with each other. In order to create a middleware which is an inte-
grated solution addressing the above requirements, we have to address a number of
difficult challenges. These challenges are resulted from incompatible abstractions,
conflicting requirements and interfaces among the existing work.

Extensive analysis on existing work (more details in Chapter 2) convinced us
that we need to revisit the design and architecture of stream processing middle-

6 CHAPTER 1. INTRODUCTION

wares. Our objectives are specifically focused on building a highly flexible and yet
efficient stream data management infrastructure.

In this work, we present the Global Sensor Network (GSN) platform. GSN is a
data stream processing platform which we built to address the requirements we had
in hand. GSN has started in 2005 as a research project in EPFL and soon became
one of the most pro-actively used[3][4][5][6][7] solutions for working with sensor
generated data streams.

GSN, is a data stream processing engine which is designed to be deployed in
a distributed context. GSN provides a solution for rapid deployment, maintenance
and management of wireless sensors for end-users. In a typical setup, we have
GSN users at the edge of the Internet (e.g., home users with off-the-shelf sensors
connected to their computer), feeding data streams into the global network. GSN
not only provides an extendible platform for handling streaming data but also sup-
ports important requirements for such a software platform.

These requirements include, but are not limited to, automated database and
storage management, dynamic reconfiguration and resource management, variety
of access interfaces (JSON, RestFul, WebServices,...), access control and a contin-
uous query processor engine.

1.3 A Simple Sensor Data Integration Example

In order to illustrate the potential applications of sensor data integration we provide
a simple application scenario in a (university) building as shown in Figure 1.1. We
assume the following hardware setup in place.

• Wireless cameras with built-in HTTP access.

• Wireless sensors (motes) equipped with light, sound, temperature and pres-
sure sensors. We assume that all motes of the same type form a sensor net-
work

• RFID tags which are attached to the key rings of people, and to books, mo-
bile phones and laptops in the buildings; and several RFID readers whose
coverage ranges are shown in yellow (gray) in Figure 1.1.

• Mid-range RFID readers for covering a range of a few meters surrounding a
reader.

1.3. A SIMPLE SENSOR DATA INTEGRATION EXAMPLE 7

WAN

Wireless Camera

Sensor network, sensing light,sound
tempreature, pressure, accleration, etc.

RFID Tags

RFID reader

120
121

126 127

128

129

131

130

124

132

123

122

125

Figure 1.1. A simple scenario

Further we assume that each computer in the Figure 1.1 runs an instance of a
stream processing engine. The wireless cameras are accessible directly via HTTP
hyperlinks and the other sensors (motes) or a complete sensor network can either be
accessed via the local area network (IP-based communication) or through a serial
port connectivity.

In this setup having a stream processing engine which can process multiple data
sources at the same time enables the users to accomplish a large variety of tasks.
For example, the library manager can register a query to be notified when there are
more than 15 books (assuming the books are all equipped with RFID tags) in one
room in addition to the monthly report on the most popular books of the month
(e.g., to order more of those to accommodate the need).

Individual users can post one-shot queries to the library (room 123) to get the
status of certain books. In case a book of interest is currently not available, user can
register a continuous query to be notified when the book is returned to the library.
Another use-case of data integration among multiple heterogeneous sensors, one
might be interested to receive a stream of camera images whenever a movement
in the house is detected or a sound sensor observes some noise above a certain
threshold (e.g., home surveillance application).

To extend the use-case, consider one can integrate different data streams using
a stream processing engine to help people in finding their lost possessions. For
instance, if one loses a mobile phone (with an RFID tag attached to its battery slot),
one can check for the phone’s last location in the building simply by posting a query
on the previous observations provided by all RFID sensor networks deployed in the
building. One can extend the processing chain through registering the continuous
queries and connecting the results of the queries to a SMS service provider.

8 CHAPTER 1. INTRODUCTION

Having a stream processing engine in which users combine and process dif-
ferent data streams generated by different type of sensors, one can get (close to
real-time) the short messages (SMS) with the most recent observations of the RFID
networks filtered by the specific RFID tag.

1.4 Contribution of this Thesis

The primary focus of this thesis is a flexible middleware design and data processing
abstractions for wireless sensor networks. In order to present our scalability and
flexibility enhancements, we introduce the Global Sensor Network (GSN) plat-
form. GSN platform constitutes the basis of this thesis. Design of GSN follows
four basic goals:

Simplicity. The goal was to design the system based on a minimal set of powerful
abstractions which could be easily configured and adapted to the user’s needs. We
targeted the possibility to define sensor networks and data streams in a declarative
way by using SQL as data manipulation language. As a syntactic framework for
system configuration we relied on XML.

Adaptivity. Adding new types of sensor networks and dynamic (re-) configura-
tion of data sources have to be supported during run-time without having to inter-
rupt the ongoing system operation (query processing, etc.). To that end we used a
container-based implementation allowing dynamic reconfiguration.

Scalability. Targeting a very large number of data producers and consumers with
a variety of application requirements, GSN has to consider scalability issues specif-
ically for distributed query processing and distributed discovery of sensor net-
works. To meet this requirement, the design of GSN is based on a peer-to-peer
architecture.

Light-weight implementation. GSN is intended to be easily deployable in stan-
dard computing environments (no excessive hardware requirements, standard net-
work connectivity, etc.), be portable (Java-based implementation), should require
minimal initial configuration, and provide easy-to-use, web-based management
tools.

Building a generic data stream processing engine which can be integrated with
many different types of sensor devices is both interesting and challenging in its

1.4. CONTRIBUTION OF THIS THESIS 9

nature. On the technical side, we built GSN to provide a scalable infrastructure for
integrating heterogeneous sensor network technologies using a small set of power-
ful abstractions.

While adapting GSN to large scale sensor network deployments, we have en-
countered several performance bottlenecks. One of the challenges we faced were
related to scalable delivery of streaming data for high data rate streams. We found
out that we could dramatically improve the performance of a query processor by
performing simple grouping of user queries hence sharing both the processing and
memory costs among similar queries (more details are provided in Chapter 5).

Moreover, we encountered a similar performance issue while scheduling con-
tinuous queries. Problem of efficiently scheduling the execution of continuous
queries with window and sliding parameters is not addressed in depth in literature
(more details are provided in Section 4.3). The problem becomes severe when one
considers large volumes of high data rate streams. In these cases, an efficient query
scheduler not only increases the performance at least by an order of magnitude but
also, decreases the response time and memory requirements. A brief summary of
what a reader should expect from each chapter is provided below.

1.4.1 Chapter 2: Related Work

We give an overview of the key data stream processing concepts such as window-
based processing and continuous query processing languages. We present the ma-
jor data stream processing engines, their internal architecture and how they are
compared with GSN, specifically in architectural and design aspects. Moreover,
we present different in-network data processing approaches (particular focus on
TinyOS based approaches).

1.4.2 Chapter 3: Global Sensor Network

In chapter 3 we provide an overview of the conceptual model GSN is based on. We
introduce the key abstraction of virtual sensors and GSN’s approach to data stream
processing. We conclude the chapter with the architecture, implementation and the
evaluation of the GSN system.

GSN takes up the successful ideas of today’s Web (e.g., Web Services, HTML
documents, hyperlinks, ...) and aims at making publication and access to sensor
networks and sensor data as simple, powerful, and flexible as accessing Web doc-
uments. To build such a system, we had to tackle a multitude of problems.

10 CHAPTER 1. INTRODUCTION

As an example, different sensor devices do provide different communication
protocols, some of which are solely output oriented such as a poll-based wireless
camera with no programmable configuration interface (e.g., capturing the pictures
through calling a certain URI). Other, and more advanced sensing devices, such
as the TinyOS based motes provide a much more verbose and interactive method
of interacting with the capturing device (in our case, for environmental monitoring
purposes). The TinyOS based protocol provides the end-application a full-fledged
querying interface which one can use to send queries and receive sensor data as the
response of those queries with in-network aggregation mechanisms.

GSN supports the integration of (distributed) sensor network deployments, pro-
vides distributed querying through a SQL-like language, complex filtering and
combination of sensor data, supports dynamic adaptation of the system configu-
ration during operation through a declarative XML-based language.

1.4.3 Chapter 4: Efficient Sliding Window Management

In order to build a highly scalable data processing engine, chapter 4 presents a
set of optimization algorithms and techniques for handling large scale data stream
processing. We provide a set of algorithms which can be used to efficiently decide
on the processing time of the queries in the stream processing engines. This chapter
presents in detail the optimization techniques used by GSN for handling window-
based continuous queries.

The work in this chapter can be specifically useful for popular and high rate
streams such as stock ticks, sensor values for a renowned location (e.g., snow
height in a popular skiing resort in winter) in addition to resource constrained en-
vironments such as mobile phones and PDAs.

1.4.4 Chapter 5: Delivering Popular Streaming Data Efficiently

In stream processing, efficient delivery of data streams to end-users (e.g., sub-
scribers) is one of the metrics for measuring the effectiveness of the system. The
naive approach in data stream delivery involves evaluating every continuous query
and delivering the sensor data once there is anything to deliver.

To make sure that GSN can efficiently interact with a large number of data
stream consumers, GSN has to have a scalable data stream delivery mechanism.
Chapter 5 provides the motivating scenarios with example use-cases for this kind
of delivery system. In addition, the chapter provides the algorithms and the opti-
mization techniques which can reduce the overall load of the system in the case of

1.5. LIST OF PUBLICATIONS 11

having popular data streams (e.g., environmental information of a city or financial
strategy’s decisions in a highly volatile trading day) through intelligently grouping
continuous queries thus significantly reducing the load and the latency.

1.4.5 Chapter 6: Sensor Data Sharing and Visualization

In this chapter, we show how a stream processing engine like GSN can get in-
tegrated with an external data sharing and visualization framework called Mi-
crosoft’s SensorMap. Microsoft’s SensorMap platform provides a sensor network
data gathering and visualization infrastructure which is globally accessible to the
end users[67][73][74].

In this chapter, we present the process of monitoring real-world deployments
using a visual map-based interface in which users can inspect the measured data
in the form of contour plots overlayed onto a high resolution map and a digital
topographic model.

Thanks to this close interaction between these two systems, users can go back
in time virtually to search for interesting events or simply to visualize the temporal
dependencies of the data. The system presented is not only interesting and visu-
ally enticing for non-expert users but brings substantial benefits to environmental
scientists. The easily installed data acquisition component as well as the power-
ful data sharing and visualization platform opens up a new ground in collaborative
data gathering and interpretation in the spirit of Web 2.0 applications.

1.5 List of Publications

This thesis is based on the following research publications:

• Yongluan Zhou, Ali Salehi, Karl Aberer. Scalable Delivery of Stream
Query Result. Very Large Data Bases (VLDB), Lyon, France, 2009.

• Ali Salehi, Mehdi Riahi, Sebastian Michel, Karl Aberer. Knowing When to
Slide - Efficient Scheduling for Sliding Window Processing. Mobile Data
Management (MDM), Taipei, Taiwan, 2009.

• Ali Salehi, Mehdi Riahi, Sebastian Michel, Karl Aberer. GSN, Middleware
for Stream World (Best Demonstration Award). Mobile Data Manage-
ment (MDM), Taipei, Taiwan, 2009.

12 CHAPTER 1. INTRODUCTION

• Sebastian Michel, Ali Salehi, Liqian Luo, Nicholas Dawes, Karl Aberer, et
al. Environmental Monitoring 2.0. (Demonstration). International Con-
ference on Data Engineering (ICDE), Shanghai, China, 2009.

• Y. Zhou, K. Aberer, A. Salehi, K.-L. Tan. Rethinking the Design of Dis-
tributed Stream Processing Systems. International Workshop on Network-
ing Meets Databases (NetDB), co-located with IEEE ICDE 2008 in Cancun,
Mexico, 2008.

• Karl Aberer , Manfred Hauswirth , Ali Salehi. Infrastructure for data
processing in large-scale interconnected sensor networks. Mobile Data
Management (MDM), Germany, 2007.

• Karl Aberer, Manfred Hauswirth, Ali Salehi. Zero-programming Sensor
Network Deployment. Next Generation Service Platforms for Future Mo-
bile Systems (SPMS), Japan, 2007.

• Karl Aberer, Manfred Hauswirth, Ali Salehi. A middleware for fast and
flexible sensor network deployment. Very Large Data Bases (VLDB) Seoul,
Korea, 2006.

• Karl Aberer, Manfred Hauswirth, Ali Salehi. Middleware support for the
”Internet of Things”. 5. GI/ITG KuVS Fachgesprch ”Drahtlose Sensor-
netze”, Universitt Stuttgart, 2006.

Chapter 2

Related Work

In this chapter, we present the essential background for data stream processing sys-
tems and wireless sensor networks. We also present the current approaches toward
building platforms to facilitate sensor network deployment and management. In
this chapter, we intentionally limit our focus to high-level architectural and system
design issues of key existing data stream systems for sensor data processing, inte-
grating and publishing. Detailed related work with regard to various approaches
for delivering data streams and techniques for processing and scheduling window-
based continuous queries are presented in Section 4.3 and Section 5.2 respectively.

We start by introducing the key data stream processing techniques in the litera-
ture. Section 2.2 introduces the key data stream processing engines in the literature.
In section 2.3, we present the major data stream management platforms. A data
stream management platform is an integrated system composed of a data acquisi-
tion layer, a data stream processing engine and data publishing and distributing. In
section 2.4, we present the basic concepts behind data stream processing engines,
namely window-based data processing and the continuous query languages. In sec-
tion 2.5, we present the distributed publish/subscribe systems and their difference
with stream processing engines.

2.1 Data Stream Processing Techniques

The topic of data stream processing is a recent but a highly active research area.
Data stream oriented applications are typically dealing with huge volumes of data.
Storing data and performing off-line processing on such data can be costly and time
consuming which is normally undesirable for most of data stream applications.
Data streams occur in different types of real-time (or close to real-time) applica-

13

14 CHAPTER 2. RELATED WORK

tions. These include data flows generated by sensor networks, financial markets,
news feeds, monetary transactions and IP-networks. Sensor networks play an im-
portant role in this field. The possibility of fine-grained monitoring of physical
environment and providing services such as early warning, rapid risk analysis and
online pattern detection have led researchers to propose a variety of architectures
and techniques for data processing.

Data processing techniques requiring repeated access to the same data are typ-
ically not applicable to the processing of data streams (e.g., data streams from
wireless sensor networks). Moreover, approaches relying on availability of com-
plete historical data can not address timing requirements of applications in this
domain, such as a fire alarm network deployed in a building or an avalanche warn-
ing system at a ski resort. In these applications, the quality of a result is directly
depending on a short processing time. Distributed computing techniques, such as
in-network data processing and operator placement are used to efficiently reduce
data load on a node by either pushing the processing logic toward data sources
or by distributing load among multiple nodes. In-network data processing, ex-
ploiting internal processing capabilities of wireless sensor networks, opens a great
opportunity in addressing performance bottlenecks, but also reveals new technical
challenges. Specifically, wireless sensor nodes normally have limited resources,
specifically memory, storage and energy, which implies that algorithms demand-
ing high processing or memory usage is not suitable.

In the following we present key data stream processing problems and discuss
state-of-the-art developments associated with each problem. An area that received
substantial attention is real-time data mining and analysis of data streams. Analysis
algorithms have in particular to consider the limitations that the same data item in
a data stream can only be accessed once. This constraint of real-time data stream
processing have led to new approaches for performing data mining.

Adaptions of the k-means clustering algorithm are proposed by [34][58][76].
The authors in [14] introduce HPStream which is a hierarchical method for clus-
tering data streams. [13] presents the idea of dividing the clustering process into an
online component which periodically gathers and stores a detailed summary statis-
tics and an off-line component which only uses summary statistics. Density-based
clustering approaches for data streams are introduced by [27] and [36].

Thanks to dynamic nature of data streams, the problem of data stream classi-
fication has to be revisited to adapt to the constraints introduced by data streams.
A classification process may require simultaneous model construction and testing

2.1. DATA STREAM PROCESSING TECHNIQUES 15

in an environment which is constantly evolving. Decision tree based approaches
which are involving only one-pass over a data stream are introduced in [46] and
[60]. The authors in [15] propose an on-demand classification process which dy-
namically selects the appropriate window of past training data to build the classifier.

The problem of frequent pattern mining over data streams is investigated in
[22][71]. In [71] authors introduce sticky sampling and lossy counting approaches
for maintaining approximate counts over a sliding window using a limited space.
[22] presents algorithms for computing approximate frequency counts over a data
stream with a parameterizable error threshold.

As real-time data streams are evolving constantly, it is critical to analyze and
predict changes in trends quickly. In [12][62][77] authors provide methods for
detecting and quantifying changes in distribution of values over a streaming data.

Data streams are normally generated by external sources which may have dif-
ferent data rates for various circumstances. The rate of data stream typically de-
pends on external conditions (e.g., sensor data burst in case of fire) which are out
of the control of stream processing engine. In order to deal with uncertain data
rates, several load shedding approaches have been proposed. These approaches
normally involve dropping unprocessed tuples to reduce overall system load and
latency with the cost of degrading the accuracy of results.

The authors in [38] introduce the Loadstar system which uses a metric known
as quality of decision (QoD) to measure the level of uncertainty. Resources are
then dynamically allocated to sources where uncertainty is high. [89] introduces a
technique for dynamically inserting and removing drop operators into query plans
as required by the current system load.

Large volumes of streaming data combined with real-time requirements led to
the introduction of approximate solutions which are typically based on a synopsis
structure. Approaches using synopses trade accuracy with performance and stor-
age. Synopsis computation based on sampling of a data stream is proposed by
[54], [53] and [71]. Sketch-based synopsis computation approaches are presented
in [40][41][72].

Joining data streams is a fundamental operation for combining and correlating
data produced by multiple sources. Section 1.3 provides a sample scenario in-
volving multiple join operations among several heterogeneous streaming data. The
continuous nature of data streams in combination with variable data rates implies
novel challenges in query planning. Blocking operations such as sorting can no
longer work effectively. Storage and indexing operations using non-volatile mem-

16 CHAPTER 2. RELATED WORK

ory are undesirable due to timing requirements of streaming data and blocking
nature of these operations. Moreover, thanks to the long-running nature of contin-
uous queries, uncertainty associated with data rates and the continuously evolving
stream elements, more adaptive solutions are desirable. [86] presents non-blocking
versions of conventional join methods. Similarly, [56] proposes algorithms for
multi-way incremental nested loop joins and multi-way incremental hash joins.
[18][45] proposes sketch-based solutions for stream joins and multi-join queries.
[43] shows that semantic load shedding (adapting to resource shortages by drop-
ping tuples based on their values) is superior in terms of the quality of join result
to random load shedding at the cost of a small overhead for maintaining simple
stream statistics. [44] proposes PWJoin which is a 3-operation-based algorithm
for binary window join which exploits value-based constraints that may hold in a
data stream. Authors in [50] propose GrubJoin which is an adaptive, multi-way,
windowed stream join that effectively performs time correlationaware CPU load
shedding.

To handle the sheer volumes of streaming data, cost-based operator placement
approaches, which dynamically move operators based on current system load, have
been extensively studied by [78][84][95]. Moreover, in context of sensor network,
authors in [84] propose a cost-based in-network operator placement method for
wireless sensor networks which involves progressively increasing computational
power and network bandwidth up a hierarchy of processing nodes.

Stream processing engines are proposed by [10][20][32][52][94]. Architec-
tural and design differences between these systems and this work is presented in
Chapter 2. Data stream processing engines support continuous queries. Different
continuous query language proposals are described in detail in Section 2.4.

2.2 Data Stream Processing Engines

In this section, we review how different systems do query planning and query op-
timization for processing data streams. Before starting, we want to stress that, all
the following systems support receiving data from distributed stream sources such
as wireless sensor networks.

The Aurora[10] and STREAM[20] systems, are based on a centralized model
where all processing takes place at a single node. In Aurora, streams are modeled
as sequences of time-stamped tuples, and users can compose stream relationships
and construct queries in a graphical tool which is then used as input for the query

2.2. DATA STREAM PROCESSING ENGINES 17

Figure 2.1. Aurora’s Data Stream Processing Model from [10]

planner. This is shown in Figure 2.1. With distributed stream sources, moving
some processing toward the data sources instead of moving the raw data to a central
system may lead to more efficient use of processing and network resources. The
TelegraphCQ[32] achieves this goal by running several TelegraphCQ instances on
different machines and each machine receives stream elements from the closest
stream producers, performs the filtering and forwards the processed data to the
other TelegraphCQ nodes. Therefore, a TelegraphCQ node can receive several
input data streams, process them further and produce a new output stream. The
data flow in a TelegraphCQ based stream data processing is statically planned and
should conform a tree topology. Currently, TelegraphCQ relies on PostgreSQL1 (a
centralized DBMS) for creating execution plans and optimization.

In GSN, stream data processing logic at each node is not statically planned
hence using a cost-based operator placement systems, once can easily distribute
the processing and communication loads in the network. Moreover, the data flow
topology between nodes is not limited to a tree topology. In GSN, in contrast with
TelegraphCQ, the topology of data flow is flat. This combined with the dynamic
allocation (and deallocation) of resources creates a rich ecosystem in which appli-
cation designers have the opportunity to fine-tune the deployment of GSN with the
internal data flow patterns.

The Aurora* and Medusa[94] systems are aiming at designing a distributed ver-
sion of Aurora[10], which is a centralized stream processing engine. In the Medusa
distributed stream-processing system [94], Aurora is being used as the processing
engine on each of the participating nodes. Medusa takes Aurora queries and dis-
tributes them across multiple nodes and particularly focuses on load management
using economic principles and high availability. The Borealis stream processing

1http://www.postgresql.org

18 CHAPTER 2. RELATED WORK

engine [9] is based on the work in Medusa and Aurora and supports dynamic query
modification, dynamic revision of query results, and flexible optimization. These
systems focus on distributing the query processing among multiple nodes. The ac-
tual query processing at the nodes is performed by Aurora system. In GSN, we pro-
vide an integrated platform which not only can be used to process data streams at a
single node, but also, can be used as a distributed data stream processing platform
in which nodes are communicating with each other through a symmetric peer-to-
peer approach.

So far only few architectures to support interconnected sensor networks exist.
Sgroi et al. [82] suggest basic abstractions, a standard set of services, and an API to
shield application developers from the details of the underlying sensor networks.
However, the focus is on systematic definition and classification of abstractions and
services, while GSN takes a more generic approach and provides a complete inte-
grated solution encompassing an acquisition layer, a continuous query processor,
data stream storage over multiple storage models (e.g., relational databases, flat
files, distributed file systems, etc.) and publishing systems. Capabilities of GSN
are exposed both through APIs and a declarative interface.

Rooney et al. [79] propose so-called EdgeServers to integrate sensor networks
into enterprise networks. EdgeServers filter and aggregate raw sensor data (us-
ing application specific code) to reduce the amount of data forwarded to appli-
cation servers. The system uses publish/subscribe style communication and also
includes specialized protocols for the integration of sensor networks. While GSN
provides a general-purpose infrastructure for sensor network deployment and dis-
tributed query processing, the EdgeServer system targets enterprise networks with
application-based customization to reduce sensor data traffic in closed environ-
ments.

GSN’s approach is similar to TelegraphCQ’s approach. In TelegraphCQ, the
authors modified PostgreSQL database engine to introduce the streaming process-
ing concepts right inside the engine. In GSN, we decided to have the modifications
externalized from the database engine therefore, giving end-users the option of
freely choosing their underlying database engine. This option provides the best of
both worlds, as in most of the real-world deployments, end-users are more inter-
ested in closed source database engines such as Oracle database server.

GSN’s stream processing engine is built on top of a relational database engine,
thus standard database tables are used for storing and retrieving the streaming data
during GSN’s data processing. In GSN, we introduced the concept of virtual sensor

2.3. DATA STREAM MANAGEMENT PLATFORMS 19

which abstracts from implementation details of access to sensor data and defines
data stream processing to be performed. Local and remote virtual sensors, their
data streams and the associated query processing can be combined in arbitrary
ways and thus enable the users to build a data-oriented “Sensor Internet” consist-
ing of sensor networks connected via GSN. In the relational view of the streaming
data, each sensor reading corresponds to a new tuple in the related table. As GSN
employs a standard relational database as its low-level query processing engine, the
question is how to present the streaming logic in a form understandable by a stan-
dard database engine. We address this problem by using a query translator which
gets an SQL query and the stream processing directives as provided in the vir-
tual sensor definition as inputs and translates these inputs into a query executable
in a standard database. The query translator relies on special support functions
which emulate stream-oriented constructs in a database. These support functions
are database dependent. With GSN, we provide adapters for various database en-
gines.

2.3 Data Stream Management Platforms

With the advent of new sensing devices and recent advances in wireless sensor net-
work technology, the demand for providing a large scale stream processing plat-
form for processing data produced by these devices is higher than ever before.
Data stream processing platforms are systems which not only include a data stream
processing engine but also include the data acquisition layer, data publishing and
delivery mechanisms. In this section we present the major data stream processing
platforms and their differences compared to GSN.

2.3.1 HiFi

HiFi[48] provides efficient, hierarchical data stream query processing to acquire,
filter, and aggregate data from multiple devices in a static environment as shown in
Figure 2.2. In contrast to HiFi, GSN takes a peer-to-peer perspective assuming a
dynamic environment and allowing any node to be a data source, data sink, or data
aggregator.

HiFi system is using TelegraphCQ[32] as its stream processing engine, en-
abling dispersed, widely distributed organizations to continuously monitor, man-
age and optimize their operations.

20 CHAPTER 2. RELATED WORK

Figure 2.2. HiFi Data Stream Processing Platform [48]

The HiFi system is different from GSN in the following areas. First, Tele-
graphCQ moves data to a centralized processing point. Second, TelegraphCQ does
not address different types of data streams produced by different sensor networks
(HiFi just addresses different stream rates). The goal of GSN is providing a stream
processing environment focusing on simplicity and rapid deployment.

The goal of HiFi system is providing a homogeneous stream processing for
static environments with the focus on decreasing and filtering data by removing
redundant and meaningless data elements from the observations as soon as possible
(e.g., in the first steps) and transmitting merely the useful parts to the root of the
hierarchy. HiFi doesn’t address joining heterogeneous sensor networks problem
and resulting issues such as integrating data streams with dynamic data structures.

2.3.2 IrisNet

The IrisNet[52] system is aimed to providing infrastructure that allows data con-
sumers to access globally distributed collections of sensors which are attached to
computers connected to the Internet (mostly high bit-rate sensors such as Web-
cams).

IrisNet consists of two layers. First, Sensor Agents (SAs) are the nodes im-
plementing generic interface (API) provided by IrisNet. Second, Organizational
Agents (OAs) are the nodes that implement a distributed database for storing ob-
servations from SAs. The OAs store sensor data in a hierarchical, distributed XML
database. This database is modeled after the design of the Internet DNS and sup-
ports XPath queries. In contrast to that, GSN follows a symmetric peer-to-peer
approach as already mentioned and supports relational queries using SQL.

2.3. DATA STREAM MANAGEMENT PLATFORMS 21

2.3.3 HourGlass

HourGlass[83] is aimed to be an Internet based overlay network of well-connected
computers providing services such as registration, discovery, routing, filtering, ag-
gregation, compression and buffering. One of the main emphasis in HourGlass is
providing an infrastructure that handles intermittent disconnections smoothly by
keeping the data inside the network using buffering service, and retransmitting
those data to the client when a new connection is established or previous connec-
tions are reestablished.

HourGlass consists of three components, circuit managers, registry and ser-
vice providers. A service is a stream of data which has a topic with a number of
addressing predicates. A topic is a mutually agreed upon name and a predicate
is a logical statement which could be either true or false for a given service. A
service provider is a computer which hosts several services. A client interested
in a service must either provide the circuit manager, the exact address of the ser-
vice provider in form of an IP-address and port number or a topic and predicate(s)
which should hold true for the service. In the latter case, it’s the responsibility
of the circuit manager to map the topic and predicates pair to an appropriate base
computer. Similarly to GSN, HourGlass tries to hide internals of sensors from the
user, but focuses on maintaining quality of service of data streams in the presence
of disconnections, while GSN is more targeted at flexible configuration, generic
abstractions, and distributed query support.

2.3.4 TinyDB and Cougar

In the context of sensor networks, there exist different methods for retrieving data
from a sensor network. The naive way is to use a low level programming API of
the operating system (e.g., TinyOS[49]), to do the sensing and sending the data.
This approach is time consuming and hardware dependent.

The Cougar[92] and TinyDB[69] systems are designed to facilitate this pro-
cess and hide the underlying details by providing declarative query languages for
getting the data from the sensor network. In these systems, when the user posts
a query, the underlying system generates an optimized and efficient (in terms of
communication cost and energy) query execution plan for the in-network query
processing. Therefore these systems not only reduce the deployment costs (e.g.,
providing high-level query languages) but also reduce the energy consumption.

Based on the TinyOS operating system, the TinyDB[69] platform is a query

22 CHAPTER 2. RELATED WORK

processing system for extracting information from a network of TinyOS-based
motes using a declarative SQL-like query language named Tiny-SQL. The goal
of TinyDB is providing an interface for getting data without specifying how to get
it. TinyDB collects that data from motes, filters, aggregates and routes the data
packets using a multi-hop power-efficient algorithm.

In GSN, we are pursuing a different goal. We are interested in efficient inte-
gration of multiple heterogeneous sensor networks in addition to posting complex
queries on the underlying data stream. GSN gets the streaming data from the sensor
network using the wrappers.

In GSN, a wrapper is an interface between the platform and an actual stream
producer (e.g., a sensor network). If the data coming into GSN is produced by a
physical sensor network, Cougar and TinyDB systems can be used for acquiring
the data from the sensor network and delivering it to the sink node, which in turn
delivers the data to the appropriate wrapper inside GSN. Therefore, Cougar and
TinyDB systems are in fact complementary to GSN platform.

2.4 Continuous Query Languages

In this section we present the basic concepts behind data stream processing. We
also describe different query languages designed for processing streaming data.

In order to process streaming data, the standard approach is to specify a query
with at least two extra properties associated with it, window size and sliding value2.
The window size is used to limit the actual data used for the processing (execution)
to a certain range in time or number of values. The sliding predicate is introduced
to specify the execution condition for the query. The execution of the query is
triggered whenever the sliding condition is satisfied, implying a possibly infinitely
long periodic execution of the query.

For instance, one can express the interest of obtaining the average of a temper-
ature sensor over the last 10 minutes, and doing so periodically every 2 minutes, by
simply providing the window size of 10 minutes and sliding value of 2 minutes to
the stream processing engine. As indicated before, each time the sliding condition
is satisfied (e.g., 2 minutes passed from the previous execution) the actual action,
computing the average over the last 10 minutes, is performed. Note that in some
cases the execution of the action is also called movement of the sliding window.

2In this thesis, we use the terms sliding predicate, sliding value and sliding condition inter-
changeably.

2.4. CONTINUOUS QUERY LANGUAGES 23

In the context of stream processing, three main approaches used for designing
the continuous query language (query with window size and sliding value).

2.4.1 Data Flow Based Languages

In the Aurora[10] system, one can construct queries visually through a graphical
user interface by arranging boxes and joining them with arrows representing the
data flows between boxes. This graphical presentation is then used as the input
for the query planner. The query planner further optimizes the processing flow
internally in the optimization phase.

2.4.2 SQL Based Languages

The most popular stream querying languages are extensions of declarative rela-
tional query languages such as CQL[21] which is introduced by the STREAM[20]
project and StreaQuel[55] which is introduced by the TelegraphCQ[32] system.

CQL’s syntax is very similar to the standard SQL language with extensions de-
fined for handling streaming data. For instance in CQL the query SELECT * FROM

S1 [ROWS 100] WHERE S1.A > 10 will use the last 100 values as the count
based window from S1 for processing the query. That query processing in CQL
is data-driven which means the query will be executed for each stream element
that arrives at the system.

The StreaQuel language isolates the streaming semantics from the query lan-
guage. The window size used for the query is defined using a for-loop construct.
Let S be a stream and let ST be the start time of the query. To specify the sliding
window consisting the last 20 time units over stream S which runs for 100 time
units :

for (t = ST; t < ST + 100; t++)

WindowIs (S, t-20, t)

When using StreaQuel, the actual query for performing filtering and joins is
specified in an SQL like syntax. Note that, compared to CQL, the StreaQuel sup-
ports streaming and periodic query processing. The other family of query lan-
guages designed for streaming data are Object based languages such as COUGAR.
In this approach the system models the stream source as abstract data types (ADTs)
whose interface consists of the sensor’s data processing methods with a SQL like
query language.

24 CHAPTER 2. RELATED WORK

2.4.3 Declarative SQL Based Languages

GSN separates the stream related constructs from the query similar to the StreaQuel
[55]. The data stream processing related concepts can be specified using standard
XML syntax (e.g., window size), which makes the continuous query more like a
standard SQL. Separating the filtering and the stream related constructs has two
advantages. First, using standard SQL queries implies that more users can under-
stand and use the system without having to learn a new language. Second, the
separation of concerns implies that users can present the stream related processing
logic separately from the filtering concepts (e.g., SQL query).

In GSN we support the standard window specifications[70] (described in detail
in chapter 3) such as time and count based windows and sliding predicates. In GSN,
we also introduced a simple load shedding extension which is aimed to bound the
rate of the data stream through random sampling of the data stream within the
current window when the rate exceeds a certain user defined threshold.

In GSN users can also post queries encompassing continuous and historical
data. Users can use the standard SQL join on live data streams combined with
the static data (e.g., static data mapping of GPS locations to the room numbers)
allowing users to integrate several streams with the static data storage. In GSN,
users can issue complex SQL queries (such as different type of joins, sub-queries,
ordering, grouping, unions, intersections, etc.) within stream processing semantics.

2.5 Distributed Publish/Subscribe Systems

Distributed publish/subscribe systems (DPSS) is one of the extensively researched
subjects in both the networking community and the data management community.
Many research efforts have been focused on enabling scalable and efficient data
dissemination services to a large number of users. For instance, efficient matching
of events with subscriptions within a broker is studied in [16]. Authors in [28]
presented the architecture design of a DPSS with a number of widely distributed
brokers. Additionally, several systems providing publish/subscribe style query pro-
cessing comparable to GSN exist, for example, [57].

Distributed publish/subscribe systems are one of the highly relevant systems
to stream processing platforms. This commonality comes from the fact that both
systems are sharing the goal of efficiently delivering massive amount of data to the
end users. In the case of stream processing engines, having the continuous queries
registered over the streams is very similar of having subscriptions on top of the

2.5. DISTRIBUTED PUBLISH/SUBSCRIBE SYSTEMS 25

data providers. The main difference lies in the use of new stream processing con-
structs which don’t exist in publish/subscribe systems. Predicates such as window
size and sliding value define a new data processing paradigm. The window size
limits the number of the data items used in the processing and the sliding value
enforces a certain execution pattern over the data stream. There exist systems in
which publish/subscribe systems are used as the basis for building a stream pro-
cessing engine. For instance the approach proposed in [96] employs a distributed
publish/subscribe system to disseminate the stream data from the data sources to
the processing servers and was focused on optimizing the allocation of the queries
to the servers.

26 CHAPTER 2. RELATED WORK

Chapter 3

Global Sensor Network

Overview

With the price of wireless sensor technologies diminishing rapidly we can expect
large numbers of autonomous sensor networks being deployed in the near future.
These sensor networks will typically not remain isolated but the need of intercon-
necting them on the network level to enable integrated data processing will arise,
thus realizing the vision of a global “Sensor Internet.” This requires a flexible mid-
dleware layer which abstracts from the underlying, heterogeneous sensor network
technologies and supports the following requirements.

• Runtime reconfiguration.

• Flexible resource management.

• Integrated data acquisition and processing.

• Flexible data stream acquisition layer.

• Common services in one package.

This chapter presents the Global Sensor Network (GSN) middleware which ad-
dresses these goals. We present GSN’s conceptual model, abstractions, and archi-
tecture, and demonstrate the efficiency of the implementation through experiments
with typical high-load application profiles. The GSN implementation is available
from http://gsn.sourceforge.net/.

27

28 CHAPTER 3. GLOBAL SENSOR NETWORK

Figure 3.1. GSN model

3.1 Introduction

The availability of cheap and smart wireless sensing devices provides unprece-
dented possibilities to monitor the physical world. Until now, research in the sen-
sor network domain has mainly focused on routing, data aggregation, and energy
conservation inside a single sensor network while the integration of multiple sensor
networks has only been studied to a limited extent. However, as the price of wire-
less sensors diminishes rapidly we can soon expect large numbers of autonomous
sensor networks being deployed. These sensor networks will be managed by dif-
ferent organizations but the interconnection of their infrastructures along with data
integration and distributed query processing will soon become an issue to fully ex-
ploit the potential of this “Sensor Internet.” This requires platforms which enable
the dynamic integration and management of sensor networks and the produced data
streams.

The Global Sensor Network (GSN) platform aims at providing a flexible mid-
dleware to accomplish these goals. GSN assumes the simple model shown in Fig-
ure 3.1: A sensor network internally may use arbitrary multi-hop, ad-hoc routing
algorithms to deliver sensor readings to one or more sink node(s). A sink node is a
node which is connected to a more powerful base computer which in turn runs the
GSN middleware and may participate in a (large-scale) network of base computers,
each running GSN and servicing one or more sensor networks. The base computer
can be used to perform further (application dependent) processing on data in ad-
dition to providing various services (such as the storage for keeping the history of
readings) and interfaces (such as web services interface, http based interface, etc)
to enable local and remote users to access the sensor readings and interact with the
sensor network such as sending commands to the sensor network.

We do not make any assumptions on the internals of a sensor network other

3.2. VIRTUAL SENSORS 29

than that the sink node is connected to the base computer via a software wrapper
conforming to the GSN API. The wireless sensor networks can use any kind of en-
ergy saving (such as TMAC or SMAC protocols for the MAC Layer) and routing
protocols. While the nodes inside the sensor network are most likely communi-
cating with each other for various reasons such as building the internal routing
table, depending on the application requirement, it is most likely that these inter-
nal communications are hidden from the base computer and hence the GSN. The
base computer only receives the data packets from the sensor network whenever a
packet specifically addressed to it or broadcasted.

On top of this physical access layer GSN provides so-called virtual sensors
which abstract from implementation details of access to sensor data and define the
data stream processing to be performed. Local and remote virtual sensors, their
data streams and the associated query processing can be combined in arbitrary
ways and thus enable the user to build a data-oriented “Sensor Internet” consisting
of sensor networks connected via GSN.

In the following, we start with a detailed description of the virtual sensor ab-
straction in Section 3.2, discuss GSN’s data stream processing and time model in
Section 3.3, and present GSN’s system architecture along with a discussion of es-
sential implementation details in Section 3.4. Section 3.5 presents the major imple-
mentation decisions of GSN, specifically the optimization techniques for sharing
internal resources. The network layer of GSN is presented in detail in Section 3.6.
We evaluate the performance of GSN in Section 3.7.

3.2 Virtual sensors

The key abstraction in GSN is the virtual sensor. Virtual sensors abstract from im-
plementation details of access to sensor data and correspond either to a data stream
received directly from sensors or to a data stream derived from other virtual sen-
sors. A virtual sensor can be any kind of data producer, for example, a real sensor,
a wireless camera, a desktop computer, or any combination of virtual sensors. A
virtual sensor may have any number of input data streams and produces exactly
one output data stream (with predefined format) based on the input data streams
and arbitrary local processing. The specification of a virtual sensor provides all
necessary information required for deploying and using it, including:

• Metadata used for identification and discovery.

30 CHAPTER 3. GLOBAL SENSOR NETWORK

• The details of the data streams which the virtual sensor consumes and pro-
duces.

• Declarative SQL-based specification of the data stream processing (filtering
and integration) performed in a virtual sensor.

• Processing class which performs the more advanced and complex data pro-
cessing (if needed) on the output stream before releasing it.

• Functional properties related to persistency, error handling, life-cycle, man-
agement, and physical deployment.

To support rapid deployment, the virtual sensors are provided in a human read-
able declarative format (XML). Figure 3.2 shows an example which defines a vir-
tual sensor that reads two temperature sensors and in case both of them have the
same reading above a certain threshold in the last minute, the virtual sensor returns
the latest picture from the webcam in the same room together with the measured
temperature.

A virtual sensor has a unique name (the name attribute in line 1) and can be
equipped with a set of key-value pairs representing the logical addressing of the
virtual sensor (lines 12–17), i.e., associated with metadata. The addressing infor-
mation can be registered and discovered in GSN and other virtual sensors can use
either the unique name or logical addressing based on the metadata to refer to a
virtual sensor. We have defined certain addressing keys which are specifically used
by GSN’s web interface. In GSN if a given virtual sensor has the addressing values
for the both latitude (line 15) and longitude (line 16) keys, the default GSN
web interface uses these geographical locations to show the sensor on the global
map.

The example specification in Figure 3.2 defines a virtual sensor with three in-
put streams which are identified by their metadata1 i.e., by logical addressing. For
example, the first temperature sensor is addressed by specifying two requirements
on its metadata, namely that it is of type temperature sensor and at a certain physi-
cal location. By using multiple input streams Figure 3.2 also demonstrates GSN’s
ability to access multiple stream producers simultaneously. For the moment, we as-
sume that the input streams (two temperature sensors and a webcam) have already

1Note that the support for distributed directory/registry service had been removed from GSN’s
source code thus as of January 26, 2010, we only support physical addressing for identifying the data
sources.

3.2. VIRTUAL SENSORS 31

1 <v i r t u a l −s e n s o r name=” room−m o n i t o r ”
2 p r o t e c t e d =” f a l s e ” >
3 <p r o c e s s i n g−c l a s s>
4 <c l a s s−name>gsn . v s e n s o r . B r i d g e V i r t u a l S e n s o r< / c l a s s−name>
5 < i n i t −params />
6 <o u t p u t−s t r u c t u r e>
7 < f i e l d name=” image ” t y p e =” b i n a r y : j p e g ” />
8 < f i e l d name=” temp ” t y p e =” i n t ” />
9 < / o u t p u t−s t r u c t u r e>

10 < / p r o c e s s i n g−c l a s s>
11 < l i f e −c y c l e pool−s i z e =” 10 ” />
12 <a d d r e s s i n g>
13 <p r e d i c a t e key=” g e o g r a p h i c a l ”>BC143< / p r e d i c a t e>
14 <p r e d i c a t e key=” usage ”>room m o n i t o r i n g< / p r e d i c a t e>
15 <p r e d i c a t e key=” l a t i t u d e ”>46 .5214< / p r e d i c a t e>
16 <p r e d i c a t e key=” l o n g i t u d e ”>6 .5676< / p r e d i c a t e>
17 < / a d d r e s s i n g>
18 <s t o r a g e h i s t o r y−s i z e =” 10h ” />
19 <s t r e a m s>
20 <s t r e a m name=”cam”>
21 <s o u r c e name=”cam” s t o r a g e−s i z e =” 1 ” >
22 <a d d r e s s wrapper =” remote ”>
23 <p r e d i c a t e key=” g e o g r a p h i c a l ”>BC143< / p r e d i c a t e>
24 <p r e d i c a t e key=” t y p e ”>Camera< / p r e d i c a t e>
25 < / a d d r e s s>
26 <que ry> s e l e c t ∗ from WRAPPER< / que ry>
27 < / s o u r c e>
28 <s o u r c e name=” t e m p e r a t u r e 1 ” s t o r a g e−s i z e =” 1m” >
29 <a d d r e s s wrapper =” remote ”>
30 <p r e d i c a t e key=” t y p e ”> t e m p e r a t u r e< / p r e d i c a t e>
31 <p r e d i c a t e key=” g e o g r a p h i c a l ”>BC143−N< / p r e d i c a t e>
32 < / a d d r e s s>
33 <que ry> s e l e c t AVG(temp1) as T1 from WRAPPER< / que ry>
34 < / s o u r c e>
35 <s o u r c e name=” t e m p e r a t u r e 2 ” s t o r a g e−s i z e =” 1m” >
36 <a d d r e s s wrapper =” remote ”>
37 <p r e d i c a t e key=” t y p e ”> t e m p e r a t u r e< / p r e d i c a t e>
38 <p r e d i c a t e key=” g e o g r a p h i c a l ”>BC143−S< / p r e d i c a t e>
39 < / a d d r e s s>
40 <que ry> s e l e c t AVG(temp2) as T2 from WRAPPER< / que ry>
41 < / s o u r c e>
42 <que ry>
43 s e l e c t cam . p i c t u r e as image , t e m p e r a t u r e . T1 as temp
44 from cam , t e m p e r a t u r e 1
45 where t e m p e r a t u r e 1 . T1 > 30 AND
46 t e m p e r a t u r e 1 . T1 = t e m p e r a t u r e 2 . T2
47 < / que ry>
48 < / s t r e a m>
49 < / s t r e a m s>
50 < / v i r t u a l −s e n s o r>

Figure 3.2. A virtual sensor definition

32 CHAPTER 3. GLOBAL SENSOR NETWORK

been defined in other virtual sensors (how this is done, will be described later in
this chapter).

In GSN data streams are temporal sequences of timestamped tuples (also known
as Stream Elements). This is in line with the model used in most stream process-
ing systems. The structure of the output data stream a virtual sensor produces is
encoded in XML as shown in lines 6 – 9 (the output-structure part). The
structure of the input streams is learned from the respective specifications of their
virtual sensor definitions.

In GSN data stream processing can be performed in three levels:

• Directly on the sources (lines 26, 33, and 40).

• Combining data from the different input streams and producing the tempo-
rary output stream (lines 43-46).

• Passing the temporary output stream through a processing class (a processing
logic represented in some programming language). This part is presented
by lines 3 – 10. Note that since the final output of the virtual sensor is
produced by the processing class, the actual output structure of the virtual
sensor should strictly conform the output format of the processing class 2.

The data filtering logic on the data sources is specified through the SQL queries
which refer to the actual data source by the reserved keyword WRAPPER (the data
source is logically represented as a relational table which called wrapper). The
attribute wrapper="remote" indicates that the data stream is obtained through
the network from another virtual sensor, which can be located in any other GSN
instance accessible through the network.

In the case of a directly connected local sensor, the wrapper attribute would
reference the required wrapper3. For example, wrapper="tinyos" would denote
a TinyOS-based sensor whose data stream is accessed via GSN’s TinyOS wrap-
per 4. GSN already includes wrappers for all major TinyOS platforms (Mica2,
Mica2Dot, etc.), for wired and wireless (HTTP-based) cameras (e.g., AXIS 206W),
several RFID readers (Texas Instruments, Alien Technology), Bluetooth devices,

2As of January 26, 2010, the order and the type of the fields should match.
3As of January 26, 2010, all the wrappers have to be written in the Java language. The actual

code for accessing the sensor can be written in any language as long as there is a possibility of
communicating the data to the hardware through Java (e.g., interfacing Java to the existing C code or
the communicating through the serial ports).

4In GSN, we have multiple TinyOS wrappers each corresponding to different versions and packet
formats. The details are out of the scope of this chapter but are fully documented in the GSN website.

3.2. VIRTUAL SENSORS 33

Shockfish, WiseNodes, epuck robots, etc. The implementation effort for wrappers
is rather low, for example, the RFID reader wrapper has 50 lines of code (LOC),
the TinyOS wrapper has 120 LOC, and the generic serial wrapper has 180 LOC.

In the given example the output stream joins the data received from two temper-
ature sensors and returns a camera image if certain conditions on the temperature
readings are satisfied (lines 43–46). To enable the SQL statement in lines 43–46
to produce the output stream, it needs to be able to reference the required sources
which is accomplished by the name attribute (lines 21, 28, and 35) that defines a
symbolic name for each stream source.

The output structure definition of the virtual sensor is directly affected by the
data processing logic that is performed by the virtual sensor’s processing class.
GSN provides multiple processing classes each of which is designed to perform
different tasks (e.g., charts, network plots, filtering, ...). In our example we are
using the gsn.vsensor.BridgeVirtualSensor as the processing class. The
gsn.vsensor.BridgeVirtualSensor class is special in the sense that unlike
most of the other GSN’s processing classes, this class does not perform any further
processing on its input stream thus it does not alter the data nor the structure of its
input.

Since the structure of the virtual sensor output is not altered through using the
gsn.vsensor.BridgeVirtualSensor processing class, the final structure of the
virtual sensor’s output is determined through the SQL statement at line 43. There-
fore we need to make sure that, the data fields in the select clause matches the
definition of the output structure in lines 6–9 (the order is also important). It is
recommended to use gsn.vsensor.BridgeVirtualSensor as long as the pro-
cessing performed in the virtual sensor through the SQL queries are sufficient and
no further processing is required before publishing the sensor data to the outside.

In the design of GSN specifications we decided to separate the temporal as-
pects from the relational data processing using SQL. The temporal processing is
controlled by various attributes provided in the input and output stream specifica-
tions, e.g., the attribute storage-size (lines 21, 28, and 35) defines the window
size. Due to its specific importance the temporal processing will be discussed in
detail in Section 3.3.

In addition to the specification of the data-related properties, a virtual sensor
also includes high-level specifications of functional properties: The <life-cycle>
element (line 11) enables the control and management of resources provided to a
virtual sensor such as the maximum number of threads/queues available for pro-

34 CHAPTER 3. GLOBAL SENSOR NETWORK

cessing, the <storage> element (line 18) allows the user to control how the output
stream data is persisted.

For example, in Figure 3.2 the <life-cycle> element in line 11 specifies a
maximum number of 10 threads, which means that if the pool size is reached, data
will be dropped (if no pool size is specified, it will be controlled by GSN depending
on the current load), the <storage> element in line 18 defines that only the most
recent 10 hours output of this virtual sensor to be stored. The storage-size

attribute in line 21 defines the window size of 1 stream element. That’s the most
recent image taken by the webcam irrespective of the time it was taken.

In GSN, we can specify the set of values either by time or count. In the
count based representation one provides the values through integers. For instance
slide=’2’ or history-size=’100’. The time based representation consists of
an integer directly postfixed (without any space characters) with one of the pre-
defined time units. As of January 26, 2010, we have d,h,m,s units which are cor-
responding to days, hours, minutes and seconds respectively. As a time based
example, we might have storage-size=’1m’.

The storage-size attributes in lines 28 and 35 define a window of one minute
for the amount of sensor readings subsequent queries will be run on, i.e., the AVG

operations in lines 33 and 40 are executed on the sensor readings received in the
last minute which of course depends on the rate at which the underlying temper-
ature virtual sensor produces its readings. Note that when the storage-size is
anything other than 1, the virtual sensor author should be aware of the possibility
of duplicated stream elements (discussed in more detail in section 3.3).

The query that produces the output stream (lines 43–46) also demonstrates
another interesting capability of GSN as it also mediates among three different
flavors of queries: The virtual sensor itself uses continuous queries on the temper-
ature data, a “standard” database query is performed on the camera data and the
query produces a result only if certain conditions are satisfied, i.e., a notification
analogous to pub/sub or active rules.

Virtual sensor is a powerful abstraction mechanism which enables the users to
declaratively specify sensors and create arbitrary complex data processing chains.
Virtual sensors can be deployed while a GSN instance is running without having to
stop the system. Also dynamic unloading is supported but should be used carefully
as unloading a virtual sensor may have undesired (cascading) effects.

3.3. DATA STREAM PROCESSING AND TIME MODEL 35

3.3 Data stream processing and time model

Data stream processing has received substantial attention in the recent years in
various application domains, such as network monitoring or telecommunications.
As a result, a rich set of query languages and query processing approaches for
data streams exist. A central building block in data stream processing is the time
model as it defines the temporal semantics of data and thus determines the de-
sign and implementation of a system. Currently, most stream processing systems
use a global reference time as the basis for their temporal semantics because they
were designed for centralized architectures in the first place. As GSN is targeted
at enabling a distributed “Sensor Internet,” imposing a specific temporal seman-
tics seems inadequate and maintaining it might come at unacceptable cost. GSN
provides the essential building blocks for dealing with time, but leaves temporal se-
mantics largely to applications allowing them to express and satisfy their specific,
largely varying requirements. In our opinion, this pragmatic approach is viable as
it reflects the requirements and capabilities of sensor network processing.

In GSN a data stream is a set of timestamped tuples also known as Stream Ele-
ments. The order of the data stream is derived from the ordering of the timestamps.
GSN provides basic support for managing and manipulating the timestamps. The
following essential services are provided:

1. A local clock at each GSN instance.

2. Implicit management of a timestamp attribute (reserved field called TIMED).56

3. Automatic timestamping of tuples upon arrival at the GSN in case the tuples
(stream elements) don’t have any timestamp (no TIMED field available).

4. Windowing mechanism which allows the user to define count- or time-based
windows on data streams.

5. Sliding mechanism which allows the users to define count- or time-based
sliding behaviors on the data streams.

In this way it is always possible to trace the temporal history of data stream
elements throughout the processing history. Multiple time attributes can be asso-
ciated with data streams (as long as only one of them is named TIMED) and can

5All timestamps in GSN are represented in milliseconds using 64-bit integers.
6As the timestamp (e.g., the TIMED field) is always present, it is not required to specify the

TIMED field in the output-structure section of the virtual sensor. In fact, specifying the TIMED

field in the output structure causes error and GSN refuses to load the virtual sensor.

36 CHAPTER 3. GLOBAL SENSOR NETWORK

be manipulated through SQL queries. Thus sensor networks can be used as ob-
servation tools for the physical world, in which network and processing delays are
inherent properties of the observation process which cannot be made transparent
by abstraction. Let us illustrate this by a simple example: Assume a bank is being
robbed and images of the crime scene taken by the security cameras are transmitted
to the police. For the insurance company the time at which the images are taken in
the bank will be relevant when processing a claim, whereas for the police report the
time the images arrived at the police station will be relevant to justify the time of
intervention. Depending on the context the robbery is thus taking place at different
times.

As tuples (sensor readings) are timestamped, queries can also explicitly deal
with time. For example, the query in lines 43–46 of Figure 3.2 could be extended
such that it explicitly specifies the maximum time interval between the readings
of the two temperatures and the maximum age of the readings. This would addi-
tionally require changes in the source definitions as the sources then must provide
this information (more detailed example below). The averaging of the temperature
readings (lines 33 and 40) would have to be also changed to be explicit in respect
to the time dimension.

In order to concretely show the time management inside GSN, we would like
to simulate the above scenario through two different virtual sensors (only the in-
put stream parts are presented). Say there exists a virtual sensor called camera-vs
hosted on a GSN instance which listens to port 80 on a machine with an IP ad-
dress of 1.2.3.4. The virtual sensor used by the police and the one used by the
insurance are depicted in Figures 3.3 and 3.4. The stream specified in Figure 3.3
has a query in line 7 for retrieving both the picture and the time stamp from the
remote virtual sensor therefore the remote timestamp is used by GSN for the in-
ternal calculations. Now consider the stream specified in Figure 3.4 which has a
small change compared to the one in Figure 3.3, the latter does not select the times-
tamp field hence GSN automatically adds the local reception time to every tuple it
receives from the remote source.

In order to further elaborate the time management issue, consider the stream
source specified in Figure 3.5. This example combines both the local time and
remote time in order to measure the latency associated with each tuple and uses the
latency as a condition inside the selection criteria (e.g., only accepting the tuples

3.3. DATA STREAM PROCESSING AND TIME MODEL 37

1 <s t r e a m name=”cam”>
2 <s o u r c e name=”cam” s t o r a g e−s i z e =” 1 ” >
3 <a d d r e s s wrapper =” remote ”>
4 <p r e d i c a t e key=” h o s t ”>1 . 2 . 3 . 4< / p r e d i c a t e>
5 <p r e d i c a t e key=” p o r t ”>80< / p r e d i c a t e>
6 <p r e d i c a t e key=”name”>camera−vs< / p r e d i c a t e>
7 < / a d d r e s s>
8 <que ry> s e l e c t PICTURE , TIMED from WRAPPER< / que ry>
9 < / s o u r c e>

10 <que ry>
11 s e l e c t PICTURE , TIMED from cam
12 < / que ry>
13 < / s t r e a m>

Figure 3.3. A stream using the remote timestamp.

1 <s t r e a m name=”cam”>
2 <s o u r c e name=”cam” s t o r a g e−s i z e =” 1 ” >
3 <a d d r e s s wrapper =” remote ”>
4 <p r e d i c a t e key=” h o s t ”>1 . 2 . 3 . 4< / p r e d i c a t e>
5 <p r e d i c a t e key=” p o r t ”>80< / p r e d i c a t e>
6 <p r e d i c a t e key=”name”>camera−vs< / p r e d i c a t e>
7 < / a d d r e s s>
8 <que ry> s e l e c t PICTURE from WRAPPER< / que ry>
9 < / s o u r c e>

10 <que ry>
11 s e l e c t PICTURE , TIMED from cam
12 < / que ry>
13 < / s t r e a m>

Figure 3.4. A stream using the local (arrival) timestamp.

38 CHAPTER 3. GLOBAL SENSOR NETWORK

1 <s t r e a m name=”cam”>
2 <s o u r c e name=”cam” s t o r a g e−s i z e =” 1 ” >
3 <a d d r e s s wrapper =” remote ”>
4 <p r e d i c a t e key=” h o s t ”>1 . 2 . 3 . 4< / p r e d i c a t e>
5 <p r e d i c a t e key=” p o r t ”>80< / p r e d i c a t e>
6 <p r e d i c a t e key=”name”>camera−vs< / p r e d i c a t e>
7 < / a d d r e s s>
8 <query> s e l e c t PICTURE ,
9 TIMED as REMOTE TIMED

10 from WRAPPER< / que ry>
11 < / s o u r c e>
12 <que ry>
13 s e l e c t PICTURE , REMOTE TIMED AS TIMED from cam where
14 (cam . TIMED − cam . REMOTE TIMED) < 5
15 </ que ry>
16 < / s t r e a m>

Figure 3.5. A stream using both local and remote timestamps.

which are not delayed by the network for more than 5 milliseconds).

3.3.1 Window Size and Sliding Values inside GSN

In order to deal with the streaming data, the standard way is to specify a query with
at least two extra properties associated with it, window size and sliding value. The
window size is used to limit the actual data used for the processing (execution) to a
certain range in time or number of values. The sliding value is introduced to spec-
ify the execution condition for the query. The execution of the query is triggered
whenever the sliding condition is satisfied implying a possibly infinitely long pe-
riodic execution of the query, therefore in stream processing systems, continuous
queries are executed whenever the sliding occurs.

For instance, one can express the interest of obtaining the average of a temper-
ature sensor over the last 10 minutes, and doing so periodically every 2 minutes, by
simply providing the window size of 10 minutes and sliding value of 2 minutes to
the stream processing engine. As indicated before, each time the sliding condition
is satisfied (e.g., 2 minutes passed from the previous execution) the actual action,
computing the average over the last 10 minutes, is performed. Note that in some
research papers the execution of the action is also called movement of the sliding
window.

3.3. DATA STREAM PROCESSING AND TIME MODEL 39

Time 0

Time 1

Time 2

Time 3

Time 4

Time 5

Sliding Value = 1
Window Size = 3

Sliding Value = 2
Window Size = 3

Sliding Value = 3
Window Size = 3

Figure 3.6. Illustration of the different sample sliding and window values.

The temporal processing in GSN is defined using the sliding value and the win-
dow size. Every data source in GSN can have one slide7 and one storage-size8

attribute. Both values can be represented in the form of count-based or time-based
values (described earlier in this chapter). Figure 3.6 visually represents the query
execution inside GSN with different sliding and window values. We used a black
dot in the Figure to represent the triggering of execution. For instance, if both
the window size and the sliding values are 3, and say we have received 5 stream
elements in total, our continuous query have been executed only once (at the times-
tamp 3) during its life time. One can extend the above paradigm to create virtual
sensors to support the integration of continuous and historical data. For example, if
the user wants to be notified when the temperature is 10 degrees above the average
temperature in the last 24 hours, he/she can simply define two sources, getting data
from the same wrapper but with different window sizes, i.e., 1 (count) and 24h
(time), and then simply write a query specifying the original condition with these
sources.

The production of a new output stream element of a virtual sensor is always
triggered by the arrival of a data stream element from one of its input streams, thus
processing in GSN is data-driven. As described before, a stream can have multiple
sources. Once the window of one of the sources of a stream slides, the following
processing steps are performed:

7Default value is 1, therefore this attribute can be omitted.
8No default value defined.

40 CHAPTER 3. GLOBAL SENSOR NETWORK

1. By default the new data stream element is timestamped using the local clock
of the virtual sensor provided that the stream element had no timestamp (this
step is optional).

2. Based on the timestamps, the stream elements are selected according to the
window size and the resulting sets of relations are unnested into flat relations.

3. The queries defined on the source are evaluated and the results are stored
into temporary (in-memory) tables.

4. The stream query for producing the input for the processing class is executed
based on the temporary tables.

5. The resulting stream elements are forwarded to the processing class.

6. The output of the processing class is stored and simultaneously forwarded
(e.g., notifications) to all the consumers of this virtual sensor.

Figure 3.7 shows the logical data flow inside a GSN node.

Additionally, GSN provides a number of attributes in the virtual sensor defi-
nition to control the data stream rates. The values used for controlling these rates
are usually presented as floating numbers between 0.0 to 1.0. The data rate man-
agement is useful whenever one wants to drop stream elements with some fixed
probability to achieve load shedding. For instance, if one has a temperature source
that keeps producing data with a very high rate, one might want to sample the pro-
duced values thus making the processing load lighter. For instance if one sets the
sampling-rate to 0.75, any received stream element from the wrapper is going to
be included in the window with a probability of 75 out of 100. Thus, on average
25 random stream elements will be dropped out of every 100 elements. In most of
the cases one typically sets the rate control attributes to 1.0 to make sure no stream
element is dropped.

The rate control can be applied in the following three different levels 9:

• At the source level by providing sampling-rate attribute (real number in
the range [0.0 . . . 1.0]).

• At the stream level by providing rate attribute (integer value above zero).

9Please refer to the virtual sensor quick reference for the syntactical information about different
portions of the virtual sensor file. This document is available in the GSN’s web site.

3.3. DATA STREAM PROCESSING AND TIME MODEL 41

Stream data element Timestamp Stream data element Timestamp

of the stream source query
Relation produced as the result

timestamp and raw sensor data
Stream Source relation with

...
Relation Name : Input Stream name

...

...

...

...
Relation Name : Source Name

...

The relation produced

Relation produced as the result

Processing Class

Relation Name : Source Name

of the stream query

Wrapper Wrapper

Stream elements coming
from the wrappers

Source Query Source Query

Stream Query

Stream Query
as the result of the

Relational Database

Figure 3.7. Conceptual data flow in a GSN node

66 CHAPTER 4. EFFICIENT SLIDING WINDOW MANAGEMENT

Figure 4.2. General Model For Large Scale Stream Processing

Once the streaming data arrives, the sliding manager uses the query repository
to generate a list containing all queries for which the sliding is imminent. This
list is called the candidate query list. The query list is then delivered to the query
scheduler which schedules the queries for execution by using arbitrary scheduling
algorithms. Since we post a list of queries for the scheduler, it can consider batch
processing of the queries. The queries are evaluated in the query execution unit that
emits the results to the output delivery module. The notification system and output
delivery module communicate with each other to notify registered users about new
events. This model implies an essential role of the sliding manager in a stream
processing system. Our focus in this work is on the sliding manager module of
the stream processing engines. We propose algorithms to intelligently manage the
sliding windows, thus improving the processing time and reducing the memory
overhead.

4.5 Algorithms

In the context of data stream processing, there exist two types of sliding actions,
time based and (tuple) count based. The time based sliding implies execution of the
query in predefined (and possibly fixed) intervals. The count based sliding is used
for triggering the query execution once a certain amount of data items (tuples) has
arrived at the stream processing engine. The amount of the data on which the query
is evaluated is specified through the window property. The window property can be
also specified using time or tuples. Given the above stream processing constructs
one can come up with four different combinations listed below:

1. Count based window, count based slide (CBW-CBS)

4.5. ALGORITHMS 67

2. Time based window, count based slide (TBW-CBS)

3. Time based window, time based slide (TBW-TBS)

4. Count based window, time based slide (CBW-TBS)

For sliding windows which have a count based slide (the first and second types),
the case of slide=1 is considered as a special case. In this case we simply do the
sliding on arrival of each new tuple. There are also two different types of time
which should be handled differently, local time and remote time. If the system time
is used as the timestamp of tuples, we say these tuples are using local time. If the
timestamp is set by the remote data source, we say tuples have remote time. Since
each of these two types of time requires different treatment, sliding windows with
time based slide are further divided into local time based and remote time based
and therefore, we will have six different sliding window types: Two so called count
based sliding windows, two so called local time based sliding windows, and in
addition two remote time base sliding windows. In the following subsections we
will explain different algorithms used for management of sliding for these three
groups of sliding windows.

4.5.1 Sliding Graph

In this part, we start by describing the proposed sliding window management strate-
gies and then we continue toward the concrete algorithms. The problem is to de-
velop a method to reduce the processing time required for checking each sliding
value to see whether its window must be slid or not. The straightforward method
is to test all streams on arrival of each tuple. An obvious improvement is grouping
those streams which have the same sliding value. This can already greatly reduce
the number of comparisons on arrival of each new tuple.

We further improve the processing time by introducing a graph structure for
sliding groups. This graph is based on the fact that in continuous queries that are
issued by users, the sliding value of windows are often factors of each other. Sup-
pose that after grouping of sliding windows, we have the following (count based)
sliding groups: 2, 4, 8, 24, 15, 12, 5, 22, 3, 11, and 9. We know, for example, that 2
is a factor of 2, 4, 8, 12, 24, and 22; also 3 is a factor of 3, 9, 12, 15, and 24. These
values are organized in a directed graph such that for each edge the start node’s
value divides the end node’s value and there is no other node in between them. If
after the construction of the graph there is more than one node without any edges,
a dummy parent node is created which uses the greatest common divisor (gcd) of

68 CHAPTER 4. EFFICIENT SLIDING WINDOW MANAGEMENT

its children as its sliding value. The only node without any incoming edges, which
may be a dummy node, is called root node. Edges in the graph are either strong or
weak; an incoming edge to a node is strong if its start value is the greatest among
the start values of the other incoming edges. All other edges are weak edges and
are used to simplify modifications to the graph. The resulting graph is called the
sliding graph.

Figure 4.3. Sliding graph produced for sample sliding groups

Figure 4.3 shows the sliding graph for the sample sliding groups of the example
given above. Strong edges are represented by solid line arrows and weak edges are
represented by dashed line arrows. As it can be seen in the figure, if we remove
weak edges from the graph, what remains is a tree which is called sliding tree and
which we use in our sliding algorithms.

4.5.2 Sliding for Count based Sliding Windows

Count based sliding is the simplest among the three sliding window types. After
constructing the sliding graph, we only need to keep track of the number of tuples
received so far. On arrival of each new tuple Algorithm 1 is executed to create the
candidate query list.

In Algorithm 1 we actually perform a pre-order traversal of the sliding tree.
The search is stopped at each node of which the sliding value is not a factor of
the current tuple count. In this way we can eliminate a (possibly) large number of
unsuccessful sliding value tests and hence reduce the execution time. For example,

4.5. ALGORITHMS 69

1: tc⇐ tc+1 {updating current number of received tuples}
2: if tc mod rootNode.slide = 0 then
3: Push rootNode to stack S
4: while S is not empty do
5: Pop ns from S
6: Add requests of ns to the candidate query list
7: for each child node nch of ns do
8: if tc mod nch.slide = 0 then
9: Push nch to S

10: end if
11: end for
12: end while
13: end if

Algorithm 1: Creating Candidate Query List

in the sample graph in Figure 4.3, when the tuple count is an odd number after
testing divisibility by 2, the nodes 4, 8, 12, and 24 no longer need to be tested,
while nodes 9, 15, and 22 are tested if the tuple count is divisible by 3, 5, or 11,
respectively.

Window sizes are not considered in the algorithms and window size checking
is left to the query execution system. If window sizes were considered in the slid-
ing algorithms, the sliding groups might become very limited because we cannot
put the sliding windows with the same sliding values and different window sizes
into the same sliding group. Algorithm 1 does not consider the dynamic behavior
of addition and deletion of queries to/from the system. It only uses the provided
sliding graph. A separate (simple) algorithm is needed to update the sliding graph
when a new query is introduced to the system or when an existing query leaves it.
Since new sliding windows could be added to the sliding graph when the system
is running, the first sliding round of new sliding windows may not be accurately
scheduled, which is generally acceptable. After the first round, Algorithm 1 and
other algorithms which are described in the next sections work as expected. For
example, if 958 tuples have received so far and a new count based sliding window
with sliding value of 10 is added to the sliding graph, this sliding window is sched-
uled for its first execution just after the arrival of two new tuples. After this first
sliding round, the sliding window will be scheduled for execution after each new
10 tuples. The maximum performance of the algorithms is when the system is in
a relatively steady state and there are a large number of registered queries on input
streams.

70 CHAPTER 4. EFFICIENT SLIDING WINDOW MANAGEMENT

4.5.3 Sliding for Local Time based Sliding Windows

In the simplest way, we use a local timer for each sliding window (or sliding group).
The time unit or timer tick of each timer is set to its associated sliding value. This
approach requires a large number of timers in the system and leads to more proces-
sor and memory usage. However we can use a single timer for all sliding windows
defined over a data stream by setting its time unit to the gcd of the sliding values.
Again we can use Algorithm 1 to reduce the number of slide tests on each timer
tick provided that the tuple counter in the algorithm is replaced with a time unit
counter. The time unit counter keeps the sum of time units passed up to now. Sup-
pose that the sliding values in Figure 4.3 are in seconds, so we can use them as
an example for time based sliding windows. The gcd of these sliding values, and
hence the timer tick, is 1 sec. The timer is scheduled to check the sliding windows
every 1 sec.

4.5.4 Sliding for Remote Time based Sliding Windows

Handling remote time based sliding windows is more complicated than local time
based sliding windows. The variable delays by what networks affect delivery of
packets are the main source for the complication of the time management. These
delays along with unsynchronized clocks may lead to out of order reception of tu-
ples. We assume that a separate component is responsible for dealing with these out
of order tuples. Using any approach to deal with out of order tuples, this subsystem
delivers correctly ordered tuples to the sliding manager component.

One simple solution is to check the sliding on arrival of each new tuple without
using any local timer. On arrival of the first tuple, the next slide time is computed
for all sliding windows and then the sliding windows are sorted in increasing order
of next slide times. For each next tuple, the tuple’s timestamp is compared with
the updated next slide time of the first sliding window. If it is not greater than the
timestamp, the window is slid and its next slide time is updated and then the next
window is tested. If the test is not passed, other sliding windows won’t be checked.
At the end of slide testing, the sliding windows must remain sorted. Algorithm 2
represents these steps.

This algorithm has some drawbacks. First, window sliding may not be done at
exact times. In the worst case, the algorithm is postponing sliding of windows for
a possibly long time. Suppose that the sliding value for a sliding window is 150
sec and new tuples arrive each 60±10 seconds. In some cases we must wait for 60

4.5. ALGORITHMS 71

1: for each new tuple, t pl do
2: if t pl is the first tuple then
3: for each sliding window, SW do
4: SW.nextSlide⇐ SW.slide+ t pl.timestamp
5: end for
6: Sort sliding windows in increasing order of their nextSlides
7: else
8: for each sliding window, SW do
9: if SW.nextSlide≤ t.timestamp then

10: Add requests of SW to the candidate query list
11: SW.nextSlide⇐ SW.slide+ t pl.timestamp
12: else
13: Ensure sorting of sliding windows
14: Exit for
15: end if
16: end for
17: end if
18: end for

Algorithm 2: Computing The Next Slide Time.

sec to receive the next tuple and then slide the window.

A different approach is to synchronize the local clock with the remote clock.
The synchronization is based on the timestamps of the new tuples and therefore is
an approximate method. The algorithm, which is executed for each sliding group,
works as follows. At the arrival of the first tuple a timer is initialized, the timestamp
of the tuple is set as the current time of the timer and the sliding value is set as its
time unit. On each timer tick we delay the sliding by an estimated value for the
delay λ . If a new tuple arrives during this period, we ignore the delay and do the
sliding. Each time a new tuple arrives, the value of λ is updated based on the
following formula:

λ = αλ +(1−α)delay (4.1)

where delay is the difference of the tuple’s timestamp and the current time of the
timer, and α is a value between 0 and 1 which specifies the weight of the previous
value of λ in the new value. In order to get a more accurate delay, the value
of α can be refined during the execution of the algorithm to adjust the fraction
of previous value of λ that affects the current estimated delay. Note that in this
approach a separate timer is used for each sliding group and also some late tuples
may be discarded. It is easy to see that this approach requires more memory and
processing time than the first one. It is up to the designer (or user) to choose

72 CHAPTER 4. EFFICIENT SLIDING WINDOW MANAGEMENT

between the simplicity of the first algorithm and the better accuracy of the second
one.

4.5.5 Optimizing the sliding graph

It is possible to have some slide values none of them is a factor of others but they
may have some common factors. Assume that we have these sliding values: 7, 8,
12, and 20. The sliding graph produced for them has been shown in Figure 4.4(a).
We know that 4 is the (greatest) common factor of 8, 12, and 20, so we can add a
dummy node with slide value of 4 to the graph to get the sliding graph in Figure
4.4(b). To see the effect of adding an extra node to the graph, we can compare the
number of node testing in these graphs. For τ tuples, the number of node testing
is Ca = 5τ for graph (a) and Cb = 3.75τ for graph (b). Therefore, the number of
eliminated nodes to be evaluated will be Ca−Cb = 1.25τ , at the cost of adding one
extra node to the original sliding graph. If the benefit of optimization is higher than
the cost of extra nodes, we can optimize the graph by adding some dummy nodes
to it. For each node n, the node optimization On and the node optimization factor
θn is defined as follows:

On =
C0−C1

C0
× 1

Sn
(4.2)

θn =
On

c f (σ)
(4.3)

where C0 is the number of testing of the children of node n before optimization, C1

is the number of testing of the children of node n after optimization, Sn is the sliding
value of the node, σ is the number of extra nodes created for the optimization, and
c f (σ) is the cost function that takes σ and returns the processing cost of σ node(s)
as a real number.

In order to optimize a sliding graph, two other optimization parameters are
needed: the node optimization limit θl , which is the minimum value of node opti-
mization factor, and the graph optimization limit θg, which is the lower bound on
optimization of the graph. θl is a criterion for measuring the benefit of optimizing
a node versus the cost of adding extra nodes. In other words, if the optimization
factor of a node is less than θl , then the cost of adding a node will become higher
than the benefit we gain from the optimization and this optimization should not be
applied to the sliding graph. If more than one node is optimized, we should inspect
whether the sum of this optimization has a lower cost than the resulting benefit or
it has a negative effect on running time of the algorithms. The θg parameter is used

4.5. ALGORITHMS 73

not only to consider this issue but also to make a compromise between the number
of extra nodes (and memory consumption increment caused by them) and the value
of graph optimization. Therefore, for a realistic optimization of a sliding graph, the
mentioned parameters should be carefully selected. This selection is done exper-
imentally and based on the input rate of data, the way the graph is traversed, and
the cost of extra nodes in this traversal.

Having these parameters, Algorithm 3 is used to optimize a sliding graph. The
algorithm produces (in a greedy manner) an optimized sliding graph for the given
parameters. Although it does not always produce the best optimization, it can
build near optimal sliding graphs based on the given parameters. In this algorithm
n.sigma is the number of extra nodes produced for optimizing node n. In order to
compute possible optimizations at a node, it is necessary to compute all feasible
combinations of child nodes based on their greatest common divisors. Although it
is not a difficult problem, it might require heavy computation (exponential function
of the number of children). In this case we can put a limit on the computation and
continue with the best optimization resulted from this limited computation.

1: For each node n in the graph compute On (n.opt) and θn (n.theta).
2: If more than one optimization is possible for a node, select one optimization

that its θ is maximum.
3: Add all nodes to the nodeList, except those nodes with θ < θl .
4: Sort nodeList in decreasing order of θs.
5: sumOpt⇐ 0
6: sumSigma⇐ 0
7: for each node n in nodeList do
8: if ((sumOpt +n.opt)/c f (sumSigma+n.sigma)) > θg then
9: Optimize n in the graph

10: sumOpt⇐ sumOpt +n.opt
11: sumSigma⇐ sumSigma+n.sigma
12: else
13: if n has multiple optimizations then
14: Among those optimizations with σ < n.sigma select one of them with

the maximum θ . If there exists such optimization, set it as the node’s
optimization and insert n in the proper place in nodeList

15: end if
16: end if
17: end for

Algorithm 3:

74 CHAPTER 4. EFFICIENT SLIDING WINDOW MANAGEMENT

Figure 4.4. Original and optimized sliding graphs

4.6 Evaluation Results

To evaluate the effect of using sliding graphs in the sliding algorithms, the execu-
tion time of our count based sliding algorithm (without using any dummy nodes)
has been compared with the execution time of the basic sliding algorithm which
does not use sliding graphs. The basic sliding algorithm, which we call the plain
algorithm, checks all sliding groups on arrival of a new tuple. We use the follow-
ing configuration for the evaluation: The number of continuous queries with sliding
windows defined over a single stream is 10000, 5000, 1000, 100, 50, 30, and 10.
We used 200, 800 and 2000 as the maximum range for a count-based sliding val-
ues. Tuple production rate is 1000 tuples per second and each algorithm runs for 10
seconds (approximately 10000 tuples are produced). Sliding values are generated
randomly in the range of 2 and maximum sliding value. We evaluate each algo-
rithm 10 times independently, each time with different sliding values, and then the
average execution time of the algorithms is used as the criteria for comparison of
execution times. The evaluation was performed on a desktop with Intel dual core
2GHz processor, 2MB cache, 1GB memory, running Linux kernel 2.6.24. We used
the GSN platform as our stream processing system.

Figure 4.5 shows the result of the evaluation when the maximum value of slid-
ing values is 200. It can be seen that the processing time required for sliding is
improved by the sliding graph algorithm (except for the case of 10 queries). As
the number of queries increases the improvement of the sliding algorithm is get-
ting more important. As the number of queries decreases, the time required for
traversing the graph reduces the effect of using the sliding graph. The results of
the evaluation are shown in Figure 4.6 and Figure 4.7 when sliding values are less

4.6. EVALUATION RESULTS 75

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

10000 5000 1000 100 50 30 10

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 m
s

number of queries

plain algorithm
sliding graph

Figure 4.5. Average execution times of algorithms with sliding values are ≤ 200.

than 800 and 2000, respectively. The execution time of the sliding graph algorithm
is between 3 and 3.7 times better than the plain algorithm for 10000 and 5000
queries in Figure 4.6 and Figure 4.7, respectively. We can conclude that our sliding
graph gives better performance as the number of queries increased and the range
of sliding values gets expanded.

To view the effect of optimizing the sliding graph, each sliding graph has been
optimized with two different optimization parameters. The first optimization has
been done with θl = 0, θg = 0 and c f (σ) = σ and the second optimization has been
done with θl = 0.001, θg = 0.01 and c f (σ) = σ . The first optimization creates the
optimal graph without any restriction with the minimum number of extra nodes.
As in Algorithm 1, a stack is used when we search the sliding graph. To have a
more accurate comparison, the number of comparison operations and stack pushes
are calculated. Each sequence of push-pop is estimated to be equal to 10-12 com-
parison operations and is added to the actual comparison operations. In addition to
the previous evaluation parameters, each algorithm is executed for 100000 tuples
and the number of comparison operations and stack pushes is calculated.

Figure 4.8 shows the result of the evaluation for the original sliding graph and
the optimized sliding graphs with the two series of parameters mentioned above
for sliding values that are less than 200. This Figure shows that the optimized

76 CHAPTER 4. EFFICIENT SLIDING WINDOW MANAGEMENT

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

10000 5000 1000 100 50 30 10

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 m
s

number of queries

plain algorithm
sliding graph

Figure 4.6. Average execution times of algorithms when sliding values are ≤ 800.

sliding graph reduces the number of operations required in the sliding algorithms
that uses the sliding graph (although the gains are not significant). Moreover, the
first optimization works better than (or equal to) the second one. In general, we
can conclude that by optimizing the sliding graph the execution time of the sliding
graph algorithms is reduced, provided that the optimization parameters are cor-
rectly chosen.

Note that in the above evaluation results we only focused on count based slid-
ing. As time is modeled using discrete integer values in the operating systems
(e.g., number of milliseconds), one can use the exact same algorithms to handle
time based sliding thus the evaluation results also covers the time based sliding
queries.

In section 4.5.4 we proposed two different approaches for handling remote time
based sliding windows and claimed that the second approach results in more accu-
rate sliding times than the first one (Algorithm 2). To compare the accuracy of the
algorithms, a stream source is used which produces a new tuple every 2 minutes.
A random delay between 30 and 90 seconds is put on each tuple before sending
them to the sliding manager. Two queries are defined on this data stream, one with
a slide value of 3 minutes and other with a slide value of 5 minutes. The system

4.6. EVALUATION RESULTS 77

 0

 500

 1000

 1500

 2000

 2500

10000 5000 1000 100 50 30 10

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 m
s

number of queries

plain algorithm
sliding graph

Figure 4.7. Average execution times of algorithms when sliding values are ≤ 2000.

runs with both remote time based sliding algorithms and records the sliding times
for each of them. Tables 4.1 and 4.2 show the time intervals between each sliding
for each sliding algorithm. As can be seen, the algorithm using timers schedules
the sliding windows to slide more accurately than the first algorithm. Algorithm 2
needs to wait for arrival of new tuples to decide on sliding while the second algo-
rithm uses a timer to determine the sliding times and tries to synchronize this timer
with the timer of the data source.

Table 4.1. Time intervals between each sliding in remote time based sliding algorithms
when the slide value is 3 minutes.

Algorithm 2 03:54 03:43 04:18 04:02 03:51 03:54
Using timers 02:56 03:39 02:58 03:06 03:12 03:29

Table 4.2. Time intervals between each sliding in remote time based sliding algorithms
when the slide value is 5 minutes.

Algorithm 2 06:03 05:49 06:22 05:48 06:20 05:52
Using timers 05:03 04:47 05:49 05:02 04:58 05:32

78 CHAPTER 4. EFFICIENT SLIDING WINDOW MANAGEMENT

2e+006

3e+006

4e+006

5e+006

6e+006

7e+006

8e+006

9e+006

1e+007

10000 5000 1000 100 50 30 10

nu
m

be
r

of
 in

st
ru

ct
io

ns

number of queries

sliding graph
optimized sliding graph 1
optimized sliding graph 2

Figure 4.8. Comparison of original and optimized sliding graph with sliding values≤ 200.

4.7 Conclusion and Future Work

In this chapter we have presented a set of algorithms and techniques to deal with
the management of sliding windows in stream processing systems. The proposed
algorithms can be especially used in large-scale data stream processing systems in
which there exist a large number of users registered to hundreds of high rate data
streams. We address three possible types of sliding windows: count based, local
time based, and remote time based. The sliding graph concept is introduced to
reduce the processing time in sliding managers. Our evaluation results prove the
efficiency of the sliding graph in the algorithms.

Chapter 5

Scalable Delivery of Stream
Query Result

Overview

Continuous queries over data streams typically produce a large volume of con-
tinuous result streams. To scale to a large number of users, one should carefully
study the problem of how to deliver the result streams to the end users, which,
unfortunately, is often overlooked in existing systems. In this chapter, we lever-
age Distributed Publish/Subscribe System (DPSS), a scalable data dissemination
infrastructure, for efficient stream query result delivery. To take advantage of
DPSS’s multicast-like data dissemination architecture, one has to exploit the com-
mon contents among different result streams and maximize the sharing of their
delivery. Hence, we propose to merge the user queries into a few representative
queries whose results subsume those of the original ones, and disseminate the result
streams of these representative queries through the DPSS. To realize this approach,
we study the stream query containment theories and propose efficient query group-
ing and merging algorithms. The proposed approach is non-intrusive and hence
can be easily implemented as a middleware to be incorporated into existing stream
processing systems. A prototype is developed on top of the GSN system and re-
sults of an extensive performance study on real datasets verify the effectiveness of
the proposed techniques.

79

80 CHAPTER 5. SCALABLE DELIVERY OF STREAM QUERY RESULT

5.1 Introduction

Stream processing systems are designed to evaluate complex continuous queries
over high-rate data streams. The query results are typically in the form of contin-
uous streams, which also have a very high data rate. Hence the delivery of query
result streams from the processing server to the end users should be carefully han-
dled. Unfortunately, this problem is often overlooked in existing systems. Most of
them assume users are directly connected to the server and the result streams are
sent to them directly. Such an architecture does not scale to a large set of users. To
the best of our knowledge this is the first work that explicitly addresses the prob-
lem of scalable stream query result delivery, which is an important stepping stone
towards massive stream query processing.

5.1.1 Motivating Scenario

The work in this chapter is motived by a performance issue that we faced for de-
ploying a stream processing system shared by environmental scientists from mul-
tiple institutions in the Swiss Experiment project. In the project, environmental
scientists are deploying a number of sensor stations to study the environmental
changes and to provide alerts if needed (e.g., avalanche alert, etc). Depending on
the purpose of each deployment, sensors of the stations are sampling at different
rates. For instance, wind speed is sampled with 40 hertz or higher for each of the
3 directions (u,v,w) for each station, which generates very high-rate data streams
(for more details visit Section 4.2).

An on-going effort of the project is to work with Microsoft Research to share
the sensor data with other scientists and the world-wide public via Microsoft’s
SenseWeb (http://www.swiss-experiment.ch/index.php/MS:Home). This potentially
requires the processing of a huge number of real-time stream queries. Delivering
their results to a massive number of end users is one of the challenging problems
of this platform (for detailed discussion about the SenseWeb project see Chapter
6).

As one of our efforts to solve the resulting issues, we propose to leverage an
existing scalable data dissemination infrastructure, namely distributed pub/sub sys-
tem (DPSS) [28], for query result delivery. A DPSS is typically supported by a
number of brokers. In a DPSS, users express their data interest as user subscrip-
tions which are propagated to the brokers. The data sources need not keep track of
all the end users. Instead they only push the messages to their neighboring brokers,

5.1. INTRODUCTION 81

Table 5.1. Example Queries
Q1: SELECT S2.*

FROM Station1 [Range 30 Minutes] S1,
Station2 [Now] S2

WHERE S1.snowHeight > S2.snowHeight
Q2: SELECT S1.snowHeight, S1.timestamp,

S2.snowHeight, S2.timestamp
FROM Station1 [Range 1 Hour] S1,

Station2 [Now] S2
WHERE S1.snowHeight > S2.snowHeight

Q3: SELECT S2.*, S1.snowHeight, S1.timestamp
FROM Station1 [Range 1 Hour] S1,

Station2 [Now] S2
WHERE S1.snowHeight > S2.snowHeight

which cooperate with other brokers to disseminate the messages to the end users.
Messages are routed within the network based on their content instead of explicitly
specified destinations. With such a loosely coupled architecture, DPSS is shown to
be scalable to a large number of users.

One can adapt a DPSS to disseminate the query result streams as follows. In
a stream processing system, one query result stream is generated for each query.
Hence, a unique identifier can be assigned to each query result stream. Then a
user’s subscription (i.e. the user’s data interest) can be composed by specifying
this unique identifier to retrieve the query result stream.

However, such a straight-froward approach is inefficient and involves large
communication overhead. This is because the result streams could have overlap-
ping contents. Disseminating these streams individually incurs many duplicate data
transfers.

To illustrate the problem, Table 5.1 lists a few queries specified using CQL [19].
These queries are extracted and simplified from the typical snow drift monitoring
tasks of the scientists.

Consider the join queries, Q1 and Q2, presented in Table 5.1. We can see the
overlaps in the result streams generated for Q1 and Q2. Consider an overlay net-
work structure depicted in Figure 5.1(a). Suppose nodes n3 and n4 post two queries
Q1 and Q2 respectively and node n1 is responsible for processing them. Using tra-
ditional techniques, their result streams, s1 and s2, are transmitted separately as
shown in Figure 5.1(a). Hence the overlapping contents of s1 and s2 are transmit-
ted twice over the link between n1 and n2 (n2 is involved here because it is the
neighboring broker of n1 in the DPSS).

82 CHAPTER 5. SCALABLE DELIVERY OF STREAM QUERY RESULT

Q2Q1

s1

s2
s2

s1

n1

n3

n2

n4

(a) Non-Share

s1

n4

n2

n3

n1
s3

s2

Q1 Q2

(b) Share

Figure 5.1. Result stream delivery

Note that existing multi-query optimization techniques, such as [70], also suf-
fer from the same problem. For instance, one shared join operator can be created
for the above two queries. However this join operator still generates two separate
result streams for the aforementioned queries respectively.

To resolve this issue, we have to send one result stream s3 to n2, which is the
superset of both s1 and s2, and “split” s3 into two separate streams s1 and s2 at
node n2. This approach is illustrated in Figure 5.1(b). One can implement this
approach by re-engineering a “specialized” stream processing engine to generate
one result stream for multiple queries. However, such an intrusive approach is
undesirable as it requires complex “low-level” software development and tightly
coupled interactions between the processing engine and the overlay network.

This chapter proposes a query reformulation approach, which is relatively sim-
ple and easy to be implemented as a middleware between an existing stream pro-
cessing engine and a DPSS. In our approach, for a group of queries that have over-
lapping results, the system composes a new query Q, called representative query,
that contains all the queries in its group, i.e. the result of Q is a superset of the
result of each query in its group. For example, instead of submitting Q1 and Q2

individually, we create a new query Q3 listed in Table 5.1, which contains Q1 and
Q2, and we submit Q3 to the processing engine at n1. The result stream s3 will be
“split” at n2 by using the filtering mechanism within the Distributed Publish/Sub-
scribe System.

5.1.2 Contributions

In summary, we make the following contributions in this work:

• We study the problem of stream query containment with a focus on window
predicates which do not exist in traditional SQL queries. The containment theo-
rems developed here are not limited to this work and may benefit future studies on

5.2. RELATED WORK 83

stream query processing, such as multi-query optimization.

• Based on the containment theorems, we propose query merging algorithms
for both SPJ (Select-Project-Join) queries and aggregate queries. These algorithms
are meant to be simple in order to be executed efficiently at run time.

• We consider the situation that queries are inserted and terminated frequently
and propose an efficient query grouping optimization and re-optimization mecha-
nism. Queries are organized into a multi-tree data structure based on their contain-
ment relationship. This enables the adaptation algorithm to efficiently determine
whether it is necessary to re-optimize the current grouping.

• A prototype system is implemented on top of GSN. Extensive experiments
running on real datasets show that our approach is both efficient and effective.

5.1.3 Roadmap

The rest of this chapter is organized as follows. Related work is first reviewed in
Section 5.2. Then Section 5.3 presents the assumptions and the system model for
this work. Section 5.4 addresses the problem of how to generate the representative
queries and the user subscriptions. Query grouping and its maintenance issues are
addressed in Section 5.5. Section 5.6 provides an extensive performance evaluation
study to verify our approach. Finally, Section 5.7 concludes the chapter with a
discussion on the future work.

5.2 Related Work

This chapter is mainly related to the research activities in two areas: data stream
processing systems and distributed publish/subscribe systems.

Stream processing has attracted much attention from the database community
due to its vast applicability. There exist many efforts to enhance the scalability
of these systems. One direction is to exploit the sharing of computation among
queries. For instance, TelegraphCQ [33] proposed to share the join and filter oper-
ations among multiple queries and STREAM [19] studied the computation sharing
of sliding-window aggregates. While these methods are effective in making the
use of computation resources scalable, they do not consider the data communica-
tion load at the network layer. This work is complementary to these approaches
and endeavors to scale up the scalability of query result delivery by exploiting the
sharing among queries.

84 CHAPTER 5. SCALABLE DELIVERY OF STREAM QUERY RESULT

Another direction in scalable stream processing is to shed the excessive work-
load when the data arrives much faster than what the system can handle. Refer-
ence [89] presented an input tuple shedding strategy to maximize the query result
quality. Authors in [24] proposed another tuple shedding strategy to minimize the
loss of aggregate accuracy that would be incurred by the shedding. While one can
adopt a similar strategy when the server runs out of bandwidth to deliver query
results, it sacrifices the accuracy of the results. Our approach tries to adopt a better
result delivery architecture, namely DPSS, to avoid (or minimize) the occurrence
of such cases.

Yet another approach to scale up a stream system is to employ a number of
distributed servers to share processing load. There are many recent activities in
this direction. The authors of [17] studied the problem of how to place the query
operators to widely distributed servers. The authors of [91] investigated the op-
erator placement problem in a locally distributed system. Our approach is also
complementary to these type of efforts. It can be used to disseminate the result
streams of the queries/operators allocated to a processing server to its downstream
destinations in a distributed stream processing system.

Finally, distributed publish/subscribe systems have been studied extensively in
both the networking community and the data management community. Many re-
search efforts have been focused on enabling scalable and efficient data dissemina-
tion services to a large number of users. For instance, efficient matching of events
with subscriptions within a broker is studied in [16]. Authors in [28] presented the
architecture design of a DPSS with a number of widely distributed brokers. In this
chapter, we propose to leverage these existing efforts to enhance the scalability of
a stream processing system. There are also very recent efforts to extend pub/sub
systems to support more complex subscription types, such as range-MIN (or MAX
or DISTINCT) in [30] and select-natural-join in [31]. However, these works focus
on specific query types; they lack a systematic study of general queries. Further-
more, operators such as window joins and window aggregates, which are heavily
used in many stream applications, have not been discussed in previous work.

5.3 Preliminaries

This section presents the assumptions and the system model of this chapter. The
whole system consists of a stream processing server (or a cluster of servers), a
DPSS infrastructure, and a number of end users. Consistent with the trend of

5.3. PRELIMINARIES 85

“Cloud Computing”, we assume that end users have limited computing power and
can only perform simple operations such as projection and selection. Complex op-
erations like window joins and window aggregates can only be processed at the
stream processing server. Furthermore, to loosen the coupling between the server
and the DPSS, we assume the server has little knowledge of the internal overlay
network structure of the DPSS.

5.3.1 DPSS

A subscription in the DPSS is a triple 〈S ,P,F 〉. S is a set of stream names,
which indicates the streams that are of interest to the subscriber. Only data from
these streams would match the subscription. In our system, a unique stream name
is assigned to each result stream of a query running in the processing engine. Hence
the users can retrieve their query results by subscribing to the corresponding result
streams. P specifies a few selected attributes from the streams in S that are of
interest to the subscriber. Finally, F is a set of filters over the streams within S .
Data from the streams that satisfy these filters will be sent to the subscriber.

In the DPSS, subscriptions are forwarded from the subscribers to the data
source. On the way of the forwarding, an intermediate node aggregates all the
subscriptions that are received before forwarding to its upper stream neighbor(s).
Furthermore, each node will build their own routing table based on the subscrip-
tions it has. Upon receiving a message, the routing table is used to determine which
downstream neighbor(s) the message should be sent to. If the message matches any
subscription forwarded from a neighbor, it will be delivered to that neighbor. It can
be seen that, even if there are more than one subscriber behind that neighbor inter-
ested in the same message, it will be sent only once.

5.3.2 Continuous Stream Queries

For simplicity, all the queries are assumed to involve only data streams and no
stored table is considered.

An SPJ query Q is assumed to contain the following components:
1. Strm(Q): the set of streams involved by the query Q, {s1,s2, · · ·}, which

typically appear in the FROM clause of the SQL string.
2. Window(Q): a set of window predicates {w1,w2, · · ·}, one for each stream

in Strm(Q). For brevity, this chapter only discusses time-based sliding window,
while other types of window can be treated similarly. The value of a time stamp is
assumed to be a non-negative integer. A window predicate is defined as follows:

86 CHAPTER 5. SCALABLE DELIVERY OF STREAM QUERY RESULT

Definition 5.3.1 A window predicate wi takes an input stream si and three non-
negative integer parameters:

• begini ∈ [0,+∞): the starting time of the query
• intervali ∈ [0,+∞): the interval of the window
• slidei ∈ [1,+∞): the sliding step of the window

It defines a temporal relation R(τ) = {t|t ∈ si & 0≤ τ− t.timestamp < intervali}
at each time instance of τ = begini +n · slidei, where n is a non-negative integer.

For example, take a look at the window predicate defined on s1 in Figure 5.2. Here,
the parameter values are begin = 0, interval = 5 and slide = 10. Hence, on each
time instance τ ∈ 0,10,20 · · ·, the window predicate defines a temporal relation.
For instance, at τ = 20 and τ = 30, it defines two temporal relation containing
tuples within the rectangle drawn in Figure 5.2(a) and Figure 5.2(b) respectively.

3. Pred(Q): the predicate specified by Q, which appear in the WHERE clause
of the SQL string. Pred(Q) is assumed to be in the disjunctive normal form: σ1∨
·· · ∨σi ∨ ·· · ∨σn, where σi is the conjunction of one or more atomic predicate.
An atomic predicate could be in one of the forms attr.op.value and attr1.op.attr2
and involves the attributes from one (a selection predicate) or two streams (a join
predicate).

4. Attr(Q): the set of attributes selected by Q.

An aggregate query Q takes one input stream, which could be the output of a
SPJ query1. In summary, Q contains the following components:

1. Strm(Q): the input stream of Q;

2. Window(Q): a window predicate defined on the input stream;

3. Groupby(Q): the set of attributes in the GROUP BY clause;

4. Agg(Q): a set of aggregate functions;

5. Having(Q): filters applied over the groups;

6. Attr(Q): a set of selected attributes.

5.3.3 Approach Overview

In the system, the server partitions the queries into a number of groups such that
queries inside each group have overlapping results and it is beneficial to rewrite
these queries into one query Q which contains all the member queries Qi. Such a
query Q is called the representative query of the query group. Only the represen-
tative queries are inserted into the underlying query engine and result streams of

1Note that such SPJ part of the aggregate query will not be considered for merging with other
SPJ queries in the system.

5.4. QUERY MERGING 87

these queries are pushed into the DPSS.

To allow the users to retrieve the query result streams of the individual queries,
subscriptions are also generated and sent to the users. The users register these
subscriptions to the DPSS, which efficiently delivers the result streams back to the
users.

In the example presented in Section 1, the following two subscriptions are sent
to n2 by n3 and n4 respectively:

• p1: S = {s3},P = {S2.∗},F = {−30(minute)≤
S1.timestamp−S2.timestamp≤ 0}.
• p2: S = {s3},P = {S1.snowHeight,S1.timestamp,

S2.snowHeight,S2.timestamp},F = {}
Tuples that pass p1 are sent to n3 and those that pass p2 are sent to n4.

5.4 Query Merging

This section first studies the stream query containment problem and then presents
the query merging algorithms based on query containment theorems developed. Fi-
nally it presents the algorithm to generate the subscriptions for the users to retrieve
the result from the DPSS.

5.4.1 Stream Query Containment

Query containment and equivalence is a fundamental problem which has been ex-
tensively studied in the literature. For example, [29] and [80] studied the conjunc-
tive select-project-join queries and union thereof; [39] and [75] discussed the ag-
gregate queries; [63] studied queries with arithmetic comparison predicates; [26]
investigated problems of recursive queries. We, however, need to extend these
techniques to the continuous stream query context.

On the other hand, some related literatures studied the use of views to answer
user queries [59]. This direction addresses how to rewrite a query such that the
given views of the underlying relations can be utilized to answer the original query.
However, our work is the other way round. We have to compose a “view” of the
streams that can be utilized to answer multiple queries using the simple filtering
mechanism in a DPSS.

First of all, we have to extend the query containment and equivalence definition
of traditional queries to continuous stream queries. Traditionally, query contain-
ment and equivalence are defined as follows.

88 CHAPTER 5. SCALABLE DELIVERY OF STREAM QUERY RESULT

Definition 5.4.1 A query Q1 is contained by another query Q2, denoted by Q1 v
Q2, if for all database instances D, Q1(D) is a subset of Q2(D), i.e. Q1(D) ⊆
Q2(D), where Qi(D) is the result of evaluating Qi over D. Q1 and Q2 are equivalent
if Q1 v Q2 and Q2 v Q1.

The above definition is based on set semantics. It can be extended to bag semantics
in a straightforward way.

However, in the continuous stream query context, the result data are continu-
ously generated and hence this traditional definition is no longer applicable. To
address this problem, we extend the definition as follows. First it is assumed that
there is an application discrete time domain T where the timestamps of the input
stream tuples are shown from. We denote the temporal result data set of a query
Q evaluated on a stream instance S at the time instance τ ∈ T be Q(S,τ), which
is the result of evaluating Q over all the data from S with timestamps smaller or
equal to τ . Furthermore, let S be the whole set of streams. We have the following
definition.

Definition 5.4.2 A continuous stream query Q1 is contained by another continuous
stream query Q2, denoted by Q1 v Q2, if for all stream instances S, Q1(S,τ) ⊆
Q2(S,τ) at any time instance τ . Q1 and Q2 are equivalent if Q1 vQ2 and Q2 vQ1.

Now the problem is how to determine the containment relationship between
two continuous stream queries. The major difference between continuous stream
queries and traditional database queries is the introduction of window semantics.
Note that if all window predicates in a continuous stream query have an infinite
time interval, then the two containment problems are equivalent. Here we assume
that there is an approach to determine containment relationship between two tradi-
tional database queries, and develops the theorems to deal with the window predi-
cates.

Furthermore, this work assumes that all the window predicates in a single query
have a common sliding step and a common starting time. This covers most real
application scenarios and simplifies the query merging algorithms. (Note that the
sliding steps and starting times of different queries could be different.)

First, we have the following lemma stating the conditions that two tuples could
be joined in a window-based join operator.

Lemma 5.4.1 For a query with only a window-based join operation of two streams
s1 and s2 with window sizes of interval1 and interval2 respectively and a common

5.4. QUERY MERGING 89

10 12 13

1410 11 13

16

15

15 1918

17 19

20

2016

s1

s2

20 22 23

2420

21

23

27

25

25 2928

27 28

30

3022

(a) at τ = 20

(b) at τ = 30

s1

s2

Figure 5.2. Window join query Q between two streams s1 and s2, with begin(Q) = 0,
slide(Q) = 10, interval1(Q) = 5 and interval2(Q) = 7. Only the timestamps of the arrived
tuples are shown.

sliding step “slide” and a common query starting time “begin”, two tuples t1 from
s1 and t2 from s2 can generate a join result tuple t if and only if all the following
conditions are true:

(1) they satisfy the join predicates;

(2) −1 · interval1 ≤ t1.ts− t2.ts≤ interval2.

(3) t1.ts > n2 · slide− interval1, where n2 = d(t2.ts−begin)/slidee

(4) t2.ts > n1 · slide− interval2, where n1 = d(t1.ts−begin)/slidee. �

Within Lemma 5.4.1, condition (2) basically says that the two joined tuples
should appear in the corresponding window intervals. For instance, in Figure 5.2(a),
tuple “14” from s2 is the earliest tuple from s2 that can be joined with tuple “20”
from s1. However, this condition alone cannot guarantee the correctness. For ex-
ample, in Figure 5.2(b), tuple “23” from s1 cannot join with tuple “22” from s2

based on the window predicate definition. Condition (3) and (4) are used to deal
with such cases. They ensure that there exists a pair of temporal relations at a par-
ticular time instance that contain the two tuples respectively. Based on this Lemma,
we can get the following theorem.

90 CHAPTER 5. SCALABLE DELIVERY OF STREAM QUERY RESULT

Theorem 5.4.1 A select-project-join (SPJ) continuous query Q1 is contained by
another SPJ continuous query Q2 iff they satisfy either conditions (1)∧ (2)∧ (3)∧
(4) or conditions (1)∧ (2)∧ (3)∧ (5)∧ (6):

(1) Q∞
1 vQ∞

2 , where Q∞
i is a query resulted from setting all the window sizes of Qi

as ∞;

(2) begin(Q1)≥ begin(Q2);

(3) ∀i, intevali(Q1)≤ intervali(Q2), where intervali(Q j) is the window size of the
ith stream involved in Q j;

(4) ∀i, 1 ≤ slide(Q2) ≤ max(1, intervali(Q2)− intervali(Q1)), where slide(Q2)
is the sliding step of Q2.

(5) ∃m∈ [1,∞), s.t. begin(Q2)+m ·slide(Q2)−begin(Q1)≤mini(intervali(Q2)−
intervali(Q1)).

(6) slide(Q1) = k · slide(Q2), where k is a positive integer. �

The essential idea of Theorem 5.4.1 is, if Q1 is contained by Q2, then for every
time instance τ1 at which a temporal relation R i

1(τ1) for each stream is defined by
the window predicates in Q1, there exists at least another time instance τ2 at which
a temporal relation R i

2(τ2) for each stream is defined by the window predicates in
Q2 and contains R i

1(τ1).
Conditions (1)-(3) are easy to understand. First, Q2 has to contain Q1 without

considering the window predicates. Second Q2 has to begin earlier than Q1 and
Q2’s window intervals should be as large as the corresponding ones in Q1.

Condition (4) says that the sliding step of Q2 is smaller than the difference of
the two window intervals defined on the same stream. Figure 5.3 illustrates the
reasoning behind this. It can be seen that the temporal relation defined by Q2 at
τ = 20, R2(18) (shown in Figure 5.3(b)) does not contain the one defined by Q1,
R1(20) (shown in Figure 5.3(a)). But, as long as the sliding step of Q2 is smaller
than the difference between the two window intervals, there would exist a time
instance τ such that R1(18) ⊂ R2(τ). For example, in Figure 5.3(c) shows that
actually R2(22) contains R1(20).

Conditions (5) and (6) state the case that the windows of the two queries slide
synchronously. Figure 5.4 shows an example. Here, R2(20) contains R1(19) as
shown in Figure 5.4(a) and (b). Furthermore, as their sliding steps fulfill Condition

5.4. QUERY MERGING 91

1410 11 13 15 17 19 2016

1410 11 13 15 17 19 2016

1410 11 13 15 17 19 2016 22

(a) Q1 at τ=20

(b) Q2 at τ=18

(c) Q2 at τ=22

Figure 5.3. Temporal relations defined by two queries on the same stream. The parameters
are interval(Q1) = 4, interval(Q2) = 8, and slide(Q2) = 4.

(6), this containment pattern will repeat in the future time instances. Figure 5.4(c)
and (d) illustrate the situation at another time instance.

Theorem 5.4.2 A continuous stream aggregate query Q1 is contained by another
continuous stream aggregate query Q2 iff all the following conditions are true:

(1) Q∞
1 vQ∞

2 , where Q∞
i is a query resulted from setting all the window sizes of Qi

as ∞;

(2) begin(Q1)≥ begin(Q2);

(3) ∀i, intervali(Q1) = intervali(Q2), where intervali(Q j) is the window size of the
ith stream in query Q j;

(4) slide(Q1) = k · slide(Q2) where k is a positive integer.

This reasoning of Theorem 5.4.2 is similar to Theorem 5.4.1. Hence, for
brevity, we shall not reiterate here.

5.4.2 Query Merging Algorithms

Recall that, in our approach, the server maintains a number of query groups such
that queries inside each group have overlapping results and it is beneficial to merge
these queries into one representative query Q that contains all the member queries
Qi.

With the lemma and theorems developed in the previous section, we can gen-
erate the representative query for a group of queries as presented in the following
subsections.

92 CHAPTER 5. SCALABLE DELIVERY OF STREAM QUERY RESULT

10 13 1615 191811

(a) Q1, τ=19

16 1918 20 21 23 25

(c) Q1, τ=25

16 1918 20 21 23 25 26

(d) Q2, τ=26

10 11 13 15 19 2016 18

(b) Q2, τ=20

Figure 5.4. Temporal relations defined by two queries on the same stream. The parameters
are interval(Q1) = 5, interval(Q2) = 8,slide(Q1) = 6, and slide(Q2) = 3.

5.4.2.1 Merging SPJ Queries

The function to merge two SPJ queries is presented in Algorithm 4. It takes two
queries as its input parameters and returns a query that contains them. In this
chapter, we only consider merging queries involving the same set of streams to
avoid incurring large processing overhead. Line 3 enforces this constraint.

Lines 4 – 12 deal with the situation that one of the input queries Qi contains the
other Q j. In this case, the function simply return Qi. But note that the containment
checking here does not consider which attributes are selected by the two queries.
Therefore, we have to combine the attribute selection lists of both queries (line 29).
Furthermore, to allow retrieval of the results of Q j from that of Qi, the attribute list
Q is extended with those appear in Pred(Q j) (line 30).

Lines 13 – 28 perform the merging of two queries that do not contain each
other They merge the predicates, stream windows and the selected attributes one
after another. Among these, lines 19 – 28 refine the sliding step of Q step by step
based on Theorem 5.4.1. Note that the merged predicates might be further reduced
if some of them are covered by the others. Minimizing the number of predicates is
a traditional NP hard problem and is out of the scope of this work.

5.4. QUERY MERGING 93

MergeSPJ(Q1,Q2)1

begin2

if Strm(Q1) 6= Strm(Q2) then return error;3

if Q1 v Q2 then4

Q← Q2;5

Attr(Q)← Attr(Q1)∪Attr(Q2);6

if Q1 6= Q2 then7

Attr(Q)← Attr(Q)∪ attributes in Pred(Q1);8

else if Q2 @ Q1 then9

Q← Q1;10

Attr(Q)← Attr(Q1)∪Attr(Q2);11

Attr(Q)← Attr(Q)∪ attributes in Pred(Q2) ;12

else13

Strm(Q)← Strm(Q1);14

Pred(Q)← Pred(Q1)∪Pred(Q2);15

begin(Q)←min(begin(Q1),begin(Q2));16

slide(Q)←max(slide(Q1),slide(Q2));17

gcd← GCD(slide(Q1),slide(Q2));18

foreach stream si ∈ Strm(Q) do19

di f f ← intervali(Q1)− intervali(Q2);20

intervali(Q)←max(intervali(Q1), intervali(Q2));21

if intervali(Q1) > interval(Q2) then22

s← slide(Q1);23

else if intervali(Q1) < interval(Q2) then24

s← slide(Q2);25

else26

s←min(slide(Q2),slide(Q1));27

slide←min(s,max(gcd,di f f));28

Attr(Q)← Attr(Q1)∪Attr(Q2);29

Attr(Q)← Attr(Q)∪ attributes in Pred(Q1) or Pred(Q2);30

return Q;31

end32
Algorithm 4: Merging two SPJ queries

94 CHAPTER 5. SCALABLE DELIVERY OF STREAM QUERY RESULT

5.4.2.2 Merging Aggregate Queries

Algorithm 5 is to perform the merging of two aggregate queries. Here only queries
with the same input stream, the same Group By attributes are considered for merg-
ing and the same window intervals. Again, this algorithm is based on Theo-
rem 5.4.2.

MergeAgg(Q1,Q2)1

begin2

if Strm(Q1) 6= Strm(Q2)∨3

Groupby(Q1) 6= Groupby(Q1)∨ interval(Q1) 6= interval(Q2) then
return error;
Strm(Q)← Strm(Q1);4

Groupby(Q)← Groupby(Q1);5

Having(Q)← Having(Q1)∪Having(Q2);6

Agg(Q)← Agg(Q1)∪Agg(Q2);7

Attr(Q)← Attr(Q1)∪Attr(Q2);8

interval(Q)← interval(Q1);9

slide(Q)← GCD(slide(Q1),slide(Q2));10

return Q;11

end12
Algorithm 5: Merging two aggregate queries

5.4.3 Subscription Generation

As the result streams of only the representative queries will be delivered over a
DPSS, users have to register subscriptions to the DPSS to retrieve the results that
are of interest to them. This subsection presents how to generate such subscrip-
tions.

Suppose Q is the representative query for a query group and Qi is one of the
members of this group. Algorithm 6 generates a subscription for the user to fetch
result of Qi from the DPSS. The algorithm first initializes the subscription with Q’s
result stream name, the selected attribute list of Qi and predicates of Qi (line 2).
Then at line 8, filters are added to check whether the result tuple satisfies the win-
dow predicate defined by Qi. These filters are generated based on Lemma 5.4.1.

5.5. QUERY GROUPING 95

SubGen(Q,Qi)1

begin2

Sub.S ←{Result(Q)};3

Sub.P ← Attr(Qi);4

Sub.F ← Pred(Qi);5

n← the number of stream involved in Qi;6

bg← begin(Qi);7

sl← slide(Qi);8

for j = 1; j < n; j ++ do9

for k = j +1;k <= n;k ++ do10

Sub.F ← Sub.F∧11

(−1 · inv[j]≤ ts j− tsk ≤ inv[k])∧12

ts j > d(tsk−bg)/sle∗ sl− inv[j]∧13

tsk > d(ts j−bg)/sle∗ sl− inv[k];14

return Sub;15

end16
Algorithm 6: Subscription Generation

5.5 Query Grouping

With the above algorithms, one can merge a query group and efficiently deliver the
query results to the individual users. This section investigates how to partition the
queries into multiple groups. In particular, we study the optimization algorithms
and maintenance mechanisms of query grouping under the assumption that queries
are frequently inserted and terminated.

5.5.1 Benefit Estimation

The first problem of optimizing query grouping is how to estimate the benefit of
merging a query group. The benefit considered in this work is the amount of data
communication overhead that can be saved. A common cost metric is adopted here:

∑i li · ci, where li is the transmission latency of the ith link in the overlay network
of the DPSS and ci is the communication traffic per unit time on li.

To accurately estimate the benefit of merging a query group, one can count the
data transfer rate on each overlay link if we know the exact data dissemination tree.
Unfortunately, in a large scale network, it is hard to maintain information in such a
detail.

As the problem of how to maintain network structure knowledge in a scalable
way is out of the scope of this work, we only adopt a cost model assuming little

96 CHAPTER 5. SCALABLE DELIVERY OF STREAM QUERY RESULT

knowledge of the network. Since the actual cost is considered in the experimental
results, this actually biases against our method. Moreover, if more network knowl-
edge is available, the cost model can be replaced with a more accurate one without
much change to our algorithms.

More specifically, the stream processing server only keeps track of the next
hop of the delivery path of the result streams. The benefit of the query merging
is estimated as (∑iC(Qi)−C(Q)) · l, where C(Q) is the data rate (bits/sec) of the
representative query Q’s result stream, while C(Qi) is the data rate of the member
query Qi’s result stream. Furthermore l is the latency of the common first hop of
all the member query Qi. This implicitly says that only queries with a common
first hop would be merged, which is intuitive.

The estimation of the result stream rate is a common task required by most
query optimizers. Therefore, existing techniques in stream query optimization [23]
can be used for this purpose. Furthermore, the data statistics required by our cost
model can be shared with the query optimizer and hence little extra overhead will
be incurred to maintain the statistics.

5.5.2 Query Groups Maintenance

There are a few challenges of the query grouping and our system addresses them
in the following ways:

1. Achieve high benefit. The benefit estimation function discussed above is
used to estimate the benefit of a grouping. Heuristics are required to derive a good
grouping.

Q'

Q2Q1'

Q5Q3 Q4

Figure 5.5. An example query tree. This tree represents a group of query: Q2,Q3,Q4 and
Q5. Q′1 is a derived query constructed by merging Q3 and Q4. Q5 is contained by Q2. Q′ is
the representative query of the whole query group which is derived by merging Q′1 and Q2.

5.5. QUERY GROUPING 97

2. Efficient grouping maintenance. We consider the situation that queries would
be inserted and terminated anytime. Hence, it is necessary to have an efficient data
structure to maintain the query grouping and to facilitate the decision making of
when and how to re-merge queries. A multi-tree data structure is adopted to serve
this purpose. In this structure, a query tree is built for each query group. The root
of the tree is the representative query of the query group. Within the tree, a query
Qi is an ancestor of another one Q j only if Qi contains Q j. Figure 5.5 shows an
example of such a tree.

As we will see later, such a query tree is helpful in quickly determining whether
the merging of the queries under each subtree is beneficial and hence whether re-
optimization is required. Furthermore, if some queries in a subtree are terminated,
the synthetic queries along the path from the terminated queries to the root might
be rewritten, while the other subtrees need not be modified.

3. Re-placing queries into different groups would change the user subscrip-
tions and hence may incur many message exchanges among the nodes in the net-
work in order to modify the routing table in the DPSS. Hence, we try to avoid
frequent migration of a query from one group to another. Query grouping is main-
tained periodically so that the frequency of the changes can be regulated by the
length of the period. Furthermore, a query will be retained in the same group as
long as it is still beneficial to do so.

More details of the algorithms are presented in the rest of this section.

5.5.2.1 New query insertion.

When a query is first submitted to the system, Algorithm 7 is run to insert it into
a query group. The algorithm estimates the benefit of merging the new query with
each existing query group and selects the query group with the highest benefit (line
3). If no merging has positive benefit, then a new group is generated.

The new query is added to the corresponding query tree structure of the selected
query group or the newly generated group (line 10). If the existing representative
query of the group and the new query do not contain one another, the algorithm
will generate a new representative query (line 18) for this query group.

As a side note, query merging may incur query processing overhead. To avoid
getting arbitrary high overhead, a threshold can be used to restrict how much over-
head can be accepted to trade for the communication efficiency. Here, we use a
threshold parameter α , which is the maximum percentage of processing overhead
that can be accepted. For example, if α = 0.1, then the system can tolerate 10%

98 CHAPTER 5. SCALABLE DELIVERY OF STREAM QUERY RESULT

of processing overhead incurred by query merging. If the merging incurs overhead
higher than this threshold, then it will not be considered. This is implemented
by line 6. In the estimation of the processing cost, again existing stream query
optimization techniques can be used, such as [23].

Insert(newQuery)1

begin2

max← 0; toMerge← null;3

foreach rootQ ∈ trees do4

b f ← benefit of merging rootQ with newQuery;5

oh← processing overhead incurred by merging rootQ with6

newQuery + the current overhead of the query group of rootQ;
if b f > max & oh < α then7

max← b f ;8

toMerge← rootQ;9

if toMerge = null then10

trees.addRoot(newQuery);11

else if newQueryv toMerge then12

AddChild(toMerge,newQuery);13

else if toMergev newQuery then14

AddChild(newQuery, toMerge);15

replace toMerge with newQuery in trees16

else17

newRoot← MergeQ(toMerge,newQuery);18

add both toMerge and newQuery to newRoot.childlist;19

replace toMerge with newRoot in trees;20

end21

AddChild(parent,newChild)22

begin23

foreach child ∈ parent.childlist do24

if newQueryv child then25

AddChild(child,newQuery);26

return;27

add newChild to parent.childlist;28

end29
Algorithm 7: Query Insertion

5.5. QUERY GROUPING 99

5.5.2.2 Query termination.

When a query terminates, Algorithm 8 modifies the query trees to reflect the changes.
Two types of queries are distinguished in the algorithm: (1) original queries: those
queries submitted by the users; (2) derived queries: those queries derived from
query merging.

First, the to-be-terminated query is removed from the tree and then transfer its
children to its parent or generate a new root if the to-be-terminated query is a root
itself.

Second, if the to-be-terminated query’s parent is a derived query, the merging
algorithm will be run to rewrite the parent query to reflect the change. Rewriting
will be propagated up in the tree till the node which is not required to be rewritten.
Note that the rewriting of these synthetic queries will not incur changes on the
network side (i.e. the subscriptions of the users can remain unchanged). Instead,
the rewriting can reduce the communication cost by the possible “tightening” of
the representative queries. Hence, we choose to perform this eagerly.

On the other hand, if a query in a query group is terminated, then it might not be
beneficial for other queries to be placed in this query group any more. For example,
a query is placed into this group because of its overlap with the terminated query.
Now, it might not be beneficial to keep it in this group. The grouping could be re-
optimized here. However, as we have discussed, moving the query from one group
to another has to change the subscription of the user which will incur changes on
the overlay network, i.e. the change of user subscriptions and hence the routing
tables.

Therefore, a lazy approach is adopted for the re-optimization of grouping. The
re-optimization algorithm is run periodically, which will be presented below. As
shown in line 10 of Algorithm 8, the re-written derived queries are marked to be
re-optimized, which will be done at the next re-optimization round.

5.5.2.3 Query group re-optimization

Periodically, Algorithm 9 will be run to re-optimize the query grouping. In line 4,
the algorithm traverses the query trees and re-optimizes them one by one. After
that, it gets a list of queries that should be considered to be replaced into different
groups. Then line 5 uses the query insertion algorithm (Algorithm 7) to replace the
query one by one.

100 CHAPTER 5. SCALABLE DELIVERY OF STREAM QUERY RESULT

Terminate(q)1

begin2

remove q from its query tree;3

if q.childlist 6= null then4

if q.parent 6= null then5

q.parent.childlist.add(q.childlist);6

else7

newQuery← merge all the child queries of q;8

newQuery.isDerived← true;9

newQuery.to reoptimize← true;10

if q.parent 6= null & q.parent.isDerived then11

Rewrite (q.parent);12

q.parent.to reoptimize← true;13

end14

Rewrite (q)15

begin16

Merge all the child queries of q to a new query newQ;17

if q is not semantically equivalent to newQ then18

q← newQ;19

if q.parent 6= null & q.parent.isDerived then20

Rewrite(q.parent);21

end22
Algorithm 8: Query Termination

5.5. QUERY GROUPING 101

ReopitmizeGroups()1

begin2

toReplace← /0;3

foreach root ∈ trees do Reoptmize(root, toReplace);4

foreach query ∈ toReplace do Insert(query);5

end6

Reoptmize(queryNode, toReplace)7

begin8

newChildlist← /0;9

foreach child ∈ queryNode.childlist do10

Reoptmize(child,newChildlist);11

if queryNode.to reoptimize then12

b← benefit of merging all queries in13

{queryNode.childlist ∪newChildlist};
if b≤ 0 then14

toReplace.add(queryNode.childlist);15

toReplace.add(newChildlist);16

remove q from the trees;17

else18

queryNode← merge all queries in19

{queryNode.childlist ∪newChildlist};
if toReplace 6= /0 & queryNode.parent.isDerived then20

queryNode.parent.to reoptimize← true;21

end22
Algorithm 9: Query Group Re-Optimization

102 CHAPTER 5. SCALABLE DELIVERY OF STREAM QUERY RESULT

The re-optimization algorithm for each query group is shown in Line 7. This
algorithm takes as inputs queryNode (a node in a query tree) and inserts into
toReplace the queries that are currently in the substree rooted at queryNode but
are no longer beneficial to be grouped with other queries in the subtree. It is done
by traversing the query tree in depth-first order and recursively calling the algo-
rithm on each node in the tree.

For each node, after calling the algorithm recursively on all the child nodes, the
algorithm gets a list of query nodes, newChildlist, which are the queries that are
no longer be beneficial to be placed in the subtrees of the individual child nodes.
However, within these queries, those extracted from the subtree of one child node
may still have overlap with the queries in the subtree of another child node. Hence,
line 12 check whether it is beneficial to merge the queries in newChildlist together
with its current children. If so, then it simply performs the merging and add all the
nodes in newChildlist to the current nodes childlist. Otherwise, it returns all these
nodes to its parent node.

Note that to minimize the overhead of revising the user subscriptions that would
be incurred by re-grouping, queries would be considered for re-grouping only when
the current grouping has negative benefit (line 14). Using a threshold here might be
able to get a better trade-off. Unfortunately, as our experiments show, this cannot
achieve any significant benefit. Therefore, such a threshold is not considered in
this work.

5.6 Performance Study

In this section, the result of a performance study is reported. We first present the
configuration of the experiments and then the detail experimental results.

Implementation. The algorithms in this work are implemented in a mid-
dleware on top of our stream processing system GSN (Global Sensor Network,
http://gsn.sourceforge.net/) [11], which is tailored for efficient processing of sensor
data and managing the connections with various heterogeneous sensor networks.
The system is implemented mainly in Java. The experiment is conducted in a Linux
server with 2 Dual-Core 2.66GHz Intel CPU and 4G memory.

Data set. We use the sensor data set collected by our SensorScope project
(http://sensorscope.epfl.ch), which measures key environmental data such as air
temperature and humidity, surface temperature, incoming solar radiation, wind
speed and direction, precipitation, and soil moisture and pressure. The data from

5.6. PERFORMANCE STUDY 103

each sensor are treated as one data stream. In the experiments, we use 63 streams
as our data set and emulate the streaming scenario by using their timestamp infor-
mation.

Query generation. Each query in the experiment is generated randomly in
the way described as follows. First, a few streams (a random number from one
to five) are selected randomly to be involved in the query. Then a few predicates
are generated based on the column information of the streams (such as the column
names, the maximum/min values etc.). In the experiments, we vary the distribution
used to select the streams and the portion of data selected by the predicates. Both
uniform and zipfian distribution are used. Furthermore, the window predicates are
generated with random parameters (time intervals, sliding steps and starting times).
Finally, the projection attributes and aggregate functions are generated randomly.
All the experiments are repeated 20 times with different random queries and the
average results are reported.

DPSS. The DPSS which is used to disseminate the query results is simulated
in the experiments. The topology generator BRITE (http://www.cs.bu.edu/brite/) is
used to generate a power law network topology with 1000 nodes. Then a minimum
spanning tree is constructed as the dissemination tree. One of the nodes is selected
as the stream query processor and, for each query, a random node is selected as the
origin of the query, which should be the destination of the query result.

5.6.1 Query Insertion

In this subsection, we examine the performance of query insertion. In the exper-
iments, queries arrive at the system one by one. Our query insertion algorithm is
run to optimize the query grouping incrementally.

In the first experiment, we set the overhead threshold α to a relatively high
value (0.5) to see how much benefit we can get without worrying too much about
the processing overhead. In Figure 5.6(a), we present the bandwidth reduction at
each time instance when a certain number of queries are inserted. Bandwidth re-
duction is computed as the percentage of the sum of the bandwidth consumption
of each overlay link (weighted by the latency of each link as discussed in Sec-
tion 5.5.1) that is reduced by the query merging in comparison to the case without
merging. A few interesting points can be derived from the figure. First, with a
higher number of queries added to the system, there are more opportunities for
the query merging approach to explore the sharing of communication and hence

104 CHAPTER 5. SCALABLE DELIVERY OF STREAM QUERY RESULT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2000 4000 6000 8000 10000

B
an

dw
id

th
 R

ed
uc

tio
n

(%
)

#Queries

uniform
zipf1.0
zipf1.5

zipf2

(a) Bandwidth Reduction

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100008000600040002000

G
ro

up
in

g
R

at
io

#Queries

uniform
zipf1.0
zipf1.5

zipf2

(b) Grouping Ratio

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2000 4000 6000 8000 10000

B
an

dw
id

th
 R

ed
uc

tio
n

(%
)

#Queries

SA
Insert

(c) Compare with Simulated Annealing (zipf1.0)

Figure 5.6. Query Insertion

5.6. PERFORMANCE STUDY 105

a larger bandwidth reduction can be achieved. Another interesting point is that
query merging is more beneficial with a skewed query distribution. The reason is
obvious. With more queries interested in the same subset of data, the probability
that we can merge the queries would be higher. Figure 5.6(b) provides another per-
spective on the experimental results. The grouping ratio is the ratio of the number
of query groups to the total number of queries. Generally, the lower the grouping
ratio, the higher the bandwidth reduction could be.

To examine the optimality of the query grouping, we also compare with the
Simulated Annealing (SA) algorithm [61], which has been shown very effective in
solving many NP-Hard problems. The parameters of SA are tuned to achieve the
best performance as we could. For clarity, only the results with zipfian distribution
(θ=1.0) are reported. The other results have similar trends. As shown in Fig-
ure 5.6(c), the insertion algorithm performs slightly worse than the SA algorithm
does. However, SA runs more than 100 times slower than the insertion algorithm
in all our experiments. As queries often come and leave frequently in reality, the
insertion algorithm is more favorable in a real deployment.

Another experiment is to investigate the sensitivity of our algorithms to the
processing overhead threshold α . Figure 5.7 shows the result of the experiments.
The value of α (in Algorithm 7 under Section 5.5.2.1) is varied from 0 to 0.5. The
general trend is, a higher α value provides more opportunities for query merging
and hence the outcome bandwidth reduction is higher. Note that the difference is
not very significant. The reason could be, for the randomly generated query set
in this experimental study, only a small number of merging could incur high pro-
cessing overhead. We have varied the query generation parameters but could not
find a set of parameters that can make this difference more significant. Hence in
such query set, a very low α is desirable, as it can significantly reduce the commu-
nication cost without incurring much processing overhead. In reality, there could
exist some query set that could be more sensitive to the value of α . The tuning of
an optimal α value could get a better trade-off between communication cost and
processing cost.

5.6.2 Query Grouping Re-optimization

In this section, we examine the performance of the query re-optimization algo-
rithms. In the experiment, 10,000 queries are first inserted into the system and
then we terminate half of the queries. It is compared with two cases: (1) without

106 CHAPTER 5. SCALABLE DELIVERY OF STREAM QUERY RESULT

 0

 20

 40

 60

3000 6000 10000

B
an

dw
id

th
 R

ed
uc

tio
n

(%
)

#Queries

0
0.05
0.1
0.3
0.5

(a) Uniform

 0

 20

 40

 60

 80

 100

3000 6000 10000

B
an

dw
id

th
 R

ed
uc

tio
n

(%
)

#Queries

0
0.05
0.1
0.3
0.5

(b) Zipf 1.5

Figure 5.7. Sensitivity to α

5.6. PERFORMANCE STUDY 107

running the re-optimization algorithm (“no re-opt”) and (2) running the insertion
algorithm on all the remaining queries from scratch (“re-insert”).

 0

 20

 40

 60

 80

uniform zipf-1.05 zipf-1.5

B
an

dw
id

th
 R

ed
uc

tio
n

(%
)

no re-opt
re-opt

re-insert

(a) Bandwidth Reduction

 0

 0.2

 0.4

uniform zipf-1.05 zipf-1.5

%
 q

ue
rie

s
m

ig
ra

te
d

no re-opt
re-opt

re-insert

(b) % of queries migrated to a different group

Figure 5.8. Query Grouping Re-optimization

Figure 5.8(a) shows the comparison of the bandwidth reduction among the
three cases and Figure 5.8(b) presents the percentage of queries that have been mi-
grated to another query group. As one can see, “Re-opt” can achieve much larger
bandwidth reduction than the case without re-optimization. Furthermore, “re-
insert” works slightly better than “re-opt”. This is because “re-insert” can explore a
larger solution space than “re-opt”. However, as shown in Figure 5.8(b), “re-insert”
incurs much more migrations than “re-opt”, which would result in higher overhead

108 CHAPTER 5. SCALABLE DELIVERY OF STREAM QUERY RESULT

over the network.

Another interesting point that can be observed is, with a more skewed query
distribution, less benefit can be achieved by re-optimizing the query grouping. This
is because more queries have overlap relationships and hence less queries need to
be migrated to another query group. It is also reflected in Figure 5.8(b). Both
“re-opt” and “re-insert” migrate less queries for a more skewed query distribution.

5.6.3 Efficiency of the Query Tree

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

2000 4000 6000 8000 10000

R
at

io
 to

 a
 F

la
t S

tr
uc

tu
re

#Queries

uniform
zipf 1.5

(a) Time to Terminate a Query

 0.8

 1

 1.2

 1.4

 1.6

2000 4000 6000 8000 10000

R
at

io
 to

 a
 F

la
t S

tr
uc

tu
re

#Queries

uniform
zipf1.5

(b) Time to Insert a Query

Figure 5.9. Tree Structure vs. Flat Structure

5.7. CONCLUSION 109

This experiment is to examine whether the query tree is effective to enhance
the query grouping maintenance efficiency. We compare it with a flat structure,
where queries within each group are kept in a flat list. We compare the maximum
query termination and query insertion time between the two approaches. In the
experiment, we first insert a certain number of queries into the system and then try
to insert (or remove) a query to (or from) the most popular query group. This is
expected to be the maximum insertion (or termination) time. One can see from Fig-
ure 5.9(a), the tree approach is much more efficient in query termination than the
flat one. That is because it avoids the running of unnecessary query merging while
a flat structure cannot exploit this opportunity. The difference is more obvious with
a skewed query distribution and a larger query population where query groups tend
to have more members. On the other hand, it can be seen from Figure 5.9(b) that
the tree approach works slightly worse than the flat structure for query insertion.
This is due to the fact that, in the tree approach, a new query has to travel a few
levels down the query tree before it is settled in a place within the tree. But this is
not necessary in a flat structure. In summary, for systems with similar query termi-
nation and insertion rates, the query tree approach is much more efficient than the
flat one.

5.7 Conclusion

This chapter addresses an important stream processing issue that we faced during
our deployments, query result stream delivery, which is often overlooked by ex-
isting stream processing systems, and proposes an easy-to-implement yet effective
solution. To enhance the system’s scalability, DPSS, a scalable and efficient com-
munication paradigm, is employed to deliver query result streams. To fully exploit
the message delivery sharing capability of a DPSS, we propose a query group-
ing and merging approach. To realize this approach, stream query containment
theorems are first studied, based on which, query merging and query grouping al-
gorithms are proposed. To deal with the frequent arrival and removal of queries,
a multi-tree structure is used to facilitate efficient maintenance of query group-
ing. Furthermore, adaptive re-optimization algorithms are proposed to continu-
ously adapt the query grouping to the change of the query set and meanwhile keep
the query migration overhead to be low. The experiments conducted show that this
approach is very efficient and effective , especially with a large number of queries
or a skewed query distribution.

110 CHAPTER 5. SCALABLE DELIVERY OF STREAM QUERY RESULT

Chapter 6

Sensor Data Sharing and
Visualization

Overview

In this chapter, we present a sensor network data gathering and visualization in-
frastructure, comprising of Global Sensor Network (GSN) middleware and Mi-
crosoft SensorMap. We provide the use-cases involving the process of monitoring
real-world deployments in which scientists can inspect measured data in the form
of contour plots overlayed onto a high resolution map and a digital topographic
model. Scientists can go back in time virtually to search for interesting events or
simply to visualize the temporal dependencies of the data. The system presented
is not only interesting and visually enticing for non-expert users but brings sub-
stantial benefits to environmental scientists. The easily installed data acquisition
component as well as the powerful data sharing and visualization platform opens
up new ground in collaborative data gathering and interpretation in the spirit of
Web 2.0 applications.

111

112 CHAPTER 6. SENSOR DATA SHARING AND VISUALIZATION

6.1 Introduction

In science, the requirement to develop an acquisition, databasing and querying in-
frastructure for each application adds a layer of expense and a requirement for skills
which may not be present within a research team. A generic infrastructure which
addresses all of these issues whilst remaining open and flexible enough to allow
the scientist to carry out any data processing required, allows costs to be reduced
and allows more “science” to take place. Such a generic infrastructure to support
environmental science projects is presented here, focusing on environmental mon-
itoring inside the Swiss Experiment (SwissEx)1 project.

SwissEx is a collaboration of environmental science and technology research
projects. These projects cover a range of environmental hazards from sustainable
land use, to earthquakes and avalanches. In these projects, there is a large potential
for synergy of overlap where they may benefit from sharing data, particularly if
experiments can be arranged to take place on common sites. Measurements such
as meteorological parameters, soil temperature/conductivity/humidity and hydro-
logical parameters are common across many projects and some projects even have
synergies on much larger scales.

Scientific projects have in the past been very isolated, data has seldom been
reused within departments, opportunities for data sharing within institutions are
missed and collaboration across institutions has generally only taken place when
the expertise did not exist in-house. E-science is changing this and Swiss-Experiment
is one such e-science project. The SwissEx collaboration encourages data sharing
and preservation of knowledge across projects and institutions through the use of a
common, state-of-the-art database and data processing infrastructure. The addition
of a spatially aware interface, combined with advanced querying tools is aimed at
making scientists aware of what data exists and encouraging them to re-use data
and/or collaborate on data acquisition. Through the re-use of data across projects,
SwissEx aims to bridge the traditional scientific domains, broadening scientific
knowledge on the interdisciplinary process interactions with the aim of eventually
exploiting these links in large scale sensor deployments to improve environmental
hazard forecasting and warning.

The same visual interface, utilizing common tools such as spatial interpolation,
is aimed at allowing scientists to easily try out various techniques on their data.
Visualization of the results on a map/digital topographic model allows scientists to

1http://www.swiss-experiment.ch

6.2. APPLICATION SCENARIOS 113

better understand the relationship between the 2D results and the real processes that
are occurring. This interface can also be used in publishing scientific results in an
interactive electronic form, providing greater public interest and hence awareness
of environmental research and the processes occurring in the environment around
them.

6.2 Application Scenarios

The infrastructure is aimed at assisting throughout the life cycle of environmental
monitoring. The work presented in this chapter is addressing the following partially
fictive application scenarios:

1. Planning: Marc, a renowned hydrologist, is in his office and wishes to re-
view existing datasets that have been captured in the past year at the Le Genepi
field deployment of a wireless sensor network in order to plan the deployment for
this year’s campaign. He wants to better understand the interaction between the
rock glacier and the atmosphere, in particular how the wind patterns drive the
ventilation of the rock glacier. To do this he retrieves the data on rock and air tem-
perature from the SwissEx data repository and generates a visualization of the tem-
perature differences on the SensorMap[74] interface. He is surprised by the large
deviations at some locations and decides to concentrate more stations there. When
visualizing the measurements of the rain gauges, he observes that they gave mostly
uniform measurements and decides to reduce the number of rain gauge sensors.
This year he also received new satellite data on temperature, accessible through
Web Services, and uses a visualization of this data to decide on the placement of
some stations at a larger scale surrounding the core area of the measurement cam-
paign.

2. Monitoring the deployment: The sensor stations have been deployed as
planned. Over the Web he and his group can at any time observe the current mea-
surements through SensorMap. One evening Marc receives a warning email gener-
ated by the underlying data stream processing middleware that the measurements
of some sensors are out of the expected ranges. After inspecting some graphs of
recent measurements Marc realizes that some sensors are malfunctioning and de-
cides to go to the field next day by helicopter. In the field his team discovers that
some of the wind sensors have frozen and they fix the problem. In order to maxi-
mize the benefit of the field trip they also visualize model data generated from the

114 CHAPTER 6. SENSOR DATA SHARING AND VISUALIZATION

real-time measurements through a hand held device and use this information to op-
timize the placement of some stations. The metadata on the new positions and time
of replacement is immediately updated and fed back to the SwissEx data repository
so that later models are correctly computed.

3. Analyzing the data: After the campaign, as more stations have been placed
in critical regions Marc can refine the resolution of his energy balance model.
Simulating the models that are implemented in Matlab requires several hours of
computation on his large workstation. As a result he obtains visualizations of the
energy flows that can be overlayed in SensorMap. After looking at the map while
sliding back and forth in time, and comparing it to the model results from last
year’s data, he realizes that he has to revise some assumptions of his models. He
annotates the regions exhibiting strange behavior on the map. He will hand over
his data and observations to a Postdoc who will be in charge of next years cam-
paign. In the meantime the measurement data, the model data and annotations
are archived in the SwissEx repository. Browsing in the repository a PhD student
in another research group discovers that she could apply her new risk model for
landslides on Marc’s energy flow model. Though not perfect data the surrounding
communities are highly interested in these risk assessments and so she decides to
make them available to selected decision makers through SensorMap.

6.3 System Description

Our system comprises of two components: a sensor middleware component that
handles the data acquisition and a data visualization and data sharing component.
We will briefly review the fundamental concepts behind these assumptions and
then focus on the interactions between them and the challenges that arise in the
integration process.

6.3.1 Data Acquisition: Global Sensor Network (GSN)

Multiple GSN instances are used to compose the backbone of the acquisition net-
work. A set of wrappers allow live data to be imported into the system. The data
streams are processed according to virtual sensor files. We use GSN’s virtual sen-
sor concept to create processing chains and repeat live data. The virtual sensors
are connected together in order to build the required processing path (cf. Figure

6.3. SYSTEM DESCRIPTION 115

Figure 6.1. A standard application of GSN (top) showing GSN gathering data from a
sensor network via a serial forwarder that is itself connected to the network’s sink node.
GSN also offers the functionality of connecting several GSN instances to allow advanced
query processing.

6.1). For example, one can imagine an anemometer that would send its data into
GSN through a TinyOS wrapper, this data stream could then be sent to an aver-
aging virtual sensor, the output of this virtual sensor could then be split and sent
to a database for recording or to a visualization layer for displaying the average
measured wind in real time.

GSN obtains the data directly from sensor network deployments and provides
the capability of replaying previously measured data, for demonstration or explo-
ration purposes.

6.3.2 Data Sharing and Exploration: SenseWeb/SensorMap

Once measurements about the physical world have been collected through GSN,
it is advantageous to share the data, allowing multiple projects to share the instru-
mentation costs and deployment and maintenance effort. Sharing of large volumes
of scientific data imposes challenges in data exploration techniques to efficiently
discover a subset of data containing phenomena of interest to scientists. To tackle
the challenges, an extensible infrastructure for data sharing (called SenseWeb [74])
has been designed by Microsoft Research as well as a map-based front-end (called
SensorMap) to visually explore the shared datasets on geocentric interfaces such
as maps and 3D terrain topographies.

The overall infrastructure allows scientists to share their sensor data acquisi-

116 CHAPTER 6. SENSOR DATA SHARING AND VISUALIZATION

tion systems over the common, programmable interface supported by SenseWeb,
thus making the collected data available for researchers globally. Scientists share
the sensors by adding their descriptions to SenseWeb. Such shared sensors then
can be discovered based on location, type, or other characteristics. To efficiently
support spatial queries of sensor metadata, SenseWeb indexes sensors by using a
hierarchical triangular mesh (HTM) indexing scheme [87], which is particularly
suitable for geographic queries.

SensorMap further enables scientists to explore the spatio-temporal distribu-
tions and correlations of the shared sensor data. SensorMap allows a user to di-
rectly specify the area of interest based on a browsable map, by drawing polygons
or typing in geonames. Sensors within the specified geographical region are auto-
matically aggregated at an appropriate granularity based on the zoom level of the
map. SensorMap directly depicts the sensors on maps as image icons with different
color schemes indicating the real-time readings.

Besides the real-time view, a user can explore sensor data streams in historic or
spatial views. Via SensorMap, they can select a list of sensors of interest and visu-
alize their temporal distributions in a single comparison chart or in multiple side-
by-side time series charts. A third feature of SensorMap is to generate map/image-
overlaid contours of selected sensors in view, which can be zoomed or panned
together with the underlying map/image.

6.3.3 Integration

Figure 6.2 illustrates the architecture of the integrated system. At the bottom of the
architecture are multiple GSN instances that acquire data from deployed sensors
such as weather stations. Data streams collected by GSN are registered with the
SenseWeb infrastructure to share among environmental scientists across multiple
deployments. SensorMap accesses the shared data and visualizes their temporal
and spatial correlations on top of maps and topological terrains.

SenseWeb is using GeoDB for storing sensor metadata. The metadata includes
information about data publisher, sensor name, sensor type, measurement unit, data
access API, socket address for retrieving data and access control details. GeoDB
uses hierarchical triangular mesh indexing technique [88]. In order to deliver data
streams to SenseWeb, data stream producer needs to implement the Datahub API
defined in [3]. DataHub acts as a proxy layer between the actual sensors and
SenseWeb portal.

6.3. SYSTEM DESCRIPTION 117

Sensor Deployments

Data Acquisition
Global Sensor Network (GSN)

SenseWeb

Data Exploration

Sensor Sharing

Figure 6.2. Architecture of the integrated system

One of the challenges in the integration process is to design a suitable com-
munication protocol between GSN and SensorMap, on which we can pose the
following requirements:

• It has to be pull based: many sensors have the capability of producing large
data volumes and we want to minimize the communication between the GSN
instances and the SensorMap servers. The protocol should be able to retrieve
the data on demand when it is requested by a user (e.g., when somebody
zooms-in on a specific point on the map).

• It has to offer support for aggregation queries: being able to get aggregated
values greatly reduces the communication traffic. SensorMap shows the high

118 CHAPTER 6. SENSOR DATA SHARING AND VISUALIZATION

level picture of the data (e.g., aggregated every 6 or 12 hours) and once a user
decides that they require a greater temporal resolution of data, SensorMap
contacts the responsible GSN instance and asks for the high resolution data
set.

• It should be location aware (GPS latitude and longitude)

• Its output should be machine parseable and preferably also human readable.

• It has to be simple enough to get adopted by a sufficiently large user com-
munity.

In order to address these requirements, the GeoRSS2 standard was initially se-
lected. GeoRSS is a geographically coded RSS output generated by GSN. One can
specify the aggregation parameters in a simple REST request and retrieve the de-
sired data stream. The output of GeoRSS is in XML format, making it convenient
for other softwares to parse the output and produce their own visual interfaces over
the GSN instances. This approach is what was used in version 2 of SensorMap.

The major shortfalls associated with the GeoRSS based solution have been the
following:

• Extendibility: requests had to be modified to provide new parameters such
as measurement types, sensor output rate, etc which are not part of GeoRSS.

• Interface: the solution has a push like interface for users who are interested in
having a real-time view of a low traffic sensors (a value every few seconds).

In order to address these two issues, we decided to use a Web Services inter-
face which is flexible enough to handle both set of requirements. Version 3 of
SensorMap is designed to use the new interface and GSN was also adopted accord-
ingly. Using the new interface, the parameters are passed as method arguments
(e.g., aggregating period, time range, etc) and since one can perform multiple calls
over one Web services connection, the servers for SensorMap may maintain an
open connection to their desired GSN instances in order to reduce the latency time.
The push behavior can also be implemented using a simple call back interface.

6.4 GSN/SensorMap In Practise

The SensorMap server is hosted at Microsoft Research in Redmond, both GSN
instances are located in Switzerland, at EPFL in Lausanne and at SLF in Davos.

2http://www.georss.org/

6.4. GSN/SENSORMAP IN PRACTISE 119

Figure 6.3. Real-time and historic views of sensor data streams from the Wannengrat De-
ployment. Time series charts clearly illustrate the temporal correlations between humidity
(red curve) and air temperature (blue curve).

To better demonstrate the applicability of the work, we present two real-world
sensor network deployments in the Swiss alps.

The Le Genepi Deployment: The “Le Genepi” field deployment of a wireless sen-
sor network was a campaign held between August and September 2007 conducted
by the SensorScope team at EPFL. SensorScope [25] provides low cost, wireless
and reliable sensor network systems for environmental monitoring to a wide com-
munity. It improves present data collection techniques with the latest technology,
while meeting the requirements of the environmental scientists. The “Le Genepi”
experiment was deployed on a glacier in the canton Valais (Switzerland) close to
Martigny. In the three week experiment, 16 weather stations were deployed, mea-
suring air temperature, surface temperature, air humidity, wind direction, wind
speed, precipitation and solar radiation.

The Wannengrat Deployment: Above the town of Davos, Switzerland, at the
Wannengrat alpine observatory, seven sensor stations have been installed for study-
ing environmental processes involving snow. The project is maintained by envi-
ronmental engineers from SLF in Davos. We use this installation as a valuable
permanent test scenario for Global Sensor Network (GSN). This scenario is sig-
nificantly different from the SensorScope scenario, for instance the Genepi glacier
experiment(as described above), since the stream data is inserted into the system
as a periodic bulk import.

120 CHAPTER 6. SENSOR DATA SHARING AND VISUALIZATION

Figure 6.4. Spatial visualization of ambient temperature measurements from the Le
Genepi deployment. SensorMap generates this type of contour map on request and over-
lays it on top of 3D high resolution maps. Users clearly see the interaction between ambient
temperature and the terrain.

The installation of GSN is at SLF in Davos and is connected to a GSN in-
stallation in Lausanne. The real-time and historic views of two aforementioned
real-world sensor streams are depicted in Figure 6.3.

Scientists can inspect real-time data as well as virtually go back in time to
search for interesting events or analyze the temporal dependencies of the data.
The scientists can explore the contour visualizations of snapshot data of any se-
lected time point, which helps in understanding spatial correlations among dis-
persed measurements. Figure 6.4 illustrates one such contour plot overlaid over
3D terrain maps. Moreover, one is able to request an animation of contour plots
for customized time durations and resolutions, through which a preliminary under-
standing of the spatio-temporal characteristics of selected data streams is obtained.

Chapter 7

Conclusion and Future Work

In this thesis, we presented the design and implementation of the Global Sensor
Network platform. Full potential of sensor technology will be unleashed through
large-scale (up to global scale) data-oriented integration of sensor networks. To
realize such a vision of a “Sensor Internet”, we presented Global Sensor Network
(GSN) middleware. GSN enables fast and flexible deployment and interconnection
of sensor networks. Its virtual sensor concept can abstract from arbitrary stream
data sources. Virtual sensor’s powerful declarative specification and query tools,
provides simple and uniform access to heterogeneous technologies. GSN offers
zero-programming deployment and data-oriented integration of sensor networks
and supports dynamic configuration and adaptation at runtime. Experimental eval-
uation of GSN demonstrates that the architecture is highly efficient, offers very
good performance and throughput even under high loads and scales gracefully in
the number of nodes, queries, and query complexity.

Moreover, in order to effectively tackle the performance issues we faced in our
deployments in the field of environmental monitoring, we presented a set of algo-
rithms and techniques to deal with the management of window-based continuous
queries in stream processing systems for wireless sensor networks. Our proposed
algorithms can play a critical role in the large-scale data stream processing sys-
tems in which there exist a large number of users registered to hundreds of high
rate data streams. Thanks to batch sliding and sliding graph concepts, processing
time of continuous queries with sliding predicates can be significantly reduced.

In addition to aforementioned contributions, we presented solutions for effi-
cient query result delivery, which is often overlooked by existing stream processing
systems. To fully exploit the message delivery sharing capability of a distributed
stream processing engine, we proposed a query grouping and merging approach.

121

122 CHAPTER 7. CONCLUSION AND FUTURE WORK

The effectiveness of our proposed query merging and query grouping approach is
supported by a number of stream query containment theorems.

In order to deal with the frequent arrival and removal of queries, a multi-tree
structure is introduced to facilitate efficient maintenance of query grouping. Fur-
thermore, adaptive re-optimization algorithms are proposed to continuously adapt
query grouping to the change of the query set, while keeping query migration over-
head low.

In order to present how this thesis would be used in real deployments by the
environmental scientists, we present a sensor network data gathering and visual-
ization infrastructure, comprising of GSN and Microsoft SenseWeb. We provide
use-cases involving the process of monitoring real-world deployments in which
scientists can inspect measured data in the form of contour plots overlayed onto a
high resolution map and a digital topographic model.

As future work, there are several interesting problems to explore. If the number
of queries is large and data rate is very high, a single processing stream processor
system might become overloaded. One interesting solution to this problem could
be the use of approximate sliding window management. In this approach, sliding
windows which have close slide values could be grouped in the same sliding group
to further reduce the processing time. As another possible future direction, in the
local-time-based sliding windows, the number of timers was reduced as a result of
using a sliding graph. However, it is possible to enhance the batch sliding approach
either by merging similar timers which are used for different data streams, or by
using a few number of global timers in the system for all data streams.

Also, in the context of efficient query result delivery for stream processing en-
gines, our approach merges all the queries in a query group into one representative
query. However, sometimes this would increase the processing cost. Another pos-
sible approach would be to generate one or more representative queries for each
query group and keep the processing overhead as low as possible. Users then
should subscribe to multiple result streams instead of one.

Finally, in a distributed stream processing system, query operators can be al-
located to multiple processing servers. It would be interesting to study how the
operator allocation and the query grouping and merging will interact with each
other.

Bibliography

[1] Bt-node. Website, 2009. http://www.btnode.ethz.ch/.

[2] Mica2 mote. Website, 2009. http://blog.xbow.com/xblog/mica2 mote/.

[3] Microsoft sensor map. Website, 2009. http://atom.research.microsoft.com/
sensewebv3/sensormap.

[4] Sensor data lab. Website, 2009. http://www.sensordatalab.org.

[5] Sensor middleware unit, digital enterprise research institute (deri), ireland.
Website, 2009. http://www.deri.ie.

[6] Swiss experiment. Website, 2009. http://www.swissexperiment.ch.

[7] Swiss federal institute for forest, snow and landscape research wsl. Website,
2009. http://www.slf.ch.

[8] Tmote. Website, 2009. http://www.moteiv.com/.

[9] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel,
Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey,
Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B.
Zdonik. The Design of the Borealis Stream Processing Engine. In CIDR,
2005.

[10] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Chris-
tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan-
ley B. Zdonik. Aurora: a new model and architecture for data stream man-
agement. VLDB J., 12(2):120–139, 2003.

[11] Karl Aberer, Manfred Hauswirth, and Ali Salehi. Infrastructure for data pro-
cessing in large-scale interconnected sensor networks. In MDM, pages 198–
205, 2007.

123

124 BIBLIOGRAPHY

[12] Charu C. Aggarwal. An intuitive framework for understanding changes in
evolving data streams. In ICDE, page 261. IEEE Computer Society, 2002.

[13] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A frame-
work for clustering evolving data streams. In VLDB, pages 81–92, 2003.

[14] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A frame-
work for projected clustering of high dimensional data streams. In VLDB,
pages 852–863. Morgan Kaufmann, 2004.

[15] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A frame-
work for on-demand classification of evolving data streams. IEEE Trans.
Knowl. Data Eng., 18(5):577–589, 2006.

[16] Marcos Kawazoe Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Ast-
ley, and Tushar Deepak Chandra. Matching events in a content-based sub-
scription system. In PODC, pages 53–61, 1999.

[17] Yanif Ahmad and Ugur Çetintemel. Networked query processing for dis-
tributed stream-based applications. In VLDB, pages 456–467. Morgan Kauf-
mann, 2004.

[18] Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy. Tracking
join and self-join sizes in limited storage. In PODS, pages 10–20. ACM Press,
1999.

[19] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani,
U. Srivastava, and J. Widom. Data-Stream Management: Processing High-
Speed Data Streams, chapter STREAM: The Stanford Data Stream Manage-
ment System. Springer, 2006.

[20] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Itaru
Nishizawa, Justin Rosenstein, and Jennifer Widom. Stream: The stanford
stream data manager. In SIGMOD Conference, page 665, 2003.

[21] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql continuous query
language: semantic foundations and query execution. VLDB J., 15(2):121–
142, 2006.

[22] Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles
over sliding windows. In PODS, pages 286–296. ACM, 2004.

BIBLIOGRAPHY 125

[23] Ahmed Ayad and Jeffrey F. Naughton. Static optimization of conjunctive
queries with sliding windows over infinite streams. In SIGMOD Conference,
pages 419–430. ACM, 2004.

[24] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load shedding for aggre-
gation queries over data streams. In ICDE, pages 350–361. IEEE Computer
Society, 2004.

[25] Guillermo Barrenetxea, François Ingelrest, Gunnar Schaefer, Martin Vetterli,
Olivier Couach, and Marc Parlange. Sensorscope: Out-of-the-box environ-
mental monitoring. In IPSN, pages 332–343, 2008.

[26] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the
decidability of query containment under constraints. In PODS, pages 149–
158. ACM Press, 1998.

[27] Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou. Density-based
clustering over an evolving data stream with noise. In SDM. SIAM, 2006.

[28] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design
and evaluation of a wide-area event notification service. ACM Trans. Comput.
Syst., 19(3):332–383, 2001.

[29] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of con-
junctive queries in relational data bases. In STOC, pages 77–90. ACM, 1977.

[30] Badrish Chandramouli, Junyi Xie, and Jun Yang. On the database/network
interface in large-scale publish/subscribe systems. In SIGMOD Conference,
pages 587–598. SIGMOD Conference, 2006.

[31] Badrish Chandramouli and Jun Yang. End-to-end support for joins in large-
scale publish/subscribe systems. PVLDB, 1(1):434–450, 2008.

[32] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden,
Vijayshankar Raman, Frederick Reiss, and Mehul A. Shah. Telegraphcq:
Continuous dataflow processing for an uncertain world. In CIDR, 2003.

[33] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden,
Vijayshankar Raman, Frederick Reiss, and Mehul A. Shah. TelegraphCQ:
Continuous Dataflow Processing for an Uncertain World. In CIDR, 2003.

126 BIBLIOGRAPHY

[34] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming
algorithms for clustering problems. In STOC, pages 30–39. ACM, 2003.

[35] Surajit Chaudhuri, Vagelis Hristidis, and Neoklis Polyzotis, editors. Proceed-
ings of the ACM SIGMOD International Conference on Management of Data,
Chicago, Illinois, USA, June 27-29, 2006. ACM, 2006.

[36] Yixin Chen and Li Tu. Density-based clustering for real-time stream data. In
KDD, pages 133–142. ACM, 2007.

[37] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald Carney,
Ugur Çetintemel, Ying Xing, and Stanley B. Zdonik. Scalable Distributed
Stream Processing. In CIDR, 2003.

[38] Yun Chi, Haixun Wang, and Philip S. Yu. Loadstar: Load shedding in data
stream mining. In VLDB, pages 1303–1305. ACM, 2005.

[39] Sara Cohen, Werner Nutt, and Yehoshua Sagiv. Containment of aggregate
queries. In ICDT, volume 2572 of Lecture Notes in Computer Science, pages
111–125. Springer, 2003.

[40] Graham Cormode and Minos N. Garofalakis. Sketching probabilistic data
streams. In SIGMOD Conference, pages 281–292. ACM, 2007.

[41] Graham Cormode and S. Muthukrishnan. Summarizing and mining skewed
data streams. In SDM, 2005.

[42] Charles D. Cranor, Theodore Johnson, Oliver Spatscheck, and Vladislav
Shkapenyuk. Gigascope: A stream database for network applications. In
SIGMOD Conference, pages 647–651, 2003.

[43] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. Approximate join
processing over data streams. In SIGMOD Conference, pages 40–51. ACM,
2003.

[44] Luping Ding and Elke A. Rundensteiner. Evaluating window joins over punc-
tuated streams. In CIKM, pages 98–107. ACM, 2004.

[45] Alin Dobra, Minos N. Garofalakis, Johannes Gehrke, and Rajeev Rastogi.
Processing complex aggregate queries over data streams. In SIGMOD Con-
ference, pages 61–72. ACM, 2002.

BIBLIOGRAPHY 127

[46] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In
KDD, pages 71–80, 2000.

[47] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki - a lightweight
and flexible operating system for tiny networked sensors. In LCN, pages 455–
462. IEEE Computer Society, 2004.

[48] M. Franklin, S. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, E. Wu,
O. Cooper, A. Edakkunni, and W. Hong. Design Considerations for High
Fan-in Systems: The HiFi Approach. In CIDR, 2005.

[49] David Gay, Philip Levis, and David E. Culler. Software design patterns for
tinyos. ACM Trans. Embedded Comput. Syst., 6(4), 2007.

[50] Bugra Gedik, Kun-Lung Wu, Philip S. Yu, and Ling Liu. Grubjoin: An
adaptive, multi-way, windowed stream join with time correlation-aware cpu
load shedding. IEEE Trans. Knowl. Data Eng., 19(10):1363–1380, 2007.

[51] Johannes Gehrke, Flip Korn, and Divesh Srivastava. On computing correlated
aggregates over continual data streams. In SIGMOD Conference, pages 13–
24, 2001.

[52] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. IrisNet: An Architec-
ture for a World-Wide Sensor Web. IEEE Pervasive Computing, 2(4), 2003.

[53] Phillip B. Gibbons. Distinct sampling for highly-accurate answers to distinct
values queries and event reports. In VLDB, pages 541–550. Morgan Kauf-
mann, 2001.

[54] Phillip B. Gibbons and Yossi Matias. New sampling-based summary statistics
for improving approximate query answers. In SIGMOD Conference, pages
331–342. ACM Press, 1998.

[55] Lukasz Golab and M. Tamer Özsu. Issues in data stream management. SIG-
MOD Record, 32(2):5–14, 2003.

[56] Lukasz Golab and M. Tamer Özsu. Processing sliding window multi-joins in
continuous queries over data streams. In VLDB, pages 500–511, 2003.

[57] A. J. G. Gray and W. Nutt. A Data Stream Publish/Subscribe Architecture
with Self-adapting Queries. In International Conference on Cooperative In-
formation Systems (CoopIS), 2005.

128 BIBLIOGRAPHY

[58] Sudipto Guha. Tight results for clustering and summarizing data streams.
In ICDT, volume 361 of ACM International Conference Proceeding Series,
pages 268–275. ACM, 2009.

[59] Alon Y. Halevy. Answering queries using views: A survey. VLDB J.,
10(4):270–294, 2001.

[60] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing
data streams. In KDD, pages 97–106, 2001.

[61] Yannis E. Ioannidis and Eugene Wong. Query optimization by simulated
annealing. In SIGMOD Conference, pages 9–22. ACM Press, 1987.

[62] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting change in
data streams. In VLDB, pages 180–191. Morgan Kaufmann, 2004.

[63] Phokion G. Kolaitis, David L. Martin, and Madhukar N. Thakur. On the
complexity of the containment problem for conjunctive queries with built-in
predicates. In PODS, pages 197–204. ACM Press, 1998.

[64] Alberto Lerner and Dennis Shasha. Aquery: Query language for ordered data,
optimization techniques, and experiments. In VLDB, pages 345–356, 2003.

[65] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: accurate
and scalable simulation of entire tinyos applications. In SenSys ’03: Pro-
ceedings of the 1st international conference on Embedded networked sensor
systems, pages 126–137, New York, NY, USA, 2003. ACM.

[66] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker.
No pane, no gain: efficient evaluation of sliding-window aggregates over data
streams. SIGMOD Record, 34(1):39–44, 2005.

[67] Liqian Luo, Aman Kansal, Suman Nath, and Feng Zhao. Sharing and explor-
ing sensor streams over geocentric interfaces. In GIS, page 3. ACM, 2008.

[68] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
Tag: A tiny aggregation service for ad-hoc sensor networks. In OSDI, 2002.

[69] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
Tinydb: an acquisitional query processing system for sensor networks. ACM
Trans. Database Syst., 30(1):122–173, 2005.

BIBLIOGRAPHY 129

[70] Samuel Madden, Mehul A. Shah, Joseph M. Hellerstein, and Vijayshankar
Raman. Continuously adaptive continuous queries over streams. In SIGMOD
Conference, pages 49–60. ACM, 2002.

[71] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts
over data streams. In VLDB, pages 346–357. Morgan Kaufmann, 2002.

[72] Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and Zachary R. Ander-
son. Synopsis diffusion for robust aggregation in sensor networks. In SenSys,
pages 250–262. ACM, 2004.

[73] Suman Nath, Jie Liu, Jessica Miller, Feng Zhao, and André Santanche. Sen-
sormap: a web site for sensors world-wide. In SenSys, pages 373–374. ACM,
2006.

[74] Suman Nath, Jie Liu, and Feng Zhao. Sensormap for wide-area sensor webs.
IEEE Computer, 40(7):90–93, 2008.

[75] Werner Nutt, Yehoshua Sagiv, and Sara Shurin. Deciding equivalences among
aggregate queries. In PODS, pages 214–223. ACM Press, 1998.

[76] Liadan O’Callaghan, Adam Meyerson, Rajeev Motwani, Nina Mishra, and
Sudipto Guha. Streaming-data algorithms for high-quality clustering. In
ICDE. IEEE Computer Society, 2002.

[77] Kivanc M. Ozonat. An information-theoretic approach to detecting perfor-
mance anomalies and changes for large-scale distributed web services. In
DSN, pages 522–531. IEEE Computer Society, 2008.

[78] Peter R. Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos,
Matt Welsh, and Margo I. Seltzer. Network-aware operator placement for
stream-processing systems. In ICDE, page 49. IEEE Computer Society, 2006.

[79] Sean Rooney, Daniel Bauer, and Paolo Scotton. Techniques for Integrating
Sensors into the Enterprise Network. IEEE eTransactions on Network and
Service Management, 2(1), 2006.

[80] Yehoshua Sagiv and Mihalis Yannakakis. Equivalences among relational ex-
pressions with the union and difference operators. J. ACM, 27(4):633–655,
1980.

[81] Ali Salehi. Nextick. Website, 2008. http://nextick.org.

130 BIBLIOGRAPHY

[82] M. Sgroi, A. Wolisz, A. Sangiovanni-Vincentelli, and J. M. Rabaey. A
service-based universal application interface for ad hoc wireless sensor and
actuator networks. In Ambient Intelligence. Springer Verlag, 2005.

[83] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos, M. Seltzer, and
M. Welsh. Hourglass: An Infrastructure for Connecting Sensor Networks
and Applications. Technical Report TR-21-04, Harvard University, EECS,
2004. http://www.eecs.harvard.edu/∼syrah/hourglass/papers/tr2104.pdf.

[84] Utkarsh Srivastava, Kamesh Munagala, and Jennifer Widom. Operator place-
ment for in-network stream query processing. In PODS, pages 250–258.
ACM, 2005.

[85] Utkarsh Srivastava and Jennifer Widom. Flexible time management in data
stream systems. In PODS, pages 263–274, 2004.

[86] Utkarsh Srivastava and Jennifer Widom. Memory-limited execution of win-
dowed stream joins. In VLDB, pages 324–335. Morgan Kaufmann, 2004.

[87] Alex Szalay, Jim Gray, Gyorgy Fekete, Peter Kunszt, Peter Kukol, and Ani
Thakar. Indexing the sphere with the hierarchical triangular mesh. In MSR-
TR-2005-123, September 2005.

[88] Alexander S. Szalay, Jim Gray, George Fekete, Peter Z. Kunszt, Peter Kukol,
and Ani Thakar. Indexing the sphere with the hierarchical triangular mesh.
CoRR, abs/cs/0701164, 2007.

[89] Nesime Tatbul, Ugur Çetintemel, Stanley B. Zdonik, Mitch Cherniack, and
Michael Stonebraker. Load shedding in a data stream manager. In VLDB,
pages 309–320, 2003.

[90] Yan Xia, Keith E. Bettinger, Lin Shen, and Allan L. Reiss. Automatic seg-
mentation of the caudate nucleus from human brain mr images. IEEE Trans.
Med. Imaging, 26(4):509–517, 2007.

[91] Ying Xing, Stanley B. Zdonik, and Jeong-Hyon Hwang. Dynamic load dis-
tribution in the borealis stream processor. In ICDE, pages 791–802. IEEE
Computer Society, 2005.

[92] Yong Yao and Johannes Gehrke. The cougar approach to in-network query
processing in sensor networks. SIGMOD Record, 31(3):9–18, 2002.

BIBLIOGRAPHY 131

[93] Yong Yao and Johannes Gehrke. Query Processing in Sensor Networks. In
CIDR, 2003.

[94] Stan Zdonik, Michael Stonebraker, Mitch Cherniack, Ugur Cetintemel, Mag-
dalena Balazinska, and Hari Balakrishnan. The Aurora and Medusa Projects.
Bulletin of the Technical Committe on Data Engineering, IEEE Computer
Society, 2003.

[95] Yongluan Zhou, Beng Chin Ooi, Kian-Lee Tan, and Ji Wu. Efficient dynamic
operator placement in a locally distributed continuous query system. In OTM
Conferences (1), volume 4275 of Lecture Notes in Computer Science, pages
54–71. Springer, 2006.

[96] Yongluan Zhou, Kian-Lee Tan, and Feng Yu. Leveraging distributed publish/-
subscribe systems for scalable stream query processing. In BIRTE, volume
4365 of Lecture Notes in Computer Science, pages 20–33. Springer, 2006.

Name: Ali SALEHI

Nationality: Iran

Languages: English [fluent, C1]

Email: ali.salehi@epfl.ch

Birth: 1982

Citizenship Iran

Objective: challenging position involving development, design, architecture and leadership.

Profile and Management Skills

 Lead developer and manager in more than half a dozen enterprise software projects.

 Managed all phases of complex software projects including requirements, architecture,
development, testing and releasing.

 Coordinated and supervised development team of 5-10 engineers on large software projects.

 Strong background in Stream Processing, Data Management Systems and Software Architectures.

Education

2004 – 2010 PhD of Computer Science in Stream Data Management Systems,

Ecole Polytechnique Fédérale de Lausanne (EPFL), 2010, Switzerland.

2000 – 2004 Software Engineering, Bachelor degree, Isfahan University.

Software Experiences

Lead Software Architect, GSN Project, http://gsn.sf.net, EPFL, 2004-2010

 Stream data management and data integration infrastructure for wireless sensor networks.

 Coordinated and supervised development team of 10 engineers.

 Project planning and prioritized the deliverables to the end users.

 Coordinated with industrial users, Microsoft Research Redmond, Digital Enterprise Research Institute in
Ireland and Swiss Federal Snow Research. Swisscom, EDF, …

 Used as the core technology in over 10 EU/Swiss funded research projects.

 Real-time patient monitoring demo, built using GSN, to be aired on Nov 2008 in RTE (Irish national TV;
Investigators Program). Live radio interview of the project on Dublin City FM (17th July, 2008) and an article
on the Irish Times (15th July, 2008) about the GSN platform and Patient Monitoring use case.

Software Architect, NexTick Project, http://nextick.org, EPFL, 2007-2010

 Tracks, analyzes and visualizes stock ticks from NYSE and NASDAQ in real time.

 Helps investors spot attractive securities, used by over 500 investors.

 Provides Technical analysis and candle stick pattern identification in real time.

 Downloaded over 100 times in the first week of its release.

PhD Research, EPFL

Multiple publications in international conferences and international workshops including: VLDB, ICDE, MDM

 Background Knowledge

Technical: C++, Ruby on Rails, Java, Scala, AJAX, Enterprise Java Beans (EJB), Web services, Struts,
JSP,Swing, Linux, Cygwin, MySQL, Microsoft SQL Server, JavaScript, J2EE,JUnit, JQuery, Prototype.

mailto:ali.salehi@epfl.ch
http://gsn.sf.net/
http://nextick.org/

