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ABSTRACT
The principles of embodied cognition dictate that intelli-
gent behavior must arise out of the coupled dynamics of an
agent’s brain, body, and environment. While the relation-
ship between controllers and morphologies (brains and bod-
ies) has been investigated, little is known about the interplay
between morphological complexity and the complexity of a
given task environment. It is hypothesized that the mor-
phological complexity of a robot should increase commen-
surately with the complexity of its task environment. Here
this hypothesis is tested by evolving robot morphologies in
a simple environment and in more complex environments.
More complex robots tend to evolve in the more complex
environments lending support to this hypothesis. This sug-
gests that gradually increasing the complexity of task en-
vironments may provide a principled approach to evolving
more complex robots.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics

General Terms
Experimentation

Keywords
Evolutionary Robotics, Morphological Complexity

1. INTRODUCTION
According to the principles of embodied cognition intel-

ligent behavior arises out of the coupled dynamics between
an agent’s body, brain and environment [2, 6, 9, 26]. This
suggests that the complexity of an agent’s control policy
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(brain) and physical body (morphology) should scale pro-
portionally to the complexity of its task environment. This
link between control and morphology has been studied [25],
however the relationship between environmental complexity
and morphological complexity is not well understood.

Evolutionary robotics (ER) [14,23], the application of evo-
lutionary algorithms to the design and optimization of robot
control policies and/or morphologies, provides a framework
for investigating this relationship. While most evolutionary
robotics projects have restricted themselves to optimizing
control strategies for human designed or bio-mimicked robot
body plans, evolutionary algorithms may also be used to de-
sign complete robots: physical morphologies in addition to
control policies. Evolving morphology in addition to con-
trol has the advantage of being able to discover body plans
uniquely suited to a machine’s given task environment rather
than suffering from the design biases of human engineers.

This idea of allowing an evolutionary algorithm to control
both the morphologies and controllers of simulated machines
in virtual environments to produce adaptive behavior was
first introduced by Sims [30]. Sims’ was followed by other
studies (e.g. [1, 3, 5, 7, 8, 13, 15, 17, 19, 21, 22, 32]) which also
explored evolving both the morphologies and control poli-
cies of robots in virtual environments. These studies varied
in a number of meaningful ways including their underly-
ing genetic encodings, the parts with which the robots were
constructed, the evolutionary algorithms employed, and the
tasks investigated. However, by far the most commonly in-
vestigated task in this line of research has been locomotion
over flat terrain: how far a robot is able to displace itself
over flat ground in an allotted amount of time.

While interesting results have come from investigating this
task it suffers from its simplicity. Relatively simple mor-
phologies of just a few cuboids or spheres are all that is
needed to be successful. However, it is of great interest
how morphological complexity scales in more complex task
environments, therefore additional task environments must
be investigated. Previous studies have looked at evolving
robots in more challenging task environments (e.g. [18]), but
because these studies used body plans composed of cuboids,
like Sims’ system, there was a low ceiling on the maximum
complexity of their evolved morphologies.

The current study aims to investigate the relationship
between environmental and morphological complexity in a
more principled way in order to test the hypothesis that the
morphological complexity of a robot increases commensu-
rately with the complexity of its task environment. While



it draws inspiration from the previous studies mentioned
above, the evolutionary system presented here has several
advantages which make it better suited to studying this is-
sue.

One advantage concerns the genetic encoding employed
and the manner in which robot morphologies are modeled.
As has been demonstrated in the past [16,17] generative and
developmental encodings offer demonstrable benefits over
direct encodings for evolving robot morphologies. Accord-
ingly, the morphologies in this study are created from a spe-
cific generative encoding that has been shown to possess
a host of advantages over other encodings: Compositional
Pattern Producing Networks (CPPNs) [33]1. This is similar
to what was done in [3,5], however in lieu of building robots
out of spherical components via a growth procedure as is
done in [3, 5] morphologies are instead created out of trian-
gular meshes (trimeshes) based on sampling a CPPN output
at regular intervals over a region of space. The flexibility of
trimeshes allows for the creation of a greater diversity of
morphologies than is possible with cuboids or spheres (see
Figures 1 and 4 for examples of morphologies evolved with
the current system).

Another advantage of the current system is the genetic
algorithm employed. Many advances have been made in de-
veloping more successful evolutionary algorithms since Sims’
work, which should allow for searching the space of robot
morphologies more effectively. Specifically, in this research,
populations of CPPN genomes are evolved using CPPN-
NEAT: an extension of the widely used NeuroEvolution of
Augmenting Topologies (NEAT) [34] algorithm. Some of
the advantages of CPPN-NEAT are presented in the next
section.

A final advantage worth mentioning is the vast amount
of computational resources that many modern researchers
have access to. These resources are necessary to run large
numbers of physical robotics simulations at small enough
step sizes to produce physically plausible results. All the
experiments presented in this paper are carried out on a 7.1
teraflop supercomputing cluster. Without access to such
a distributed computing system one single evolutionary run
from one single experiment would take multiple days to com-
plete on a standard personal computer. But, when using the
cluster, an entire experiment (of 100 runs) can be run in less
than one day thus allowing for experimentation with a large
number of environments within which enough runs may be
conducted to produce statistically significant results.

The remainder of this paper is organized as follows: the
next section further describes the CPPN encodings used,
describes how they evolve and how they produce actuated
robots. A description of the different simulated environ-
ments in which robots are evolved then follows. Next, results
are presented which capture how different environments af-
fect the complexity of the robot morphologies that evolve
inside them. This is followed by a discussion of how the com-
plexity of a robot body plan may be calculated using geomet-
ric properties and information theoretic measures. These
techniques are then applied to the evolved robot body plans
and relationships between environmental and morphological
complexity are examined. The paper finishes with conclud-
ing remarks and a discussion of how the ideas presented in
this paper may be extended in future work.

1For more on the specific advantages of CPPNs as a genetic
encoding the reader is directed to [3–5,10,12,31,33].

2. METHODS

2.1 CPPNs
Compositional Pattern Producing Networks (CPPNs) [33]

are a form of artificial neural network (ANN). However,
CPPNs differ from traditional ANNs in several important
ways. Unlike traditional ANNs where every internal node
has the same activation function (such as a sigmoid or a
step function) CPPN nodes can take on one of several ac-
tivation functions from a predefined set. This function set
often includes functions that are repetitive such as sine or
cosine as well as symmetric functions such as Gaussian, thus
allowing for motifs seen in natural systems: symmetry, rep-
etition, and repetition with variation. Additionally CPPNs
are often used as a generative system to encode some other
object of interest e.g. pictures [27], 3D structures [4, 11],
robot morphologies [3, 5] or traditional ANNs [31], as op-
posed to being employed directly as a control architecture
as ANNs typically are. Here CPPNs are used as such a gen-
erative encoding to produce actuated robot body plans. A
more in depth description of CPPNs is beyond the scope of
this paper; the reader is referred to [33] for further details.

2.2 Evolutionary Algorithm
In this study CPPN-NEAT [33] is the algorithm used to

evolve CPPNs. CPPN-NEAT is an extension of the state of
the art NeuroEvolution of Augmenting Topologies (NEAT)
[34] method of neuro-evolution. NEAT and by extension
CPPN-NEAT begins with small networks (those without
any internal or hidden nodes) and gradually increases the
complexity of the networks over time through the addition
of new nodes and links. Additionally the population is di-
vided into “species” for the purpose of promoting genotypic
diversity and allows novel structural innovations time to ma-
ture. This systematic way of increasing network complexity
as needed should lend itself well to studying how morpholo-
gies increase in complexity when evolving inside different
environments. A more thorough description of the NEAT
and CPPN-NEAT algorithms also falls outside the bounds
of this paper, so the reader is directed to [33, 34] for addi-
tional details.

2.3 Building Robots from CPPNs
In previous studies [3, 5], robots were constructed out of

spherical components from evolving CPPNs by means of an
iterated growth procedure. This procedure involved starting
at a specific initial point and attaching spheres to grow out-
wards by means of querying the CPPN genome locally and
placing newly created spheres in a priority queue whereby
they could be selected as attachment points for additional
spheres. This process would repeat until a complete robot
was grown.

While promising results were produced by the system pre-
sented in those papers it has several drawbacks. In many
cases the additional indirection added by the growth pro-
cedure prevents desirable features of the CPPNs’ outputs
– such as symmetry and repetition – from being realized
in the resulting morphologies. Moreover, while spheres are
easy to physically simulate due to their single points of con-
tact such that morphologies with a small number of spheres
can be cheaply simulated, the computational costs become
too large (even on a cluster) when trying to model suffi-



Figure 1: The control environment and a sam-
pling of the experimental environments with robots
that evolved to locomote successfully in each. The
ground is a high friction surface, while the blue
“blocks of ice” have very low friction. To view videos
of these robots in action visit http://tinyurl.com/

GECCO2012-Videos

ciently complex physical shapes with spheres. Because of
these considerations an alternative method is employed in
this work.

In lieu of the growth procedure just described the current
study employs a voxel based method to create morphological
components out of triangular meshes (trimeshes) similar to
what is done for the creation of 3D shapes in [11]. A regular
grid is placed over a region of 3D-space which defines the
presence of voxel locations. In the current work this region
extends from −1 to 1 (inclusive) in each dimension and grid
lines are placed at intervals of 0.2. This yields a total of 11
grid lines in each dimension for a total of 1331 voxels.

A candidate CPPN is iteratively queried with the (x, y, z)
Cartesian coordinates at every voxel location except for the
extrema in each direction. Voxel locations that exceed a pre-
defined output threshold (0.5 in this case) are considered to
contain matter, while those that do not exceed this thresh-
old are considered to be devoid of matter. All voxels lying on
one of the extrema (|x| = 1 or |y| = 1 or |z| = 1) are given
output value 0 to ensure that the final triangular meshes
have completely enclosed surfaces. Once the CPPN has
been queried for every voxel location the Marching Cubes
algorithm [20] is employed to create triangular meshes from
the underlying voxel data. Specifically an enclosed trian-
gular mesh is created for each connected voxel component
which defines the exterior surface of a single physical shape.
It is these triangular meshes which are sent to the physics
simulator where they define the exterior surface of a solid
object and are imbued with mass. As far as the authors
are aware this is the first instance of physically simulating
evolved, rigid body robots composed of triangular meshes.

Since the purpose of this study is to investigate how dif-
ferent task environments affect the shapes of evolved mor-
phologies, a number of simplifications are used in order to
concentrate on the physical shapes of the evolved robots
and control for other factors that may influence their per-

formance. From the multiple enclosed trimesh components
that could be produced when querying a single CPPN only
one of these (the largest in terms of number of triangles) is
used in the resulting robot. This single component is copied
and reflected across the x-axis. The resulting components
(the original and its mirror image) are then spread apart
by 0.2 units and a capsule of this length is placed between
them such that it connects their two closest points. The
two trimesh components each connect to this capsule by
means of a hinge joint. These joints have rotation normals
of (1, 0, 0) and (0, 0,−1) such that the joints rotate through
the robot’s coronal and sagitall planes respectively. Reflect-
ing and copying a single component like this ensures that all
robots have the same degrees of freedom and ensures that
the robots are all bilaterally symmetric (which should make
locomotion easier) while at the same time it allows for a vast
number of different morphologies due to the flexibility of the
trimesh model.

The two degrees of freedom of each robot are actuated
by means of coupled oscillators. Each of the two oscillators
is parameterized by several parameters: amplitude, period,
and phase shift. These six parameters (three parameters
apiece for each of the two joints) are directly encoded in the
genome of the evolving robots as floating point numbers so
that the genome is in actuality a CPPN plus a six dimen-
sional floating point array. These floating point numbers
are recombined and mutated in exactly the same manner as
CPPN link weights except that since every individual pos-
sesses these parameters crossover is possible in all instances
of sexual reproduction. Values for these parameters are con-
strained to predefined ranges: amplitude, a ∈

ˆ
π
4
, 3π

4

˜
(so

that the hinge rotates between −a and a radians), period
∈ [250, 1500] simulation time steps (or equivalently [2, 12]%
of the total evaluation time) and phase shift ∈ [−1, 1] pe-
riods. Each parameter has a mutation probability of 0.1,
which was chosen experimentally.

Encoding the control parameters in this fashion is done to
keep the controllers as simple as possible so that fitness is
primarily dictated by the physical form of the robots while at
the same time allowing for diverse enough behavior so that
the robots can succeed in the different task environments.

2.4 Selecting desirable robots
The focus of this study is on how varying the complex-

ity of task environments affects the complexity of evolved
robot morphologies. Towards this aim a simple task is cho-
sen which can be accomplished with more or less difficulty
in a variety of environments. Specifically, like in previous
work, the task investigated here is maximizing directed dis-
placement in a fixed amount of time, though this is done
across a range of environments and not just on flat ground.

A candidate robot morphology (triangular mesh) and ac-
companying control parameters are sent to a physics simu-
lator2 and allowed to act for a fixed number of simulation
time steps. Since trimeshes can be arbitrarily shaped and,
unlike spheres, may simultaneously contact the environment
at several points it is necessary to use a much smaller step
size than has been used in previous work in order to get phys-
ically realistic behavior. Specifically, a step size of 0.001s is
used in this work. Because of this smaller step size a propor-

2Simulations are conducted in the Open Dynamics Engine
(http://www.ode.org), a widely used open source, physi-
cally realistic, simulation environment.



tionally larger number of time steps are needed to achieve
the same effective simulation length. Here robots are evalu-
ated for T = 12500 time steps.

After the robot has completed its time in the simulator
its fitness is calculated. How exactly this fitness is calcu-
lated takes some care, because evolution often finds ways
to “cheat” näıve fitness functions especially when the task
environment is difficult. For example, if fitness only consid-
ers the positions of the robot’s center of mass, C, and takes
fitness as C(T )x −C(0)x where C(t)x is the x-coordinate of
the robot’s center of mass at time t and T is the simula-
tion length then in environments where locomotion is diffi-
cult evolution will tend to find solutions where C is initially
raised far off the ground so that its displacement can be
maximized by falling forward. This is a local optimum in
this fitness landscape. Similarly, if one tries to eliminate this
cheating by only considering the trailing point of the robot
so that fitness is min p(T )x − min p(0)x where min p(t)x is
the smallest x-coordinate across all points on the robot at
time t falling forward can still be an effective solution (and is
still a local optimum) in difficult environments if morpholo-
gies are created which have backwards protrusions and thus
make min p(0)x as small as possible.

In light of these considerations the fitness employed in all
environments in this research is min p(T )x−max p(0)x. With
this fitness function falling forward will not be rewarded be-
cause the maximum fitness that can be achieved by pivoting
about a single point will be 0 and so a robot must actually
displace its whole body forward to be rewarded.

2.5 Exploring environments
As mentioned previously the goal of this study is to in-

vestigate how varying the complexity of task environments
affects the complexity of evolved robots. To accomplish this
goal, robots are evolved in a range of environments with
tunable parameters that can effectively increase or decrease
the difficulty of the task. For each environment investigated
100 independent evolutionary runs of CPPN-NEAT are run
for 500 generations with a population size of 150. The im-
plementation of CPPN-NEAT, the parameter settings, and
the CPPN activation functions are the same as those used
in [5] except for the addition of the floating point array en-
coding the control parameters, and an improved selection
mechanism3.

The first environment in which robots are evolved in is flat,
high friction ground similar to previous work. The robots
evolved in this simple environments are considered control
cases to compare with robots evolved in other environments.
Subsequent environments are more complex: they all con-
sist of an infinite series of low friction rectangular solids
(“blocks of ice”) over which a robot must locomote. These
“ice blocks” are constructed such that it is impossible for a
robot to gain purchase by moving over their upper surfaces
but must instead reach into the gaps between the blocks to
propel themselves forward. This requires the evolution of
morphologies with appropriate physical forms. These “icy”
environments vary according to two parameters: the height
of the blocks and the spacing between the blocks. Each of

3The authors were made aware through personal correspon-
dence of a bug in the selection mechanism in previous ver-
sions of the HyperNEAT C++ distribution. The code was
patched to fix this bug (and thus behave as described in the
literature) before the current experiments were run.

Figure 2: Mean distance achieved (in arbitrary ODE
units) by best individual in final generation taken
across the 100 independent runs in each of the 49 ex-
perimental environments. For comparison the mean
distance achieved from the 100 independent runs in
the control environment is 5.09 units.

these parameters varies from 0.025 units to 1.6 units expo-
nentially for a total of 7 ∗ 7 = 49 different environments.
The exponential scaling is used in order to cover a range
of parameters which produce qualitatively different environ-
ments. Figure 1 shows a sampling of these environments
and robots that evolve inside them.

3. RESULTS
After completing the 100 run in the control environment

and another 100 runs for each of the 49 experimental envi-
ronments (for a total of 50 ∗ 100 = 5000 evolutionary runs)
the most obvious question becomes: how difficult are these
different experimental environments? Or, put another way,
how successful is this evolutionary system at producing lo-
comoting robots in each of these environments?

Figure 2 shows the mean distance that the best of run
individuals are able to locomote (taken across the 100 in-
dependent runs) in each experimental environment. This
figure demonstrates that there is a clear relationship be-
tween these environmental parameters and the difficulty of
the task. Specifically, starting in the lower right of this ma-
trix where both the spacing and the height of blocks are large
the task becomes very difficult and the robots all become
stuck in the gaps unable to successfully locomote. Keeping
the spacing constant and decreasing the block height gradu-
ally makes the task easier as the robots are able to navigate
over these smaller blocks and therefore displace far enough
to be considered successfully locomoting. Once the height
has been reduced to 0.025 units the blocks are so small that
the environment becomes very similar to flat ground and in
fact distances achieved by robots in the lower left environ-
ments are not significantly different from those of the control
environment, nor are the morphologies in this environment
significantly different from those of the control environment
(see below).



Figure 3: Left: Mean ratio between volume of morphology’s AABB and volume of morphology itself for
each of the experimental environments. The best of run robots from the control experiment have a mean
of 3.58 for this ratio, similar to the black square in this plot. Right: Significance of the difference of this
ratio in each experimental environment compared to the control environment. The ratio is significantly
greater (morphologies are significantly less space filling) on average in the vast majority of experimental
environments. There are no experimental environments in which this ratio is significantly smaller than that
of the control. All p-values calculated using the Mann-Whitney U test.

As the spacing between the blocks is reduced the robots
are no longer able to behave as they would on flat ground,
but instead must find ways to move along the tops of the
blocks while finding means of gaining purchase by reaching
into the gaps. The height of the blocks loses importance
in this part of the parameter space but still has an effect
(though opposite to when the spacing is large). Here the
general pattern is for taller blocks to make the task easier,
probably because taller blocks result in a greater volume of
space whereby the robot can reach into the gaps to gain pur-
chase. Finally at the top of the matrix, when the spacing is
smallest block height ceases to have an impact as no matter
what forms the robots evolve to they can not reach very far
into the gaps.

For a better understanding of how the evolved robots be-
have in each of these environments it is helpful to watch
them in action. For this purpose, videos of robots evolved
in each environment are available on the web at http://

tinyurl.com/GECCO2012-Videos.

4. DISCUSSION
It is clear that different environments in this parameteri-

zation present the evolutionary system with varying degrees
of difficulty, but do they also select for different sorts of mor-
phologies? And if so, can these differences be quantified?

One simple way to study this question is to consider how
space filling the evolved morphologies are. This can be done
by computing the ratio of the volume of a morphology’s
Axis Aligned Bounding Box (AABB) to the volume of that
morphology itself4.

4For simplicity all morphological measures are computed
on the single enclosed trimesh object that is produced by
Marching Cubes for a CPPN, i.e. the reflected copy of this
trimesh and the connecting capsule are not considered

Figure 3 shows the mean values of this ratio, once again
taken across the 100 best of run individuals from each ex-
perimental environment. Also plotted is how significantly
different this ratio is, on average, in each experimental envi-
ronment when compared to the best of run individuals from
the control environment. In the majority of experimental en-
vironments this ratio is significantly greater from that of the
robots in the control experiment. This demonstrates that
these environments do in fact influence the morphologies of
the robots which evolve inside them in quantifiable ways:
becoming less space filling than those evolved in the con-
trol environment for a large portion of the parameter space.
Additionally Fig. 3 (left) shows how (at least) one aspect
of morphology gradually changes as one moves through this
environmental parameter space. This lends support to the
chosen parameterization being a good one for the purpose
of studying how the morphologies of robots are affected by
the environment in which they evolve.

It is clear that the morphologies which evolve in these en-
vironments vary in quantifiable (and significant) ways across
this parameter space. The question now becomes: do some
or all of these environments actually select for more com-
plex morphologies than those that evolve to locomote over
flat ground?

There are many ways one might think to quantify the
complexity of an evolved morphology. Different measures
of how space-filling a morphology is such as the AABB ra-
tio presented above or its surface area to volume ratio or
measures of how concave a morphology is (such as the ratio
of a morphology’s volume to that of the convex hull of its
points) may all hint at how complex a morphology is. How-
ever, each of these measures may be deceived by relatively
simple body shapes.



Figure 4: The five morphologies with smallest (top) and largest (bottom) values of H∆ across all best of run
individuals from all environments (experimental and control). The morphologies with high H∆ values are
clearly more complex than those with small H∆ values.

4.1 Entropy of curvature
Instead, it is useful to think about the complexity of a

body shape in information theoretic terms. One commonly
used measure of complexity is Shannon’s Entropy [28], which
measures the information content of a random variable. Re-
cent work [24,35] has demonstrated how notions of Shannon
Entropy can be applied to measuring the complexity of a
3D object by considering the curvature of the object as a
random variable. In fact, quantifying the complexity of 3D
objects in this way has been shown to strongly correlate
with human observers notions of complexity [35]. In the
space below the building blocks of computing this measure
are presented, and the reader is referred to [24] and [35] for
more in depth discussions of their theoretical underpinnings.

Given a random variable x with a probability density func-
tion (PDF) p(x), entropy H is defined as

H = −
Z ∞
−∞

p(x) log p(x) dx (1)

where p(x) is a continuous function. If instead p(x) is dis-
cretized such that pi =

R xi

xi−1
p(x) dx where the xis are spe-

cific values of x then H can be formulated discretely as

H = −
X
i

pi log pi (2)

which is the formulation employed here.
But, what is the random variable x on which H will be

calculated? Following [24, 35] x will be a measure of Gaus-
sian curvature of the points on a body shape. Since the body
shapes here are built out of triangular meshes the points at
which this curvature is non-zero are precisely the vertices
of the triangular mesh. Specifically, for each vertex j in a
trimesh the angle excess Φj is calculated as

Φj = 2π −
X
i

φi (3)

where φi is the internal angle at j of each triangle i of which
j is a vertex. This angle excess Φj has a direct relationship
to the Gaussian curvature at that point [24]. This will be
the variable on which entropy is calculated.

Following the calculation of Φj for every vertex a PDF
p(Φ) is estimated by placing the values of Φj into discrete
bins of uniform width (∆) and counting the number of Φj
samples that fall into each bin. This results in a discrete
set of probabilities pi, and Equation 2 can be used to arrive
at an estimate of entropy that depends on the chosen ∆,
denoted here H∆

5.
Does H∆ calculated in this way capture the complexity of

evolved morphologies as has been demonstrated in previous
work? To answer this question H∆ is calculated for all 5000
best of run individuals from all environments (experimen-
tal and control). Out of those 5000 the five morphologies
which have the lowest value for this measure and the five
morphologies which have the highest value for this measure
are selected. Images of these morphologies are shown in
Figure 4. Looking at these two sets of morphologies most
everyone would agree that those with high H∆ values appear
more complex than those with low H∆ values. In light of
this observation and the previous work in this area it is con-
cluded that H∆ does a good job of measuring morphological
complexity.

With the knowledge that the complexity of an evolved
morphology can be adequately quantified, focus shifts to
how the complexity of these morphologies varies from the
simple control environment to the more complex parame-
terized experimental environments. From studying Figure 5
one can see that in total the experimental environments tend
to select for more complex morphologies than those which
evolve in the control environment. Additionally, there is a
suggestive pattern across the parameter space where envi-
ronments in the upper right half of the matrix are much more

5The choice of ∆ greatly impacts the results of this calcula-
tion. If ∆ is too large the majority of samples will fall into
the same bin and all information is lost. If ∆ is too small
then the majority of samples will fall into independent bins
and H∆ reduces to a function of the number of vertices n.
In general there is no optimum ∆, and since the trimesh
morphologies considered here have much fewer vertices than
those of [24] a correspondingly larger bin width must be
used. In all calculations presented here a bin width ∆ = π

10
is used, chosen as a reasonable value by visually inspecting
histograms of varying bin widths.



Figure 5: The ways in which morphologies from ex-
perimental environments are more, less, or equally
complex than those evolved in the control environ-
ment. Plot is based on comparing the H∆ values for
best of run individuals in each experimental environ-
ment to the H∆ values for the best of run individu-
als in the control environment. The more complex
experimental environments tend to select for more
complex morphologies: there are many experimen-
tal environments where significantly more complex
morphologies evolve, while only one experimental
environment where significantly less complex mor-
phologies evolve. All p-values calculated using the
Mann-Whitney U test.

likely to produce complex morphologies, and this coincides
with where the AABB ratios are most significantly different
from the control experiment. The upper right of the matrix
contains the environments with narrow gaps and higher ob-
stacles, and thus present the most different task from the
control environment, so it makes sense that this is where
the most different morphologies would evolve. In addition,
it makes sense that additional complexity would be needed
to succeed in these environments because morphologies with
more simple sphere or block like components are unable to
reach into the gaps to gain purchase. Therefore evolution
must find more complex morphologies to be successful.

5. CONCLUSION
This work has investigated the relationship between envi-

ronmental and morphological complexity in evolved robots.
Using an information theoretic measure of morphological
complexity, known to correlate with human perceptions of
complexity, it was demonstrated that many complex envi-
ronments create evolutionary pressures which lead to the
evolution of more complex body forms than those of robots
evolved in the simple, flat ground environment traditionally
investigated. This lends support to the hypothesis that the
morphological complexity of a robot should increase com-
mensurately with the complexity of its task environment.

A number of simplifications were made so that the analy-
ses could be focused on the shape of the evolved morpholo-
gies. These simplifications included limiting the morpholo-

gies to a specific configuration of connectivity with a single
connected trimesh reflected and copied and connected via
hinge joints to an intermediary capsule, and using an open
loop control strategy of coupled oscillators with a small num-
ber of evolvable parameters. While the robots evolved in
this manner were able to successfully locomote in the ma-
jority of environments investigated it would be interesting to
investigate how removing these simplifications would affect
the presented results. Perhaps with a more sophisticated
controller and/or a greater number of degrees of freedom
it would be possible to evolve robots which succeed in the
most challenging environments or that are able to succeed in
other environments without such an increase in morphologi-
cal complexity: could increased control complexity supplant
the need for increased morphological complexity? However,
quantifying the complexity of such robots will require ex-
tending the entropy measure presented here to take into ac-
count additional factors such as the number and placement
of additional degrees of freedom and the complexity of their
controller architectures.

The estimation of probability density functions used here
in calculating H∆ could also be improved. As mentioned
above, the chosen method depends heavily on selecting a
good bin width ∆. Alternative means of estimating a PDF
such as kernel density estimation [29] may provide a better
means of calculating this measure and will be investigated
in future research.

Finally, it will be interesting to see how the morphologies
of evolved robots vary in other environments not experi-
mented with in this work. Do certain environments drive
an increase in morphological complexity while others drive
an increase in complexity of the control strategy or sen-
sory system? Could measuring the complexity of robots
while they are evolving be used to inform the evolutionary
search process in a meaningful way? Could environments
co-evolve along with morphologies much like natural envi-
ronments change over time, and therefore implicitly drive
the evolution of complexity in a more principled way? All
of these are fruitful areas for future research.
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