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Résumé

Depuis la crise �nancière mondiale de 2008, le marché �nancier est devenu plus imprévisible
que jamais, et il semble qu•il le restera dans un avenir prévisible. Cela signi�e qu•un investis-
seur est confronté à des risques sans précédent, d•où le besoin croissant d•optimisation de
portefeuille robuste pour les protéger contre l•incertitude, qui est potentiellement dévasta-
teur si non supervisé mais ignoré dans le modèle classique de Markowitz, dont une autre
carence est l•absence de moments d•ordre élevé dans son hypothèse de la distribution des
rendements des actifs. Nous établissons une équivalence entre le modèle de Markowitz et
le problème d•optimisation de la valeur à risque du portefeuille sous la normalité multi-
variée des rendements des actifs, de sorte que nous pouvons ajouter ces caractéristiques
exclues dans le premier implicitement en les incorporant dans le second. Nous proposons
également une méthode d•approximation de spline probabiliste à lissage et un modèle déter-
ministe dans le cadre de la localisation-échelle sous la distribution elliptique des rendements
des actifs pour résoudre le problème robuste d•optimisation de la valeur au risque du ren-
dement du portefeuille. En particulier pour le modèle déterministe, nous introduisons un
nouvel ensemble d •incertitude qui vit dans l •espace dé�ni positif pour la matrice d• échelle
sans compromettre la complexité et le conservatisme du problème d •optimisation, inventons
une méthode pour déterminer la taille des ensembles, le testons sur des données réelles, et
explorons ses propriétés de diversi�cation. Bien que la valeur à risque soit la mesure de
risque standard adoptée par le secteur bancaire et de l•assurance depuis le début des années
nonante, elle a depuis suscité de nombreuses critiques, notamment de McNeil et al. (2005)
et le Comité de Bâle sur le contrôle bancaire en 2012, également connu sous le nom de Bâle
3.5 [21,23]. Bâle 4 [22] suggère même de passer de la «valeur à risque» à la mesure de la
«valeur à risque conditionnelle». Nous verrons que la première peut Ã›tre remplacÃl• par la
dernière ou mÃ›me d•autres mesures de risque dans nos formulations facilement.
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Abstract

Since the 2008 Global Financial Crisis, the �nancial market has become more unpredictable
than ever before, and it seems set to remain so in the forseeable future. This means an
investor faces unprecedented risks, hence the increasing need for robust portfolio optimiza-
tion to protect them against uncertainty, which is potentially devastating if unattended yet
ignored in the classical Markowitz model, whose another de�ciency is the absence of higher
moments in its assumption of the distribution of asset returns. We establish an equiv-
alence between the Markowitz model and the portfolio return value-at-risk optimization
problem under multivariate normality of asset returns, so that we can add these excluded
features into the former implicitly by incorporating them into the latter. We also provide a
probabilistic smoothing spline approximation method and a deterministic model within the
location-scale framework under elliptical distribution of the asset returns to solve the ro-
bust portfolio return value-at-risk optimization problem. In particular for the deterministic
model, we introduce a novel eigendecomposition uncertainty set which lives in the positive
de�nite space for the scale matrix without compromising on the computational complexity
and conservativeness of the optimization problem, invent a method to determine the size of
the involved uncertainty sets, test it out on real data, and explore its diversi�cation proper-
ties. Although the value-at-risk has been the standard risk measure adopted by the banking
and insurance industry since the early nineties, it has since attracted many criticisms, in
particular from McNeil et al. (2005) and the Basel Committee on Banking Supervision in
2012, also known as Basel 3.5 [21,23]. Basel 4 [22] even suggests a move away from the
•what" value-at-risk to the •what-if" conditional value-at-risk• measure. We shall see that
the former may be replaced with the latter or even other risk measures in our formulations
easily.
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Chapter 1

Preliminaries

1.1 Introduction

Since the 2008 Global Financial Crisis, there has been a general lack of con�dence in the
global �nancial system and the world economy. The European Sovereign Debt Crisis which
resulted in Greece almost leaving the European Union and thus jeopardizing the single
currency project did not help matters. Whether the European model will continue remains
to be seen, although some observers already see it begin to unravel with the unpegging of
the Swiss Franc (CHF) against the Euro (EUR) since January 2015, as well as the Quantitative
Easing (QE) introduced by the European Central Bank (ECB) shortly afterwards in March
the same year that was to last for at least sixteen months and worth no less than 1.1 trillion
EUR. Theresa May will soon trigger Article 50 to start the two-year countdown to Brexit,
which adds uncertainty to a world already in a state of �ux.

Crossing over to the Asia-Paci�c, China is in the process of restructuring into a more
consumption based economy from one that is driven by massive state investment, and
whether it can navigate through this transition period and emerge out of these murky waters
successfully is still an unknown. Its slower growth as a result also means that Australia,
whose economy depends heavily on iron ore exports to China, is adversely a�ected. Dealing
with serious corruption and pollution issues will also be crucial in its ability to retain and
attract talent, maintain social stability and continue its trajectory of growth. Moreover,
China is seeking to expand its hegemony in the region, the evidence of which lies in its
recent disputes with other Southeast Asian nations over the South China Sea, including
a rejection of the Hague Tribunal•s ruling in favor of the Philippines, with Japan over the
Diaoyu or Senkaku Islands, with Taiwan over its independence, and even with Hong Kong
over the freedom to elect its own Chief Executive. The simmering geopolitical tensions in
the region and the threat of their escalating into war and violence is real.

In the United States, Donald Trump was elected in a freak election. What will the world
become under him? Will there be a deregulation of banks causing yet another �nancial
crisis, an anti-globalization and protectionist stance that further dampens sluggish world
trade, a disengagement with and retreat of American military presence in Asia leading to
an imbalance of power tilted towards China, resulting in a •might is right" instead of a
rules-based order in the region? How about his foreign policies in the Middle East and their

1



Chapter 1. Preliminaries

implications?
Add to the mix that we are living in a disruptive age, at the cusp of the so-called •fourth

industrial revolution", where machine learning, robotics and blockchain technology among
others are all set to displace millions of jobs worldwide, changing the way we live and
work, the only certainty for an investor is uncertainty, hence the Basel Committee•s call to
move away from the value-at-risk to the conditional value-at-risk measure, a need for robust
portfolio optimization and the necessity to take into account the possible occurrence of a
black swan event.

1.2 Markowitz Model

[134, Chapter 1] In modern portfolio theory, one is almost certainly reminded of the Markowitz
model, where the investor has terminal wealthwT at the end of the trading period[0,T ]
with utility function U(wT ) such thatU�(wT ) > 0 and U�� (wT ) < 0. The positivity of the
�rst derivative means that the higher the terminal wealth, the •happier" the investor is
(non-satiation property). The negativity of the second derivative can be interpreted as the
investor having decreasing added •happiness" with increasing wealth (risk-averse property).
Furthermore, the utility function is of the quadratic form

U(wT ) = �w T Š�w 2
T

wherewT = w0(1 + rP) such thatw0 is the initial wealth andrP is the portfolio return over
the period[0,T ], so that

U(wT ) = �w 0(1 + rP) Š�w 2
0(1 + rP)2

= (�w 0 Š�w 2
0) + (�w 0 Š2�w 2

0)rP Š(�w 2
0)r2

P

= a+ brP Šcr2
P,

wherea = �w 0 Š�w 2
0, b = �w 0 Š2�w 2

0 and c = �w 2
0, and the expected utility is

� (U(wT )) = � (a+ brP Šcr2
P)

= a+ b� (rP) Šc� (r 2
P)

= a+ (bŠc)� (rP) Šc� (rP),

which the investor would like to maximize. Therefore, the quadratic utility function does not
capture aversion to higher-order moments directly like, for example, the Constant Relative
Risk Aversion (CRRA) utility function does. However, Kacperczyk and Damien (2011) show
that the magnitude of this direct e�ect is negligible qualitatively.

In addition, the market is frictionless, that is, without taxes, transaction costs or short
sales. Simply put, the investor minimizes the portfolio variance subject to a targeted portfolio
expected return:

min
w�� n

� 1
2

wT� w : wTµ = r,wT� = 1
�

,

where � � � n×n is a positive de�nite covariance matrix,µ � � n is the expected return
vector,r � max{µ1, . . . ,µn} is the targeted expected return over[0,T ], w � � n is the weight

2



Chapter 1. Preliminaries

vector andµ is linearly independent of� � � n to avoid a degnerate scenario, in which
the constraintswT� = 1 and wTµ = r contradict each other unlessnr = µ T� . The 1/2 is
inserted for notational convenience when considering the �rst-order conditions.

Theorem 1.1 (Black, 1972)
The global optimal solution of

min
w�� n

� 1
2

wT� w : wTµ = r,wT� = 1
�

(1.1)

where� � � n×n is positive de�nite,r � � andµ � � n is linearly independent of� � � n, is

w� =
(Ar ŠC)� Š1µ + (BŠCr)� Š1�

D
(1.2)

whereA = � T� Š1� , B = µ T� Š1µ , C = � T� Š1µ andD = AB ŠC2.

Proof: Notice that the �rst order conditions of the equivalent Lagrangian problem

min
w�� n,� 1,� 2��

� 1
2

wT� w Š� 1(wT� Š1) Š� 2(wTµ Šr) : � 1, � 2 > 0
�

are

0 = � w Š� 1� Š� 2µ , (1.3)

1 = w T� , (1.4)

r = wTµ . (1.5)

Left-multiplying (1.3) with� Š1 yields

w = � 1� Š1� + � 2� Š1µ . (1.6)

Then, left-multiplying (1.6) with� T and µ T, and using (1.4) and (1.5) obtains

1 = � 1A + � 2C and r = � 1C + � 2B

respectively, which in matrix notation is

[1, r ]T =

�
A C
C B

�

[� 1, � 2]T.

Note that

�
A C
C B

�

is invertible since its determinant

D = AB ŠC2 = �P Š1� � 2�P Š1µ � 2 Š �PŠ1� ,PŠ1µ � 2

is positive, where� = PPT, � · � is the Euclidean norm, and�·, ·� is the inner dot product,
due to the linear indepdence ofPŠ1� and PŠ1µ and the strict Cauchy-Schwarz inequality
�x,y � < �x � 2�y � 2 whenx and y are linearly independent. Now

[� 1, � 2]T =

�
A C
C B

� Š1

[1, r ]T

3



Chapter 1. Preliminaries

= [Cr ŠB,Ar ŠC]T/D

and substituting it into (1.6) obtains the desired result. �
The standard deviation of the portfolio is

� (r ) =

�
Ar 2 Š2Cr + B

D

which is a hyperbola function.

De�nition 1.1
If two portfolios have the same expected return, the one with lower standard deviation is said to
dominate the other with higher standard deviation. On the other hand, if two portfolios have the
same standard deviation, the one with higher expected return is said to dominate the other with
lower expected return. A portfolio that is not dominated is called e�cient.

It does not make sense to setr < rmin as there will always be another portfolio with the same
standard deviation but a higher expected return. The optimal portfolios withr 	 rmin are
e�cient and the arc that represents them in the(� (r ), r)-space is called the e�cient frontier.
To eliminate the possibility of choosingr < rmin, the portfolio expected return is written as
an a�ne function of the portfolio standard deviation with interceptk and a non-negative
gradienth:

wTµ = k + h



wT� w,

so that by rearranging the intercept is

k = wTµ Šh



wT� w,

which is maximized over the feasible domain. That is to say, we solve

max
w�� n

�
wTµ Šh



wT� w : wT� = 1

�
, (1.7)

to obtain an optimal portfolio with the chosen risk parameterh � [0, �), which can be
interpreted as the marginal risk premium, or more precisely, the expected additional portolio
return with a unit increase in portfolio standard deviation, corresponding to anr 	 rmin. The
higherh is, the more risk averse is the investor. Note that (1.7) is equivalent to

max
w�� n

�
1/(1 + h)wTµ Šh/(1 + h)



wT� w : wT� = 1

�

� max
w�� n

�
� wTµ Š(1 Š� )



wT� w : wT� = 1

�

where� = 1
1+h � [0,1].

4



Chapter 1. Preliminaries

1.2.1 With Riskless Asset

Now, suppose there is a riskless asset returnµ0 � � less than the targeted expected returnr
and denote the weight placed on it as	 � � . The Markowitz model with riskless asset then
becomes

min
w�� n,	 ��

� 1
2

wT� w : wTµ = r Š	µ 0,wT� = 1 Š	
�

.

Theorem 1.2
The optimal solution of

min
w�� n,	 ��

� 1
2

wT� w : wTµ = r Š	µ 0,wT� = 1 Š	
�

(1.8)

where� � � n×n is positive de�nite,r,µ0 � � such thatr 	 µ0 andµ � � n is linearly indepen-
dent of� � � n is

w� =
r Šµ0

Aµ2
0 Š2Cµ0 + B

� Š1(µ Šµ0� ) and 	 � = 1 ŠwT
� � . (1.9)

Proof: The Lagrangian is

min
w�� n,	,� 1,� 2��

� 1
2

wT� w Š� 1(wT� + w0 Š1) Š� 2(wTµ + 	µ 0 Šr) : � 1, � 2 > 0
�

.

which has �rst order conditions

0 = � w Š� 1� Š� 2µ , (1.10)

� 1 = Š� 2µ0, (1.11)

1 = w T� + 	, (1.12)

r = wTµ + 	µ 0. (1.13)

Substituting (1.11) into (1.10) and left-multiplying the result by� Š1 obtains

w = � 2� Š1(µ Šµ0� ). (1.14)

Furthermore, if we left-multiply (1.14) by� T and µ T and make use of the relations (1.12) and
(1.13), we get

1 Š	 = � 2(C ŠAr ) and r Š	µ 0 = � 2(BŠCµ0)

respectively. Solving for	 in the former, before substituting it in the latter and rearranging
obtains

� 2 =
r Šµ0

Aµ2
0 Š2Cµ0 + B

which, when plugged into (1.14), yields the desired optimal solution. It remains to compute
	 � . �

5
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The standard deviation of the optimal portfolio given by (1.9) is

� (r ) =

	
(r Šµ0)2(µ Šµ0� )T� Š1(µ Šµ0� )

(Aµ2
0 Š2Cµ0 + B)2

=

	
(r Šµ0)2(Aµ2

0 Š2Cµ0 + B)

(Aµ2
0 Š2Cµ0 + B)2

=
r Šµ0


Aµ2
0 Š2Cµ0 + B

,

which draws out the e�cient line in the(� (r ), r)-space.
Theorem 1.3
The e�cient line

� (r ) =
r Šµ0


Aµ2
0 Š2Cµ0 + B

(1.15)

of the Markowitz model with riskless asset(1.8)[p. 5] is a tangent to the e�cient frontier

� (r ) =



(Ar 2 Š2Cr + B)/D. (1.16)

of the Markowitz model without riskless asset(1.1)[p. 3].

Proof: If we invest nothing into the riskless asset, weights on the risky assets add up to
one and left-multiplyingw� in (1.9) by �T yields

1 =
r Šµ0

Aµ2
0 Š2Cµ0 + B

� T� Š1(µ Šµ0� ) 
r Šµ0

Aµ2
0 Š2Cµ0 + B

=
1

C ŠAµ0

and when it is substituted back into (1.9), gets

wtan =
1

C ŠAµ0
� Š1(µ Šµ0� ), (1.17)

which we shall call (1.17) the tangency portfolio. This tangency portfolio is e�cient in the
Markowitz model without riskless asset. To prove it, note that its expected return is

r = µ Twtan =
BŠCµ0

C ŠAµ0

so that inserting it into (1.2) obtains

wtan =

�
A

� BŠCµ0
CŠAµ0

�
ŠC

�
� Š1µ +

�
BŠC

� BŠCµ0
CŠAµ0

��
� Š1�

D
.

Finally, note that the �rst derivative of the e�cient frontier (1.16) with respect tor evaluated
at the point corresponding to the tangency portfolio reads

d� (r )
dr


r= BŠCµ0

CŠAµ0

=
A

� BŠCµ0
CŠAµ0

�
ŠC

�

D
�
A

� BŠCµ0
CŠAµ0

� 2
Š2C

� BŠCµ0
CŠAµ0

�
+ B

� =



Aµ2
0 Š2Cµ0 + B,

which is exactly the gradient of the e�cient line (1.15). �
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1.3 Value-At-Risk Optimization

De�nition 1.2
The� -level value-at-risk of a random variableX � �

V@R� (X) � max
a��

{a : � (X < a) � � }

is the largest value ofa � � such that the probability ofX being less thana is not greater than� .

Under multivariate normality of returns, the problem of maximizing the portfolio return
value-at-risk

max
w�� n

�
V@R� (wTR) : wT� = 1,R � N (µ ,� )

�
(1.18)

� max
w�� n,t��

�
t : t < V@R� (wTR),wT� = 1,R � N (µ ,� )

�

� max
w�� n,t��

�
t : � R�N (µ,� ){w

TR < t } � �, wT� = 1
�

� max
w�� n,t��

�
t : � Z �N (0,1)

�
Z < (t ŠwTµ )/



wT� w

�
� �, wT� = 1

�

� max
w�� n,t��

�
t : (t ŠwTµ )/



wT� w � Š z1Š� ,wT� = 1

�

� max
w�� n,t��

�
t : t � wTµ Šz1Š�



wT� w, wT� = 1

�

� max
w�� n

�
wTµ Šz1Š�



wT� w : wT� = 1

�
(1.19)

wherez1Š� is the100(1Š� )th quantile of the standard normal distribution. Note that (1.18) is
maximizing the quantile of the portfolio return and (1.19), which �rst appeared in Roy (1952)
and is also called the downside-risk problem, can be interpreted as minimizing the portfolio
standard deviation subject to a targeted expected return if� < 0.5, and is thus equivalent to
the Markowitz model.

1.3.1 With Riskless Asset

Now assume that the weight	 � on the riskless asset returnµ0 is determined exogeneously
to be a value less than one, then the portfolio return V@R� optimization problem under
multivariate normality of returns becomes

max
w�� n

�
V@R� ((1 Š	 � )w

TR + 	 � µ0) : (1Š	 � )w
T� + 	 � = 1,R � N (µ ,� )

�
(1.20)

� max
w�� n,t��

�
t : t < V@R� ((1 Š	 � )w

TR + 	 � µ0),wT� = 1,R � N (µ ,� )
�

� max
w�� n,t��

�
t : � R�N (µ,� ){(1 Š	 � )w

TR + 	 � µ0 < t } � �, wT� = 1
�

� max
w�� n,t��

�
���
���

t : � Z �N (0,1)

�
���
���

Z <
t Š(1 Š	 � )wTµ Š	 � µ0

(1 Š	 � )



wT� w

�
���
���

� �, wT� = 1

�
���
���

7
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� max
w�� n,t��

�
t : t � (1 Š	 � )w

Tµ + 	 � µ0 Š(1 Š	 � )z1Š�



wT� w, wT� = 1

�

� max
w�� n

�
(1 Š	 � )w

Tµ + 	 � µ0 Š(1 Š	 � )z1Š�



wT� w : wT� = 1

�

� max
w�� n

�
(1 Š	 � )w

Tµ + 	 � µ0 Š(1 Š	 � )z1Š�



wT� w : wT� = 1

�

� max
w�� n

�
wTµ Šz1Š�



wT� w : wT� = 1

�
,

which is equivalent to the Markowitz model. The optimal portfolio return value-at-risk of
problem (1.20) is

V@R� ((1 Š	 � )w
T
� R + 	 � µ0) = (1 Š	 � )w

T
� µ + 	µ 0 Šz1Š� (1 Š	 � )



wT

� � w�

= 	 � µ0 + (1 Š	 � )

�

wT
� µ Šz1Š�



wT

� � w�

�

(1.21)

wherew� is the optimal solution of (1.19). Note that (1.21) suggests that if	 � is to be deter-
mined endogeneously, then	 � = 1 if

µ0 > wT
� µ Šz1Š�



wT

� � w�

� µ0 ŠwT
� µ + z1Š�



wT

� � w� > 0

� z1Š� >
wT

� µ Šµ0�
wT

� � w�

� 1 Š� > �

�
�����
wT

� µ Šµ0�
wT

� � w�

�
�����

� � < �

�
�����
µ0 ŠwT

� µ
�

wT
� � w�

�
����� (1.22)

and 	 � = Š� if

� > �

�
�����
µ0 ŠwT

� µ
�

wT
� � w�

�
����� .

However, ifµ0 = wT
� µ Šz1Š�

�
wT

� � w� , then 	 � has to be determined exogeneously since its
taking of any value less than or equal to one results in the same optimal portfolio return
value-at-risk.

1.4 Short-Selling Constraints

It does not make sense to allow in�nite short-selling or borrowing. Thus, we let	 	 
 	 � � Š
and w 	 � � � n

Š so as to restrict borrowing and short-selling respectively.

8
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1.4.1 Markowitz Model

Jagannathan and Ma (2003) show that the Markowitz model with short-selling constraints

min
w�� n

� 1
2

wT� w : wTµ = r,wT� = 1,w 	 �
�

(1.23)

is equivalent to

min
w�� n

� 1
2

wT� w : wT (µ + � /� ) = r,wT� = 1
�

where� = [ 
 1, . . . , 
n]T, � is the vector of Lagrange multipliers associated with the constraint
w 	 � and � is the Lagrange multiplier associated withwT� = 1. In other words, if we add
�
� to µ in (1.23), the short-selling constraint can be removed without any consequences and
the results in Section1.2can be applied directly.

The Markowitz model with short-selling constraints and a riskless asset

min
w�� n,	 ��

� 1
2

wT� w : wTµ = r Š	µ 0,wT� = 1 Š	, w 	 �
�

, (1.24)

has targeted expected return

r = 	 � µ0 + (1 Š	 � )

�
w�

1 Š	 �

� T

µ (1.25)

where(w� , 	 � ) is the optimal solution of (1.24), and standard deviation

� (r ) = (1 Š	 � )

	 �
w�

1 Š	 �

� T

�

�
w�

1 Š	 �

�

. (1.26)

From (1.26), we have

	 � = 1 Š
� (r )

�
�

w�
1Š	 �

� T
�

�
w�

1Š	 �

�

and substituting into (1.25) obtains the e�cient line

r = µ0 +

�
w�

1Š	 �

� T
µ Šµ0

�
�

w�
1Š	 �

� T
�

�
w�

1Š	 �

�
� (r )

in the (� (r ), r)-space where its radient is the famous Sharpe ratio [180].

1.4.2 Value-At-Risk Optimization

The portfolio return value-at-risk optimization problem with short-selling constraints

max
w�� n

�
V@R� (wTR) : wT� = 1,w 	 � ,R � N (µ ,� )

�

9
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can be written as

max
w�� n

�
wTµ Šz1Š�



wT� w : wT� = 1,w 	 �

�
(1.27)

following the same previous arguments. Analogous to Section1.3.1, if the weight	 � on the
riskless asset is determined exogeneously to be a value less than one, then we are interested
in solving

max
w�� n

�
V@R� ((1 Š	 � )w

TR + 	 � µ0) : (1 Š	 � )w
T� + 	 � = 1,w 	 � ,R � N (µ ,� )

�
,

which is equivalent to (1.27) and whose optimal portfolio return value-at-risk is

V@R� ((1 Š	 � )w
T
� R + 	 � µ0) = 	 � µ0 + (1 Š	 � )

�

wT
� µ Šz1Š�



wT

� � w�

�

, (1.28)

wherew� is the optimal solution of (1.27). Using reasoning similar to that in Section1.4.1,
the e�cient line in the (� (r ), r)-space is represented by

r = µ0 +
wT

� µ Šµ0�
wT

� � w�

� (r ).

If 	 � is to be determined endogeneously, then (1.28) suggests that

	 � =

�
������
������

1 if � < �

�
µ0ŠwT

� µ

wT

� � w�

�

,

0 if � > �

�
µ0ŠwT

� µ

wT

� � w�

�

.

If µ0 = wT
� µ Šz1Š�

�
wT

� � w� , then 	 � has to be determined exogeneously since its taking of
any value in the interval[
 	 ,1] results in the same optimal return value-at-risk.
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Figure 1.1: black line represents e�cient frontier of Markowitz model without riskless as-
set, red line represents e�cient frontier of Markowitz model with riskless asset of re-
turn µ0 = 0.005, and green lines represent optimal solutions of portfolio return value-
at-risk optimization problem with weight on riskless asset determined exogeneously for

� = 0.01,0.02, . . . ,0.49, where[r1, r2]T � N
�
[µ1,µ2]T,

 
� 2

1 �� 1� 2

�� 2� 1 � 2
2

!�
such thatµ1 = 0.01,

µ2 = 0.03, � 1 = 0.1, � 2 = 0.2, � = 0.2.

1.5 Numerical Example

Assume there are two bivariate normally distributed risky assets with expected returnsµ1 =
0.01, µ2 = 0.03, standard deviations� 1 = 0.1, � 2 = 0.2, correlation� = 0.2, a riskless asset
µ0 = 0.005, and no short-selling. Unless otherwise stated, all programs hereafter are solved
by the R package •Alabama• by Ravi (2015).

Figure1.1shows the e�cient frontiers of the Markowitz model with and without riskless
asset (red and black lines respectively), as well as those which represent the portfolio re-
turn value-at-risk optimization problems (green lines) for� = 0.01,0.02, . . . ,0.49, where the
amount invested in the riskless asset is determined exogeneously. Note that the green line
joins the yellow and blue dots at� = 0.01. As � increases, the gradient of the green line
increases then decreases, eventually joining the yellow and pink dots.

11



Chapter 1. Preliminaries

1.6 Higher Moments

It is an empirical fact that the distribution of returns often exhibit properties related to
higher moments. Of course, the portfolio return (which is a convex combination of the
individual assets) is asymptotically normal as the number of assets increases due to the
Central Limit Theorem if they are independent, but obviously this is not realistic. Tsiang
(1972), Francis (1975), Friend and Wester�eld (1980), and Scott and Horvath (1980) take
into account higher moments in their models, but they lead to serious issues in terms
of solvability and complexity. Another way of including higher moments is through the
use of dynamics, where the asset price process is modeled by variants of the stochastic
di�erential equation. These models are highly demanding and usually used in derivative
hedging involving only one risky and one riskless asset, and are seldom used in cases
where more assets are included. Heuristic optimization methods, like in Maringer (2005),
can be used to overcome the non-convexity and computational challenges that come with
introducing higher moments, but things such as numerical instability and inaccuracy arise
(since the optimal solution and convergence rate are di�erent each time the optimization is
performed, we are never sure of the global optimality of the resulting portfolio). Therefore,
the inclusion of higher moments into the Markowitz model poses formidable problems.

1.7 Safe Convex Approximation

Fortunately, the equivalence between the Markowitz model and the portfolio return value-at-
risk optimization problem under multivariate normality of asset returns means that higher
moments can be added into the Markowitz model implicitly by incorporating them into a
distribution Q, and considering

max
w�� n

�
V@R� (wTR) : wT� = 1,w 	 � ,R � Q

�
. (1.29)

Nevertheless, the value-at-risk objective function in (1.29) is generally non-concave. An
approach to overcome this problem is to �rst notice that (1.29) is equivalent to

max
w�� n,t��

�
t : t < V@R� (wTR),wT� = 1,w 	 � ,R � Q

�

� max
w�� n,t��

�
t : ŠV@R� (wTR Št) < 0,wT� = 1,w 	 � ,R � Q

�
, (1.30)

and then replaceŠV@R� (t Š wTR) with a convex upper bound to obtain a •safe" convex
approximation of the associated constraint [25, p. 91]. We next introduce the concept of a
coherent utility measure and then provide a couple of examples of it whose negation are
safe convex upper bounds to the negated value-at-risk.

1.7.1 Coherent Utility Measures

We de�ne coherent utility measures as an analogous counterpart to coherent risk measures,
which are �rst introduced by Artzner et al. (1999). LetZ : � � � be a random function of

12
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the spaceZ of all F -measurable functions, de�ned on the measure space(� ,F ), whereF
is a sigma algebra. ForZ,Z � � Z , let the relationZ � Z � imply that

Z( ) 	 Z �( ) for amost every � � .

A utility function � (Z ) which mapsZ into the extended real line� � { +�} is said to be
coherent if it satis�es the following axioms:

(i) Concavity: � (tZ +(1Št)Z �) 	 t� (Z )+(1Št)� (Z �) for all Z,Z � � Z and for all t � [0,1].

(ii) Monotonicity: If Z,Z � � Z and Z � Z �, then � (Z ) 	 � (Z �).

(iii) Translation Invariance: If d � � and Z � Z , then � (Z + d) = � (Z ) + d.

(iv) Positive Homogeneity: If t > 0 and Z � Z , then � (tZ ) = t� (Z ).

1.7.2 Conditional Value-At-Risk

[25, p. 93-96] The conditional value-at-risk is a coherent utility measure de�ned as

CV@R� � sup
� ��

� 1
�

� R�Q (min(ŠZ + �, 0)) Š�
�

.

It is sometimes called the average value-at-risk

AV@R� (Z) �
1
�

" �

0
V@R� (Z)d�

or the expected shortfall
ES� � � (Z |Z < V@R� (Z)),

which can easily be obtained by substituting V@R� (Z) = FŠ1
Z (� ) = t into the integral of the

AV@R� de�nition, where FZ (·) represents the distribution function of the variableZ. The
ES� is also shown to be equivalent to the CV@R� in Rockafellar and Uryasev (1999).

ReplacingŠV@R� with ŠCV@R� , the Basel Committee•s recommended risk measure, in
(1.30) obtains a safe concave approximation, provided that� R�Q {�R� 2} is bounded. To see
this, note that the constraint

ŠV@R� (wTR Št) < 0

� � R�Q {wTR Št � 0} < �

� � R�Q {t ŠwTR > 0} < �

�
"

�
�
t ŠwTR

�
dQ(R) � p(w, t ) < � (1.31)

where� (s) is the characteristic function

� (s) =

�
���
���

0, s <0

1, s	 0.
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Due to the fact that� (·) is not a convex function, (1.31) is not necessarily a convex constraint.
However, if we letg(·) be a convex function that is at least as large as� (·) everywhere, then

"
g

�
t ŠwTR

�
dQ(R) � � (w, t ) < � (1.32)

is a safe approximation to (1.31), since

p(w, t ) � � (w, t ) < �

so that whenever (1.32) is satis�ed, so is (1.31). (1.32) is also a convex constraint because

� (� u + (1 Š� )w, �s + (1 Š� ) t ) =
"

g
�
�s + (1 Š� ) t Š(� u + (1 Š� )w)T R

�
dQ(R)

=
"

g
�
�

�
sŠuTR

�
+ (1 Š� )

�
t ŠwTR

��
dQ(R)

�
"

�g
�
sŠuTR

�
+ (1 Š� )g

�
t ŠwTR

�
dQ(R)

= � � (u,s) + (1 Š � )� (w, t ).

for all (u,s),(w, t ) � � n+1 and � � [0,1].
Notice the inequality

� �
�
� Š1(w, t )

�
Š �� < 0,

where� > 0 is a variable, is also a safe convex approximation to (1.31) since

g
�
� Š1s

�
	 �

�
� Š1s

�
= � (s) �� � � ++

so that
p(w, t ) � � (� Š1(w, t )),

and � �
�
� Š1(w, t )

�
is the perspective function of the convex function� (w, t ).1

This implies
�� > 0 : � � (� Š1(w, t )) Š�� < 0

is a safe convex approximation of (1.31). Now assumeg(·) is a generator (a nonnegative
increasing function such thatg(0) 	 1 and lim

s�Š�
g(s) � 0), then it can be shown by using

the lower semicontinuity of� (·) and the construction ofG(w, t ) that the weaker condition

inf
�> 0

�
� � (� Š1(w, t )) Š��

�
� G(w, t ) < 0 (1.33)

is also a safe convex approximation of (1.31). If we letg� (s) = max [1 + s,0] and � � (w, t ) =
� R�Q

�
g�

�
t ŠwTR

��
be the generator and safe convex upper bound forp(w, t ) respectively,

then

G� (w, t ) < 0

1The perspective of anf : � n � � is the functiong(x, t) = tf (x/t ) with domain{(x, t)|x/t � dom f , t > 0}.
It is a well known fact that the perspective operation preserves convexity: iff is convex, theng is also convex.

14



Chapter 1. Preliminaries

� inf
�> 0

�
� � R�Q

�
max

�
1 + � Š1

�
t ŠwTR

�
,0

��
Š ��

�
< 0

� inf
�> 0

�
� R�Q

�
max

�
� + t ŠwTR,0

��
Š��

�
< 0

� inf
�> 0

� 1
�

� R�Q

�
max

�
� + t ŠwTR,0

��
Š�

�
< 0

� inf
�< 0

� 1
�

� R�Q

�
max

�
t ŠwTR Š�, 0

��
+ �

�
< 0

� inf
� ��

� 1
�

� R�Q

�
max

�
t ŠwTR Š�, 0

��
+ �

�
< 0

� Š sup
� ��

� 1
�

� R�Q

�
min

�
wTR Št + �, 0

��
Š �

�
< 0

� Š CV@R� (wTR Št) < 0,

which proves our case. Note thatg� (s) and � � (w, t ) are the least conservative generator and
safe convex upper bound forp(w, t ) respectively, and the CV@R� constraint is serendipi-
tously the best known safe convex approximation to the V@R� constraint. However, cal-
culating the CV@R� requires multi-dimensional integration, which is normally intractable.
The only practical way to compute CV@R� is via Monte Carlo simulation, which is also
time consuming, especially when� is small. The only generic case in which the CV@R�
calculation is tractable is when the support ofQ is a �nite set {R1, . . . ,RN } so that

� � (w) =
N#

i =1

� i max
�
0,1 + t ŠwTRi

�
,

where N is a moderate positive integer and� i = � {R = Ri }.

1.7.3 Entropic Value-At-Risk

The entropic value-at-risk

EV@R� (Z) = sup
�> 0

�
Š

1
�

log(M Z (Š� )/� )
�

is a recently introduced coherent utility measure [3] whose negation is also a safe convex
upper bound to the negated value-at-risk. To see this, �rst note that the general Cherno�
bound is

� (Z � k) � exp{�k }MZ (Š� ), � > 0

whereMZ (·) is the moment-generating function ofZ. Solvingexp{�k }MZ (Š� ) = � for k
yields

kZ (� ) = Š
1
�

log(M Z (Š� )/� )

so that

�
�
Z � Š

1
�

log(M Z (Š� )/� )
�

� �.
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This implies thatŠ1
� log(M Z (Š� )/� ) is a lower bound to V@R� (Z) for all values of� > 0,

so that by the de�nition of the entropic value-at-risk we haveŠV@R� � Š EV@R� . In fact, if
we letg(s) = exp(s) and � (w, t ) = � R�Q {exp(t ŠwTR)}, then

G(w, t ) < 0

� inf
�> 0

�
� � R�Q

�
exp

�
� Š1

�
t ŠwTR

���
Š ��

�
< 0

� inf
�> 0

�
� R�Q

�
exp

�
� Š1

�
t ŠwTR

����
< �

� � R�Q

�
exp

�
� Š1

�

�
t ŠwTR

���
< �

� log � R�Q

�
exp

�
� Š1

�

�
t ŠwTR

���
< log �

� inf
�> 0

�
log � R�Q

�
exp

�
� Š1

�
t ŠwTR

����
< log �

� inf
�> 0

�
log(M tŠwTR(� Š1)/� )

�
< 0

� inf
� Š1>0

�
� log(M tŠwTR(� Š1)/� )

�
< 0

� inf
�> 0

� 1
�

log(M tŠwTR(� )/� )
�

< 0

� Š sup
�> 0

�
Š

1
�

log(M wTRŠt (Š� )/� )
�

< 0

� Š EV@R� (wTR Št) < 0,

where � � is the value which achieves the in�mum for� R�Q

�
exp

�
� Š1

�
t ŠwTR

���
and its

logarithm. Therefore, the EV@R� constraint is also a safe convex approximation to the
V@R� constraint. Note that sinceexp(s) 	 max[1 + s,0] 	 � (s), we have

ŠV@R� � Š CV@R� � Š EV@R� .

Other than the need for the existence and knowledge of the moment-generating function
of the portfolio return, which is not always the case,ŠEV@R� is a very conservative upper
bound of theŠV@R� , due to the exponential generator being used.

1.8 Robust Optimization

[25, Chapters 1- 4] Apart from the absence of higher moments is the absence of model
uncertainty in the Markowitz model. Garlappi et al. (2007), Amarov and Zhou (2010), and
Harvey et al. (2011) treat this issue with a Bayesian �avor. Their recurring theme is to choose
a prior for the distribution of returns, �nd the posterior, and then calculate and maximize
the expected utility function using Bayesian methods. We are more interested in the concept
of robust optimization, or some call it data-driven optimization, where model uncertainty is
taken into account in the optimization process.

In classical optimization, model uncertainty is usually ignored, and the problem is solved
under the assumption that there is perfect information, in the hope that this will not a�ect
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the feasibility and optimality of the solutions signi�cantly, and that minor adjustments of
the nominal solution would su�ce. However, these hopes are not always justi�ed, and even
a little model uncertainty may deserve our attention. For examples to illustrate this point,
refer to Ben-Tal et al. (2009).

1.8.1 Uncertain Linear Optimization

A linear optimization problem is de�ned as

min
x�� n

�
cTx + d : Ax � b

�
(1.34)

whereA � � m×n, b � Rm, c � Rn and d � R. The data of the problem is the collection
(A, b,c,d) and the structure of (1.34) is determined by the number of constraintsm and the
number of variablesn.

An uncertain linear optimization problem is de�ned as
�

min
x�� n

�
cTx + d : Ax � b

�
: (A, b,c,d) � U

�
, (1.35)

a collection of linear optimization problems with the same number of constraints and vari-
ables where

U =

�
���
���

�
cT d
A b

�

=

�
cT

0 d0
A0 b0

�

+
L#


 =1

� 


�
cT


 d

A
 b


�

: � � Z � RL

�
���
���

is an uncertainty set parameterized in an a�ne fashion by a vector� varying in a given
perturbation setZ [25, p. 7]. A vectorx � Rn is called a robust feasible solution to (1.35)
if it satis�es all realizations of the constraints from the uncertainty set, that is,Ax � b for
all (A, b,c,d) � U . The robust value of the objective function in (1.35) at a robust feasible
solution x is the largest value ofcTx + d over all realizations of the data inU. The robust
counterpart of (1.35) is the problem of minimizing the robust value over all the robust feasible
solutions of (1.35), and can be written as

min
x�� n

$

max
(A,b,c,d)�U

[cTx + d] : Ax � b � (A, b,c,d) � U

%

. (1.36)

An optimal solution and value of (1.36) are called a robust optimal solution and value of
(1.35) respectively [25, p. 9]. Essentially, we want to obtain the best of the worst objective
functions, each calculated at a solution that remains feasible in the worst possible scenario.
Note that (1.36) can be rewritten as

min
x�� n,t��

$

t :
cTx Št � Š d

Ax � b

%

� (A, b,c,d) � U

%

,

where the uncertain objective is pushed into the constraints. Therefore, we lose nothing if
we restrict ourselves to uncertain linear optimzation programs with a certain objective, and
write the robust counterpart as

min
x�� n

{cTx + d : Ax � b �(A, b) � U } . (1.37)
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Note that by de�nition, (1.37) remains intact when the original uncertainty setU is extended
to the direct product

�U = U1 × . . .× Um

where
Ui = {[ai ;bi ] : [A, b] � U }

is the projection ofU onto the data space of thei -th constraint. Therefore, the constraints
in (1.37) can be replaced with

aT
i x � bi �[a i ,bi ] � U i (1.38)

whereaT
i is thei -th row of A, for i = 1, . . . ,m. If x is a robust feasible solution of (1.38), then

x remains robust feasible when we extend the uncertainty set to its convex hull Conv(Ui ).
To see this, note that if[āi ; b̄i ] � Conv(Ui ), then

[āi ; b̄i ] =
J#

j =1

� j [a
j
i ;b

j
i ]

with appropriately chosen[a
j
i ;b

j
i ] � U i and � j 	 0 such that

&
j � j = 1. We now have

āT
i x =

J#

j =1

� j [a
j
i ]

Tx �
J#

j =1

� j b
j
i = b̄i , (1.39)

where the inequality is due to the fact thatx is feasible for (1.38) and[a
j
i ;b

j
i ] � U i . Using

similar arguments, the set of robust feasible solutions to (1.38) remains intact when we extend
Ui to its closure. Combining the observations above, we conclude that nothing is lost if, right
from the beginning,U is replaced by the direct product�V = V1 × . . .× Vm whereVi is the
closed convex hull ofUi [25, p. 10-13]. Skipping all details which the reader is referred to
the �rst chapter of Ben-Tal et al. (2009), for some uncertainty structures we are then able
to express each uncertain linear constraint as a �nite set of explicit convex constraints, and
reformulate the robust counterpart (1.37) as a computationally tractable2 convex program,
which unfortunately is very conservative and often leads to uninformative and impractical
results where there might not even be a single feasible solution! The answer to this problem
is to consider stochastic perturbations of the data and replace thei th uncertain linear
inequality (1.38) with the chance constraint [25, p. 29-30]

� � �Q

�
���
���

� : [a0]Tx +
L#


 =1

� 
 [a

 ]Tx � b0 +

L#


 =1

� 
 b



�
���
���

	 1 Š� (1.40)

where� is a random vector with probability distributionQ and � � (0,1) is a small tolerance
level.

2Refer to AppendixA of [25] for a mathematical treatment of tractability.
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To deal with uncertainty, we may assume that only partial information is known about
the distribution of � so thatQ � Q , whereQ is a set of probability measures. In this case,
we require

�Q � Q : � � �Q

�
���
���

� : [a0]Tx +
L#


 =1

� 
 [a

 ]Tx � b0 +

L#


 =1

� 
 b



�
���
���

	 1 Š� (1.41)

which we shall call the ambiguous chance constraint.

1.8.2 Bernstein Approximation

[25, p. 83-86] The equivalence between the Markowitz model and the portfolio return value-
at-risk optimization problem means that we can not only add higher moments, but also
model uncertainty into the former implicitly by incorporating them into the distribution of
returns of the latter. We then end up with the collection of problems

�
max
w�� n

�
V@R� (wTR) : wT� = 1,w 	 � ,R � Q

�
: Q � Q

�

whose robust counterpart is

max
w�� n

$

min
Q�Q

�
V@R� (wTR) : R � Q

�
: wT� = 1,w 	 �

%

� max
w�� n,t��

$

t : wT� = 1,w 	 � , t � min
Q�Q

�
V@R� (wTR) : Q � Q

�%

� max
w�� n,t��

�
t : wT� = 1,w 	 � , t �

�
V@R� (wTR) : Q � Q

�
�Q � Q

�

� max
w�� n,t��

�
t : wT� = 1,w 	 � ,� R�Q {t ŠwTR > 0} � � �Q � Q

�
. (1.42)

If we let
� +(w, t ) = sup

Q�Q
� R�Q

�
g�

�
t ŠwTR

��

and assume� R�Q {�R� 2} is uniformly bounded inQ, then

�Q � Q : G(w, t ) � 0 � CV@R� (t ŠwTR) � 0

is the least conservative safe convex approximation to the ambiguous chance constraint of
(1.42). Although convex, a problem with such in�nitely many non-linear constraints is NP-
hard. Fortunately, we are able to obtain a safe, convex and tractable approximation of (1.42).
Assume

(i) g(s) = exp{s},

(ii) Q comprises of all product-type probability distributionsQ = Q1 × . . . × Qn with
marginalsQi � Q i running independently in their respective familiesQi , whereQi
is a given family of probability distributions on� , i = 1, . . . ,n,
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(iii) the functions� �
i (s) � sup

Qi �Q i

log � x�Q i
{exp{xs}} are convex, lower semicontinuous such

that 0 � intDom � �
i , and

(iv) e�ciently computable lower semicontinuous convex functions� +
i (·) 	 � �

i (·) such that
0 � intDom � +

i are available.

Under these assumptions,

� R�Q

�
exp

�
t ŠwTR

��
= exp{t }

n'

i =1

� ri �Q i
{exp{Šwi ri }} � exp{t}

n'

i =1

exp
�
� �

i (Šwi )
�

and by setting

� +(w, t ) = exp{t }
n'

i =1

exp
�
� +

i (Šwi )
�
,

it is easily seen that the condition

�� > 0 : � +(� Š1(w, t )) � �

is su�cient to satisfy (1.42) and can be rewritten as

�� > 0 : log � +
�
� Š1(w, t )

�
� log �

� � � > 0 : t + �
n#

i =1

� +
i (Š� Š1wi ) + � log(1/� ) � 0,

which can be weakened to

t + inf
�> 0

�
���
���

�
n#

i =1

� +
i (Š� Š1wi ) + � log(1/� )

�
���
���

� 0, (1.43)

also known as the Bernstein approximation.

Remark 1.1
Notice that if eachQi is a singleton, then the left-hand side of(1.43)is exactlyŠEV@R� .
However, theEV@R� constraint is not a special case of the Bernstein approximation, since the
latter requires independence amongst the asset returns while the former does not.

Although tractable, this approximation is also very conservative due to the exponential
generator chosen. To reduce conservativeness, we could arti�cally increase the tolerance
level � , but this is somewhat arbitrary. E�orts have been made to bridge the gap between
the CV@R� and Bernstein approximations [25, p. 97-100], but these methods are rather
di�cult to implement. The Lagrangian approximation from Bertsimas et al. (2000), and
Bertsimas and Popescu (2005) can be used to include correlations, but nonetheless su�ers
from the same drawback of being too conservative, albeit computationally tractable.
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1.9 Thesis Outlook

We will treat the absence of higher moments and model uncertainty in the Markowitz model
by solving

max
w�W �

min
Q�Q

�
V@R� (wTR) : R � Q

�
(1.44)

where
�
w � � n : wT� = 1,w 	 �

�
, and for which the solutions shown thus far are either

too conservative or intractable. Since the methods we develop can easily be extended
to the conditional value-at-risk, in line with the Basel Committee•s advice, or even the
entropic value-at-risk, all our numerical implementations will only consider the value-at-
risk for the sake of convenience. Chapter 2 proposes a spline approximation method where
the smoothed minimum (over a �nite set of distributions of the asset returns) portfolio
return sample value-at-risk is maximized over the feasible domain. In Chapter 3, we work
with elliptical distributions such that (1.44) possesses a location-scale form. Lobo and Boyd
(2000), El Ghaoui et al. (2003), Goldfarb and Iyengar (2003), Lobo et al. (2007), Natarajan
et al. (2008 and 2010), Ye et al. (2012), Zymler et al. (2013) and Rujeerapaiboon et al.
(2015) all do some related work, but we introduce a novel uncertainty set for the scale
matrix in the positive de�nite space where the eigenvalues vary in a box uncertainty set
and the eigenvectors each varies in a cone uncertainty set with orthogonality preserved
among them, so that the robust counterpart of the location-scale problem can be converted
into a semi-de�nite program (SDP) which is solvable in polynomial time. In Chapter 4, we
invent a method to determine the size of the uncertainty sets we use in the robust location-
scale problem and perform numerical experiments on some real data. Chapter 5 includes
trading costs and integer constraints into the robust location-scale problem and converts the
resulting model into a mixed-integer program. Chapter 6 talks about portfolio diversi�cation
properties and Chapter 7 concludes.
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Chapter 2

Spline Approximation

In this chapter, we solve the maxminV@R� problem (1.44) using an additive spline approx-
imation to the minimalV@R� . The minimalV@R� over a �nite set of scenarios is found
by simulating quantile values at each point of the discretized set of the feasible domain (see
below) and then �tting the minimal quantile with an additive second degree spline, which
can then be maximized by any optimizer.

Gaivoronski and P�ug (2005) investigate a related method for �nding the portfolio by
maximizing the V@R� . In their case, the V@R is approximated by a weighted sum of
simulated or observed portfolio returns, with weights that depend on a smoothing parameter
chosen by the user. The goal is to �lter out the local noise and to be left with the global
component. They do not take into account model uncertainty.

We assume thatQ is a �nite set containingM distributions of the return vector. Then,
we estimate the minimum value-at-risk function

MV@R� (w) = min
Q�Q

V@R� (wTR)

by the minimum sample value-at-risk function

MSV@R� (w) = min
Q�Q

min�K� �+1
�
wTr1(Q), . . . ,wTrK (Q)

�
(2.1)

based on the simulated return vectorsr1(Q), . . . , rK (Q) for eachQ � Q . In the above formula,
minu(s1, . . . ,sn) denotes theuth smallest value amongs1, . . . ,sn. Finally, we compute an ad-
ditive spline that approximates MSV@R� (w) in the feasible domainW� , before maximizing
it.

2.1 Additive Spline Approximation

We use univariate quadratic B-splines to approximate the function MSV@R� (w). First, the
feasible domainW� is discretized into

� � =
�
w : wi � Gi , i = 1, . . . ,nŠ1, and wT� = 1

�
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via evenly spaced grids along the axes,Gi = {
 i , 
 i + � , 
 i + 2� , . . . ,1 Š
&

j � i 
 i }, where� =
(1 Š
 1 Š · · · Š
 n) / (d Š1) is the spacing between adjacent nodes in each direction such that
d is the number of nodes in each direction, freely chosen by the user. Note that the length
of the interval in which each asset weight may vary is the same at1Š

& n
i =1 
 i . We may build

� � using the following algorithm, forn 	 2:

Algorithm 2.1
1. Let� � = G1.

2. If n = 2, stop algorithm.

3. Otherwise, repeat n-2 times:

i. Let � = � � .

ii. For each elemente in � :

Let � � = (� � \e) �

$�
e


 i +1

�

,

�
e


 i +1 + �

�

,

�
e


 i +1 + 2�

�

, . . . ,

�
e

1 ŠeT�

�%

.

The cardinality of� � can be computed with the help of Pascal•s triangle. It is the sum
of the �rst d elements of the(n Š1)th diagonal parallel to the triangle•s edge and including
the �rst d values, that is,

dŠ1#

j =0

�
n + j Š2

j

�

.

This can be shown to be of orderO(ndŠ1) and thus only grows polynomially with the
number of assets.

Let wj =
(
wj 1, . . . ,wj,nŠ1,1 Š

& nŠ1
i =1 wji

)T
denote thej th node. Then, MSV@R� (wj ) is

approximated by the additive model

nŠ1#

i =1

f i (wji )

for j = 1, . . . , |� � | where

f i (wji ) =
q#

k=1

� ikB1
k(wji )

is the q-parameter quadratic B-spline. To �x the B-spline basis, we have to chooseq Š 3
internal knots and the two endpoints of the feasible domain. Thekth basis function of order
o is de�ned recursively ([57] and [122]) as

Bo+1
k (wji ) =

wji Šx�
ik

x�
i,k+2 Šx�

ik
Bo

k(wji ) +
x�

i,k+3 Šwji

x�
i,k+3 Šx�

i,k+1
Bo

k+1(wji ),

with

Bo=Š1
k (wji ) =

�
���
���

1, if x�
ik � wji < x�

i,k+1,

0, otherwise,
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where the knotsx�
i 1 < x�

i 2 < . . . < x�
i,qŠ1 in the i th direction are evenly spaced and for

the end intervals artici�cial knots outside of the feasible domain have to be added. Sub-
sequently, we �t the B-spline coe�cients such that the least squares distance between

y =
(
MSV@R� (w1), . . . ,MSV@R� (w|� � |)

)T
and W� is minimized. Thej -th row of W is

Wj =
(
B1

1(wj 1), . . . ,B1
q(wj 1), . . . ,B1

1(wj,nŠ1), . . . ,B1
q(wj,nŠ1)

)

and
� =

(
� 11, . . . , � 1q, . . . , � nŠ1,1, . . . , � nŠ1,q

)T
.

2.2 Further Comments

The smoothness of the �t is controlled by the choice ofq. No additional penalty term is
needed. In order to avoid numerical problems due to ill-conditioned matrices,q(nŠ1) should
be smaller than the cardinality of� � . The choice ofq is an art rather than a science, and
always has an associated risk of under-smoothing or over-smoothing. We �nd thatq between
5 and 10 gives satisfactory results. Although it is rather restrictive to use the additive model& nŠ1

i =1 f i (wi ) instead of the general modelf (w1, . . . ,wnŠ1), empirical evidence by Gaivoronski
and P�ug (2005) shows that the global component of a portfolio value-at-risk function only
has a few extrema, which suggests that the former might be su�cient. Moreover, using an
additive model means that the number of basis parameters only grows linearly with the
number of assets, thus reducing the number of parameters to be estimated greatly. To avoid
simulating a huge number of asset return vectors from each distribution so that an accurate
spline approximation can be obtained, we can employ an iterative method with successively
more simulations, where after each iteration a smaller space around the maximum found for
the current spline approximation is used for the next iteration. Roughness such as kinks and
discontinuities cannot be captured by the spline approximation and is a source of potential
inaccuracy. Finally, note that other risk measures including the CV@R� and EV@R� can be
used instead of the V@R� .

2.3 Numerical Examples

The purpose of this section is to illustrate the e�ects of model uncertainty on the maxV@R�
problem by solving its robust counterpart using the spline approximation method described
above, and assess its strengths and weaknesses. Thus, we only involve two risky assets,
which are further assumed to be bivariate normally distributed in order to compare results
obtained from the method with the theoretical solutions. In each of Figures2.1- 2.3 and
FiguresB.1- B.14in Appendix B, short-selling is disallowed; sub�gure (a) shows the optimal
weight on the second asset/di�erence in optimal weight between the two assets and sub�gure
(b) the negative portfolio value-at-risk against the tolerance level� ; the blue line represents
the case where returns follow a bivariate normal withµ1 = 0.01, µ2 = 0.03, � 1 = 0.1,
� 2 = 0.2 and � = 0.2; the red line represents the robust counterpart with the associated
perturbation set of the parameter vector; the grey vertical line indicates the position of
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� = 0.05 along the horizontal axis; the cyan line in sub�gure (a) represents the di�erence
between red and blue lines; the black line in sub�gure (b) is calculated based on the solution
without uncertainty and the parameters that give the highest possible portfolio negated
value-at-risk at that solution. In each application of the spline approximation method, �ve
million asset return vectors of each parameter in the corresponding perturbation set are
simulated, the100� th percent sample quantiles are calculated atw1 = 0,0.05, . . . ,1, and
a univariate second degree B-spline function with twelve parameters and knot locations
0 < 0.1 < . . . < 1 is used. Since the spline is �tted over a single dimension, the maximum of
its values computed atw1 = 0,0.001, . . . ,1is taken. The approximation results are very close
to the theoretical values and thus omitted in the �gures. Note that all wealth is invested into
the risky assets if the negated (robust) optimal value-at-risk is less than the negated risk-free
interest rate, otherwise all wealth is kept in the riskless asset.

In general, the standard deviation uncertainty has a larger e�ect than mean uncertainty
for smaller tolerance levels, which should not be surprising given that the signi�cance of the
standard deviation term diminishes in the normal quantile function compared to the mean
term as the tolerance level increases. The inverse happens happens for tolerance levels
nearer to 0.5. This is also not surprising, because when the tolerance is exactly 0.5, the
mean term alone determines the optimal investment. The in�uence of the correlation on the
optimal portfolio is relatively small. In any case, model uncertainty has great rami�cations
potentially, and we should in no way ignore them, otherwise it might give us a false sense
of security by making the negative portfolio value-at-risk seem lower than it really is, as
illustrated by the black line being higher than the blue line in each sub�gure (b) of Figures
2.1- 2.3 and FiguresB.1- B.14in Appendix B.

In each of Figures2.4 - 2.6, sub�gure (a) shows the optimal weight on the second asset
and sub�gure (b) the negative portfolio value-at-risk against the tolerance level; the blue line
represents the case in which returns follow the independent bivariate normal distribution
whereµ1 = 0.01, µ2 = 0.03, � 1 = 0.1 and � 2 = 0.2; the cyan line represents the case in
which returns follow an independent bivariate Cauchy distribution where either the �fth,
�fteenth or twenty �fth percent quantile of each of its marginals coincides with that of the
corresponding marginal of the aforementioned bivariate normal distribution; the red line
represents the case in which the optimal weights are distributionally robust against the pre-
vious two distributions just mentioned; the green line represents the spline approximation
of the previous case; the grey vertical line indicates the tolerance level of� = 0.05. The dis-
tributionally robust optimal solution is the same as that of the bivariate Cauchy distribution
for small tolerance levels, before transiting to that of the bivariate normal distribution as
the tolerance level increases. The larger the quantile being matched, the later the onset of
and slower the transition. In Figures2.5and 2.6, inaccuracies in the approximated solution
start to appear in the transition period since the splines are unable to capture the kinks
in the functions to be smoothed. In each application of the spline approximation method,
�ve million asset return vectors are simulated each from the independent bivariate nor-
mal distribution and the associated independent bivariate Cauchy distribution, the100� th
percent sample quantiles are calculated atw1 = 0,0.05, . . . ,1, and a univariate second de-
gree B-spline function with twelve parameters and knot locations0 < 0.1 < . . . < 1 is used.
Since the spline is �tted over a single dimension, the maximum of its values computed at
w1 = 0,0.001, . . . ,1is taken.
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FiguresB.15- B.34in Appendix B are analogous to those mentioned above where all
things remain constant except that short-selling is allowed up to a maximum of one-�fth the
total wealth for each asset, and the cyan line in each sub�gure (a) and the black line in each
sub�gure (b) are omitted. In each application of the spline approximation method, �ve mil-
lion asset return vectors are simulated for each parameter vector in the corresponding per-
turbation set, the100� th percent sample quantiles are calculated atw1 = Š0.2,Š0.1, . . . ,1.2,
and a univariate second degree B-spline function with sixteen parameters and knot loca-
tions Š0.2 < Š0.1 < . . . < 1.2 is used. Since the spline is �tted over a single dimension,
the maximum of its values computed atw1 = Š0.2,Š0.199, . . . ,1.2 is taken. They suggest
parallel observations, albeit with slightly more inaccuracies in the approximated solutions
when short-selling is involved due to more kinks in the functions to be smoothed, especially
at large tolerance levels.
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Figure 2.1: (a) optimal weight on second asset/di�erence in optimal weight between
assets and (b) portfolio negated value-at-risk against tolerance level where short-
selling is disallowed; blue - returns follow a bivariate normal withµ1 = 0.01, µ2 =
0.03, � 1 = 0.1, � 2 = 0.2 and � = 0.2; red - robust counterpart where[µ1,µ2] �
{0.01,0.015,0.02,0.025} × {0.015,0.02,0.025,0.03}; cyan in (a) - di�erence between red
and blue lines; black in (b) - based on solution without uncertainty and corresponding pa-
rameter in the perturbation set that gives the highest possible portfolio negated value-at-risk.
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Figure 2.2: (a) optimal weight on second asset/di�erence in optimal weight be-
tween assets and (b) portfolio negated value-at-risk against tolerance level where short-
selling is disallowed; blue - returns follow a bivariate normal withµ1 = 0.01, µ2 =
0.03, � 1 = 0.1, � 2 = 0.2 and � = 0.2; red - robust counterpart where[� 1, � 2] �
{0.1,0.12, . . . ,0.18} × {0.12,0.14, . . . ,0.2}; cyan in (a) - di�erence between red and blue lines;
black in (b) - based on solution without uncertainty and corresponding parameter in the per-
turbation set that gives the highest possible portfolio negated value-at-risk.
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Figure 2.3: (a) optimal weight on second asset/di�erence in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level; blue - returns follow a bivariate
normal with µ1 = 0.01, µ2 = 0.03, � 1 = 0.1, � 2 = 0.2 and � = 0.2 where short-selling is
disallowed; red - robust counterpart where� � { 0.1,0.2,0.3}; cyan in (a) - di�erence between
red and blue lines; black in (b) - based on solution without uncertainty and corresponding
parameter in the perturbation set that gives the highest possible portfolio negated value-at-
risk.
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Figure 2.4: (a) optimal weight on second asset and (b) portfolio negated value-at-risk against
tolerance level where short-selling is disallowed; blue - returns follow an independent bi-
variate normal distribution whereµ1 = 0.01, µ2 = 0.03, � 1 = 0.1 and � 2 = 0.2; cyan -
returns follow an independent bivariate Cauchy distribution wherem1 = 0.01, m2 = 0.03,
� 1 = 0.026 and � 2 = 0.052 such that the�fth percent quantile of each of its marginals
coincides with that of the corresponding marginal of the aforementioned bivariate normal
distribution; red - robust against both bivariate distributions; green - spline approximation
of red case.
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Figure 2.5: (a) optimal weight on second asset and (b) portfolio negated value-at-risk against
tolerance level where short-selling is disallowed; blue - returns follow an independent bi-
variate normal distribution whereµ1 = 0.01, µ2 = 0.03, � 1 = 0.1 and � 2 = 0.2; cyan -
returns follow an independent bivariate Cauchy distribution wherem1 = 0.01, m2 = 0.03,
� 1 = 0.053 and � 2 = 0.106 such that the�fteenth percent quantile of each of its marginals
coincides with that of the corresponding marginal of the aforementioned bivariate normal
distribution; red - robust against both bivariate distributions; green - spline approximation
of red case.
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Figure 2.6: (a) optimal weight on second asset and (b) portfolio negated value-at-risk against
tolerance level where short-selling is disallowed; blue - returns follow an independent bi-
variate normal distribution whereµ1 = 0.01, µ2 = 0.03, � 1 = 0.1 and � 2 = 0.2; cyan -
returns follow an independent bivariate Cauchy distribution wherem1 = 0.01, m2 = 0.03,
� 1 = 0.067 and � 2 = 0.135 such that thetwenty-�fth percent quantile of each of its
marginals coincides with that of the corresponding marginal of the aforementioned bivari-
ate normal distribution; red - robust against both bivariate distributions; green - spline
approximation of red case.
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Chapter 3

Robust V@R� Optimization For
Elliptical Distributions

The robust optimization of the V@R� , CV@R� or EV@R� for elliptical distributions is of a
location-scale form, which we will explore in this chapter. In particular, the problem in this
general context is reformulated into a semi-de�nite program (SDP) under a novel uncertainty
set for the scale matrix.

3.1 Multivariate Normal Distribution

Assuming that the asset return vector follows a multivariate normal distribution, the robust
optimization of the V@R� becomes

max
w�W �

min
(µ,� )�M×S

�
V@R� (wTR) : R � N (µ ,� )

�
(3.1)

� max
w�W �

min
(µ,� )�M×S

�
wTµ Šz1Š�



wT� w

�
.

3.1.1 CV@R� Optimization

With V@R� replaced byCV@R� , (3.1) is

max
w�W �

min
(µ,� )�M×S

$
1
�

" �

0
V@R� (wTR)d� : R � N (µ ,� )

%

� max
w�W �

min
(µ,� )�M×S

$
1
�

" �

0
wTµ + z�



wT� wd� : R � N (µ ,� )

%

� max
w�W �

min
(µ,� )�M×S

�
���
���

wTµ +



wT� w



2��

" z�

Š�
x exp{Šx2/2}dx : R � N (µ ,� )

�
���
���

(let z� = x)

� max
w�W �

min
(µ,� )�M×S

�
wTµ Š

�
exp{Šz2

� /2}/



2��
� 


wT� w : R � N (µ ,� )
�

� max
w�W �

min
(µ,� )�M×S

�
wTµ Š(� (z� )/� )



wT� w : R � N (µ ,� )

�
,
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where� (·) is the density function of the standard normal distribution.

3.1.2 EV@R� Optimization

With V@R� replaced byEV@R� , (3.1) is

max
w�W �

min
(µ,� )�M×S

�
max
�> 0

{Šlog (MwTR(Š� )
*
� ) /� : R � N (µ ,� )}

�

� max
w�W �

min
(µ,� )�M×S

�
max
�> 0

�
Šlog

�
exp

�
Š� wTµ + � 2wT� w/ 2

�+
�
�+

�
� �

� max
w�W �

min
(µ,� )�M×S

�
max
�> 0

��
� wTµ Š� 2wT� w/ 2 + log �

�
/�

� �

� max
w�W �

min
(µ,� )�M×S

�
max
�> 0

�
wTµ Š� wT� w/ 2 + (log � )/�

� �

� max
w�W �

min
(µ,� )�M×S

�
wTµ Š

�
Š2log�



wT� w

�

� max
w�W �

min
(µ,� )�M×S

�
wTµ Š

�
Š2log�



wT� w

�
,

where the second last line is obtained by setting the �rst-order condition of the inner min-
imization problem to zero. Note that the entropic value-at-risk is not well-de�ned when
returns follow an elliptically contoured� -stable distribution, since its moment-generating
function does not exist.

3.2 Elliptically Contoured � -Stable Distribution

There is much evidence that asset returns display heavy-tailed properties, starting from the
pioneering work of Mandelbrot (1963a, 1963b, 1967a, 1967b) and Fama (1963, 1965a, 1965b)
among others which come later, including So (1987), Embrechts et al. (1997), Loretan and
Phillips (1994), Rachev and Mittnik (2000), and Meerschaert and Sche�er (2003). However,
some of these heavy-tailed distributions are criticized for their in�nite variance, but as Nolan
(2005) says, •. . ., bounded data are routinely modeled by normal distributions which have
in�nite support. The only justi�cation for this is that the normal distribution gives a usable
description of the shape of the distribution, even though it is clearly inappropriate for the
tails for any problem with naturally bounded data. The same justi�cation can be used for
stable models. . . The variance is one measure of spread; the scale in a stable model is
another."

Another reason against utilizing such distributions is the high computational complexity
involved in the density calculation, but with modern computing power and the development
of algorithms, this is no longer an issue.

In view of all these, portfolio optimization problems need to be robust against heavy-
tailed distributions. To achieve that, we can let the returnsR � EStable(�, µ ,� ) follow an
elliptically contoured� -stable distribution, which is essentially a scaled mixture of multi-
variate normal distributions [175] with joint characteristic function

� (exp{� tTR}) = exp{Š(tT� t) �/ 2 + � tTµ }, (3.2)
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whereµ � � n is the location vector and� � � n
+ is the shape matrix. This results in the

portfolio return possessing a univariate� -stable distribution, because a random variable
X has an � -stable distribution with shape� � (0,2], skew � � [Š1,1], scale � � � ++
and location � � � parameters, in which case we writeX � Stable(�, �, � , � ), if it has
characteristic function1

� (exp{iuX }) =

�
���
���

exp{Š� � |u|� [1 Ši� (tan ��
2 (sign u)] + i�u }, � � 1,

exp{Š� |u|[1 + i� 2
� (sign u) log|u|] + i�u }, � = 1,

(3.3)

and substitutingt = uw into (3.2) yields the characteristic function ofwTR in the form of
(3.3) with� = 0, � = wTµ and � =



wT� w. Note that

wTR
d
=



wT� wZ � + wTµ ,

whereZ� � Stable(�, 0,1,0) has characteristic function� (exp{iuZ � }) = exp{Š|u|� }, follows
a N (0,2) distribution if � = 2, a heavy-tailed distribution2 with in�nite variance if � < 2,
and aCauchy(1,0) distribution if � = 1. If we assume� � [1,2], then the maxmin V@R�
problem can be written as

max
w�W �

min
(�, µ,� )�[1,2]×M×S

�
V@R� (wTR) : R � EStable(�, µ ,� )

�

� max
(w,t )�W � ×�

$

t : t � min
(�, µ,� )�[1,2]×M×S

�
V@R� (wTR) : R � EStable(�, µ ,� )

�%

� max
(w,t )�W � ×�

�
t : t �

�
V@R� (wTR) : R � EStable(�, µ ,� )

�
�(�, µ ,� ) � [1,2] × M × S

�

� max
(w,t )�W � ×�

�
t : � R�EStable(�, µ,� ){w

TR < t } � � �(�, µ ,� ) � [1,2] × M × S
�

� max
(w,t )�W � ×�

�
t : � Z�

�
Z� < (t ŠwTµ )/



wT� w

�
� � �(�, µ ,� ) � [1,2] × M × S

�

� max
(w,t )�W � ×�

�
t : (t ŠwTµ )/



wT� w � Š FŠ1

Z�
(1 Š� ) �(�, µ ,� ) � [1,2] × M × S

�

� max
(w,t )�W � ×�

�
t : t � wTµ ŠFŠ1

Z�
(1 Š� )



wT� w �(�, µ ,� ) � [1,2] × M × S

�

� max
(w,t )�W � ×�

$

t : t � min
(µ,� )�M×S

$

wTµ Š max
� �[1,2]

FŠ1
Z�

(1 Š� )



wT� w

%%

� max
w�W �

min
(µ,� )�M×S

$

wTµ Š max
� �[1,2]

FŠ1
Z�

(1 Š� )



wT� w

%

, (3.4)

whereFŠ1
Z�

(1Š� ) is the100(1Š� )th quantile ofZ� . To enable comparison with the Markowitz

model, we should scaleFZ�
(1 Š� ) in (3.4) by a factor ofFŠ1

Z2
(1 Š� � )/F

Š1
Z�

(1 Š� � ) so that it is

1There are many parameterizations of the� -stable distribution; we use the 1-parameterization in Nolan
(2015)

2If X � Stable(�, �, � ,µ ) where0 < � < 2, the pth absolute moment� (|X|p) =
,

|x|pf (x)dx is �nite if and
only if p < � .
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exactlyFŠ1
Z2

(1 Š� � ) when� = � � , to obtain

max
w�W �

min
(µ,� )�M×S

$

wTµ Š max
� �[1,2]

�
FŠ1

Z2
(1 Š� � )F

Š1
Z�

(1 Š� )/FŠ1
Z�

(1 Š� � )
� 


wT� w

%

. (3.5)

Remark 3.2
The support ofX � Stable(�, �, � , � ) is

supp(X) =

�
������
������

(Š� , � ] if � < 1, � = Š1,

[�, �) if � < 1, � = 1,

(Š� ,�) otherwise.

For our case in particular, the portfolio returnwTR is supported on the real line since� = 0,
which certainly makes sense.

3.2.1 CV@R� Optimization

Note that (3.5) can be written as

max
w�W �

min
(µ,� )�M×S

�
wTµ Š(FŠ1

Z� �
(1 Š� )z1Š� �

/FZ� �
(1 Š� � ))



wT� w

�

� max
w�W �

min
(µ,� )�M×S

�
V@R� (wTR) : R � EStable(� � ,µ ,c(� � , � � )� )

�
(3.6)

wherec(� � , � � ) =



z1Š� �
/FZ� �

(1 Š� � ) such that� � is an argument that maximizesFŠ1
Z�

(1 Š

� )z1Š� �
/FZ�

(1 Š� � ) over � � [1,2]. ReplacingV@R� with CV@R� in (3.6) yields

max
w�W �

min
(µ,� )�M×S

$

wTµ +

�

z1Š� �

" �

0
FŠ1

Z� �
(� )d�/

�
�F Z� �

(1 Š� � )
� � 


wT� w

%

,

where the integral
, �
0

FŠ1
Z� �

(� )d� can be calculated using, for example, methods in Stoyanov
et al. (2006).

3.3 Distributions With Known Mean and Covariance

El-Ghaoui et al. (2003) show that ifQ is the set of all probability distributions with mean
vectorµ and covariance matrix� , then the maxmin V@R� problem is

max
w�W �

�
wTµ Š

�
�/ (1 Š� )



wT� w

�

so that with added parameter uncertainty it becomes

max
w�W �

min
(µ,� )�M×S

�
wTµ Š

�
�/ (1 Š� )



wT� w

�
.
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Notice that the problems discussed thus far in this chapter are of the location-scale form

max
w�W �

min
(µ,� )�M×S

�
wTµ Š� (� )



wT� w

�
, (3.7)

where � (� ) > 0 is a decreasing function of the tolerance level� . We shall focus on (3.7)
hereafter. We next look at uncertainty sets for the location vector and scale matrix.

3.4 Location Uncertainty Sets

We �rst consider location uncertainty sets, which are well-studied (see for example [125,
section 3]), so that (3.7) reduces to

max
w�W �

min
µ�M

�
wTµ Š� (� )



wT� w

�
. (3.8)

3.4.1 Box Uncertainty Set

[125, p. 7] The location box uncertainty set isM box =
�
µ : µ � [µ ,µ ]

�
, where µ and µ

contain the lower and upper bounds ofµ entry-wise respectively. Without short-selling, it is
obvious that since each entry ofw is non-negative, (3.8) withM = M box can be written as

max
w�W 0

�
wTµ Š� (� )



wT� w

�

whereW0 = {w : wT� = 1,w 	 0}, which is equivalent to a Second-Order Cone Program
(SOCP). On the other hand, with short-selling (3.8) withM = M box can be written as

max
w�W �

�
(w+)Tµ Š(wŠ)Tµ Š� (� )



wT� w

�
(3.9)

wherew+ has i th entry w+
i = max{wi ,0} and wŠ has i th entry wŠ

i = max{Šwi ,0}. Unless
µ 	 0 and µ � 0, in which case the objective function is a sum of concave functions and
thus concave, (3.9) is not a convex optimization problem in general. However, (3.8) with
M = M box can always be converted into a convex problem which is equivalent to an SOCP:

Theorem 3.4
Letp = (µ + µ )/2 andq = (µ Šµ )/2. Then,(3.8)with M = M boxis equivalent to

max
(w,x)�W � ×� n

�
wTp ŠxTq Š� (� )



wT� w : Šx � w � x

�
.

Proof: Note that

max
w�W �

min
µ�M box

�
wTµ Š� (� )



wT� w

�

� max
w�W �

�
max
s��

�
s : s � wTµ �µ � [µ ,µ ]

�
Š � (� )



wT� w

�

34



Chapter 3. Robust V@R� Optimization For Elliptical Distributions

� max
(w,s)�W � ×�

�
sŠ� (� )



wT� w : s � wTµ �µ � [µ ,µ ]

�

� max
(w,s)�W � ×�

�
��
�� sŠ� (� )



wT� w : s � min

µ�[µ ,µ]
wTµ

�
��
��

� max
(w,s)�W � ×�

�
���
���

sŠ� (� )



wT� w : s � wTp +
n#

i =1

min
� i �[Š 1,1]

� i wi qi )

�
���
���

� max
(w,s)�W � ×�

�
���
���

sŠ� (� )



wT� w : s � wTp Š
n#

i =1

|wi qi |

�
���
���

� max
w�W �

�
���
���

wTp Š
n#

i =1

|wi |qi Š � (� )



wT� w

�
���
���

� max
(w,x)�W � ×� n

�
���
���

wTp Š
n#

i =1

xi qi Š � (� )



wT� w : |wi | � x i , i = 1, . . . ,n

�
���
���

� max
(w,x)�W � ×� n

�
wTp Šxq Š� (� )



wT� w : Šx � w � x

�
.

�

3.4.2 Ellipsoidal Uncertainty Set

[125, p. 7-8] The ellipsoidal uncertainty set is

M ellipsoid = {µ : (µ Šµ 0)TSŠ1(µ Šµ 0) � 1}.

We have that

max
w�W �

min
µ�M ellipsoid

�
wTµ Š� (� )



wT� w

�

� max
w�W �

min
µ 1�� n

�
wT(µ 0 + µ 1) Š� (� )



wT� w : �SŠ1/2µ 1� � 1

�

� max
w�W �

$

wTµ 0 + min
�x��1

wTS1/2x Š� (� )



wT� w

%

� max
w�W �

�
wTµ 0 Š �S1/2w� Š � (� )



wT� w

�
,

where the second line is obtained by lettingµ = µ 0 + µ 1, the third line by settingSŠ1/2µ 1
asx, and the last line by noting that the optimal solution to the inner minimization problem
is

x� = Š
S1/2w

�S1/2w�
,

the vector opposite in direction toS1/2w with the maximum possible length.

35



Chapter 3. Robust V@R� Optimization For Elliptical Distributions

3.5 Scale Uncertainty Sets

We now consider the problem

max
w�W �

min
� �S

�
wTµ Š� (� )



wT� w

�
(3.10)

and look at some uncertainty sets for the scale matrix� .

3.5.1 Box Uncertainty Set

[125, p. 10] The box uncertainty set is

S =
�
� : � ij � � ij � � ij , i = 1, . . . ,n, �j � i, � � 0

�
,

where� ij and � ij are the lower and upper bounds of� ij respectively and� � 0 ensures�
is positive semi-de�nite.

3.5.2 Ellipsoidal Uncertainty Set

[125, p. 11] Denoting�s as the estimated mean vector and�V as the covariance matrix of
the vectors of the upper triangular entries of the estimated scale matrix, we de�ne the
ellipsoidal uncertainty set as

S =
�
� : (sŠ �s)T �V(s Š �s) � c,� � 0

�
,

wherec > 0 is such that the higher its value, the larger the con�dence region fors. One
drawback of this uncertainty set is the huge computational e�ort needed to calculate the
entries of �V, which is of orderO(n4).

3.5.3 Correlation Coe�cient Uncertainty Set

[125, p. 11-12] We de�ne the correlation coe�cient uncertainty set as

S =
�
� : �

ij
� � ij � � ij , � � 0

�

=
�
� : �

ij
� i � j � � ij � � ij � i � j , � � 0

�
,

where�
ij

and � ij are the lower and upper bounds of the correlation coe�cient� ij respec-

tively. Note that the inequalities are generally non-convex in(� i , � j , � ij ) unless�
ij

� 0 and

� ij 	 0, in which case we can introduce an auxiliary variablet � � and write the uncertainty
set as

S =
�
� : �

ij
t � � ij � � ij t, t 2 � � 2

i � 2
j , � � 0

�

=

$

� : �
ij

t � � ij � � ij t,

------

�
2t

� 2
i Š � 2

j

� ------
� � 2

i + � 2
j ,� � 0

%

,
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where the constraintt2 � � 2
i � 2

j is equivalent to the second-order cone constraint

------

�
2t

� 2
i Š � 2

j

� ------
�

� 2
i + � 2

j due to TheoremA.20.

3.5.4 Speci�c Portfolio Scale Uncertainty Set

[125, p. 12] By specifying certain portfolios, albeit arbitrarily, and imposing constraints on
their scales, we de�ne the speci�c portfolio scale uncertainty set as

S =
�
� : l i � wT

i � wi � ui , i = 1, . . . ,p, � � 0
�

wherewi is the i th chosen portfolio withli and ui being the lower and upper bounds of its
squared scale respectively.

3.5.5 One-Factor Model Uncertainty Set

[125, p. 13] The one-factor model uncertainty set is generally non-convex and de�ned as

S =
�
� : � = diag(g) + hhT,(g,h) � U

�

wherediag(g) + hhT is the one-factor decomposition of� and U is a convex set.

Remark 3.3
Methods to solve(3.10)under the uncertainty sets for� introduced in this section can be found in
[125, Sections 5-7] and the references therein.

3.6 Eigendecomposition Uncertainty Set

We next introduce a novel eigendecomposition uncertainty set for the scale matrix. First,
we write � in the eigendecomposition form

& n
i =1 � i ui u

T
i . Then, we allow the positive

eigenvalues� = [ � 1, . . . , � n]T to vary in a box uncertainty set and the eigenvectorsu1, . . . ,un
each to perturbate in a cone uncertainty with orthogonality preserved among them. Notice
that the �rst standard basis vector

e1 = Pi ui (3.11)

where

Pi =
nŠ1'

j =1

Gij

with

Gi 1 =

.
///////0

ci 1 si 1 01×(nŠ2)
Šsi 1 ci 1 01×(nŠ2)

0(nŠ2)×1 0(nŠ2)×1 I nŠ2

1
22222223
,
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Gi,nŠ1 =

.
///////0

I nŠ2 0(nŠ2)×1 0(nŠ2)×1
01×(nŠ2) Šsi,nŠ1 ci,nŠ1
01×(nŠ2) ci,nŠ1 si,nŠ1,

1
22222223

and

Gij =

.
///////////0

I j Š1 0(j Š1)×1 0(j Š1)×1 0(j Š1)×(nŠj Š1)
01×(j Š1) cij sij 01×(nŠj Š1)
01×(j Š1) Šsij cij 01×(nŠj Š1)

0(j Š1)×(j Š1) 0(j Š1)×1 0(j Š1)×1 I nŠj Š1

1
222222222223
,

such thatcij = hij

4

h2

ij + h2
i,j +1 , sij = Šhi,j +1

4

h2

ij + h2
i,j +1 and hi = [hi 1, . . . ,hi,nŠ1]T is the

vector which right multipliesGij in (3.11). Thus, the location-scale problem can be expressed
as

max
w�W �

�
����
����

wTµ Š� (� )

56
n#

i =1

� i (wTPŠ1
i e1)2

�
����
����

� max
w�W �

�
����
����

wTµ Š� (� )

56
n#

i =1

� i (e
T
1Pi w)2

�
����
����

.

The above equivalence is due toPi being an orthogonal matrix, which essentially rotatesui
to e1 through a sequence of rotationsGi,nŠ1, . . . ,Gi 1, whereGij rotates the vector it is right-
multiplied with along the plane spanned by thej th and (j + 1)th axes so that the resulting
vector has a zero(j + 1)th entry. The uncertainty set is

S =

�
���
���

�� : �� =
n#

i =1

�� i P
T
i �v �vTPi :

�� i � (max{0, � i Šbi }, � i + bi ] �i
�vTe1 	 1 Šc,� �v� 2 = 1

�
���
���

where �v is restricted to Euclidean length and varies within an acute cone of half-angle
� = arccos(1Šc) such that0 � c � 1, while �� i perturbates within the interval(max{0, � i Š
bi }, � i + bi ] such thatbi 	 0 for i = 1, . . . ,n. The (i, j )th entry of �� can be written as

�� ij = �vT [P1i , . . . ,Pni ] diag( �� )
(
P1j , . . . ,Pnj

)T
�v

wherePki represents thei th column ofPk. Thus, once an entry of�� is �xed through a choice
of �� and �v in their respective uncertainty sets, the other entries are likewise determined.
This is what makes the eigendecomposition uncertainty set much less conservative and sets
it apart from the other covariance matrix uncertainty sets introduced previously in this
chapter. The robust counterpart we would like to solve is

max
w�W �

min
��, �x�� n\{0}

�
����
����

wTµ Š� (� )

56
n#

i =1

�� i (( �x/ � �x� 2)TPi w)2 :
�� i � (max{0, � i Šbi }, � i + bi ] �i

(�x/ � �x� 2)Te1 	 1 Šc

�
����
����

(3.12)
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where �v is replaced with�x/ � �x� 2 so that the unit Euclidean length of the eigenvectors is
ensured implicitly. The term within the squared root in (3.12) is always positive since assum-
ing otherwise implies that(�x/ � �x� 2)TPi w = 0 and hencew is orthogonal toPT

i (�x/ � �x� 2) for
i = 1, . . . ,n, resulting inn + 1 orthogonal vectors inRn, which is absurd.

Although (3.12) is non-convex in general, the next theorem shows that it can be converted
into an SDP.
Theorem 3.5
Assume there existsx such that(x/ �x� 2)Te1 > 1Šc, then the optimalw of (3.12)is equal to that
of

max
(w,�,y )�W � ×� +×� ++

�
�������
�������

wTµ Š� (� )y :

.
//////////////0

(y + � (1 Šc)2)I n Š� e1eT
1 P1w . . . Pnw

wTPT
1

...
wTPT

n

diag(�̄ Š1
1 , . . . ,�̄ Š1

n )y

1
222222222222223

� 0

�
�������
�������

(3.13)
where�̄ i = � i + bi .

Proof: Notice that (3.12) can be written as

max
w�W �

min
�x�� n\{0}

�
����
����

wTµ Š� (� )

56
n#

i =1

�̄ i (( �x/ � �x� 2)TPi w)2 : (�x/ � �x� 2)Te1 	 1 Šc

�
����
����

� max
w�W �

min
�x�� n\{0}

�
����
����

wTµ Š� (� )

56
n#

i =1

�̄ i (( �x/ � �x� 2)TPi w)2 : (�xTe1)2/ �xT �x 	 (1 Šc)2

�
����
����

� max
w�W �

�
����
����

wTµ Š� (� )

576

max
�x�� n\{0}

�
���
���

n#

i =1

(�̄ i ( �xTPi w)2/ �xT �x) : (�xTe1)2/ �xT �x 	 (1 Šc)2

�
���
���

�
����
����

(3.14)

where we square both sides of the inequality constraint in the �rst equivalence since by
doing so the set of objective values for the inner minimization problem remains unchanged
although the set of�x•s for eachw enlarges. We now set on proving that

max
�x�� n\{0}

�
���
���

n#

i =1

(�̄ i ( �x
TPi w)2/ �xT �x) : (�xTe1)2/ �xT �x 	 (1 Šc)2

�
���
���

(3.15)

is equivalent to

min
� �� +,y��

�
���
���

y2 : I n Š
n#

i =1

�̄ i Pi ww TPT
i

y2 Š
�
y

�
e1eT

1 Š(1 Šc)2I n

�
� 0,y > 0

�
���
���

. (3.16)

Let � 	 0 and y > 0 be arbitrary constants so that

n#

i =1

(�̄ i ( �x
TPi w)2/ �xT �x) + y� ((�xTe1)2/ �xT �x Š(1 Šc)2)

39



Chapter 3. Robust V@R� Optimization For Elliptical Distributions

is an upper bound of
& n

i =1(�̄ i ( �xTPi w)2/ �xT �x) on the feasible set of (3.15) by construction.
This means that

max
�x�� n\{0}

n#

i =1

(�̄ i ( �x
TPi w)2/ �xT �x) + y� ((�xTe1)2/ �xT �x Š(1 Šc)2)

is an upper bound to the optimal value of (3.15). Therefore, if

y2 	 max
�x�� n\{0}

n#

i =1

(�̄ i ( �x
TPi w)2/ �xT �x) + y� ((�xTe1)2/ �xT �x Š(1 Šc)2)

� y2 	
n#

i =1

(�̄ i ( �x
TPi w)2/ �xT �x) + y� ((�xTe1)2/ �xT �x Š(1 Šc)2) � �x � � n\{0}, (3.17)

then y2 is an upper bound to the optimal value of (3.15). Note that (3.17) can be written as

y2�xT �x 	 �xT

�
������

n#

i =1

�̄ i Pi ww TPT
i

�
������ �x + y� (�xTe1eT

1 �x Š(1 Šc)2 �xT �x) � �x � � n\{0}

� �xT

�
������ I n Š

n#

i =1

�̄ i Pi ww TPT
i

y2 Š
�
y

�
e1eT

1 Š(1 Šc)2I n

�
�
������ �x 	 0 � �x � � n\{0}

� I n Š
n#

i =1

�̄ i Pi ww TPT
i

y2 Š
�
y

�
e1eT

1 Š(1 Šc)2I n

�
� 0,

so that the optimal value of (3.16) is greater than or equal to the optimal value of (3.15),
which we denote asV > 0. We are left to prove that (3.16) has a feasible solution such that
its corresponding objective function value is equal toV . In other words, we want to show
that there exists� � 	 0 such that

I n Š
n#

i =1

�̄ i Pi ww TPT
i

V
Š

� �

V

�
e1eT

1 Š(1 Šc)2I n

�
� 0. (3.18)

Note that there exists an� 0 and anx such that for every� � (0, � 0],

xT
�
e1eT

1 Š(1 Šc)2I n

V

�

x 	 � xTx (3.19)

due to the strict feasibility assumption. In addition, we have

�xT
�
e1eT

1 Š(1 Šc)2I n

V

�

�x 	 � �xT �x  �xT

�
������ I n Š

n#

i =1

�̄ i Pi ww TPT
i

V

�
������ �x 	 0 �� � (0, � 0]. (3.20)

To see (3.20), assume that its •if" condition holds, then we have

n#

i =1

(�̄ i ( �x
TPi w)2/ �xT �x) � V
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� �xT

�
������

n#

i =1

�̄ i Pi ww TPT
i

�
������ �x � V �xT �x

� �xT �x Š �xT

�
�����

& n
i =1 �̄ i Pi ww TPT

i

V

�
����� �x 	 0

� �xT

�
����� I n Š

& n
i =1 �̄ i Pi ww TPT

i

V

�
����� �x 	 0.

Using the homogeneousS-LemmaA.1(ii), there exists� � 	 0 such that

I n Š
n#

i =1

�̄ i Pi ww TPT
i

V
Š� �

�
e1eT

1 Š(1 Šc)2I n

V

Š� I n

�

� 0

and in particular,

xT

�
������ I n Š

n#

i =1

�̄ i Pi ww TPT
i

V

�
������ x 	 � � xT

�
e1eT

1 Š(1 Šc)2I n

V

Š� I n

�

x

for each� � (0, � 0]. The fact thatxT
�

e1eT
1Š(1Šc)2I n


V
Š� I n

�
x > 0 means that� � stays bounded

as� � 0, which implies

I n Š
n#

i =1

�̄ i Pi ww TPT
i

V
Š� � i

�
e1eT

1 Š(1 Šc)2I n

V

Š� i I n

�

� 0 (3.21)

for a properly chosen sequence� i , i = 1,2, . . . such thatlim i �� � � i
= � � and lim i �� � i = 0.

Taking limits on both sides of (3.21) as i� � obtains (3.18), which proves the equivalence
between (3.15) and (3.16).

Since (3.16) can be reformulated as

min
� �� +,y�� ++

$

y2 : I n Š
�
y

�
e1eT

1 Š(1 Šc)2I n

�

Š
(

P1(w/y ) . . . Pn(w/y )
)
diag(�̄ 1, . . . ,�̄ n)

.
//////////0

�
wT/y

�
PT

1
...�

wT/y
�
PT

n

1
22222222223

� 0

�
������
������

� min
� �� +,y�� ++

�
��������
��������

y2 :

.
//////////////0

I n Š �
y

�
e1eT

1 Š(1 Šc)2I n

�
P1(w/y ) . . . Pn(w/y )

(w/y )TPT
1

...
(w/y )TPT

n

diag(�̄ Š1
1 , . . . ,�̄ Š1

n )

1
222222222222223

� 0

�
��������
��������

� min
� �� +,y�� ++

�
�������
�������

y2 :

.
/////////////0

(y + � (1 Šc)2)I n Š� e1eT
1 P1w . . . Pnw

wTPT
1

...
wTPT

n

diag(�̄ Š1
1 y, . . . ,�̄ Š1

n y)

1
22222222222223

� 0

�
�������
�������

(3.22)
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where the �rst equivalence is by virtue of the Schur Complement LemmaA.2, substituting
the inner maximization problem of (3.14) with (3.22) then yields (3.13), which completes the
proof. �

From now on, we only consider the box uncertainty set forµ and the eigendecomposition
uncertainty set for� under elliptical distributions.
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Chapter 4

Size of Uncertainty Sets and Numerical
Experiments

If the uncertainty set is chosen too conservatively (too big), the asset allocation by robust
optimization is typically uninteresting. If the uncertainty set is too small, the robustness we
are looking for is lost. In this chapter, we tackle this conundrum by choosing the size of
the uncertainty set based on the sensitivity of the robust optimal value to size changes. In
particular, the median sensitivity is chosen for our numerical experiments. Nevertheless, let
us �rst investigate the e�ects due to tail uncertainty in the next section.

4.1 Distributional Uncertainty

We focus on the problem
max
w�W �

�
wTµ Š� (� )



wT� w

�
(4.1)

with
� (� ) = FŠ1

Z2
(1 Š� )

which we label as type A, and with

� (� ) = max
� �{1,1.01,...,2}

�
FŠ1

Z2
(1 Š� � )F

Š1
Z�

(1 Š� )/FŠ1
Z�

(1 Š� � )
�

(4.2)

for � � = 0.05, 0.1 and 0.15 which we label as types B, C and D respectively, where we
recall that Z� � Stable(�, 0,1,0). For type A, we �nd the optimalV@R� of the portfolio
return wTR � Stable

�
2,0,



wT� w, wTµ

�
= N

�
wTµ ,2wT� w

�
. For each of types B, C and

D, we �nd the optimal V@R� of the portfolio return distributionally robust against all� -
stable distributions where� � { 1,1.01, . . . ,2}, � = 0, � = FŠ1

Z2
(1 Š � � )



wT� w/FŠ1

Z�
(1 Š � � )

and � = wTµ , with � scaled in such a way that the100� � th percent quantile of the portfolio
return is always equal to that for type A.

In Figure 4.1, each sub�gure plots the objective values of (4.2) for type B (�� = 0.05)
against� � { 1,1.01, . . . ,2}at a particular tolerance level� , and the sub�gures from left to
right then top to bottom correspond respectively to� = 0.01,0.02, . . . ,0.49. The maximum
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in each sub�gure is the optimal value of (4.2) for type B at its associated� . The maximum
occurs at� = 1 if � < � � and � = 2 if � > � � , while it can be any value in{1,1.01, . . . ,2} if
� = � � . FiguresC.1and C.2 in Appendix C are analogous plots for types C (�� = 0.10) and
D (� � = 0.15) respectively, with similar observations.
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4.1.1 Numerical Experiment

Daily stock returns of Net�ix, Alphabet, Facebook, General Electric, Microsoft, Boeing,
JP Morgan, Coca Cola, P�zer, Delta Air Lines, Tesla, Abbot Laboratories, Cisco, Apple,
Bank of America, Exxon Mobil, International Business Machines, Credit Suisse, Qualcomm
and Hewlett Packard on either Nasdaq or NYSE for year 2015 are obtained from Google
Finance, with the assets labeled1 to 20 in the same order as they are written, where1
indicates the highest and20 the lowest location over scale ratio. The location vector and
the scale matrix are estimated by multiplying a hundred to the sample mean and minimum
covariance determinant (MCD) estimators of the daily returns, assumed to be independent
and identically distributed, respectively. In Figure4.2, each sub�gure plots the optimal
weights against the asset number for both the type A and B problems where short-selling is
disallowed at a particular tolerance level� , and has a red vertical line which separates assets
with a positive location over scale ratio on the left from assets with a negative location over
scale ratio on the right. The sub�gures from left to right then top to bottom correspond
respectively to� = 0.01,0.02, . . . ,0.49. FiguresC.3 and C.4 in Appendix C are analogs
of Figure4.2 for the type C and D problems respectively. Figure4.3 (a) plots the optimal
weights of the type B problem minus the optimal weights of the type A problem against
the asset number for� = 0.01,0.02, . . . ,0.49, where short-selling is disallowed. Figures4.3
(b) and (c) are analogs of Figure4.3 (a) but with the optimal weight of the type C and D
problems respectively subtracting the optimal weight of type A problem instead. Expectedly,
the optimal weights of the type A problem are the same as those of the type B, C and D
problems when� is greater than or equal to their corresponding� � •s, where the optimal
value of (4.2) is exactlyFŠ1

Z2
(1 Š � ). On the other hand, the optimal weights of the type

A problem di�er considerably to those of the type B, C and D problems when� is less
than their corresponding� � •s where� = 1 is the optimal solution of (4.2). We thus see that
interestingly, introducing heavy-tailedness into the distribution of returns causes weight to
be moved from assets with higher location over scale ratio to those with lower. Figures
4.4 (a), (b) and (c) plot the optimal portfolio expected return of the type A problem and
respectively the robust optimal portfolio expected return of the type B, C and D problems
against the tolerance level, where short-selling is disallowed. Note that if� is less than the
corresponding� � •s, the optimal portfolio expected return for the type A problem is higher
than the robust optimal portfolio expected return for the type B, C or D problem. Figure
4.5 is an analog of Figure4.4 for the portfolio negated value-at-risk, and shows that if� is
less than the corresponding� � •s, the portfolio negated value-at-risk of the type A problem
is higher than that of the type B,C or D problem, so that it is more likely to invest all wealth
into the risky assets for the former than it is for the latter, which is not at all unintuitive
since for the latter, the asset returns follow a heavy-tailed distribution so that the optimal
allocation should be more conservative. Figures4.6 - 4.9 are analogs of Figures4.2 - 4.5
where short-selling is allowed up to a maximum of one-�fth the total wealth for each asset,
whereas FiguresC.5and C.6 in Appendix C are analogs of Figure4.6 for the type C and D
problems respectively. Similar conclusions can be drawn, but notice how in Figure4.6,C.5
and C.6, if � is less than the corresponding� � •s, short-selling is less encouraged for the type
B, C or D problem than for the type A problem, which is again inutitive due to the same
reason that for the former, the asset returns follow a heavy-tailed distribution so that the
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optimal portfolio should be more conservative.
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We now set on determining the •right• size of the location box and the scale matrix
eigendecomposition uncertainty sets. More precisely, we �nd the values ofa = [a1, . . . ,an]T,
b = [b1, . . . ,bn]T and c in the problem

max
w�W �

min
�µ, ��, �x�� n

�
����
����

wT �µ Š� (� )

56
n#

i =1

�� i ((u/ �u� 2)TPi w)2 :
�µi � [µi Šai ,µi + ai ] �i,

�� i � (max{0, � i Šbi }, � i + bi ] �i,
(�x/ � �x� 2)Te1 	 1 Šc

�
����
����

� max
w�W �

min
� ,u�� n

�
����
����

wT� Š� (� )

56
n#

i =1

�̄ i ((u/ �u� 2)TPi w)2 :
� i � [µi Šai ,µi + ai ] �i,

(u/ �u� 2)Te1 	 1 Šc

�
����
����

(4.3)

where�̄ i = � i + bi , based on some criteria.

4.2 Location Uncertainty With No Short-Selling

If we assume only location uncertainty with no short-selling, then the robust location-scale
problem (4.3) can be written as

max
w�W 0

�
wT(µ Ša)Š� (� )



wT� w

�
. (4.4)

Theorem 4.6
(i) Letw� andV be the optimal solution and value of(4.4)respectively. Then,

dV
dai

= Šwi � . (4.5)

(ii) We have

lim
ai ��

dV
dai

= 0, (4.6)

provided the limit exists.

(iii) The second derivative ofV with respect to eachai is non-negative.

Proof: First, note that since (4.4) is a convex optimization problem, there is zero duality
gap so that the KKT conditions in TheoremA.23 hold. In particular, we have

� wL(w� ,� � , � � ,a) = 0, (4.7)

where the LagrangianL of (4.4) is a function of the optimal solutionw� , the inequality
and equality KKT multipliers� � and � � respectively obtained by solving the corresponding
dual problem, anda = [a1, . . . ,an]T. The Jacobian of (4.7) with respect tow is exactly
the Hessian of the concave objective function of (4.4), which is negative de�nite, so that it is
non-singular. Therefore, the Implicit Function TheoremA.19implies thatwi � is continuously
di�erentiable with respect toaj , for i, j = 1, . . . ,n. Moreover, the partial derivatives of the
objective function of (4.4) with respect towi and ai exist for i = 1, . . . ,n at w� , so that we
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can apply the Envelope TheoremA.24 to obtain (4.5). To prove (4.6), note that in e�ect we
want to showwa

i = 0 assumingwi � converges towa
i asai tends to in�nity. To that end, let

f ai
(w) =

1
ai

�
�������

n#

j =1

wj (µj Šaj ) Š� (� )



wT� w

�
�������

and denote its maximizer overW0 as wai
� . Note thatwai

� = w� so that by assumption, we
havewai

i � � wa
i asai � � . This implies that{wai

i � : ai � � ++} is a bounded sequence in the
positive real line, and there is a closed bounded intervalI � � containing{wai

i � : ai � � ++},
wa

i and 0. Fix wj = wai
j � for j � i , thenfai

(w) is a function ofwi which we denote asgai
(wi )

and converges uniformly toŠwi on I asai � � . Therefore, for all� > 0 there existsn � �
such that ifai 	 n, then

|gai
(wi ) + wi | � � �w i � I ,

and in particular,

|gai
(0)| � � and |gai

(wai
i � ) + wai

i � | � �

 Š � � gai
(0) � gai

(wai
i � ) � gai

(wai
i � ) + wai

i � � �

 | gai
(wai

i � )| � �. (4.8)

Now we set on showingwa
i = 0. Note that sincewai

i � � wa
i asai � � , we have that for

all � ,

(i) there exists ann1 � � such that ifai 	 n1, then

wai
i � Šwa

i

 �
1
3

�,

(ii) there exists ann2 � � such that ifai 	 n2, then

Šgai
(wai

i � )
 �

1
3

�

by (4.8), and

(iii) there exists ann3 � � such that ifai 	 n3, then

gai
(wi ) + wi

 �
1
3

� �w i � I

due to the uniform convergence ofgai
(wi ) to Šwi on I asai � � .

The above three statements imply that: For all� > 0, if ai 	 n0 = max{n1,n2,n3}, then

wai
i � Šwa

i

 �
1
3

�,
Šgai

(wai
i � )

 �
1
3

�, and
gai

(wi ) + wi

 �
1
3

� �w i � I


Šwai

i � + wa
i

 +
Šgai

(wai
i � )

 +
gai

(wai
i � ) + wai

i �

 � �
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 | Š wa
i | � �, (by Triangle Inequality)

which means thatwa
i = 0.

Finally, sincewi � is di�erentiable with respect toai , the second derivative ofV with
respect toai exists, fori = 1, . . . ,n, and is non-negative due to the Second-Order Envelope
TheoremA.26. �
Remark 4.4
The proof of Theorem4.6is based on the study of Kanniappan and Sastry (1983).

Part (iii) of Theorem4.6 implies that the �rst derivative ofV with respect toai is non-
decreasing inai . Thus,

min
ai 	0

dV
dai

=
dV
dai


ai =0

= Šwi � (a)|ai =0

and

sup
ai 	0

dV
dai

= lim
ai ��

dV
dai

= 0,

so that we can choose the value of eachai by solving

min
ai 	0

dV
dai

+ si

�
����� sup

ai 	0

dV
dai

Šmin
ai 	0

dV
dai

�
����� =

dV
dai

, i = 1, . . . ,n

� (1 Šsi )wi � (a)|ai =0 = wi � (a), i = 1, . . . ,n (4.9)

for a1, . . . ,an simultaneously, wheresi � (0,1). The right-hand side of (4.9) can be interpreted
as the sensitivity ofV to changes inai while the left-hand side its targeted level. However,
(4.9) is a set of n non-linear equations in n unknowns, which is not easily solvable. Therefore,
we instead �nd the rootai � of

(1 Šsi )wi � (a)|a=0 = wi � (a)|aj =0,j � i (4.10)

for i = 1, . . . ,n, separately. Of course, the solutiona� obtained by such an approach is not
ideal since it does not satisfy (4.9), but since the right hand side of (4.10) is non-increasing
in ai , solving such an equation is not an issue numerically.

At �rst glance, it appears thatS scaling is a problem for this procedure. As we show next,
this is not the case. Assume that eachai is scaled by a parameterki > 0 in (4.4) so that it
becomes

max
w�W 0

�
���
���

n#

i =1

wi (µi Ški ai ) Š� (� )



wT� w

�
���
���

, (4.11)

and denote thei th optimal weight and value of (4.11) as�wi � and �V respectively. Then, we
have that

d �V
dai

= Ški �wi � ,

with its limit as ai � � being zero, and second derivative non-negative, as is the case
without scaling. We solve

(1 Šsi ) �wi � (a)|a=0 = �wi � (a)|aj =0,j � i (4.12)
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� (1 Šsi )wi � (a)|a=0 = wi � (k1a1, . . . ,knan)|aj =0,j � i (4.13)

for i = 1, . . . ,nseparately to obtaina�� = [a1� /k1, . . . ,an� /kn]T so that substituting it into (4.11)
yields the exact same problem as ifa� is substituted into (4.4). That is to say, the optimal
solution of (4.4) does not change with the scaling of eachai . This scale invariance property
is good news for us, because we can just assume eachki = 1 without loss of generality.

4.2.1 Numerical Experiment Revisited

We go back to the numerical experiment in Section4.1.1but instead consider the robust
location-scale problem (4.4) with

� (� ) = z1Š�

which we label as type I and

� (� ) = max
� �{1,1.01,...,2}

�
FŠ1

Z2
(1 Š� � )F

Š1
Z�

(1 Š� )/FŠ1
Z�

(1 Š� � )
�

for � � = 0.05, 0.1 and 0.15 which we label as types II, III and IV respectively. Recall we
always choose the median sensitivity as our targeted sensitivity level. In Figure4.10, each
sub�gure plots the optimal weights of the type I problem both with added location un-
certainty and without added uncertainty at a particular tolerance level� against the asset
number where short-selling is disallowed, and has a red vertical which separates assets with
a positive location over scale ratio on the left from assets with a negative location over scale
ratio on the right. The sub�gures from left to right then top to bottom correspond respec-
tively to � = 0.01,0.02, . . . ,0.49. FiguresC.9 - C.9 in Appendix C are analogs of Figure4.10
for the type II, III and IV problems respectively. Figure4.11(a) plots the optimal weights of
the type I problem with added location uncertainty minus the optimal weights of the same
problem without added uncertainty against the asset number for� = 0.01,0.02, . . . ,0.49,
where short-selling is disallowed. Figures4.11(b), (c) and (d) are analogs of Figure4.11(a) but
for the type II, III and IV problems respectively. From these �gures just mentioned above,
we see that added location uncertainty has a considerable in�uence on the optimal asset
allocation and in particular, causes weight to be shifted from assets with higher location
over scale ratio to those with lower. In Figure4.12, each sub�gure plots the optimal portfolio
expected return for a particular type of problem without uncertainty and the robust opti-
mal portfolio expected return of the same problem with added location uncertainty against
the tolerance level, where short-selling is disallowed. We observe that the optimal portfolio
expected return of any type of problem without added uncertainty is never lower than the
robust optimal portfolio expected return of the same problem with added mean uncertainty.
Figure 4.13is an analog of Figure4.12for the portfolio negated value-at-risk. Since the
robust optimal portfolio negated value-at-risk of any type of problem with added location
uncertainty is never lower than the optimal portfolio negated value-at-risk without added
uncertainty by construction, it is less likely to invest all wealth in the risky assets with added
location uncertainty as compared to when no uncertainty is added, which certainly makes
sense. In Figure4.10, each sub�gure plots the optimal weights at a particular tolerance level
� against those at tolerance level0.01 of the type I problem both with added location uncer-
tainty and without added uncertainty, where short-selling is disallowed. The sub�gures from
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left to right then top to bottom correspond respectively to� = 0.01,0.02, . . . ,0.49. Figure
4.10shows that the move towards a less diversi�ed portfolio in the sense that it contains
less assets is more gradual with added location uncertainty as compared to without added
uncertainty, as can be seen by the fact that the green dots move away from the red diagonal
line through the origin with unit gradient at a slower rate than the blue dots as� increases.
FiguresC.7- C.9 are analogs of Figure4.10for the type II, III and IV problems respectively,
with similar observations.
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(d)

Figure 4.11: (a) plots the optimal weights of the type I problem with added location uncer-
tainty minus the optimal wieghts of the same problem without added uncertainty against
the asset number for� = 0.01,0.02, . . . ,0.49, where short-selling is disallowed; (b), (c) and
(d) are analogs of (a) for the type II, III and IV problems respectively.
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Figure 4.12: (a) plots the optimal portfolio expected return for the type I problem without
uncertainty (blue) and the robust optimal portfolio expected return of the same problem
with added location uncertainty (green) against the tolerance level, where short-selling is
disallowed; (b), (c) and (d) are analogs of (a) for the type II, III and IV problems respectively.
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Figure 4.13: (a) plots the optimal portfolio negated value-at-risk for the type I problem
without uncertainty (blue) and the robust optimal portfolio negated value-at-risk of the
same problem with added location uncertainty (green) against the tolerance level, where
short-selling is disallowed; (b), (c) and (d) are analogs of (a) for the type II, III and IV
problems respectively.
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4.3 Location Uncertainty With Short-Selling

If we only assume location uncertainty with short-selling, then the robust location-scale
problem (4.3) can be written as

max
(w,x)�W � ×� n

�
wTµ ŠxTaŠ� (� )



wT� w : Šx � w � x

�
. (4.14)

Theorem 4.7
(i) Let (w� ,x� ) andV be the optimal solution and value of(4.14)respectively. Then,

dV
dai

= Šxi � . (4.15)

(ii) We have

lim
ai ��

dV
dai

= 0, (4.16)

provided the limit exists.

(iii) The second derivative ofV with respect to eachai is non-negative.

Proof: The proof is completely analogous to that of Theorem4.6, and thus omitted. �
Due to part (iii) of Theorem4.7,

min
ai 	0

dV
dai

= Šxi � (a)|ai =0

and

sup
ai 	0

dV
dai

= 0.

We choose the value of eachai with desired sensitivity levelsi � (0,1) by solving

(1 Šsi )xi � (a)|a=0 = xi � (a)|aj =0,j � i (4.17)

for i = 1, . . . ,n separately. Again, note that solving (4.17) numerically is not a problem since
its right-hand side is non-increasing.

Scaling is also not a problem. Assume that eachai is scaled by a parameterki > 0 in
(4.14) so that it becomes

max
(w,x)�W � ×� n

�
���
���

wTµ Š
n#

i =1

xi ki ai Š � (� )



wT� w : Šx � w � x

�
���
���

, (4.18)

with the optimal solution ofxi and value denoted as�xi � and �V respectively. Then, we have
that

d �V
dai

= Ški �xi � ,
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with its limit as ai � � and second derivative zero and non-negative respectively. Finally,
solving

(1 Šsi ) �xi � (a)|a=0 = �xi � (a)|aj =0,j � i (4.19)

� (1 Šsi )xi � (a)|a=0 = xi � (k1a1, . . . ,knan)|aj =0,j � i (4.20)

for i = 1, . . . ,n separately obtainsa�� = [a1� /k1, . . . ,an� /kn]T, which when being substituted
into (4.18) yields the exact same problem as ifa� is substituted into (4.14). Therefore, we can
just assume eachki = 1 without loss of generality.

4.3.1 Numerical Experiment Revisited

Figures4.15- 4.19correspond to the type I problem and are analogs of those in Section
4.2.1, with all else remaining constant except that short-selling is allowed up to a maximum
of one-�fth the total wealth for each asset. FiguresC.13- C.15(analogs of Figure4.15) and
FiguresC.16- C.18(analogs of Figure4.19) in AppendixC correspond to the types II, III
and IV problems respectively. Note how added location uncertainty encourages less short-
selling in Figures4.15and C.13- C.15, but otherwise similar conclusions as in the case where
short-selling is disallowed can be drawn.
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(d)

Figure 4.16: (a) plots the optimal weights of the type I problem with added location uncer-
tainty minus the optimal wieghts of the same problem without added uncertainty against the
asset number for� = 0.01,0.02, . . . ,0.49, where short-selling is allowed up to a maximum
of one-�fth the total wealth; (b), (c) and (d) are analogs of (a) for the type II, III and IV
problems respectively.
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Figure 4.17: (a) plots the optimal portfolio expected return for the type I problem without
uncertainty (blue) and the robust optimal portfolio expected return of the same problem
with added location uncertainty (green) against the tolerance level, where short-selling is
allowed up to a maximum of one-�fth the total wealth; (b), (c) and (d) are analogs of (a) for
the type II, III and IV problems respectively.
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Figure 4.18: (a) plots the optimal portfolio negated value-at-risk for the type I problem
without uncertainty (blue) and the robust optimal portfolio negated value-at-risk of the
same problem with added location uncertainty (green) against the tolerance level, where
short-selling is allowed up to a maximum of one-�fth the total wealth; (b), (c) and (d) are
analogs of (a) for the type II, III and IV problems respectively.
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4.4 Eigenvalue Uncertainty

If we only assume eigenvalue uncertainty, then the robust location-scale problem (4.3) can
be written as

max
w�W �

�
����
����

wTµ Š� (� )

56
n#

i =1

(� i + bi )(wTui )2

�
����
����

. (4.21)

Theorem 4.8
(i) Letw� andV be the optimal solution and value of(4.21)respectively. Then,

dV
dbi

= Š
� (� )(wT

� ui )2

2

 & n

j =1(� j + bj )(wT
� uj )2

. (4.22)

(ii) We have

lim
bi ��

dV
dbi

= 0, (4.23)

provided the limit exists.

(iii) The second derivative ofV with respect to eachbi is non-negative.

Proof: The proof of (4.22) is analogous to that of (4.5) in Theorem4.6.
To show (4.23), assume thatlim bi �� w� = wbi

so that

lim
bi ��

dV
dbi

= Š
� (� )(wT

bi
ui )2

2



(� i + lim bi �� bi )(w
T
bi

ui )2 +
&

j � i (� j + bj )(w
T
bi

uj )2
. (4.24)

If wT
bi

ui = 0, then obviously (4.24) is zero, since its numerator is vanishing and its denom-
inator is positive, otherwise there will ben + 1 orthogonal vectorswbi

,u1, . . . ,un in Rn,
which is impossible. IfwT

bi
ui � 0, then (4.24) is also zero since its numerator is �nite and its

denominator tends to in�nity.
It is easy to check that the second derivative ofV with respect to eachbi exists just by

observing its expression. Applying the Second-Order Envelope TheoremA.26 obtains

d2V

db2
i

	
� (� )(wT

� ui )4

4(
& n

i =1(� i + bi )(wT
� ui )2)3/2

	 0,

which concludes our proof. �
Note that an in�nitesimal change inbi will not have any e�ect onV if w� is orthogonal

to ui . Eachbi is set to the rootbi � of

min
bi 	0

�
���
���

dV
dbi


bj =0.j � i

�
���
���

+ si

�
������ max

bi 	0

�
���
���

dV
dbi


bj =0.j � i

�
���
���

Šmin
bi 	0

�
���
���

dV
dbi


bj =0.j � i

�
���
���

�
������ =

dV
dbi


bj =0,j � i
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� (1 Šsi )

�
dV
dbi


b1,...,bn=0

�

+ si

�
������ lim

bi ��

�
���
���

dV
dbi


bj =0.j � i

�
���
���

�
������ =

dV
dbi


bj =0.j � i

� (1 Šsi )

�
dV
dbi


b1,...,bn=0

�

=
dV
dbi


bj =0,j � i

,

wheresi � (0,1) is the chosen sensitivity level, the �rst equivalence is due to part (iii) of
Theorem4.8, and the second equivalence is by (4.23).

Like in the case of mean uncertanty, scaling does not pose a problem. Assume that each
bi is scaled by a parameterki > 0 in (4.21) so that it becomes

max
w�W �

�
����
����

wTµ Š� (� )

56
n#

i =1

(� i + ki bi )(wTui )2

�
����
����

, (4.25)

with the optimal solution and value denoted as�w� and �V respectively. Then, we have that

d �V
dbi

= Š
� (� )( �wT

� ui )2

2

 & n

j =1(� j + kj bj )( �wT
� uj )2

,

with its limit asbi � � and second derivative remaining zero and non-negative respectively.
Finally, we solve

(1 Šsi )

�
������

d �V (b1, . . . ,bn)
dbi


b1,...,b=0

�
������ =

d �V (b1, . . . ,bn)
dbi


bj =0,j � i

� (1 Šsi )

�
dV(b1, . . . ,bn)

dbi


b1,...,bn=0

�

=
dV(k1b1, . . . ,knbn)

dbi


bj =0,j � i

for i = 1, . . . ,nseparately to obtainb�� = [b1� /k1, . . . ,bn� /kn]T, so that when being substituted
into (4.25) yields the exact same problem as ifb� = [b1� , . . . ,bn� ]T is substituted into (4.21).
Therefore, we can just assume eachki = 1 without loss of generality.

4.4.1 Numerical Experiment Revisited

Figures4.20- 4.24are analogs of those in Section4.2.1while Figures4.25- 4.29are analogs
of those in Section4.3.1, with all else remaining equal except that we now only consider
eigenvalue uncertainty. FiguresC.19- C.21(analogs of Figure4.20), FiguresC.22 - C.24
(analogs of Figure4.24), FiguresC.25 - C.27 (analogs of Figure4.25) and FiguresC.28 -
C.30(analogs of Figure4.29) in AppendixC correspond to the types II, III and IV problems
respectively. Similar conclusions as the case where only location uncertainty is considered
can be drawn.
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(d)

Figure 4.21: (a) plots the optimal weights of the type I problem with added eigenvalue
uncertainty minus the optimal wieghts of the same problem without added uncertainty
against the asset number for� = 0.01,0.02, . . . ,0.49, where short-selling is disallowed; (b),
(c) and (d) are analogs of (a) for the type II, III and IV problems respectively.
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Figure 4.22: (a) plots the optimal portfolio expected return for the type I problem without
uncertainty (blue) and the robust optimal portfolio expected return of the same problem
with added eigenvalue uncertainty (green) against the tolerance level, where short-selling is
disallowed; (b), (c) and (d) are analogs of (a) for the type II, III and IV problems respectively.
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(d)

Figure 4.23: (a) plots the optimal portfolio negated value-at-risk for the type I problem
without uncertainty (blue) and the robust optimal portfolio negated value-at-risk of the same
problem with added eigenvalue uncertainty (green) against the tolerance level, where short-
selling is disallowed; (b), (c) and (d) are analogs of (a) for the type II, III and IV problems
respectively.
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(d)

Figure 4.26: (a) plots the optimal weights of the type I problem with added eigenvalue
uncertainty minus the optimal wieghts of the same problem without added uncertainty
against the asset number for� = 0.01,0.02, . . . ,0.49, where short-selling is allowed up to a
maximum of one-�fth the total wealth; (b), (c) and (d) are analogs of (a) for the type II, III
and IV problems respectively.
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(d)

Figure 4.27: (a) plots the optimal portfolio expected return for the type I problem without
uncertainty (blue) and the robust optimal portfolio expected return of the same problem
with added eigenvalue uncertainty (green) against the tolerance level, where short-selling is
allowed up to a maximum of one-�fth the total wealth; (b), (c) and (d) are analogs of (a) for
the type II, III and IV problems respectively.
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(d)

Figure 4.28: (a) plots the optimal portfolio negated value-at-risk for the type I problem
without uncertainty (blue) and the robust optimal portfolio negated value-at-risk of the
same problem with added eigenvalue uncertainty (green) against the tolerance level, where
short-selling is allowed up to a maximum of one-�fth the total wealth; (b), (c) and (d) are
analogs of (a) for the type II, III and IV problems respectively.
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Chapter 4. Size of Uncertainty Sets and Numerical Experiments

4.5 Eigenvector Uncertainty

If we only assume eigenvector uncertainty, then the optimalw of the robust location-scale
problem (4.3) is approximately equal to that of

max
(w,�,y )�W � ×� +×�

�
�������
�������

wTµ Š� (� )y :

.
/////////////0

(y + � (1 Šc)2)I n Š� e1eT
1

wTPT
1

...
wTPT

n
P1w . . . Pnw diag(� Š1

1 , . . . , � Š1
n )y

1
22222222222223

� 0,y 	 �

�
�������
�������

(4.26)
by �rst using Theorem3.5, then transposing the matrix in the semide�nite constraint (in
which we lose nothing), and �nally replacing the positivity constraint ony with y 	 � , where
� is a small positive number. Since the positive semi-de�nite space is a proper cone, a
semi-de�nite constraint is also a generalized inequality. Therefore, by de�nition (A.20), the
associated Lagrangian of (4.26) is

L(w, �,y,Z, �. � ) = w Tµ Š� (� )y

+ tr

�
��������������

.
/////////////0

(y + � (1 Šc)2)I n Š� e1eT
1

wTPT
1

...
wTPT

n
P1w . . . Pnw diag(� Š1

1 , . . . , � Š1
n )y

1
22222222222223

Z

�
��������������

+ � (wT� Š1) +
n#

i =1

� i (wi Š
 i ) + � n+1� + � n+2(y Š� )

=
n#

i =1

wi

�
��������������

µi + � + � i + tr

�
��������������

.
/////////////0

0n×n

pT
1i
...

pT
ni

p1i . . . pni 0n×n

1
22222222222223

Z

�
��������������

�
��������������

+ �

�

� n+1 + tr

��
(1 Šc)2I n Še1eT

1 0n×n
0n×n 0n×n

�

Z

��

+ y

�

� n+2 Š� (� ) + tr

��
I n 0n×n

0n×n diag(� 1, . . . , � n)

�

Z

��

Š � Š
n#

i =1

� i 
 i Š �� n+2,

whereZ � � 2n and pji represents thei th column ofPj .
Denoting

Fi =

.
/////////////0

0n×n

pT
1i
...

pT
ni

p1i . . . pni 0n×n

1
22222222222223

,
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Chapter 4. Size of Uncertainty Sets and Numerical Experiments

G =

�
(1 Šc)2I n Še1eT

1 0n×n
0n×n 0n×n

�

,

H =

�
I n 0n×n

0n×n diag(� 1, . . . , � n)

�

,

the Lagrange dual function is then

d(Z, �, � ) = sup
(w,�,y )�� n×� ×�

L(w, �,y,Z, �, � )

=

�
��������
��������

Š� Š
& n

i =1 � i 
 i Š �� n+2, if

�
�����
�����

µi + � + � i + tr (Fi Z) = 0, i = 1, . . . ,n,

� n+1 + tr (GZ) = 0 ,

� n+2 Š� (� ) + tr (HZ) = 0 ,

�, otherwise,

so that the Lagrange dual problem of (4.26) is

min
(Z,�,� )�� 2n

+ ×� ×� n+2
+

�
����
����

Š� Š
n#

i =1

� i Š �� n+2 :
µi + � + � i + tr (Fi Z) = 0, i = 1, . . . ,n

� n+1 + tr (GZ) = 0 ,
� n+2 Š� (� ) + tr (HZ) = 0 ,

�
����
����

(4.27)

since the semi-positive de�nite cone is self-dual.

Theorem 4.9
Let (w� , � � ,y� ) and (Z� , � � , � � ) be the optimal solutions of(4.26)and (4.27)respectively, and
denotez� the vectorized form of the upper half ofZ� . Assume[z� , � n+1� ]T, [z� , � n+2� ]T and each
column of the matrix on the left-hand side of the semi-de�nite constraint in(4.26)evaluated at
(w� , � � ,y� ) are all non-zero vectors, and there exists a feasible solution of(4.26)such that the
(matrix) inequality constraints hold strictly, then

(i) denotingV as the optimal value of(4.26),

dV
dc

= Š2(1 Šc)
n#

i =1

Zii� � � .

(ii) the second derivative ofV with respect toc is non-negative.

Proof:
There is zero duality gap between (4.26) and (4.27) since by assumption, the Slater•s

condition is satis�ed by for the former, whose equality and inequality constraints are linear,
and the negative of

.
/////////////0

(y + � (1 Šc)2)I n Š� e1eT
1

wTPT
1

...
wTPT

n
P1w . . . Pnw diag(� Š1

1 , . . . , � Š1
n )y

1
22222222222223
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Chapter 4. Size of Uncertainty Sets and Numerical Experiments

is convex in(w, �,y ) with respect to the semi-positive de�nite cone. Therefore, the KKT
conditions in TheoremA.23 hold and in particular,

tr

�
��������������

.
/////////////0

(y� + � � (1 Šc)2)I n Š� � e1eT
1

wT
� PT

1
...

wT
� PT

n
P1w� . . . Pnw� diag(� Š1

1 , . . . , � Š1
n )y�

1
22222222222223

Z�

�
��������������

= 0, (4.28)

� n+1� + tr

��
(1 Šc)2I n Še1eT

1 0n×n
0n×n 0n×n

�

Z�

�

= 0, (4.29)

wT
� � = 1, (4.30)

� n+1� � � = 0, (4.31)

� n+2� (y� Š � ) = 0. (4.32)

Since
.
/////////////0

(y� + � � (1 Šc)2)I n Š� � e1eT
1

wT
� PT

1
...

wT
� PT

n
P1w� . . . Pnw� diag(� Š1

1 , . . . , � Š1
n )y�

1
22222222222223

� 0 and Z� � 0,

we have .
/////////////0

(y� + � � (1 Šc)2)I n Š� � e1eT
1

wT
� PT

1
...

wT
� PT

n
P1w� . . . Pnw� diag(� Š1

1 , . . . , � Š1
n )y�

1
22222222222223

Z� (4.33)

is semi-positive de�nite1 so that its diagonal entries are all non-negative. Together with
(4.28), which in e�ect says that the sum of the diagonal entries of (4.33) is zero, the diagonal
entries of (4.33) must all be zeros. This in turn forces all the o�-diagonal entries of (4.33) to
be zero, otherwise it is no longer semi-positive de�nite. In other words, (4.28) is equivalent
to the matrix equality

.
/////////////0

(y� + � � (1 Šc)2)I n Š� � e1eT
1

wT
� PT

1
...

wT
� PT

n
P1w� . . . Pnw� diag(� Š1

1 , . . . , � Š1
n )y�

1
22222222222223

Z� = 02n×2n. (4.34)

If z� � 0 and Zij � is any of its non-zero elements, then the partial derivative of the(i, j )th
entry of the resulting matrix on the left-hand side of (4.34) with respect to� � obtainsZij � ((1Š
c)2 Š1) > 0. If z� = 0, then � n+1� > 0 by assumption and the Jacobian of the left-hand side
of (4.29) and (4.31) with respect to(� n+1� , � � ) is non-singular. In each case, the Implicit

1It is a well-known fact that ifA � 0 and B � 0, thenAB � 0.
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Chapter 4. Size of Uncertainty Sets and Numerical Experiments

Function TheoremA.19ensures that� � is continuously di�erentiable with respect toc. The
same argument goes fory� where (4.32) is used instead of (4.31). In similar fashion, the
Jacobian of (4.29) and (4.30) with respect to(� n+1� ,wi � ) is also non-singular, so that by
applying the Implicit Function Theoremwi � is continuously di�erentiable with respect toc,
for i = 1, . . . ,n. We can now use TheoremA.25 to obtain the result of part (i). The partial
derivative of the(i0, j )th entry of the matrix on the left-hand side of (4.34) with respect
to Zij � where(i0, j ) is the index of any non-zero element in thej th column of the matrix
on the left-hand side of the semi-de�nite constraint in (4.26) evaluated at(w� , � � ,y� ) yields
the element itself, which is non-zero, fori = 1, . . . ,n. This means that each entry ofZ� is
continuously di�erentiable with respect toc, so that the result of part (ii) follows immediately
by applying TheoremA.26. �

Assuming that the conditions of the above theorem are satis�ed, the value ofc is set to
the root c� of

min
0�c �1

dV
dc

+ s

�

max
0�c �1

dV
dc

Š min
0�c �1

dV
dc

�

=
dV
dc

� (1 Šs)
dV
dc


c=0

+ s
dV
dc


c=1

=
dV
dc

� (1 Šs)
dV
dc


c=0

=
dV
dc

wheres � (0,1) is the chosen sensitivity level and the �rst equivalence is due to part (iii) of
Theorem4.9.

We shall show that scaling is not an issue as before. Assume thatc is scaled byk > 0 in
(4.26) so that it becomes

max
(w,�,y )�W � ×� +×� ++

�
�������
�������

wTµ Š� (� )y :

.
/////////////0

(y + � (1 Škc)2)I n Š� e1eT
1

wTPT
1

...
wTPT

n
P1w . . . Pnw diag(� Š1

1 , . . . , � Š1
n )y

1
22222222222223

� 0

�
�������
�������

(4.35)
with the optimal solution and value denoted as(w�� , � �� ,y�� ) and �V respectively. The corre-
sponding Lagrange dual problem of (4.35) is

min
(Z,�,� )�� 2n

+ ×� ×� 2
+

�
����
����

Š� :
µi + � + tr (Fi Z) = 0, i = 1, . . . ,n

� 1 + tr (GkZ) = 0,
� 2 Š� (� ) + tr (HZ) = 0

�
����
����

(4.36)

where

Gk =

�
(1 Škc)2I n Še1eT

1 0n×n
0n×n 0n×n

�

,

with optimal Lagrange multiplier matrix denoted asZ�� . The derivative of �V with respect
to c is

d �V
dc

= Š2k(1 Škc)
n#

i =1

Zii�� � �� .
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Chapter 4. Size of Uncertainty Sets and Numerical Experiments

and the second derivative of�V with respect toc is non-negative. The valuec is now set to
the root c�� of

min
0�c �1/k

d �V (c)
dc

+ s

�

max
0�c �1/k

d �V (c)
dc

Š min
0�c �1/k

d �V (c)
dc

�

=
d �V (c)

dc

� (1 Šs)
d �V (c)

dc


c=0

+ s
d �V (c)

dc


c=1/k

=
d �V (c)

dc

� (1 Šs)
d �V (c)

dc


c=0

=
d �V (c)

dc

� (1 Šs)
dV(c)

dc


c=0

=
dV(kc)

dc
.

Note thatc�� = c� /k, and when it is substituted into (4.35) obtains the same optimal solution
as if c� is substituted into (4.26). Thus, we may assumek = 1 without loss of generality.

4.5.1 Numerical Experiment Revisited

The targeted sensitivity level is always the median and we always assume that the regularity
conditions of Theorem4.9 hold. Figures4.30 - 4.39 are analogs of those in Section4.4.1
but with added eigenvector instead of eigenvalue uncertainty. FiguresC.31- C.33(analogs
of Figure4.30), FiguresC.34- C.36 (analogs of Figure4.34), FiguresC.37- C.39 (analogs
of Figure4.35) and FiguresC.40- C.42(analogs of Figure4.39) in AppendixC correspond
to the types II, III and IV problems respectively. Similar conclusions as in the case where
only location uncertainty is considered can be drawn. Numerical experiments for all the
other di�erent combinations of location, eigenvalue and eigenvector uncertainties are also
done. Generally, for each combination conclusions are not much di�erent from the previous
cases, but the more types of uncertainty (location, eigenvalue and eigenvector) considered,
the higher the robust optimal portfolio negated value-at-risk, so that it is less likely to invest
all wealth into the risky assets. Each SDP is solved with SDPT3 by Toh (1999) using the
MATLAB interface YALMIP by Löfberg (2004).
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(d)

Figure 4.31: (a) plots the optimal weights of the type I problem with added eigenvector
uncertainty minus the optimal wieghts of the same problem without added uncertainty
against the asset number for� = 0.01,0.02, . . . ,0.49, where short-selling is disallowed; (b),
(c) and (d) are analogs of (a) for the type II, III and IV problems respectively.
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Figure 4.32: (a) plots the optimal portfolio expected return for the type I problem without
uncertainty (blue) and the robust optimal portfolio expected return of the same problem
with added eigenvector uncertainty (green) against the tolerance level, where short-selling is
disallowed; (b), (c) and (d) are analogs of (a) for the type II, III and IV problems respectively.
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Figure 4.33: (a) plots the optimal portfolio negated value-at-risk for the type I problem
without uncertainty (blue) and the robust optimal portfolio negated value-at-risk of the same
problem with added eigenvector uncertainty (green) against the tolerance level, where short-
selling is disallowed; (b), (c) and (d) are analogs of (a) for the type II, III and IV problems
respectively.
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(d)

Figure 4.36: (a) plots the optimal weights of the type I problem with added eigenvector
uncertainty minus the optimal wieghts of the same problem without added uncertainty
against the asset number for� = 0.01,0.02, . . . ,0.49, where short-selling is allowed up to a
maximum of one-�fth the total wealth; (b), (c) and (d) are analogs of (a) for the type II, III
and IV problems respectively.

96



Chapter 4. Size of Uncertainty Sets and Numerical Experiments

0.0 0.1 0.2 0.3 0.4 0.5

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

tolerance level

ex
pe

cte
d 

re
tu

rn

(a)

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

tolerance level

ex
pe

cte
d 

re
tu

rn

(b)

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

tolerance level

ex
pe

cte
d 

re
tu

rn

(c)

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

tolerance level

ex
pe

cte
d 

re
tu

rn

(d)

Figure 4.37: (a) plots the optimal portfolio expected return for the type I problem without
uncertainty (blue) and the robust optimal portfolio expected return of the same problem
with added eigenvector uncertainty (green) against the tolerance level, where short-selling is
allowed up to a maximum of one-�fth the total wealth; (b), (c) and (d) are analogs of (a) for
the type II, III and IV problems respectively.
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Figure 4.38: (a) plots the optimal portfolio negated value-at-risk for the type I problem
without uncertainty (blue) and the robust optimal portfolio negated value-at-risk of the
same problem with added eigenvector uncertainty (green) against the tolerance level, where
short-selling is allowed up to a maximum of one-�fth the total wealth; (b), (c) and (d) are
analogs of (a) for the type II, III and IV problems respectively.
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Chapter 5

Trading Costs and Integer Constraints

In this chapter, we include trading costs in the robust location-scale problem considered
in the last chapter. Since trading costs is a function of the asset weights, they render the
problem non-convex. Previous work [126] to circumvent this issue is based on a heuristic
algorithm, which is not exact. We convert the problem into a mixed-integer program. We
also impose integer constraints on the trading quantities to make the asset allocation more
realistic, and show that the resulting problem can likewise be expressed in the form of a
mixed-integer program.

5.1 Trading Costs

Trading costs can be included in a portfolio optimization problem simply by adding the
function

d(w) =
n#

i =1

di (wi ),

wheredi (wi ) is the cost function of thei th asset, to the left-hand side of the budget con-
straint wT� = 1 to obtain

wT� + d(w) = 1 . (5.1)

We only consider linear transaction with �xed costs1, meaning that

di (wi ) =

�
�����
�����

0, wi = 0,

� +
i + � +

i wi , wi > 0,

� Š
i Š � Š

i wi , wi < 0,

where� +
i 	 0 and � Š

i 	 0 are the �xed costs, while� +
i 	 0 and � Š

i 	 0 are the cost rates of
the long and short positions respectively. Observe that if we letw+ = y and wŠ = z, then

1In practice, transaction costs may be more complicated, for which the constraint relaxation to be intro-
duced subsequently can be easily adapted.
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wi0

di (wi )

� i + � +
i wi

� Š
i + � Š

i wi

si t i

Figure 5.1: Linear transaction with �xed costs

(5.1) is equivalent to

(y Šz)T� +
& n

i =1(� +
i vi + � +

i yi + � Š
i (1 Švi ) + � Š

i zi ) = 1,
yi � t i vi , zi � Š si (1 Švi ),

vi � { 0,1}, i = 1, . . . ,n,
y,z 	 0,

(5.2)

wheresi = Š
 i (the most thei th asset can be short-selled) andti =
1Š� +

i Š
& n

j =1,j � i 
 j

1+� +
i

are the

largest valueswŠ
i andw+

i can take respectively. Note thatti is obtained by solvingti +di (t i ) =
1 Š

& n
j =1,j � i 
 j , and (5.2) allows only one ofyi and zi to be non-zero, fori = 1, . . . ,n. The

portfolio return is

RP =
n#

i =1

wi (1 + Ri ) Š1

= wTR + wT� Š1,

where the termwT� Š 1 is not zero anymore but instead equal to the negative ofd(w).
Therefore, if linear transaction with �xed costs are to be added to the robust location-scale
problem involving any combination of the location, eigenvalue and eigenvector uncertainties
from the last chapter, we need to solve a mixed integer program, obtained by �rst adding
wT� to the objective function, then replacing the budget constraintwT� = 1 with (5.2),
before changing eachw to y Šz in the problem.

5.1.1 Numerical Experiment Revisited

Figures5.2 - 5.6 are analogs of Figures4.35- 4.39 in Section4.5.1, with all else remaining
constant except that we also include the eigenvalue and eigenvector uncertainties mentioned
in the previous chapter as well as trading costs. FiguresC.43- C.45(analogs of Figure5.2)
and FiguresC.46- C.48(analogs of Figure5.6) in AppendixC correspond to the type II, III
and IV problems respectively. In particular, we �x� +

i = 0.0001, � Š
i = 0.01, � +

i = 0.0002
and � Š

i = 0.02 for i = 1, . . . ,20. Each mixed integer program is solved using the internal

101



Chapter 5. Trading Costs and Integer Constraints

branch and bound solver of the MATLAB interface YALMIP together with the lower bound
solver SDPT3. Similar conclusions as the other cases can be drawn, but note that the optimal
weights in each problem do not add up to the total wealth due to trading costs.
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(d)

Figure 5.3: (a) plots the optimal weights of the type I problem with added location, eigenvalue
and eigenvector uncertainties plus trading costs minus the optimal wieghts of the same
problem without added uncertainty against the asset number for� = 0.01,0.02, . . . ,0.49,
where short-selling is allowed up to a maximum of one-�fth the total wealth; (b), (c) and (d)
are analogs of (a) for the type II, III and IV problems respectively.
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Figure 5.4: (a) plots the optimal portfolio expected return for the type I problem without
uncertainty (blue) and the robust optimal portfolio expected return of the same problem with
added location, eigenvalue and eigenvector uncertainties plus trading costs (green) against
the tolerance level, where short-selling is allowed up to a maximum of one-�fth the total
wealth; (b), (c) and (d) are analogs of (a) for the type II, III and IV problems respectively.
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Figure 5.5: (a) plots the optimal portfolio negated value-at-risk for the type I problem
without uncertainty (blue) and the robust optimal portfolio negated value-at-risk of the
same problem with added location, eigenvalue and eigenvector uncertainties plus trading
costs (green) against the tolerance level, where short-selling is allowed up to a maximum
of one-�fth the total wealth; (b), (c) and (d) are analogs of (a) for the type II, III and IV
problems respectively.
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Chapter 5. Trading Costs and Integer Constraints

5.2 Integer Constraints

So far we assume that a fraction of an asset can be bought or sold, which is not true in
reality. To take into account the indivisibility of shares, we impose integer constraints on the
trading quantities. This means, in particular, that after investment in the risky assets there
is usually remaining proportion of wealthwn+1 	 0 which can be put into a riskless asset
with return µ0 so that the portfolio return is

RP =
n#

i =1

wi (1 + Ri ) + wn+1(1 + µ0) Š1,

where

wi =
mi Si

w0
, i = 1, . . . ,n (5.3)

such thatmi � � is the number of shares in the long or short position,Si is the asset price
at the beginning of the trading period,w0 is the initial total wealth. The budget constraint
then becomes

wT� + wn+1 Š1 = 0.

Therefore, if integer constraints are to be included in the robust location-scale problem
involving any combination of the location, eigenvalue and eigenvector uncertainties from
the last chapter, we need to solve a mixed integer program, obtained by �rst addingwn+1µ0
to the objective function, then replacingwT� = 1 by (5.2), before lettingw be de�ned as
(5.3) in the problem. On the other hand, if linear transaction with �xed costs as well as
integer constraints are to be included in the robust location-scale problem involving any
combination of the location, eigenvalue and eigenvector uncertainties from the last chapter,
we also need to solve a mixed integer program, obtained by �rst addingwn+1µ0 + wT� to
the objective function, then replacingwT� = 1 with

(y Šz)T� +
& n

i =1(� +
i vi + � +

i yi + � Š
i (1 Švi ) + � Š

i zi ) + wn+1 = 1,
yi Šzi = mi Si

w0
, mi � � ,

yi � t i vi , zi � Š si (1 Švi ),
vi � { 0,1}, i = 1, . . . ,n,

wn+1 	 0, y,z 	 0,

before lettingw be de�ned as (5.3) in the problem. Results if we add integer constraints are
very similiar to those of the previous numerical experiments and are thus omitted.
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Chapter 6

Diversi�cation

As we see in the last chapter, robust optimization tends to avoid allocating weight to as-
sets with high location and low scale, which seems to indicate that robustness is linked to
diversi�cation. We will explore this topic in the following chapter.

6.1 Measure of Diversi�cation

The Rao•s Quadratic Entropy (RQE) [169] is extended to formally de�ne the notion of port-
folio diversi�cation in this section.

De�nition 6.3
[48, p. 5] Let� be a population of elements each characterized by a valueX with probability
measureP. The RQE of any two elements 1,  2 � � corresponding to valuesX1 and X2 is
de�ned as

H (P) =
"

d(X1,X2)dP(X1)dP(X2) (6.1)

whered(·,·) � � + is symmetric and represents the di�erence between 1 and  2.

Note that (6.1) can be interpreted as the average di�erence betweenX1 and X2. If X is
discrete withn possible valuesx1, . . . ,xn, then

H (P) =
n#

i,j =1

dij pi pj

wherepi = � (X = xi ), dij = dji and dii = 0 for i, j = 1, . . . ,n.

6.1.1 Portfolio RQE
De�nition 6.4
[48, p. 6] The portfolio RQE of a portfolio withn assets and weight vectorw = [wi , . . . ,wn]T is
de�ned as

1
2

wTDw � HD(w), (6.2)
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Chapter 6. Diversi�cation

where the dissimilarity matrixD is symmetric such that its(i, j )th entrydij 	 0 and its i th
diagonal entrydii = 0.

Note thatdij can be viewed as the amount of unshared information between assetsi and
j . Furthermore, the above de�nition implies that buying an asset and short-selling another
dissimilar asset instead of buying both the assets should result in a more extreme portfolio
return with less diversi�cation and hence smaller portfolio RQE, which can also be seen as
half the weighted di�erence between two randomly chosen assets with replacement. Since
D is a Euclidean distance matrix, it is conditionally negative de�nite [176], meaning that
wTDw is non-positive wheneverwT� = 0, so that according to Rao and Nayak (1985),

HD(w) =
1
2

n#

i,=1

wi DHD
(wi ,w) (6.3)

wherewi
i = 1, wi

j = 0 for j � i andDHD
(wi ,w) = 2HD(wi ,w)ŠHD(wi )ŠHD(w) is the di�er-

ence between the portfoliosw andwi such thatHD(wi ,w) = w TDw i . Without short-selling,
(6.3) suggests that the more dissimilar the portfoliow is from the single asset portfoliowi ,
the higher the portfolio RQE. It can also be shown that the portfolio obtained by maximizing
the portfolio RQE is equidissimlar to every asset if there is no restriction on short-selling.
On the other hand, if each asset can be short-selled up to a certain bound, maximizing the
portfolio RQE obtains a portfolio equidissimlar to each asset whose weight does not reach its
bound. We refer the reader to Camarchael et al. (2015) for more properties of the portfolio
RQE.

6.1.2 RQE as Unifying Diversi�cation Measure

The portfolio RQE generalizes quite a number of diversi�cation measures, and we mention
a few of them.

6.1.2.1 Gini-Simpson Index

The Gini-Simpson Index (see for example [200] and [49]) is de�ned as

1 Š
n#

i =1

w2
i � GS(w),

and is a special case of the portfolio RQE wheredij = 1 Š� ij such that

� ij =

�
���
���

1, i = j,

0, i � j .

To see this, note that

1 =

�
������

n#

i =1

wi

�
������

2
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Chapter 6. Diversi�cation

so that

1 Š
n#

i =1

w2
i =

n#

i =1

#

j � i

wi wj .

6.1.2.2 Return Gap

When the portfolio consists of two equally weighted assets with scale matrix

� = � 2
�

1 �
� 1

�

,

and the(i, j )th entry of the dissimilarity matrix is

dij = � 2(1 Š� )(1 Š� ij ),

then
HD(w) =

1
2

� 2(1 Š� ),

whose squared root is exactly the Return Gap (RG).

6.1.2.3 Diversi�cation Return

Assume thatdij = � 2
i + � 2

j Š2� ij where� 2
i and � ij are the(i, i)th and (i, j )th entries of the

scale matrix� respectively. Then, the portfolio RQE is

HD(w) =
1
2

n#

i =1

n#

j =1

(� 2
i + � 2

j Š2� ij )wi wj

=
1
2

�
�������

n#

i =1

� 2
i wi

n#

j =1

wj +
n#

i =1

wi

n#

j =1

� 2
j wj Š2

#

i =1n

n#

j =1

� ij wi wj

�
�������

= � 2w ŠwT� w (6.4)

where � 2 = [ � 2
1 , . . . , � 2

n ]. The expression (6.4), which we denote asDr (w), is also known
as the diversifcation return, and �rst comes in the form of excess growth rate in Fernholz
and Shay (1982) and appears as the di�erence between the portfolio compound return and
weighted average asset compond return in Booth and Fama (1992).

6.1.3 Optimal Dissimilarity In Location-Scale Framework

[48, Section 5.2] We consider the optimal dissimilarity matrixD under di�erent scenarios
in the location-scale framework.

6.1.3.1 No Information

When no information is available, the location-scale optimal portfolio RQE is the GS index
with dij = d and dii = 0 for all i = 1, . . . ,n and j � i , since there is no way whatsoever to
distinguish between any two assets.
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6.1.3.2 Correlation Information

If only the correlation information is available, we may assume that each asset has unit
variance without loss of generality. In this case, the(i, j )th entry of the optimal dissimilarity
matrix is dij = 2(1 Š� ij ), where� ij is the correlation between assetsi and j . The portfolio
RQE then becomes

HD(w) =
n#

i =1

n#

j =1

(1 Š� ij )wi wj

=
n#

i =1

n#

j =1

wi wj Š
n#

i =1

n#

j =1

� ij wi wj

=

�
������

n#

i =1

wi

�
������

2

Š
n#

i =1

n#

j =1

� ij wi wj

= 1 ŠwT� w,

so that minimizing the portfolio variance is equivalent to maximizing the portfolio RQE.
Note thatHD(w) is a decreasing function of� ij , which makes sense since a higher correlation
among the assets will result in a lower portfolio RQE. In addition, if we let� denote the
squared root of� 2 element-wise, the diversi�cation ratio is

DR(w) =
� w



wT� w

=
1



wT� w

so that maximizing it is also equivalent to maximizing the portfolio RQE.

6.1.3.3 Scale Information

Maximizing the portfolio RQE results in a portfolio equidissmilar from each asset contained
in the portfolio if no short-selling is allowed, or from each asset not fully short-selled if
short-selling is allowed. Nevertheless, if the full scale matrix is available, it is better to place
more weight on assets with a lower scale. Hence, maximizing the portfolio RQE is no longer
location-scale optimal and should be combined with other measures to achieve better results.
One way to do it is to minimize� 2w ŠDr (w), where the diversi�cation return is coupled
with the weighted average of the diagonal entries of the scale matrix. Another way is to
maximize theDr (w)/ wT� w which is essentially the portfolio scale adjusted diversi�cation
return. We can also maximize the diversi�cation ratio.

6.1.3.4 Location And Scale Information

If the location vector and scale matrix are fully known, then the portfolio RQE maximization
is also location-scale sub-optimal, since naturally we would like to place more weight on
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Chapter 6. Diversi�cation

assets with higher location and lower scale instead of ignoring their e�ects. In this case, we
may solve

max
w�W �

{wTµ Š� (� )



wT� w}

� max
w�W �

$

wTµ Š� (� )



� 2w Š(� 2w ŠwT� w)

%

� max
w�W �

�
wTµ Š� (� )



� 2w ŠDr (w)

�
,

where the diversi�cation return is combined with the portfolio location and weighted average
of the diagonal entries of the scale matrix to achieve a better outcome. If there is imperfect
information of the location vector and scale matrix, then we may solve

max
w�W �

min
(µ,� )�M×S

�
wTµ Š� (� )



wT� w

�
,

which is exactly the robust location-scale problem we are interested in.

6.2 Sensitivity of Diversi�cation

Having shown that the natural portfolio RQE measure of the portfolio obtained by solv-
ing the location-scale problem is the diversi�cation return, let us look at how it behaves as
uncertainty is introduced into the model. As we will see later, with the introduction of uncer-
tainty into the location-scale problem, no simple pattern of how the portfolio diversi�cation
return changes may be found.

6.2.1 Location Uncertainty

We �rst consider the e�ects of location uncertainty on the portfolio diversi�cation return.
To obtain analytical results later, we do not letwi to be either0 or 
 i , so that the robust
location-scale problem (4.3) can be rewritten as

max
wi �� \{0,
 i },i=1,...,n

�
���
���

wTµ Š
n#

i =1

|wi |ai Š � (� )



wT� w : wT� = 1,w 	 �

�
���
���

. (6.5)

Note that the impact of removing0 and 
 i from the feasible domain ofwi is negligible
due to continuity of the original problem and the optimal solution of (6.5) can be very well
approximated in practice by solving

max
w�� n

�
����
����

wTµ Š
n#

i =1

|wi |ai Š � (� )



wT� w :
wT� = 1,

� + � � � w � Š � � ,
w 	 � �

�
����
����

where� is a small positive number. Before moving on further, we state a theorem providing
us with the optimal solution of (6.5) in analytical form.
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Theorem 6.10
LetV be the optimal value of(6.5), then its optimal solution is

w� =

� Š1

.
/////////0

(µ1 Šsign(w1� )a1)
...

(µn Šsign(wn� )an)

1
2222222223

ŠV � Š1�

� T� Š1

.
/////////0

(µ1 Šsign(w1� )a1)
...

(µn Šsign(wn� )an)

1
2222222223

ŠV � T� Š1�

.

Proof: Note that solving (6.5) is equivalent to solving

max
xi �� \{0,± 
 i },i=1,...,n

�
���������
���������

[|x1|+ 
 1, . . . , |xn|+ 
 n] µ Š
& n

i =1 ||xi |+ 
 i |ai

Š� (� )

577776
[|x1|+ 
 1, . . . ,|xn|+ 
 n]�

.
////////0

|x1|+ 
 1
...

|xn|+ 
 n

1
222222223

: [|x1|+ 
 1, . . . ,|xn|+ 
 n]T � = 1

�
���������
���������

(6.6)

for

.
////////0

|x1|+ 
 1
...

|xn|+ 
 n

1
222222223
. Let x� be the optimal solution of (6.6). Sincexi cannot be0 or ±
 i ,

the objective and constraint functions are continuously di�erentiable so that there exists a
Lagrange multiplier� � which satis�es

.
////////0

sign(x1� )(µ1 Šsign(|x1� |+ 
 1)a1)
...

sign(xn� )(µn Šsign(|xn� |+ 
 n)an)

1
222222223

Š� (� )

diag(sign(x1� ), . . . ,sign(xn� ))�

.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

577776
[|x1� |+ 
 1, . . . , |xn� |+ 
 n]�

.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

Š� �

.
////////0

sign(x1� )
...

sign(xn� )

1
222222223

= 0n×1.

(6.7)
and

[|x1� |+ 
 1, . . . , |xn� |+ 
 n]T � = 1 (6.8)

Multiplying (6.7) on the left by[x1� + sign(x1� )
 1, . . . ,xn� + sign(xn� )
 n], we obtain

[|x1� |+ 
 1, . . . ,|xn� |+ 
 n] µ Š
n#

i =1

||xi � |+ 
 i |ai
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Š� (� )

5777776
[|x1� |+ 
 1, . . . ,|xn� |+ 
 n]�

.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

Š� � [|x1� |+ 
 1, . . . , |xn� |+ 
 n]T � = 0

which implies
� � = V

by (6.8) and the fact that both (6.5) and (6.6) have the same optimal value.
Multiplying (6.7) on the left by� T� Š1diag(sign(x1� ), . . . ,sign(xn� )) obtains

� T� Š1

.
////////0

(µ1 Šsign(|x1� |+ 
 1)a1)
...

(µn Šsign(|xn� |+ 
 n)an)

1
222222223

Š� (� )

� T

.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

577776
[|x1� |+ 
 1, . . . ,|xn� |+ 
 n]�

.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

Š� � �
T� Š1� = 0

 � (� ) =

�
���������
� T� Š1

.
////////0

(µ1 Šsign(|x1� |+ 
 1)a1)
...

(µn Šsign(|xn� |+ 
 n)an)

1
222222223

Š� � �
T� Š1�

�
���������

5777776
[|x1� |+ 
 1, . . . , |xn� |+ 
 n]�

.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

by using (6.8) again. Substituting the above into (6.7) before multiplying the resulting equa-
tion on the left by� Š1diag(sign(x1� ), . . . ,sign(xn� )) result in

� Š1

.
////////0

(µ1 Šsign(|x1� |+ 
 1)a1)
...

(µn Šsign(|xn� |+ 
 n)an)

1
222222223

Š� � �
Š1�

Š

.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

�
���������
� T� Š1

.
////////0

(µ1 Šsign(|x1� |+ 
 1)a1)
...

(µn Šsign(|xn� |+ 
 n)an)

1
222222223

Š� � �
T� Š1�

�
���������

= 0

so that rearranging we get

.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

=

� Š1

.
////////0

(µ1 Šsign(|x1� |+ 
 1)a1)
...

(µn Šsign(|xn� |+ 
 n)an)

1
222222223

Š� � � Š1�

� T� Š1

.
////////0

(µ1 Šsign(|x1� |+ 
 1)a1)
...

(µn Šsign(|xn� |+ 
 n)an)

1
222222223

Š� � � T� Š1�

.
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It remains to substitutew� =

.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

and � � = V into the above equation to obtain the

desired result. �

6.2.1.1 Individual Location Uncertainty

We are now ready to provide a necessary and su�cient condition (6.9) in the following
theorem for the diversi�cation return of the portfolio obtained by solving

max
wi �� \{0,
 i },i=1,...,n

�
wTµ Š� (� )



wT� w : wT� = 1,w 	 �

�

to increase when thej th asset location changes slightly.

Theorem 6.11
Letw� be the optimal solution of

max
wi �� \{0,
 i },i=1,...,n

�
wTµ Š

# n

i =1
|wi |ai Š � (� )



wT� w : wT� = 1,w 	 �

�

whereai = pi � i for i = 1, . . . ,n. Then, a necessary and su�cient condition fordDr(w � )
dpj


p=0

to be

positive is

(AB ŠD(F Šµ Tw̄))w̄j Š(Ej (BŠ2) ŠDCj )V̄ Š2w̄j V̄ ŠACj + Ej (F Š2µ Tw̄) > 0, (6.9)

wherew̄ andV̄ are the optimal solution and value of

max
wi �� \{0,
 i },i=1,...,n

�
wTµ Š� (� )



wT� w : wT� = 1,w 	 �

�

respectively,A = � T� Š1µ , B = � 2� Š1� , Cj = � 2� Š1ej , D = � T� Š1� , Ej = � T� Š1ej and
F = � 2� Š1µ .

Proof: First, note thatwi � is di�erentiable with respect topj for all i, j = 1, . . . ,n by using
arguments similar to those found in the proof of Theorem4.6. Therefore, we have that

dDr(w � )
dpj

=
�
� 2 Š2wT

� �
� dw�

dpj

where

dw�

dpj
=

�
���������

�
���������
� T� Š1

.
////////0

(µ1 Šsign(w1� )p1� 1)
...

(µn Šsign(wn� )pn� n)

1
222222223

ŠV � T� Š1�

�
���������

�
Š� Š1sign(wj � )� j ej + |wj � |� j �

Š1�
�

Š

�
���������
� Š1

.
////////0

(µ1 Šsign(w1� )p1� 1)
...

(µn Šsign(wn� )pn� n)

1
222222223

ŠV � Š1�

�
���������

�
Š� T� Š1sign(wj � )� j ej + |wj � |� j �

T� Š1�
�
�
���������
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�
���������
� T� Š1

.
////////0

(µ1 Šsign(w1� )p1� 1)
...

(µn Šsign(wn� )pn� n)

1
222222223

ŠV � T� Š1�

�
���������

2

by using Theorem6.10and the Envelope TheoremA.24, so that

dw�

dpj


p=0

=
��

� T� Š1µ ŠV̄ � T� Š1�
� �

Š� Š1sign(w̄j )� j ej + |w̄j |� j �
Š1�

�

Š
�
� Š1µ ŠV̄ � Š1�

� �
Š� T� Š1sign(w̄j )� j ej + |w̄j |� j �

T� Š1�
��

�
� T� Š1µ ŠV̄ � T� Š1�

� 2

=
�
|w̄j |� j �

Š1�� T� Š1µ Š� Š1sign(w̄j )� j ej �
T� Š1µ + V̄ � Š1sign(w̄j )� j ej �

T� Š1�

+� Š1µ � T� Š1sign(w̄j )� j ej Š |w̄j |� j �
Š1µ � T� Š1� ŠV̄ � Š1�� T� Š1sign(w̄j )� j ej

�

�
� T� Š1µ ŠV̄ � T� Š1�

� 2

and

dDr(w � )
dpj


p=0

=
�
|w̄j |� j �

T� Š1µ
�
� 2� Š1� Š2

�
Šsign(w̄j )� j �

T� Š1µ
�
� 2� Š1ej Š2w̄j

�

+ V̄ sign(w̄j )� j �
T� Š1�

�
� 2� Š1ej Š2w̄j

�
+ sign(w̄j )� j �

T� Š1ej

�
� 2� Š1µ Š2µ Tw̄

�

Š|w̄j |� j �
T� Š1�

�
� 2� Š1µ Š2µ Tw̄

�
ŠV̄ sign(w̄j )� j �

T� Š1ej

�
� 2� Š1� Š2

��

�
� T� Š1µ ŠV̄ � T� Š1�

� Š2

=
�
|w̄j |� j A (BŠ2) Šsign(w̄j )� j A

�
Cj Š2w̄j

�

+ V̄ sign(w̄j )� j D
�
Cj Š2w̄j

�
+ sign(w̄j )� j Ej

�
F Š2µ Tw̄

�

Š|w̄j |� j D
�
F Š2µ Tw̄

�
ŠV̄ sign(w̄j )� j Ej (BŠ2)

�

�
� T� Š1µ ŠV̄ � T� Š1�

� Š2
.

The theorem follows immediately by noting that a necessary and su�cient condition for the
above expression to be positive is for its numerator to be as well. �

6.2.1.2 Simultaneous Location Uncertainty

Next, we provide a necessary and su�cient condition (6.10) in the following theorem for the
diversi�cation return of the portfolio obtained by solving

max
wi �� \{0,
 i },i=1,...,n

�
wTµ Š� (� )



wT� w : wT� = 1,w 	 �

�

to increase when the each asset location changes slightly.
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Theorem 6.12
Letw� be the optimal solution of

max
wi �� \{0,
 i },i=1,...,n

�
wTµ Š

# n

i =1
|wi |ai Š � (� )



wT� w : wT� = 1,w 	 �

�

whereai = p� i for i = 1, . . . ,n. Then, a necessary and su�cient condition fordDr(w � )
dp


p=0

to be

positive is

AB ŠC +

�
������ E Š2

n#

i =1

|w̄i |� i

�
������
�
F Š2µ Tw̄

�
+ V̄

�
������ D

�
������ C Š2

n#

i =1

|w̄i |� i

�
������ ŠE(BŠ2)

�
������ > 0, (6.10)

wherew̄ andV̄ are the optimal solution and value of

max
wi �� \{0,
 i },i=1,...,n

�
wTµ Š� (� )



wT� w : wT� = 1,w 	 �

�

respectively,A = � T� Š1µ , B = � 2� Š1� , Ci = � 2� Š1ei , D = � T� Š1� , Ei = � T� Š1ei and
F = � 2� Š1µ .

Proof: First, note thatwi � is di�erentiable with respect top for i = 1, . . . ,n by using
arguments similar to those found in the proof of Theorem4.6. Therefore, we have that

dDr(w � )
dp

=
�
� 2 Š2wT

� �
� dw�

dp

where

dw�

dp
=

�
���������

�
���������
� T� Š1

.
////////0

(µ1 Šsign(w1� )p� 1)
...

(µn Šsign(wn� )p� n)

1
222222223

ŠV � T� Š1�

�
���������

�
���������
Š� Š1

.
////////0

sign(w1� )� 1
...

sign(wn� )� n

1
222222223

+

�
������

n#

i =1

|wi � |� i

�
������ � Š1�

�
���������

Š

�
���������
� Š1

.
////////0

(µ1 Šsign(w1� )p� 1)
...

(µn Šsign(wn� )p� n)

1
222222223

ŠV � Š1�

�
���������

�
���������
Š� T� Š1

.
////////0

sign(w1� )� 1
...

sign(wn� )� n

1
222222223

+

�
������

n#

i =1

|wi � |� i

�
������ � T� Š1�

�
���������

�
���������

�
���������
� T� Š1

.
////////0

(µ1 Šsign(w1� )p1� 1)
...

(µn Šsign(wn� )pn� n)

1
222222223

ŠV � T� Š1�

�
���������

Š2
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by using Theorem6.10and the Envelope TheoremA.24, so that

dw�

dp


p=0

=

�
���������

�
� T� Š1µ ŠV̄ � T� Š1�

�
�
���������
Š� Š1

.
////////0

sign(w̄1)� 1
...

sign(w̄n)� n

1
222222223

+

�
������

n#

i =1

|w̄i |� i

�
������ � Š1�

�
���������

Š
�
� Š1µ ŠV̄ � Š1�

�
�
���������
Š� T� Š1

.
////////0

sign(w̄1)� 1
...

sign(w̄n)� n

1
222222223

+

�
������

n#

i =1

|w̄i |� i

�
������ � T� Š1�

�
���������

�
���������

�
� T� Š1µ ŠV̄ � T� Š1�

� 2

=

�
���������

�
������

n#

i =1

|w̄i |� i

�
������ � Š1�� T� Š1µ Š� Š1

.
////////0

sign(w̄1)� 1
...

sign(w̄n)� n

1
222222223
� T� Š1µ

+ V̄ � Š1

.
////////0

sign(w̄1)� 1
...

sign(w̄n)� n

1
222222223
� T� Š1� + � Š1µ � T� Š1

.
////////0

sign(w̄1)� 1
...

sign(w̄n)� n

1
222222223

Š

�
������

n#

i =1

|w̄i |� i

�
������ � Š1µ � T� Š1� ŠV̄ � Š1�� T� Š1

.
////////0

sign(w̄1)� 1
...

sign(w̄n)� n

1
222222223

�
���������

�
� T� Š1µ ŠV̄ � T� Š1�

� Š2

and

dDr(w � )
dp


p=0

=

�
������

�
������

n#

i =1

|w̄i |� i

�
������ � T� Š1µ

�
� 2� Š1� Š2

�

Š� T� Š1µ

�
���������
� 2� Š1

.
////////0

sign(w̄1)� 1
...

sign(w̄n)� n

1
222222223

Š2
n#

i =1

|w̄i |� i

�
���������

+ V̄ � T� Š1�

�
���������
� 2� Š1

.
////////0

sign(w̄1)� 1
...

sign(w̄n)� n

1
222222223

Š2
n#

i =1

|w̄i |� i

�
���������

+ � T� Š1

.
////////0

sign(w̄1)� 1
...

sign(w̄n)� n

1
222222223

�
� 2� Š1µ Š2µ Tw̄

�

Š

�
������

n#

i =1

|w̄i |� i

�
������ � T� Š1�

�
� 2� Š1µ Š2µ Tw̄

�

ŠV̄ � T� Š1

.
////////0

sign(w̄1)� 1
...

sign(w̄n)� n

1
222222223

�
� 2� Š1� Š2

�
�
���������
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�
� T� Š1µ ŠV̄ � T� Š1�

� Š2

=

�
������

�
������

n#

i =1

|w̄i |� i

�
������ A (BŠ2) Š

�
������ C Š2

n#

i =1

|w̄i |� i

�
������

+ V̄ D

�
������ C Š2

n#

i =1

|w̄i |� i

�
������ + E

�
F Š2µ Tw̄

�

Š

�
������

n#

i =1

|w̄i |� i

�
������ D

�
F Š2µ Tw̄

�
ŠV̄ E(BŠ2)

�
������

�
� T� Š1µ ŠV̄ � T� Š1�

� Š2
.

Since a necessary and su�cient condition for a fraction to be positive is that its numerator
is greater than or equal to zero, (6.10) follows immediately. �

6.2.2 Eigenvalue Uncertainty

We consider the e�ects of eigenvalue uncertainty on the portfolio diversi�cation return. To
obtain analytical results later, we do not letwi to be 
 i , so that the robust location-scale
problem (4.3) can be rewritten as

max
wi �� \{
 i },i=1,...,n

�
����
����

wTµ Š� (� )

56

wT

�
������

n#

i =1

(� i + bi )ui u
T
i

�
������ w : wT� = 1,w 	 �

�
����
����

. (6.11)

Note that the impact of removing
 i from the feasible domain ofwi is negligible due to
continuity of the original problem and the optimal solution of (6.11) can be very well approx-
imated in practice by solving

max
w�� n

�
����
����

wTµ Š� (� )

56

wT

�
������

n#

i =1

(� i + bi )ui u
T
i

�
������ w :

wT� = 1,
w 	 � + � �

�
����
����

where � is a small positive number. Like in the case of location uncertainty, we state a
theorem providing us with the optimal solution of (6.11) in analytical form.

Theorem 6.13
LetV be the optimal value of(6.11), then its optimal solution is

w� =

� & n
i =1(� i + bi )Š1ui u

T
i

�
µ ŠV

� & n
i =1(� i + bi )Š1ui u

T
i

�
�

� T
� & n

i =1(� i + bi )Š1ui u
T
i

�
µ ŠV � T

� & n
i =1(� i + bi )Š1ui u

T
i

�
�

.
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Proof: Note that solving (6.11) is equivalent to solving

max
xi �� \{0},i =1,...,n

�
���������
���������

[|x1|+ 
 1, . . . , |xn|+ 
 n] µ

Š� (� )

577776
[|x1|+ 
 1, . . . , |xn|+ 
 n]

� & n
i =1(� i + bi )Š1ui u

T
i

�
.
////////0

|x1|+ 
 1
...

|xn|+ 
 n

1
222222223

: [|x1|+ 
 1, . . . , |xn|+ 
 n]T � = 1

�
���������
���������

(6.12)

for

.
////////0

|x1|+ 
 1
...

|xn|+ 
 n

1
222222223
. Let x� be the optimal solution of (6.12). Sincexi cannot be0, the objective

and constraint functions are continuously di�erentiable so that there exists a Lagrange
multiplier � � which satis�es

.
////////0

sign(x1� )µ1
...

sign(xn� )µn

1
222222223

Š� (� )

diag(sign(x1� ), . . . ,sign(xn� ))
� & n

i =1(� i + bi )Š1ui u
T
i

�
.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

577776
[|x1� |+ 
 1, . . . ,|xn� |+ 
 n]

� & n
i =1(� i + bi )Š1ui u

T
i

�
.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

Š� �

.
////////0

sign(x1� )
...

sign(xn� )

1
222222223

= 0n×1.

(6.13)
and

[|x1� |+ 
 1, . . . , |xn� |+ 
 n]T � = 1 (6.14)

Multiplying (6.13) on the left by[x1� + sign(x1� )
 1, . . . ,xn� + sign(xn� )
 n], we obtain

[|x1� |+ 
 1, . . . ,|xn� |+ 
 n] µ

Š� (� )

5777776
[|x1� |+ 
 1, . . . , |xn� |+ 
 n]

�
������

n#

i =1

(� i + bi )Š1ui u
T
i

�
������

.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

Š� � [|x1� |+ 
 1, . . . ,|xn� |+ 
 n]T � = 0

which implies
� � = V

by (6.14) and the fact that both (6.11) and (6.12) have the same optimal value. Multiplying
(6.13) on the left by� T� Š1diag(sign(x1� ), . . . ,sign(xn� )) obtains

� T

�
������

n#

i =1

(� i + bi )
Š1ui u

T
i

�
������ µ
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Š� (� )

� T

.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

577776
[|x1� |+ 
 1, . . . ,|xn� |+ 
 n]

� & n
i =1(� i + bi )Š1ui u

T
i

�
.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

Š� � �
T

�
������

n#

i =1

(� i + bi )
Š1ui u

T
i

�
������ � = 0

 � (� ) =

�
������ � T

�
������

n#

i =1

(� i + bi )
Š1ui u

T
i

�
������ µ Š� � �

T

�
������

n#

i =1

(� i + bi )
Š1ui u

T
i

�
������ �

�
������

5777776
[|x1� |+ 
 1, . . . , |xn� |+ 
 n]

�
������

n#

i =1

(� i + bi )Š1ui u
T
i

�
������

.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

by using (6.14) again. Substituting the above into (6.13) before multiplying the resulting
equation on the left by� Š1diag(sign(x1� ), . . . ,sign(xn� )) result in

�
������

n#

i =1

(� i + bi )
Š1ui u

T
i

�
������ µ Š� �

�
������

n#

i =1

(� i + bi )
Š1ui u

T
i

�
������ �

Š

.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

�
������ � T

�
������

n#

i =1

(� i + bi )
Š1ui u

T
i

�
������ µ Š� � �

T

�
������

n#

i =1

(� i + bi )
Š1ui u

T
i

�
������ �

�
������ = 0

so that rearranging we get
.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

=

� & n
i =1(� i + bi )Š1ui u

T
i

�
µ Š� �

� & n
i =1(� i + bi )Š1ui u

T
i

�
�

� T
� & n

i =1(� i + bi )Š1ui u
T
i

�
µ Š� � � T

� & n
i =1(� i + bi )Š1ui u

T
i

�
�

.

It remains to substitutew� =

.
////////0

|x1� |+ 
 1
...

|xn� |+ 
 n

1
222222223

and � � = V into the above equation to obtain the

desired result. �

6.2.2.1 Individual Eigenvalue Uncertainty

We are now ready to provide a necessary and su�cient condition (6.15) in the following
theorem for the diversi�cation return of the portfolio obtained by solving

max
wi �� \{
 i },i=1,...,n

�
wTµ Š� (� )



wT� w : wT� = 1,w 	 �

�

to increase when thei th eigenvalue of the scale matrix changes slightly.
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Theorem 6.14
Letw� be the optimal solution of

w� =

� & n
i =1(� i + bi )Š1ui u

T
i

�
µ ŠV

� & n
i =1(� i + bi )Š1ui u

T
i

�
�

� T
� & n

i =1(� i + bi )Š1ui u
T
i

�
µ ŠV � T

� & n
i =1(� i + bi )Š1ui u

T
i

�
�

.

Then, a necessary and su�cient condition fordDr(w � )
dbj


b=0

to be positive is

AV̄ 2 + BV̄ + C > 0 (6.15)

where

A =
�
� 2 Š2w̄T�

�
�
������
� Š1�� Tuj u

T
j � Šuj u

T
j �� T� Š1�

� 2
j

�
������ ,

B =
�
� 2 Š2w̄T�

�
�
������
uj u

T
j �� T� Š1µ + uj u

T
j µ � T� Š1� Š� Š1µ � Tuj u

T
j � Š � Š1�� Tuj u

T
j µ

� 2
j

�
������ ,

C =
�
� 2 Š2w̄T�

�
�
������
� Š1µ � Tuj u

T
j µ Šuj u

T
j µ � T� Š1µ

� 2
j

+
dV
dbj


b=0

�
� Š1µ � T� Š1� Š� Š1�� T� Š1µ

� �

.

Proof: First, note thatwi � is di�erentiable with respect tobj for all i, j = 1, . . . ,n by using
arguments similar to those found in the proof of Theorem4.6. Therefore, the derivative of
the diversi�cation return of the portfolio obtained by solving (6.11) with respect tobj is

dDr(w � )
dbj

=

�
������

.
/////0

n#

i =1

(� i + bi )u
2
i 1, . . . ,

n#
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2
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=
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Š
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.

such that
dV
dbj

= Š
� (� )(uT

j w� )2

 & n

i =1(� i + bi )(u
T
i w� )2

,
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by using the Envelope TheoremA.24. Thus, we have

dw�
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so that

dDr(w � )
dbj


b=0

=
�
� 2 Š2w̄T�

� �
dw�

dbj


b=0

�

=
�
AV̄ 2 + BV̄ + C

� �
� T� Š1µ ŠV̄ � T� Š1�

� Š2
.

The theorem follows by noting that a necessary and su�cient condition for the above ex-
pression to be positive is for its numerator to be as well. �

6.2.2.2 Simultaneous Eigenvalue Uncertainty

We now provide a necessary and su�cient condition (6.16) in the following theorem for the
diversi�cation return of the portfolio obtained by solving

max
wi �� \{
 i },i=1,...,n

�
wTµ Š� (� )



wT� w : wT� = 1,w 	 �

�

to increase when the each eigenvalue of the scale matrix changes slightly.

Theorem 6.15
Letw� be the optimal solution of

w� =
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T
i

�
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� & n
i =1(� i + bi )Š1ui u

T
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T
i

�
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T
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�
�
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wherebi = b for i = 1, . . . ,n. Then, a necessary and su�cient condition fordDr(w � )
db


b=0

to be
positive is

AV̄ 2 + BV̄ + C > 0 (6.16)

where
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.

Proof: First, note thatwi � is di�erentiable with respect tob for i = 1, . . . ,n by using
arguments similar to those found in the proof of Theorem4.6. Therefore, we have that
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by using the Envelope TheoremA.24. Thus, we have

dw�

db


b=0

=

�
������
�
� T� Š1µ ŠV̄ � T� Š1�

�
�
������

n#

i =1

�
����� Š

ui u
T
i µ

� 2
i

+ V̄
ui u

T
i �

� 2
i

�
����� Š

dV
db


b=0

� Š1�

�
������

Š
�
� Š1µ ŠV̄ � Š1�

�
�
������

n#

i =1

�
����� Š

� Tui u
T
i µ

� 2
i

+ V̄
� Tui u

T
i �

� 2
i

�
����� Š

dV
db


b=0

� T� Š1�

�
������

�
������

125



Chapter 6. Diversi�cation
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so that

dDr(w � )
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=
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� �
dw�
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�
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�
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� Š2
.

The theorem follows immediately by noting that a necessary and su�cient condition for the
above expression to be positive is for its numerator to be as well. �

6.2.3 Location and Eigenvalue Uncertainties

We consider the e�ects of both location and eigenvalue uncertainties on the portfolio diver-
si�cation return. To obtain analytical results later, we do not letwi to be either0 or 
 i , so
that the robust location-scale problem (4.3) can be rewritten as

max
wi �� \{0,
 i },i=1,...,n

�
����
����

wTµ Š
n#

i =1

|wi |ai Š � (� )

56
n#

i =1

(� i + bi ) (wTui )
2 : wT� = 1,w 	 �

�
����
����

. (6.17)

Note that the impact of removing0 and 
 i from the feasible domain ofwi is negligible due
to the continuity of the original problem. The optimal solution of (6.17) can be very well
approximated in practice by solving

max
w�� n

�
����
����

wTµ Š
n#

i =1

|wi |ai Š � (� )

56
n#

i =1

(� i + bi ) (wTui )
2 :
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� + � � � w � Š � � ,

w 	 � �

�
����
����

where � is a small positive number. We state a theorem providing us with the optimal
solution of (6.11) in analytical form.
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Theorem 6.16
The optimal solution of(6.17)is
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whereV is the associated optimal value.

Proof: The proof is completely analogous with that of Theorem6.10with the covariance
matrix replaced by its eigendecomposition. �

Subsequently, we provide a necessary and su�cient condition (6.18) in the following
theorem for the diversi�cation return of the portfolio obtained by solving

max
wi �� \{0,
 i },i=1,...,n

�
wTµ Š� (� )



wT� w : wT� = 1,w 	 �

�

to increase when each asset location and each eigenvalue of the scale matrix changes slightly.

Theorem 6.17
Letw� be the optimal solution of
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ai = p� i and bi = p for i = 1, . . . ,n. Then, a necessary and su�cient condition fordDr(w � )
dp


p=0

to be positive is
AV̄ 2 + BV̄ + C > 0, (6.18)

where
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Proof: First, note thatwi � is di�erentiable with respect top for i = 1, . . . ,n by using
arguments similar to those found in the proof of Theorem4.6. Therefore, we have that
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by using the Envelope TheoremA.24. Thus, we have
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so that
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The theorem follows immediately by noting that a necessary and su�cient condition for the
above expression to be positive is for its numerator to be as well. �

6.2.4 Eigenvector Uncertainty

Finding conditions for the diversi�cation return of the portfolio obtained by solving the
location-scale problem to increase if the eigenvectors of the scale matrix� change direction
slightly with their orthogonality preserved is non-trivial, although there is an expression
(6.19) to describe the behavior of this change in the following theorem, which can be easily
modi�ed to include location uncertainty and/or eigenvalue uncertainty.

Theorem 6.18
Denotēw the optimal solution of
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.
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respectively, wherew� is also the optimal solution of the robust location-scale problem
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using Theorem3.5.
Denotez� the vectorized form of the upper half ofZ� . Assume[z� , � n+1� ]T, [z� , � n+2� ]T and

each column of the matrix on the left-hand side of the semi-de�nite constraint in(4.26)evaluated
at (w� , � � ,y� ) are all non-zero vectors. If there exists a feasible solution of(4.26)such that the
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(matrix) inequality constraints hold strictly, then the derivative of the diversi�cation return of the
portfolio obtained by solving(4.26)evaluated atc = 0 is

dDr(w � )
dc


c=0

= (� 2 Š2w̄T� )
dw�

dc


c=0

(6.19)

wheredw�
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Š
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provided the inverse exists, such that each off 1, . . . , fN =4n2+2n+5 represents the left-hand side of
one of the equations
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� n+2� Š � (� ) + tr
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0n×n diag(�̄ 1, . . . ,�̄ n)

�
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�

= 0, (6.24)
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� � Š1 = 0, (6.25)

� i � wi � = 0, i = 1, . . . ,n, (6.26)

� n+1� � � = 0, (6.27)

� n+2� y� = 0. (6.28)

Proof: Due to the same reasons as in the proof of Theorem4.9, the KKT conditions
(6.21)-(6.28) hold, and(w� , � � ,y� ) and Z� are continuously di�erentiable with respect toc.
Since the partial derivative of (6.23) with respect to� n+1� is one, and the Jacobian of the
left-hand side of (6.22)-(6.23) with respect to(� n+1� , � � ), the Jacobian of the left-hand side
of (6.22)-(6.23) with respect to(� n+1� , � i � ) for i = 1, . . . ,n, and the Jacobian of the left-hand
side of (6.23)-(6.24) with respect to(� n+1� , � n+2� ) are all non-singular, we have that� � and
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� � are continuously di�erentiable with respect toc as well by the Implicit Function Theorem
A.19. Thus, di�erentiating each equation in (6.21)-(6.28) with respect toc obtains

.
///////////0

�f 1
�w 1�

. . . �f 1
�w n�

�f 1
�� �

�f 1
�y �

�f 1
�Z 11�

. . . �f 1
�Z 1,2n�

. . . . . . �f 1
�Z 2n,1�

. . . �f 1
�Z 2n,2n�

�f 1
�� �

�f 1
�� 1�

. . . �f 1
�� n+2�

...
�f N
�w 1�

. . . �f N
�w n�

�f N
�� �

�f N
�y �

�f N
�Z 11�

. . . �f N
�Z 1,2n�

. . . . . . �f N
�Z 2n,1�

. . . �f N
�Z 2n,2n�

�f N
�� �

�f N
�� 1�

. . . �f N
�� n+2�

1
222222222223

(
dw1�
dc . . . dwn�

dc
d� �
dc

dy�
dc

dZ11�
dc . . . dZ1,2n�

dc . . . . . .dZ2n,1�
dc . . . dZ2n,2n�

dc
d� �
dc

d� 1�
dc . . . d� n+2�

dc

)T

+

.
//////////0

�f 1
�c
...

�f N
�c

1
22222222223

= 0N ×1,

from which it follows that dw�
dc is indeed the �rst n entries of (6.20) provided the inverse

exists. The proof concludes by noting (6.19) as an obvious fact. �
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Chapter 7

Conclusions

In Chapter 1, we give the motivation of our thesis and introduce the Markowitz model
before showing that it is equivalent to the portfolio return value-at-risk optimization problem
if we assume the risky asset returns follow a multivariate normal distribution, in which
case a solution of the latter results in a portfolio expected return and standard deviation
that lies exactly on a point of the Markowitz e�cient frontier. If a riskless asset is added
and the amounts to be invested in the risky assets and riskless asset are predetermined
exogeneously, then the optimal portfolio with riskless asset has an expected return and
standard deviation that falls on the line joining the point represented by the expected return
and standard deviation of the optimal portfolio without riskless asset and(0,µ0), whereµ0
is the risk-free asset return. If the amount to be invested in the risky assets and riskless asset
are to be determined endogeneously, then three things can happen. First, if the optimal
portfolio value-at-risk is lower than the risk-free asset return, then all wealth is kept in
the riskless asset. Second, if the optimal portfolio value-at-risk is higher than the risk-free
asset return, then all wealth is placed on the risky assets. Third, if the optimal portfolio
value-at-risk is equal to the risk-free asset return, then the allocation of wealth has to be
decided exogeneously. We also mention the failure of the Markowitz model to include model
uncertainty and higher moments, but since it is equivalent to the portfolio return value-at-
risk optimization problem under multivariate normality of risky asset returns, these features
can be added into the former implicitly by incorporating them into the latter. However,
doing so generally causes the resulting problem to be non-convex and existing methods in
the literature to overcome this issue are too conservative and/or intractable.

In Chapter 2, we introduce a spline approximation method where the minimal sample
value-at-risk or any other risk measure is smoothed via a quadratic B-spline, which can
then be maximized. Gaivoronski and P�ug (2005) introduce a similar method, but theirs
does not take into account model uncertainty. The cardinality of the discretization set of
the feasible domain and the number of basis parameters to be estimated only increases
polynomially and linearly respectively with the number of assets. Simulation results are
reasonably accurate in the two-dimensional setting.

In Chapter 3, we show that the robust portfolio return value-at-risk optimization prob-
lem under elliptical distributions possesses a location-scale form. We introduce the box
and ellipsoidal uncertainty sets for the location vector, where in particular under the former
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uncertainty set the location-scale problem is equivalent to an SOCP. We introduce the box,
ellipsoidal, correlation coe�cient, speci�c portfolio scale and one-factor model uncertainty
sets for the scale matrix, under any of which uncertainty sets the location-scale problem
either is very conservative, requires a positive de�nite constraint on the scale matrix (since
the uncertainty set does not live in the positive de�nite space), has a high computational
complexity or is in any combination of the three situations just mentioned. A novel eigen-
decomposition uncertainty set for the scale matrix is then introduced where the eigenvalues
vary in a box uncertainty set and the eigenvectors each varies in a cone uncertainty set with
orthogonality preserved among them, such that the scale matrix lives in the positive de�-
nite space and all its other entries are determined by �xing any one of them, thus greatly
reducing conservativeness. Although the robust location-scale problem with the eigende-
composition uncertainty set for the scale matrix is non-convex in general, we can convert it
into an SDP which is solvable in polynomial time.

In Chapter 4, we introduce a scale invariant method to determine the size of the box
uncertainty set for the location vector, the box uncertainty set for the eigenvalues and
the cone uncertainty set for each eigenvector, based on a chosen level of sensitivity. We
perform some numerical experiments using data obtained from Nasdaq and NYSE under
di�erent combinations of these uncertainty sets, where the median sensitivity level is always
chosen and the portfolio return value-at-risk is maximized assuming that the returns follow
a multivariate normal distribution and several other comparable elliptical distributions. In
particular, we see that with uncertainty, the move towards a less diversi�ed portfolio (in the
sense that fewer assets are included) is more gradual as the value-at-risk level increases.

In Chapter 5, we include trading costs and integer constraints so that the robust location-
scale optiimization problem involving any combination of the location, eigenvalue and eigen-
vector uncertainty sets from the previous chapter can be reformulated as a mixed integer
program. Numerical experiments analogous to those conducted previously are performed
where similar conclusions can be drawn.

In Chapter 6, we introduce the portfolio RQE as a unifying diversi�cation measure,
and interpret the robust location-scale problem as maximizing the diversi�cation return (a
special case of the portfolio RQE) combined with other measures so that the asset allo-
cation performance is improved, under imperfect information of the model. We also �nd
expressions for the sensitivity of the diversi�cation return of the optimal portfolio obtained
by solving the location-scale problem to various types of uncertainty, and in some cases
provide conditions for them to be positive.

In conclusion, we provide a probabilistic method and a deterministic model within the
location-scale framework to robustly optimize the portfolio return value-at-risk, with the
�exibility of extending to other risk measures. In the future, we hope to move outside the
location-scale framework without compromising on computational complexity and conser-
vativeness, as well as consider the multi-period setting. On a �nal note, what we present in
this thesis is only our humble opinion of robust portfolio optimization, which for sure is a
burgeoning �eld of research with many more exciting years to come.
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A.1 Mathematical Background

De�nition A.5
A functionf : � n � � is called anorm if

(i) f is non-negative:f (x) 	 0 for all x � � n,

(ii) f is de�nite: f (x) = 0 only if x = 0,

(iii) f is homogeneous:f (tx) = |t |f (x) �t � � , x, � � n, and

(iv) f satis�es the triangle inequality:f (x + y) � f (x) + f (y) for all x,y � � n.

Remark A.5
We use the notation�· � to represent a norm hereafter. Thedistancebetween two pointsx,y � � n

is de�ned as the norm of its di�erence�x Š y�. Furthermore, if� · � a and � · � b represent two
di�erent norms de�ned onRn, then there exists� and � such that for allx � � n,

� �x� a � � x� b � � �x� a.

Therefore, we say that all the norms of any �nite-dimensional Euclidean space areequivalent.

De�nition A.6
A setC � � n is convexif for anyx,y � C and � � [0,1], then� x + (1 Š� )y � C .

De�nition A.7
A coneis a setC � � n such that ifx � C and � 	 0, then� x � C .

De�nition A.8
An elementx � C � � n is an interior point if there exists an� > 0 such that all points whose
Euclidean distance is less than or equal to� fromx lies completely inC, that is,

{y : �y Šx� 2 � � } � C .

Theinterior of C, which we denote asint(C), is the set of the interior points ofC.
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Remark A.6
Due to the equivalence of norms in the Euclidean space, all norms generate the same set of interior
points. Therefore, we choose the Euclidean norm� · � 2 without loss of generality.

De�nition A.9
An setC � � n is openif every of its points is in its interior, that is,int(C) = C.

De�nition A.10
A setC � � n is closedif its complementRn\C = {x � � n : x � C}is open.

Remark A.7
Note that we can also de�ne closed sets in terms of convergent sequence and limit points. A set
C � � n is closed if and only ifx � � n for any sequence of pointsx1,x2, . . . which converges tox.

De�nition A.11
Thea�ne hull of a setC � � n is denoteda� C and de�ned as

a� C=

�
���
���

k#

i =1

� i xi :
k#

i =1

� i = 1

�
���
���

.

De�nition A.12
Therelative interior of a setC is denotedrelint C and de�ned as

{x : B(x, r ) � a� C � C for somer 	 0}.

whereB(x, r ) = {y : �y Šx� 2 � r }.

Remark A.8
Analogous to the de�nition of the interior of a set, any norm onRn de�nes the same relative
interior, so that we choose the Euclidean norm� · � 2 without loss of generality.

Theorem A.19 (Implicit Function Theorem)
Let f 1, . . . , fm : � m+n � � be continuously di�erentable functions. Consider the system of equa-
tions

f1(y,x) = c1

...

fm(y,x) = cm

(A.1)

wherey = [y1, . . . ,ym]T a x = [x1, . . . ,xn]T. Supposey� = [y1� , . . . ,ym� ]T andx� = [x1� , . . . ,xn� ]T

form a solution of(A.1), and the determinant of

�(f 1, . . . , fm)
�(y 1, . . . ,ym)

�

.
///////////0

�f 1
�y 1

. . . �f 1
�y m

...
...

...
�f m
�y 1

. . . �f m
�y m

1
222222222223
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evaluated at(y� ,x� ) is non-vanishing, then there exist continuously di�erentiable functionsg1(x), . . . ,gm(x)
such that

f 1(g1(x), . . . ,gm(x),x) = c1

...

fm(g1(x), . . . ,gm(x),x) = cm

for all x in a ball centered aroundx� , and

y1� = g1(x� )
...

ym� = gm(x� ).

In addition, �g k
�x h

(x� ) can be computed by lettingdxh = 1 anddxj = 0, j � h in

�f 1

�y 1
dy1 + . . .+

�f 1

�y m
dym +

�f 1

�x 1
dx1 + . . .+

�f 1

�x n
dxn = 0

...

�f m

�y 1
dy1 + . . .+

�f m

�y m
dym +

�f m

�x 1
dx1 + . . .+

�f m

�x n
dxn = 0

and solving fordyk, where each partial derivative is evaluated at(g1(x� ), . . . ,gm(x� ),x� ).

Remark A.9
Refer to [183, Chapter 15] for a discussion on the Implicit Function Theorem.

Lemma A.1 (S-Lemma)
(i) (homogeneous version) LetA, B be symmetric matrices of the same size such thatxTAx > 0

for somex. Then
xTAx 	 0  xTBx 	 0

holds if and only if
�� 	 0 : B � � A.

(ii) (inhomogeneous version) LetA, B be symmetric matrices of the same size and the quadratic
form

xTAx + 2aTx + �  xTBx + 2bTx + � 	 0

holds if and only if

�� 	 0 :

�
B Š� A b Š� a

bT Š� aT � Š��

�

� 0.
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Proof: Refer to [30, section 4.3.5]. �

Lemma A.2 (Schur Complement Lemma)
A symmetric block matrix

A =

�
P QT

Q R

�

with R being positive (semi)-de�nite if and only if

PŠQTRŠ1Q

is positive (semi)-de�nite.

Proof: A is positive semi-de�nite if and only if

�u, v : uTPu + 2uTQTv + vTRv 	 0

� � u : min
v

�
uTPu + 2uTQTv + vTRv

�
	 0. (A.2)

SinceR is positive semi-de�nite, the optimal value of the above optimization problem with
an objective function of quadratic form occurs exactly when the �rst-order condition is
satis�ed, that is, whenv = RŠ1Qu which, upon substituting into (A.2) obtains

�u : uT(PŠQTRŠ1Q)u 	 0,

equivalent to the positive semi-de�niteness ofPŠQTRŠ1Q. The same argument applies for
the positive de�nite case. �

Theorem A.20
Letx � � n andy,z � � +. Then

xTx � yz

if and only if ------

�
2x

y Šz

� ------
2

� y + z.

where� · � 2 represents the Euclidean norm.

Proof: If y and z are non-negative, then
------

�
2x

y Šz

� ------
2

� y + z

�

------

�
2x

y Šz

� ------

2

2

� (y + z)2

� 4xTx + (y Šz)2 � y2 + z2 + 2yz

� xTx � yz.

�
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A.2 Generalized Inequality Constrained Optimization

We �rst state two de�nitions which we will use in this section.

De�nition A.13
A non-strict partial ordering over a setC � � n, denoted as� C, is a binary relation such that
x,y,z � C satisfy the following properties:

(i) x � C x (re�exivity),

(ii) if x � C y andy � C x, thenx = y (antisymmetry),

(iii) if x � C y andy � C z, thenx � C z (transitivity).

De�nition A.14
A strict partial ordering over a setC � � n, denoted as� C, is a binary relation such that
x,y,z � K satisfy the following properties:

(i) x � C x (irre�exivity),

(ii) if x � C y, theny� C x, (asymmetry),

(iii) if x � C y andy � C z, thenx � C z (transitivity).

A.2.1 Generalized Inequality Constraints

De�nition A.15
A coneK � � n is proper if it is convex, closed, solid (has nonempty interior), and pointed
(contains no line, meaning that ifx,Šx � K , thenx = 0).

De�nition A.16
A generalized non-strict inequalityassociated with a proper coneK � � n is the non-strict
partial ordering de�ned by

x � K y � y Šx � K .

De�nition A.17
A generalized strict inequalityassociated with a proper coneK � � n is the strict partial
ordering de�ned by

x � K y � y Šx � int(K ).

Remark A.10
We also writey � K x andy � K x for x � K y andx � K y respectively.
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A.2.2 Duality
De�nition A.18
The set

K� = {y : xTy 	 0 �x � K}

whereK is a cone is called thedual coneof K.

Remark A.11
Note thatK� is always convex, even though it may not be so forK.

De�nition A.19
A functionf : � n � � m is K-convexif

f (� x + (1 Š� )y) � K �f (x) + (1 Š � )f (y).

for all x,y � � n and � � [0,1], whereK � � m is a proper cone associated with the generalized
inequality� K .

De�nition A.20
Consider the constrained optimization problem with generalized inequality constraints

max
x�� n

�
f (x) : gi (x) � Ki

0,hj (x) = 0, i = 1, . . . ,m, j = 1, . . . ,p
�

(A.3)

with Ki � � ci being a proper cone and a non-empty domainD = dom f � m
i =1 dom gi �

p
j =1

dom hj . The associated Lagrangian is de�ned as

L(x, � 1, . . . , � m,� ) = f (x) Š
m#

i =1

� T
i gi (x) Š

p#

j =1

� j hj (x),

such that� i � � ci and � = [ � 1, . . . , � p]. TheLagrange dual function is de�ned as

d(� 1, . . . ,� m,� ) = sup
x�D

L(x, � 1, . . . ,� m,� ).

Remark A.12
Sinced(� 1, . . . , � m,� ) is a pointwise supremum of the Lagrangian which is a�ne in(� 1, . . . ,� m,� ),
it is always convex.1

De�nition A.21
TheLagrange dual problemof (A.3) is

min
� 1,...,� m�

8 m
i =1 � ci

�
d(� 1, . . . ,� m,� ) : � i � K i �

0, i = 1, . . . ,m
�
. (A.4)

1It is a well-known fact that iff (x,y) is convex inx for eachy in an arbitrary setA , theng(x) = sup
y�A

f (x,y)

is convex inx.
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De�nition A.22
Letp� andd� be the optimal values of(A.3) and (A.4) respectively. Ifp� � d� , we say thatweak
duality holds. Ifp� = d� , we say thatstrong duality holds, or there iszero duality gapbetween
the primal and dual problems(A.3) and (A.4) respectively.

Theorem A.21
Weak duality always holds for(A.3).

Proof: Since� i � Ki �
0 and gi (x) � Ki

0 for any primal and dual feasiblex and � i respec-
tively, we have� T

i gi (x) � 0, so that

f (x) � f (x) Š
m#

i =1

� T
i gi (x) Š

p#

j =1

� i hi (x)

due to the third term on the right being zero. Taking the supremum on both sides overx
yields

p� � d(� 1, . . . ,� m,� ),

from which the result follows immediately. �

De�nition A.23
If there exists anx � relint D of (A.3) such thatgi (x) � Ki

and 0,hj (x) = 0 for i = 1, . . . ,m
and j = 1, . . . ,p, then we say thatSlater•s conditionholds.

Theorem A.22
If f is convex,gi is Ki -convex and Slater•s condition is satis�ed for(A.3), thenstrong duality
holds.

Proof: Refer to [170, p. 47]. �

Theorem A.23 (KKT Optimality Conditions)
Letx� and(� 1� , . . . , � m� ,� � ) be the primal and dual optimal solutions of(A.3) and (A.4) respec-
tively with zero duality gap. In addition, assume thatgi andhj are di�erentiable fori = 1, . . . ,m
andj = 1, . . . ,p. Then the following conditions, called the Karush-Kuhn-Tucker (KKT) conditions,
are satis�ed:

(i) gi (x� ) � Ki
0, i = 1, . . . ,m,

(ii) hj (x� ) = 0, j = 1, . . . ,p,

(iii) � i � � K i �
0, i = 1. . . . ,m,

(iv) � T
i � gi (x� ) = 0, i = 1, . . . ,m, and

(v) �f (x� ) +
& m

i =1 DgT
i (x� )�

�
i +

& p
j =1 � j � �h j (x� ) = 0.
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Proof: The �rst three conditions follow straightaway from the de�nitions of the primal
and dual problems. For the fourth and �fth conditions, note that

f (x� ) = d(� 1� , . . . ,� m� ,� � )

	 f (x� ) Š
m#

i =1

� T
i � gi (x� ) Š

p#

j =1

� i � hi (x� )

	 f (x� ),

(A.5)

where the equality is due to the zero duality gap, the �rst inequality is by de�nition of
the Lagrange dual problem, and the second inequality is due to the fact thathi (x� ) = 0
and � T

i � gi (x� ) � 0, with the latter being the case because� � � Ki �
0 and gi (x� ) � Ki

so that
� T

i � gi (x� ) � 0 by de�nition of the dual cone. This implies that

f (x� ) Š
m#

i =1

� T
i � gi (x� ) Š

p#

j =1

� i � hi (x� ) = f (x� ),

and that we must have
& m

i =1 � T
i � gi (x� ) = 0, where each summand is non-positive, from

which we conclude the fourth condition. We can also draw from (A.5) that x� minimizes
L(x, � 1� , . . . ,� m� ,� � ), from which the last condition follows. �

A.3 Envelope Theorems

Theorem A.24
[142] Consider the optimization problem

max
x�X

f (x, � )

whereX be the set of feasible solutions andf : � n ×� � � is a parameterized objective function.
Letx� = [x1� , . . . ,xn� ]T be an optimal solution and assume that the optimal valueV (� ) = f (x� , � )
is di�erentiable at� , that is,

dV
d�

=
n#

i =1

�f
�x i

(x� , � )
dxi �

d�
+

�f
��

(x� , � )

exists, then
dV
d�

=
�f
��

(x� , � ),

where�f
�x i

(x� , � ) and �f
�x i

(x� , � ) are partial derivatives with respect toxi and � evaluated atx�

respectively.

Proof: Since V is di�erentiable, we have that

dV
d�

=
dV
d� Š

=
dV
d� +

. (A.6)
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Now by the de�nitions ofV (� ) and X� (� ), it is obvious that

f (x� , �
� ) Šf (x� , � ) � V (� � ) ŠV (� ) (A.7)

for any � � > 0. Assuming� � Š� > 0, dividing both sides of (A.7) by it and taking their limits
as� � � � +, we obtain

lim
� � �� +

f (x� , � � ) Šf (x� , � )
� � Š �

� lim
� � �� +

V (� � ) ŠV (� )
� � Š �

�f
��

(x� , � ) �
dV
d� +

.

Analogously, assuming� � Š � < 0, dividing both sides of (A.7) by it and taking their limits
as� � � � Š yields �f

�� (x� , � ) 	 dV
d� Š

. This implies

dV
d� Š

�
�f
��

(x� , � ) �
dV
d� +


dV
d�

�
�f
��

(x� , � ) �
dV
d�

(by (A.6))


dV
d�

=
�f
��

(x� , � ).

�
Remark A.13
The above is the Envelope Theorem for an optimzation problem with a parameterized objective
function.

Theorem A.25
Letx� be an optimal solution of the primal problem

max
x�� n

�
f (x) : gi (x,ai ) � Ki

0,hj (x,bj ) = 0, i = 1, . . . ,m, j = 1, . . . ,p
�

with a non-empty domainD = dom f � m
i =1 dom gi �

p
j =1 dom hj , wheref , gi and hj are all

di�erentiable andKi � � ci are proper cones. Furthermore, let(� 1� , . . . ,� m� ,� � ) be an optimal
solution of the dual problem

min
� 1,...,� m�

8 m
i =1 � ci

�
����
����

sup
x�D

f (x) Š
m#

i =1

� T
i gi (x,ai ) Š

p#

j =1

� j hj (x,bj ) : � i � K i �
0, i = 1, . . . ,m

�
����
����

.

with zero duality gap. Ifx� is continuously di�erentiable at(a,b) wherea = [a1, . . . ,am]T and
b = [b1, . . . ,bp]T, then

df
dai

(x� ) = Š
�

�a i

ci#

k=1

� ikgik (x� ,ai ), i = 1, . . . ,m,

df
dbi

(x� ) = Š� j �
�h i

�b i
(x� ,bi ), i = 1, . . . ,p.
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