
Dimitrova, Piskac (Eds.): Fifth Workshop on
Synthesis (SYNT 2016)
EPTCS 229, 2016, pp. 100–111, doi:10.4204/EPTCS.229.9

c© Manos Koukoutos, Etienne Kneuss & Viktor Kuncak
This work is licensed under the
Creative Commons Attribution License.

An Update on Deductive Synthesis and Repair in the Leon
Tool

Manos Koukoutos Etienne Kneuss Viktor Kuncak
EPFL, Switzerland

firstname.lastname@epfl.ch

We report our progress in scaling deductive synthesis and repair of recursive functional Scala pro-
grams in the Leon tool. We describe new techniques, including a more precise mechanism for en-
coding the space of meaningful candidate programs. Our techniques increase the scope of synthesis
by expanding the space of programs we can synthesize and by reducing the synthesis time in many
cases. As a new example, we present a run-length encoding function for a list of values, which Leon
can now automatically synthesize from specification consisting of the decoding function and the local
minimality property of the encoded value.

1 Introduction

This tool paper presents our recent improvements to deductive synthesis and repair of the Leon tool
[12,13]. The tool aims to synthesize (or repair) purely functional programs in a subset of Scala containing
mutually recursive functions. The generated code should provably satisfy a specification, which is given
by the programmer in the form of function pre- and postconditions [25], as well as (possibly symbolic)
input-output examples [12].

Although our system does support interaction in synthesis [11, Page 13], the evaluation in this paper
focuses on fully automated synthesis, based on searching a space of applicable rules. We employ a set
of deductive synthesis rules, that either decompose a synthesis problem into simpler ones, or, if possible,
solve it directly by synthesizing a satisfying solution. The most notable closing rule is Symbolic Term
Exploration, which generates symbolic terms based on an expression grammar. The grammar is type-
directed and depends on the particular synthesis problem, e.g. it produces constants and variables in
scope, as well as calls to available functions.

As demonstrated by our experimental evaluation, our improvements allow the tool to synthesize
larger expressions, as well as to synthesize a wider variety of expressions. This was made possible
by refinements throughout the synthesis framework and its rules. A notable novelty is a more general
notion of program grammars whose non-terminals are equipped with attributes. These attributes enable
us to produce certain types of expressions in their normal form only and thus skip other expressions
that are syntactically different yet semantically equivalent. We exploit for instance algebraic laws for
arithmetic operators. Such refined grammars may thus prove useful for future versions of syntax-guided
synthesis format [2]. By presenting a publicly available snapshot of our system and benchmarks we hope
to contribute to establishing a new baseline for recursive program synthesis and repair.

The topic of deductive synthesis from specifications has been explored actively over the past decades
[5, 14]. A key practical question that we aim to address is scalability on program tasks containing re-
cursive functions. Most existing systems require sketches, specifications of the building block operators
relevant for a given problem, or definitions of domain-specific languages. Through such additional spec-
ification users reduce the search space compared to a more general case that our tool addresses. The

http://dx.doi.org/10.4204/EPTCS.229.9
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

Manos Koukoutos, Etienne Kneuss & Viktor Kuncak 101

def decode[A](l: List[(BigInt, A)]): List[A] =
l match {
case Nil() ⇒ Nil()
case Cons((i, x), xs) ⇒

List.fill(i, x) ++ decode(xs) }

def legal[A](l: List[(BigInt, A)]): Boolean =
l match {
case Nil() ⇒ true
case Cons((i,), Nil()) ⇒ i > 0
case Cons((i, x), tl@Cons((, y),)) ⇒

i > 0 && x != y && legal(tl) }

def encode[A](l: List[A]): List[(BigInt, A)] =
choose { res ⇒

legal(res) && decode(res) == l }

def encode[A](l : List[A]): List[(BigInt, A)] = {
l match {
case Nil() ⇒ Nil()
case Cons(h0, t0) ⇒
val rec = encode(t0)
rec match {
case Nil() ⇒ List((BigInt(1), h0))
case Cons(h1 @ (h1 1, h1 2), t1) ⇒
if (h0 == h1 2) {

Cons((h1 1 + BigInt(1), h1 2), t1)
} else {

Cons((BigInt(1), h0), Cons(h1, t1))
} } }

} ensuring { res ⇒
legal[A](res) && decode[A](res) == l
}

Figure 1: Run-length encoding problem (left) and solution (right)

SyGuS synthesis competition [2] helps objective evaluation of synthesis tasks thanks to a grammar as an
explicit input. The benchmarks we discuss in this paper require more expressive power than the current
SyGuS competition categories. We hope that in the future there will be richer categories, and that we
will also understand good ways to leverage synthesis in restricted categories to synthesize more complex
programs. Here the situation is analogous to verification systems that generate verification conditions in
SMT-LIB input format to prove correctness of programs whose full semantics is beyond the abilities of
SMT solvers.

1.1 Example

The left column of Figure 1 specifies a run-length encoding algorithm. Consider the encode function
specification. It is expressed as a nondeterministic choose construct, which our tool will try to convert
into a deterministic (executable) program that satisfies the predicate within. This predicate expresses
encode as the inverse of the decode function that generates legal run-length encodings. Leon is able to
generate and formally verify the solution shown on the right in about 20 seconds. It is one of the very
few tools that can solve similar problems with this level of automation.

The closest to the refinement of our 2013 approach that we here present is the recent SYNQUID

system [19] that can synthesize both encode and decode functions from a specification based on liquid
types in a very short amount of time. The version of the corresponding benchmark 1 that was pointed to
us, however, explicitly lists the zero constant, successor, and predecessor function as the only primitive
building blocks for arithmetic expressions. In contrast, our system explores trees that, in addition to
constants, contain general binary arithmetic operations including addition and substraction operators. As
a result, our search space is notably larger. In our attempts, adding components corresponding to our
search space made the SYNQUID web example timeout after the 120 second limit. Given that we are not
experts in using SYNQUID, a more systematic comparison remains to be done in the future.

1http://comcom.csail.mit.edu/demos/#run-length

http://comcom.csail.mit.edu/demos/#run-length

102 An Update on Deductive Synthesis and Repair in the Leon Tool

1.2 Basic synthesis notation

We will repeat a very brief overview of basic synthesis notation as given in [12]. For more details,
see [13].

A synthesis problem is written as Jā 〈Π�φ〉 x̄K, where ā are the input variables of the problem, Π is
the current path condition, φ is the problem specification and x̄ are the output variables. Π is a function of
ā, whereas φ of both ā and x̄. A solution to a synthesis problem is a pair 〈P | T 〉, where T is the program
term generated by synthesis, and P is a precondition under which T is a valid solution. We illustrate the
notation for decomposition rules with a rule for splitting a problem containing a top-level disjunction:

Jā 〈Π�φ1〉 x̄K ` 〈P1 | T1〉 Jā 〈Π�φ2〉 x̄K ` 〈P2 | T2〉
Jā 〈Π�φ1∨φ2〉 x̄K ` 〈P1∨P2 | if(P1) {T1} else {T2}〉

This rule should be interpreted as follows: from an input synthesis problem Jā 〈Π�φ1∨φ2〉 x̄K,
the rule decomposes it in two subproblems: Jā 〈Π�φ1〉 x̄K and Jā 〈Π�φ2〉 x̄K. Given corresponding
solutions 〈P1 | T1〉 and 〈P2 | T2〉, the rule solves the initial problem with 〈P1∨P2 | if(P1) {T1} else {T2}〉.

2 Recursive calls

A key feature of Leon’s synthesis is the ability to synthesize programs with recursive function calls.
In [12] we present a method to introduce recursive calls that have good chance of not introducing

non-termination. Let us say we are trying to synthesize a function f oo with formal arguments a. Leon
would track these arguments with a construct ⇓[f oo(a)]. The arguments a would then be transformed
as needed by various decomposition rules. When Symbolic Term Exploration is invoked, it will look for
the current ⇓[f oo(a′)] construct, and introduce recursive calls to f oo such that at least one argument is
smaller than initially, for a type-dependent definition of “smaller”. The rest of the arguments would be
left free to be generated by symbolic term exploration.

Our new deployment of synthesis in Leon changes this approach, and instead uses a dedicated de-
ductive rule which introduces recursive calls to the synthesis context. As before, it forces one argument
of the function to be smaller, but the rest of the arguments are fixed. This rule replaces all rules which
introduced induction in any way.

Let (Π∧a← e) bind a fresh variable a to the value e in the path condition Π of a problem. Then the
rule can be formally written as follows:

INTRODUCE REC. CALLSq
ā
〈
Π∧ rec← f oo(a1, . . . ,a′i, . . . ,an)�φ1

〉
x̄
y
` 〈P1 | T1〉 a′i ∈ argsSmaller(ai,Π)

Jā 〈⇓[f oo(a1, . . . ,ai, . . . ,an)]∧Π�φ1〉 x̄K ` 〈P1 | T1〉

To define argsSmaller, let us consider an abstract class type AC with a concrete descendant CC, and
let F be the fields of CC. Then

argsSmaller(i : Int, i > 0∧Π) = {i−1}
argsSmaller(i : Int, i < 0∧Π) = {i+1}
argsSmaller(i : BigInt, i > 0∧Π) = {i−1}
argsSmaller(i : BigInt, i < 0∧Π) = {i+1}
argsSmaller(c : AC, c : CC∧Π) = {c. f ∪ argsSmaller(c. f ,Π) | f ∈ F ∧ f : AC}
argsSmaller(v, Π) = /0 otherwise

Manos Koukoutos, Etienne Kneuss & Viktor Kuncak 103

This approach cannot generate recursive calls where more than one argument changes; for example,
it cannot generate a recursive call to a function which updates an accumulator while traversing a data
structure. However, it has the benefit that the variable rec, which is bound to the result of the recursive
call, is now available to further decomposition rules. This allows for new forms of programs to be
synthesized. For example, see the 6th line of the solution in Figure 1: the introduced variable rec is
pattern-matched on by another rule, which is necessary to solve the particular benchmark.

3 Term Grammars

The main terminal rule of our framework, Symbolic Term Exploration, generates symbolic terms with a
context-free grammar. The grammar takes into account the context of the current problem: for example,
it generates expressions containing variables in scope, as well as calls to available functions.

Our previous implementation of expression grammars simply used types as nonterminal symbols.
For example, a grammar for integers could be

Int ::= Int + Int | Int - Int | 0 | a | foo(Bool)

where a: Int is a parameter of the function under synthesis and foo: Bool ⇒ Int is a function in scope.
However, such simple expression grammars have the disadvantage of generating too many redun-

dant terms. One reason for that is that they are highly ambiguous. For example, the above grammar
would generate the term a + a + foo(true) in two different ways. The other reason is that even syntac-
tically distinct generated expressions are very often semantically equivalent; in our example, consider
a + foo(true) versus foo(true) + a, or a versus a + 0 versus a + 0 + 0.

Our current work addresses these issues by using a richer representation of grammars. Nonterminal
symbols are enhanced with additional information beyond the type; we refer to this contextual informa-
tion as attributes. Attributes refine and filter production rules of an existing grammar and enable us to
fine-tune the shape of the expression terms they represent.

In [18], the authors apply a similar disambiguation technique. In their case, the disambiguation
happens after the terms have been generated. In contrast, our attributes affect the grammar itself, meaning
that all terms produced are automatically good candidates. The bottom-up term generation technique
used in TRANSIT [26] merges even more equivalent expressions thanks to its evaluation-based under-
approximation of expression equivalence.

We now describe several of the attributes defined in Leon and how they affect the grammar produc-
tions. A generic production rule can be written as

T ::= f (T1,T2, . . . ,Tn) (1)

where f is a function of the nonterminal symbols on the right-hand side of the rule. The nonterminals T
and Ti may be plain types, or may already be annotated with attributes. We represent attributes associated
with a nonterminal in braces.

Size and commutative operators. Iteratively generating bigger terms can be done by gradually in-
creasing the unfolding depth of the grammar. This however causes the number of terms per depth to ex-
plode double exponentially. Instead, we use a Sized attribute that restricts the size of terms produced [11].
For instance, Int{|5|} produces only integer expressions of size 5, such as a + b + c.

104 An Update on Deductive Synthesis and Repair in the Leon Tool

Starting with a production rule of the form 1 we can get the productions of T{|s|} with

T{|s|} ::= f (T1{|s1|},T2{|s2|}, . . . ,Tn{|sn|})

for all combinations of si > 0 such that ∑si = s− size(f), where size(f) a cost we associate with f . If
n = 0, the production is kept only if size(f) = s. Additionally, if f is a commutative operator, we require
that ∀i < j. si ≥ s j. As a result, only left-heavy terms are produced by the grammar (i.e. (a ∗ b) + c and
not the equivalent c + (a ∗ b)).

Associative operators. To remove redundancy caused by operator associativity, we require that all
associative operators associate to the left. Let f be an associative operator and ¬ f an attribute that
disallows production rules with operator f. Then T ::= f (T1,T2) becomes T ::= f (T1,T2{¬ f}) , and
rules of the form T{¬ f} ::= f (T1,T2) are removed.

Ground Terms. We want to avoid that our grammars generate ground terms for two reasons: firstly,
because different combinations of ground terms may end up simplifying to equivalent programs (consider
1 + 3 and 2 + 2); secondly, because our system includes another dedicated rule which is much more
efficient than Symbolic Term Exploration in discovering ground terms.

Let the attribute G denote that a ground term is expected, whereas ¬G that a ground term is disal-
lowed. Then

T{G} ::= f (T1{G},T2{G}, . . . ,Tn{G})
T{¬G} ::= f (T1{G1},T2{G2}, . . . ,Tn{Gn})

for all combinations of Gi ∈ {G,¬G} such that at least one Gi is ¬G. If c is a constant and v is a
variable, rules of the forms T{¬G} ::= c and T{G} ::= v are removed.

The ¬G attribute is attached to the top-level symbol of the grammar.

Neutral elements. Several arithmetic operators have so-called neutral or absorbing operands that are
sources of redundancies. For example, terms such as e + 0, e / 1, or e ∗ 0 are all equivalent to a shorter
form. We eliminate these from the grammar by using an attribute that excludes neutral elements: Int ::=
Int + Int becomes Int ::= Int{¬0} + Int{¬0}. Naturally, the production Int ::= 0 is excluded from Int{¬0}.

4 Symbolic Term Exploration

The main closing rule that our tool employs is Symbolic Term Exploration. Although the algorithm has
not changed much conceptually since previously presented in [13], our implementation has matured as
we gained experience using it. In this section we document our current design choices. Additionally,
we provide detailed pseudocode for our approach, hoping it will serve as a starting point for similar
implementations.

Symbolic Term Exploration (STE) unfolds a grammar as described in the Section 3 to create a set
of candidate programs, which are represented all together with a symbolic program tree [13]. These
programs are first filtered with concrete execution based on a set of tests. The ones that survive concrete
testing have to be handled symbolically with the aid of a Leon solver [24,25], which reduces verification
of a subset of Scala to a stream of queries for SMT solvers (currently Z3 [15] and CVC4 [4]).

Our synthesis tool uses two approaches to determine if the representation of a set of programs con-
tains a valid program: (1) if the number of remaining programs is relatively small, we try to prove or

Manos Koukoutos, Etienne Kneuss & Viktor Kuncak 105

Algorithm 1 Symbolic Term Exploration
var I = Initial list of examples
var P = /0 . Set of examples represented as a tree

function STE(Jā 〈Π�φ〉 x̄K, G, maxSize)
for n← 1 to maxSize do . STE loop over program sizes

P = UNFOLD(G, n) . Generate programs of size n from grammar G
CONCRETETEST(I, φ) . Exclude programs by concrete execution
while P 6= /0 do . Main STE Loop

if |P| sufficiently reduced then
for all p ∈ P do . Try to validate individually

if VALIDATE(Jā 〈Π�φ〉 x̄K, p) then return p . Found valid solution!
let f = (Π∧ p ∈ P∧φ [x̄/p(ā′)]), ā′ fresh
if ¬LEONSOLVERSAT(f) then . No program of this size works

Break to the next value of n
else

let p0 = LEONSOLVERMODEL(f)
if VALIDATE(Jā 〈Π�φ〉 x̄K, p0) then

return p0 . Found valid solution!
return FAIL . No program found for any program size

function VALIDATE(Jā 〈Π�φ〉 x̄K, p)
let f = (Π∧¬φ [x̄/p(ā)])
if ¬LEONSOLVERSAT(f) then return true
else

P = P\{p}
let a0 = LEONSOLVERMODEL(f)
CONCRETETEST({a0},φ)
I = I∪{a0}
return false

procedure CONCRETETEST(J, φ)
for all p ∈ P do

for all ā0 ∈ J do
if ¬EXECUTE(φ [x̄/p(ā0)]) then

INCREASEPRIORITY(J, ā0)
P = P\{p}

disprove each one separately with the Leon solver. If a program is proven correct, we have a satisfactory
solution; otherwise, the solver generates a fresh counterexample which we add to our test base, as it may
help exclude further programs. (2) if the number of remaining programs is large, we query the solver for
a program that satisfies the specification for at least one input. If no such program exists, then no program
in our candidate set satisfies the specification, and STE fails; otherwise, we hope that this program has
good chances to be a satisfactory solution, and we try to prove it valid as in (1).

Our experience using STE since the previous iterations of the tool has shown that, even for thou-
sands of programs and tens of tests, concrete execution is usually faster than a single SMT query. An
explanation is that many of our tests are generated by automatic data generators, and they tend to be
quite small (small numeric values or data structures of few nodes). For that reason, we have adapted our
implementation to rely as much as possible on concrete execution with the following adjustments:
• We concretely test candidate programs against every counterexample as soon as it is discovered by

the Leon solver.

• We make sure to utilize parts of the solution that have already been discovered by other deductive

106 An Update on Deductive Synthesis and Repair in the Leon Tool

rules [11]. From these parts we construct a partial solution, with a placeholder in place of the
current problem. For example, consider we are trying to solve the example of Figure 1. After
case-splitting on l and solving the Nil case, the partial solution would be

l match {
case Nil() ⇒ Nil()
case Cons(h0, t0) ⇒ ???
}

This expression will temporarily replace the original implementation of encode (the choose) in
the program. During concrete execution and validation, the placeholder ??? is set each time to
the program we are currently testing. Similarly, during the discovery of a tentative program, the
placeholder is set to the tree representation of the set of available programs.

• Another simple heuristic we introduced that yields good results in practice is to sort available tests
according to the number of programs that failed on them. This way, tests that have been more
successful in the past in excluding programs get executed first.

Algorithm 1 shows an overview of our current STE implementation. The main function, STE, takes
as arguments a synthesis problem, an expression grammar G and a desired maximum size of generated
programs. It uses auxiliary functions VALIDATE and CONCRETETEST shown below, as well as two
global variables I and P.

5 Evaluation

We evaluated the improvements presented in the previous sections against the previous version of Leon
and we present the results in Table 1.

The first column of Table 1 gives an indication of the difficulty of each benchmark: Prog indicates
the total size of the program in AST nodes, and Sol indicates the size of the solution generated by the
latest version of Leon. For each version of Leon tested and each benchmark, we list the running time
as well as whether the tool produced and verified a solution (

√
), failed altogether (X), or produced a

solution but could not verify it (
√

in parentheses). An X means synthesis failed for this benchmark;
either the benchmark timed out after 200 seconds, or the synthesizer exhausted its search space without
coming up with a solution.

To make the effect of each individual improvement clearer, the following columns of the table show-
case the performance of the tool as various features are added. The first column presents the original
version of Leon. In that version, we constrained Symbolic Term Exploration to expressions of size up
to 5. However, after the latest optimizations we found it is viable to increase the bound to 7. This
immediately solves one additional benchmark, but is not viable by itself due to the large slowdowns it
introduces. The results for this configuration are presented for completeness under the column Size = 7.
The next columns introduce respectively the new improved Symbolic Term Exploration (STE), the new
rule for recursive functions (Rec) and finally the optimized term grammars (TG).

Observations: The new version of the tool was able to solve five new hard benchmarks which were out
of scope for the previous versions. It also produces a much more concise, and thus verifiable, solution
for an additional benchmark (StrictSortedList.delete). Some of the easier benchmarks do present
some slowdown. This is mostly caused by failing STE instances that need to exhaust a larger search

Manos Koukoutos, Etienne Kneuss & Viktor Kuncak 107

Operation Sizes Prev Size = 7 STE Rec TG
Pr Sol ` � ` � ` � ` � ` �

BatchedQueue.enqueue 92 26 X (
√

) 22.8 (
√

) 18.7 (
√

) 18.8 (
√

) 15.4
List.split 84 33 X X X

√
2.4

√
2.5

AddressBook.make 43 36 X X X
√

4.2
√

4.0
RunLength.encode 118 39 X X X

√
18.7

√
20.3

Diffs.diffs 63 24 X X X
√

24.5
√

11.8
List.insert 61 3

√
0.9

√
0.6

√
0.8

√
0.8

√
0.7

List.delete 63 19
√

4.2
√

39.7
√

12.6
√

12.1
√

8.6
List.union 77 12

√
7.9

√
13.7

√
3.7

√
3.6

√
2.6

List.diff 109 12
√

6.4
√

110.9
√

23.2
√

24.7
√

12.4
List.listOfSize 38 11

√
1.4

√
1.7

√
1.1

√
1.6

√
1.4

SortedList.insert 94 30 (
√

) 18.0 (
√

) 125.0 (
√

) 17.5 (
√

) 24.3 (
√

) 16.0
SortedList.insertAlways 108 32

√
22.8

√
139.3

√
32.6

√
35.2

√
21.0

SortedList.delete 94 19 (
√

) 7.6 (
√

) 57.6 (
√

) 19.8 (
√

) 16.8 (
√

) 15.8
SortedList.union 142 12

√
7.5

√
12.7

√
4.1

√
4.5

√
3.3

SortedList.diff 140 12
√

5.8
√

104.0
√

12.4
√

13.6
√

6.7
SortedList.insertionSort 129 11

√
1.4

√
2.7

√
2.5

√
2.4

√
1.7

StrictSortedList.insert 94 30
√

13.4
√

111.5
√

16.7
√

24.9
√

15.8
StrictSortedList.delete 94 19 (

√
) 9.1 (

√
) 64.9 (

√
) 22.3

√
19.9

√
15.5

StrictSortedList.union 142 12
√

7.7
√

12.8
√

4.3
√

4.6
√

3.1
UnaryNumerals.add 46 10

√
4.6

√
4.3

√
3.1

√
3.8

√
3.1

UnaryNumerals.distinct 71 4
√

2.2
√

2.1
√

2.0
√

2.2
√

2.0
UnaryNumerals.mult 46 11

√
4.6

√
10.7

√
6.9

√
5.6

√
5.7

BatchedQueue.dequeue 68 12 (
√

) 13.0 (
√

) 10.2 (
√

) 21.5 (
√

) 21.3 (
√

) 17.8
AddressBook.merge 104 17 (

√
) 6.0 (

√
) 7.4 (

√
) 18.7 (

√
) 19.0 (

√
) 17.6

Table 1: Benchmarks for synthesis

space. We believe this is a small price to pay: Our focus is to push the limits of what can be synthesized
in a reasonable amount of time, rather than to optimize for simpler benchmarks.

Concerning individual improvements, we can see that the STE improvements greatly improve the
performance of the tool (compared to the version with the same STE size, of course), without solving
additional benchmarks. The improved term grammars also have a significant, if smaller, effect on running
times; however, we do expect the improvement to become more significant as our tool scales to larger
expression sizes due to the exponential nature of the problem. Finally, the new rule for recursive calls
does not improve running times, but extends the search space of the tool and thus solves an additional
four benchmarks.

Table 2 displays results for a set of benchmarks for program repair identical to the one presented
in [12]. The results here are not so interesting, so we just include the times for the initial and final
versions of Leon with all the optimizations. We can see that the benchmarks generally show some delay
relatively to the previous version. This is mostly due to changes that increase the system’s reliability,
with some cost in performance (more robust nondeterministic evaluator, support for multiple synthesis
solutions etc.) Additionally, one benchmark is not solvable any more due to the change in handling of
recursive functions. However, we could arguably revert to grammar-generated recursive calls for repair

108 An Update on Deductive Synthesis and Repair in the Leon Tool

Operation Sizes Previous Current
Prog Sol Test Repair Test Repair

Compiler.desugar 670 3 1.0 1.9 0.8 3.1
Compiler.desugar 668 2 0.9 12.3 0.8 4.5
Compiler.desugar 672 7 0.6 1.4 5.3 1.5
Compiler.desugar 672 7 1.1 1.5 0.7 2.7
Compiler.desugar 672 14 1.0 12.8 0.8 2.7
Compiler.simplify 718 4 0.6 1.4 0.4 2.5
Compiler.simplify 718 2 0.6 1.4 0.4 1.1
Heap.merge 341 3 1.4 2.7 2.5 14.2
Heap.merge 341 1 0.7 1.3 2.1 2.2
Heap.merge 341 3 1.4 2.6 2.6 12.6
Heap.merge 341 9 1.0 2.2 2.4 10.0
Heap.merge 343 5 0.9 2.6 2.3 12.0
Heap.merge 341 2 1.1 13.6 2.1 3.3
Heap.insert 304 8 4.3 1.0 2.9 6.0
Heap.makeN 343 7 2.0 1.3 1.1 8.5
List.pad 802 8 0.7 1.2 1.0 2.7
List.++ 712 3 1.9 1.0 1.2 4.8
List.:+ 744 1 1.5 1.0 0.7 1.5
List.replace 746 6 1.2 10.4 1.0 5.9
List.count 799 3 0.7 1.3 1.6 9.7
List.find 799 2 2.9 3.5 1.5 9.5
List.find 801 4 2.6 3.6 1.6 9.7
List.find 802 4 4.4 5.2 0.9 25.5
List.size 748 4 1.5 1.0 0.7 1.5
List.sum 746 4 1.1 1.3 0.5 1.6
List.- 746 1 1.1 1.0 2.4 9.7
List.drop 787 4 1.3 16.6 X X
Numerical.power 172 5 0.2 1.0 0.2 3.8
Numerical.moddiv 121 3 0.2 0.8 0.1 1.3
MergeSort.split 228 5 1.8 2.8 1.6 6.6
MergeSort.merge 230 7 1.3 1.2 1.8 2.9
MergeSort.merge 230 3 1.2 1.7 1.6 5.1
MergeSort.merge 228 5 1.1 1.2 1.8 3.0
MergeSort.merge 230 1 1.4 20.9 1.5 1.5

Table 2: Benchmarks for repair

Manos Koukoutos, Etienne Kneuss & Viktor Kuncak 109

benchmarks, as required recursive calls are likely to be present in the program already (of course, they
would be subject to repair).

The version of Leon used for evaluation can be found at https://github.com/epfl-lara/
leon/tree/synt2016, and the benchmarks at https://github.com/epfl-lara/leon/
tree/synt2016/testcases/synt2016.

6 Related work

Other recent tools that focus on deductive synthesis of recursive programs from formal specification
include SYNTREC [10], SYNAPSE [3] and SYNQUID [19]. SYNTREC and SYNAPSE use a similar ap-
proach based on user-defined generators (or metasketches) that describe high-level, reusable patterns of
computation, in the spirit of SKETCH [23]. The programmer interacts with the system by providing an
appropriate generator for the task at hand, which is then used by the system to synthesize a complete
program. SYNTREC validates candidate program with bounded checking, whereas SYNAPSE uses SMT.
These approaches scale better for some benchmarks, but require the programmer to have significant in-
sight into the form of the resulting program. In SYNQUID, the target specification is given in the form
of a liquid type [22]. Additionally, the user provides the set of usable program components. The authors
modify the liquid type inference algorithm to enable top-down breakdown of a liquid type, and use the
inference rules as deductive synthesis rules. Conditionals are generated with a form of condition abduc-
tion. Compared to Leon, SYNQUID specifications tend to be much longer and require more insight, as
the programmer needs to provide the liquid type signatures of all intermediate components used by the
synthesizer.

A large body of research in the area has focused on inductive synthesis, or synthesis from input/out-
put examples. Examples are a more intuitive form of specification, especially for non-expert users, and
can be reasoned about with concrete execution rather than formal proofs. However, examples can never
fully specify the intention of the programmer for an infinite domain, leading to ambiguities in the re-
sulting synthesized programs. ESHER [1] and LaSy [18] use a set of input/output examples and a set
of program components to automatically synthesize progressively more complicated code snippets, until
one is discovered which satisfies all input-output pairs. In [6], the authors use a type-based approach,
where an input/output example is viewed as a singleton refinement type. A solution is satisfactory if its
type is a supertype of all provided examples. AutoFix [16,27] locates and fixes bugs in imperative Eiffel
code decorated with formal contracts. Suspicious statements are located based on their presence in pass-
ing and failing example traces. In [20] the authors define a generic framework for synthesis-by-example.
The framework provides a fixed synthesis algorithm and can be instantiated with a specific DSL, along
with weights for its expressions and other domain-specific knowledge. The synthesizer is in dialogue
with the programmer to eliminate ambiguities in the generated programs.

Finally, a direction of work has been synthesizing snippets that interact with APIs. Since large
APIs are an integral part of programming, the focus of this work is shifted to higher-level code that is
mostly restricted to a series of API calls as opposed to application of primitive operations. These tools
usually require a corpus of code in the target language to construct a language model offline, from which
they extract weights which guide the synthesis algorithm. Reinking and Piskac [21] focus on repair of
type-incorrect API invocations. The line of work of Gvero et al. [7–9] aims to synthesize queries to
APIs in Scala/Java within an IDE environment, using the local environment at the point of invocation
of the tool, (including local variables and API functions), or, more recently, taking a free form query as
input. In [17], the input to the synthesizer is a partial expression, which can encode calls to an unknown

https://github.com/epfl-lara/leon/tree/synt2016
https://github.com/epfl-lara/leon/tree/synt2016
https://github.com/epfl-lara/leon/tree/synt2016/testcases/synt2016
https://github.com/epfl-lara/leon/tree/synt2016/testcases/synt2016

110 An Update on Deductive Synthesis and Repair in the Leon Tool

function on known arguments or, given an object, an invocation of an unknown method or lookup of
an unknown field of that object. A synthesis algorithm completes those partial expressions to obtain a
complete program.

References
[1] Aws Albarghouthi, Sumit Gulwani & Zachary Kincaid (2013): Recursive Program Synthesis. In Natasha

Sharygina & Helmut Veith, editors: CAV, LNCS 8044, Springer, pp. 934–950, doi:10.1007/978-3-642-
39799-8 67.

[2] Rajeev Alur, Rastislav Bodı́k, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia,
Rishabh Singh, Armando Solar-Lezama, Emina Torlak & Abhishek Udupa (2013): Syntax-guided synthesis.
In: FMCAD, IEEE, pp. 1–8, doi:10.3233/978-1-61499-495-4-1.

[3] James Bornholt, Emina Torlak, Dan Grossman & Luis Ceze (2016): Optimizing synthesis with metasketches.
In Rastislav Bodı́k & Rupak Majumdar, editors: POPL, ACM, pp. 775–788, doi:10.1145/2837614.2837666.

[4] Morgan Deters, Andrew Reynolds, Tim King, Clark W. Barrett & Cesare Tinelli (2014): A tour of CVC4:
How it works, and how to use it. In: FMCAD, IEEE, p. 7, doi:10.1109/FMCAD.2014.6987586.

[5] Pierre Flener (1995): Logic Program Synthesis from Incomplete Information. Springer, doi:10.1007/978-1-
4615-2205-8.

[6] Jonathan Frankle, Peter-Michael Osera, David Walker & Steve Zdancewic (2016): Example-directed syn-
thesis: a type-theoretic interpretation. In Rastislav Bodı́k & Rupak Majumdar, editors: POPL, ACM, pp.
802–815, doi:10.1145/2837614.2837629.

[7] Tihomir Gvero & Viktor Kuncak (2015): Synthesizing Java expressions from free-form queries. In Jonathan
Aldrich & Patrick Eugster, editors: OOPSLA, ACM, pp. 416–432, doi:10.1145/2814270.2814295.

[8] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj & Ruzica Piskac (2013): Complete completion using
types and weights. In Hans-Juergen Boehm & Cormac Flanagan, editors: PLDI, ACM, pp. 27–38,
doi:10.1145/2462156.2462192.

[9] Tihomir Gvero, Viktor Kuncak & Ruzica Piskac (2011): Interactive Synthesis of Code Snippets. In: Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings, pp. 418–423, doi:10.1007/978-3-642-22110-1 33.

[10] Jeevana Priya Inala, Xiaokang Qiu, Ben Lerner & Armando Solar-Lezama (2015): Type Assisted Synthesis of
Recursive Transformers on Algebraic Data Types. CoRR abs/1507.05527. Available at http://arxiv.
org/abs/1507.05527.

[11] Etienne Kneuss (2016): Deductive Synthesis and Repair. Ph.D. thesis, EPFL, doi:10.5075/epfl-thesis-6878.

[12] Etienne Kneuss, Manos Koukoutos & Viktor Kuncak (2015): Deductive Program Repair. In Daniel Kroening
& Corina S. Pasareanu, editors: CAV, LNCS 9207, Springer, pp. 217–233, doi:10.1007/978-3-319-21668-
3 13.

[13] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak & Philippe Suter (2013): Synthesis modulo recursive functions.
In Antony L. Hosking, Patrick Th. Eugster & Cristina V. Lopes, editors: OOPSLA, ACM, pp. 407–426,
doi:10.1145/2509136.2509555.

[14] Zohar Manna & Richard J. Waldinger (1980): A Deductive Approach to Program Synthesis. ACM Trans.
Program. Lang. Syst. 2(1), pp. 90–121, doi:10.1145/357084.357090.

[15] Leonardo Mendonça de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In C. R. Ramakr-
ishnan & Jakob Rehof, editors: TACAS, LNCS 4963, Springer, pp. 337–340, doi:10.1007/978-3-540-78800-
3 24.

[16] Yu Pei, Carlo A. Furia, Martı́n Nordio & Bertrand Meyer (2015): Automated Program Repair in an Integrated
Development Environment. In Antonia Bertolino, Gerardo Canfora & Sebastian G. Elbaum, editors: ICSE,
IEEE Computer Society, pp. 681–684, doi:10.1109/ICSE.2015.222.

http://dx.doi.org/10.1007/978-3-642-39799-8_67
http://dx.doi.org/10.1007/978-3-642-39799-8_67
http://dx.doi.org/10.3233/978-1-61499-495-4-1
http://dx.doi.org/10.1145/2837614.2837666
http://dx.doi.org/10.1109/FMCAD.2014.6987586
http://dx.doi.org/10.1007/978-1-4615-2205-8
http://dx.doi.org/10.1007/978-1-4615-2205-8
http://dx.doi.org/10.1145/2837614.2837629
http://dx.doi.org/10.1145/2814270.2814295
http://dx.doi.org/10.1145/2462156.2462192
http://dx.doi.org/10.1007/978-3-642-22110-1_33
http://arxiv.org/abs/1507.05527
http://arxiv.org/abs/1507.05527
http://dx.doi.org/10.5075/epfl-thesis-6878
http://dx.doi.org/10.1007/978-3-319-21668-3_13
http://dx.doi.org/10.1007/978-3-319-21668-3_13
http://dx.doi.org/10.1145/2509136.2509555
http://dx.doi.org/10.1145/357084.357090
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1109/ICSE.2015.222

Manos Koukoutos, Etienne Kneuss & Viktor Kuncak 111

[17] Daniel Perelman, Sumit Gulwani, Thomas Ball & Dan Grossman (2012): Type-directed completion of partial
expressions. In: ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI,
pp. 275–286, doi:10.1145/2254064.2254098.

[18] Daniel Perelman, Sumit Gulwani, Dan Grossman & Peter Provost (2014): Test-driven synthesis. In Michael
F. P. O’Boyle & Keshav Pingali, editors: PLDI, ACM, p. 43, doi:10.1145/2594291.2594297.

[19] Nadia Polikarpova, Ivan Kuraj & Armando Solar-Lezama (2016): Program synthesis from polymorphic
refinement types. In: Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pp. 522–538,
doi:10.1145/2908080.2908093.

[20] Oleksandr Polozov & Sumit Gulwani (2015): FlashMeta: a framework for inductive program synthesis. In
Jonathan Aldrich & Patrick Eugster, editors: OOPSLA, ACM, pp. 107–126, doi:10.1145/2814270.2814310.

[21] Alex Reinking & Ruzica Piskac (2015): A Type-Directed Approach to Program Repair. In Daniel Kroening
& Corina S. Pasareanu, editors: CAV, LNCS 9206, Springer, pp. 511–517, doi:10.1007/978-3-319-21690-
4 35.

[22] Patrick M. Rondon, Ming Kawaguci & Ranjit Jhala (2008): Liquid Types. In: Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’08, ACM, New York,
NY, USA, pp. 159–169, doi:10.1145/1375581.1375602.

[23] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia & Vijay Saraswat (2006): Combina-
torial Sketching for Finite Programs. In: Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS XII, ACM, New York, NY, USA, pp.
404–415, doi:10.1145/1168857.1168907.

[24] Philippe Suter (2012): Programming with Specifications. Ph.D. thesis, EPFL, doi:10.5075/epfl-thesis-5581.
[25] Philippe Suter, Ali Sinan Köksal & Viktor Kuncak (2011): Satisfiability Modulo Recursive Programs. In

Eran Yahav, editor: SAS, LNCS 6887, Springer, pp. 298–315, doi:10.1007/978-3-642-23702-7 23.
[26] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M. K. Martin & Rajeev

Alur (2013): TRANSIT: specifying protocols with concolic snippets. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI, pp. 287–296, doi:10.1145/2462156.2462174.

[27] Yi Wei, Yu Pei, Carlo A Furia, Lucas S Silva, Stefan Buchholz, Bertrand Meyer & Andreas Zeller (2010): Au-
tomated fixing of programs with contracts. In: Proceedings of the 19th international symposium on Software
testing and analysis, ACM, pp. 61–72, doi:10.1145/1831708.1831716.

http://dx.doi.org/10.1145/2254064.2254098
http://dx.doi.org/10.1145/2594291.2594297
http://dx.doi.org/10.1145/2908080.2908093
http://dx.doi.org/10.1145/2814270.2814310
http://dx.doi.org/10.1007/978-3-319-21690-4_35
http://dx.doi.org/10.1007/978-3-319-21690-4_35
http://dx.doi.org/10.1145/1375581.1375602
http://dx.doi.org/10.1145/1168857.1168907
http://dx.doi.org/10.5075/epfl-thesis-5581
http://dx.doi.org/10.1007/978-3-642-23702-7_23
http://dx.doi.org/10.1145/2462156.2462174
http://dx.doi.org/10.1145/1831708.1831716

	1 Introduction
	1.1 Example
	1.2 Basic synthesis notation

	2 Recursive calls
	3 Term Grammars
	4 Symbolic Term Exploration
	5 Evaluation
	6 Related work

