
MPTCP is not Pareto-Optimal: Performance Issues and a
Possible Solution∗

Ramin Khalili†, Nicolas Gast, Miroslav Popovic, Utkarsh Upadhyay, Jean-Yves Le Boudec
EPFL, IC-LCA2, Switzerland

firstname.lastname@epfl.ch

ABSTRACT
MPTCP has been proposed recently as a mechanism for sup-
porting transparently multiple connections to the applica-
tion layer. It is under discussion at the IETF. We show,
however, that the current MPTCP suffers from two prob-
lems: (P1) Upgrading some TCP users to MPTCP can re-
duce the throughput of others without any benefit to the
upgraded users, which is a symptom of not being Pareto-
optimal; and (P2) MPTCP users could be excessively ag-
gressive towards TCP users. We attribute these problems to
the linked-increases algorithm (LIA) of MPTCP and, more
specifically, to an excessive amount of traffic transmitted
over congested paths.

The design of LIA forces a tradeoff between optimal re-
source pooling and responsiveness. We revisit the problem
and show that it is possible to provide these two proper-
ties simultaneously. We implement the resulting algorithm,
called opportunistic linked increases algorithm (OLIA), in
the Linux kernel, and we study its performance over our
testbed, by simulations and by theoretical analysis. We
prove that OLIA is Pareto-optimal and satisfies the design
goals of MPTCP. Hence it can avoid the problems P1 and
P2. Our measurements and simulations indicate that MPTCP
with OLIA is as responsive and non-flappy as MPTCP with
LIA, and that it solves problems P1 and P2.

Categories and Subject Descriptors
C.2 [Computer-communication Networks]: Network Pro-
tocols.; C.4 [Performance of Systems]: Design studies,
Modeling techniques.

Keywords
Multipath TCP, Congestion control algorithm, Protocol de-
sign, Performance evaluation.

∗This research has received funding from the EU 7th Frame-
work Programme (FP7/2007-2013) under grant agreement
n. 257740 (Network of Excellence ”TREND”).
†Ramin Khalili is currently affiliated with T-Labs/TU
Berlin, ramin@net.t-labs.tu-berlin.de.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’12, December 10–13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

1. INTRODUCTION
The regular TCP uses a window-based congestion-control

mechanism to adjust the transmission rate of users [1]. It
always provides a Pareto-optimal allocation of resources: it
is impossible to increase the throughput of one user without
decreasing the throughput of another or without increasing
the congestion cost [2]. It also guarantees a fair allocation
of bandwidth among the users, but favors the connections
with lower RTT [3].

Various mechanisms were used to build a multipath trans-
port protocol compatible with the regular TCP. Authors
of [4–6] propose a family of algorithms inspired by utility
maximization frameworks. These algorithms tend to use
only the best paths available to users and are optimal in
static settings where paths have similar RTTs. In practice,
however, they suffer from several problems [7–9]. First, they
sometimes fail to quickly detect free capacity as they do not
probe paths with high loss probabilities sufficiently. Second,
they exhibit flappiness: When there are multiple good paths
available to a user, the user will randomly flip its traffic be-
tween these paths. This is not desirable, specifically, when
the achieved rate depends on RTTs, as with TCP.

MultiPath TCP (MPTCP) is a concrete proposal for mul-
tipath transport; it is under discussion at the IETF [10].
Because of the issues aforementioned, its congestion control
part does not follow the algorithms in [4–6]. Instead, it fol-
lows an ad-hoc design based on the following goals [10]: (1)
Improve throughput: a multipath TCP user should perform
at least as well as a TCP user that uses the best path avail-
able to it. (2) Do no harm: a multipath TCP user should
never take up more capacity from any of its paths than a
regular TCP user. And (3) balance congestion: a multipath
TCP algorithm should balance congestion in the network,
subject to meeting the first two goals.

MPTCP compensates for different RTTs and solves many
problems of multipath transport [7, 9]: It can effectively
use the available bandwidth; compared to independent TCP
flows, it improves throughput and fairness in many scenar-
ios; and it solves the flappiness problem. Through analysis
and by using measurements over a testbed, we show, how-
ever, that MPTCP still suffers from the following problems:

(P1) Upgrading some regular TCP users to MPTCP can
reduce the throughput of other users without any ben-
efit to the upgraded users. This is a symptom of non-
Pareto optimality,

(P2) MPTCP users can be excessively aggressive towards
TCP users.

We attribute these problems to the“linked increases”algo-

1

ramin@net.t-labs.tu-berlin.de

rithm (LIA) of MPTCP [10] and specifically to an excessive
amount of traffic transmitted over congested paths. These
problems indicate that MPTCP fails to fully satisfy its de-
sign goals, especially goal 3.

The design of LIA forces a tradeoff between optimal re-
source pooling and responsiveness, it cannot provide both at
the same time. Hence, to provide good responsiveness, LIA’s
current implementation must depart from Pareto-optimality,
which leads to problems P1 and P2. We revisit the design
and show that it is possible to simultaneously provide both
properties. We introduce OLIA, the “opportunistic linked
increases algorithm”, as an alternative to LIA. Based on
utility maximization frameworks, we prove that OLIA is
Pareto-optimal. Hence it can avoid the problems P1 and
P2. Furthermore, its construction makes it as responsive
and non-flappy as LIA.

OLIA is a window-based congestion-control mechanism.
Similarly to LIA, it couples the additive increases and uses
unmodified TCP behavior in the case of a loss. OLIA’s
increase part, Equation (5), has two terms:

• The first term is an adaptation of the increase term of
Kelly and Voice’s algorithm [4]. This term is essential
to provide Pareto-optimality.

• The second term guarantees responsiveness and non-
flappiness of OLIA. By measuring the number of trans-
mitted bits since the last loss, it reacts to events within
the current window and adapts to changes faster than
the first term.

By adapting the window increases as a function of RTTs,
OLIA also compensates for different RTTs.

We implement OLIA in the Linux kernel and study its
performance over our testbed, by simulations and by the-
oretical analysis. Using a fluid model of OLIA based on
differential inclusion, we prove that OLIA is Pareto-optimal
(Theorem 3) and that it satisfies the design goals of MPTCP
(Corollary 2). Our measurements and simulations indicate
that MPTCP with OLIA is as responsive and non-flappy as
MPTCP with LIA. Moreover, it solves problems P1 and P2.
Hence, we believe that IETF should revisit the congestion
control part of MPTCP and that an alternative algorithm,
such as OLIA, should be considered.

In the next section, we briefly introduce MPTCP and re-
lated work. In Section 3, we provide a number of examples
and scenarios in which MPTCP with LIA exhibits problems
P1 and P2. In Section 4, we introduce OLIA and detail its
Linux implementation. In Section 5, we prove that OLIA
is Pareto-optimal and satisfies MPTCP’s design goals. In
Section 6, we study the performance of OLIA through mea-
surements and by simulations.

2. MPTCP AND RELATED WORK
Multipath TCP (MPTCP) is a set of extensions to the reg-

ular TCP, which allows users to spread their traffic across
potentially disjoint paths [10]. MPTCP discovers the num-
ber of paths available to a user, establishes the paths, and
distributes traffic across these paths through creation of sep-
arate subflows [11,12].

MPTCP’s congestion control algorithm forces a tradeoff
between optimal resource pooling and responsiveness [8].
The idea behind the algorithm is to transmit over a path r at

a rate proportional to p
−1/ε
r , where pr is the loss probability

over this link and ε ∈ [0, 2] is a design parameter. The choice
ε=0 corresponds to the fully coupled algorithm of [4–6]: the
traffic is sent only over the best paths, it is Pareto-optimal
but is flappy. The choice ε=2 corresponds to using uncou-
pled TCP flows on each path: it is very responsive and non-
flappy, but does not balance congestion. MPTCP’s imple-
mentation uses ε=1 to provide a compromise between opti-
mal resource pooling and responsiveness. This algorithm is
called “linked increases” algorithm (LIA) [10].

Let wr and rttr be the window size and the estimated
round-trip time on path r ∈ Ru. Ru is the set of all paths
available to user u. LIA works as follows:

• For each ACK on subflow r, increase wr by

min

(
maxi∈Ru wi/rtt

2
i

(
∑

i∈Ru
wi/rtti)2

,
1

wr

)
. (1)

• For each loss on subflow r, decrease wr by wr/2.

LIA increases by at most 1/wr to be at most as aggres-
sive as regular TCP on any of its paths. When the RTTs
are similar, this minimum can be neglected as the first term
(maxi wi/rtt

2
i)/(

∑
i wi/rtti)

2 would always be less than 1/wr.
In this case, a fixed point analysis provides a simple loss-
throughput formula for LIA [9]: LIA allocates to a path r a
window wr proportional to the inverse of the loss probability
1/pr and such that the total rate

∑
p∈Ru

wp/rttp equals the
rate that a regular TCP user would get on the best path,
i.e. maxp∈Ru

√
2/pp/rttp. Thus, the window size for the

flow on a path r is given by

wr =
1

pr
·

maxp∈Ru

√
2/pp/rttp∑

p∈Ru
1/(rttppp)

. (2)

Besides MPTCP and algorithms in [4–6], a few other algo-
rithms have been proposed to implement multipath proto-
cols. In [13], an opportunistic multipath scheduler measures
the path conditions on time scales up to several seconds. [14]
uses a mechanism to detect shared bottlenecks and to avoid
the use of multiple subflows on the same bottleneck. [15]
proposes to use uncoupled TCP flows with a weight depend-
ing on the congestion level. These mechanisms are complex,
their robustness is not clear, and they need explicit informa-
tion about congestion in the network. Our proposed algo-
rithm, OLIA, differs from these works as it is implemented,
proven to be Pareto optimal, and relies only on information
that is available to regular TCP. It also differs from [4–6] as
it is not flappy and has a better responsiveness.

3. PERFORMANCE PROBLEMS OF MPTCP
In this section, we investigate the behavior of MPTCP

with LIA in three different scenarios: scenarios A, B, and
C. Using scenarios A and B, we show that upgrading some
regular TCP users to MPTCP could reduce the throughput
of other users in the network without any benefit to the
upgraded users (problem P1). In Scenario C, we discuss the
aggressiveness of MPTCP users that compete with regular
TCP users (problem P2). Our conclusions are based on
analytical results and measurements over a testbed.

3.1 Testbed Setup
To investigate the behavior of the algorithms, we cre-

ate three testbed topologies that represent our scenarios.

2

N
1

t
y
p
e
1

u
s
e
r
s

private AP

...

N
2

t
y
p
e
2

u
s
e
r
s

...

shared AP

N2C2

Internet Streaming
server

N1C1

Other
servers

x1

y

x2
N1(x1+x2)

y

(a) Scenario A

1 2 3
0

0.2

0.4

0.6

0.8

1

type2 users

type1 users

type1: analytical
results

type2: analytical
results

type1: optimum with
probing cost

type2: optimum with
probing cost

N
1
/N

2

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

C
1
/C

2
 = 0.75

C
1
/C

2
 = 1.0

C
1
/C

2
 = 1.5

(b) Normalized throughput of users:
(x1 + x2)/C1 and y/C2.

0 1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

N
1
/N

2

L
os

s
pr

ob
ab

ili
tie

s

C
1
/C

2
 = 0.75

C
1
/C

2
 = 1.0

C
1
/C

2
 = 1.5

(c) Loss prob. p2 at the
shared AP.

Figure 1: Scenario A: type1 users are all downloading through the same streaming server and have access to
both a private high speed access point and a shared access point. Type2 users have access only to the shared
access point. The performance of MPTCP with LIA obtained by measurement (points) or numerical analysis
(lines) is shown on figures (b) and (c). We observe that it is not Pareto-optimal, penalizes type2 users, and
its performance is far from the theoretical optimum with probing cost. It also fails to balance the congestion.

Server-client PCs run MPTCP (with LIA or OLIA) en-
abled Linux kernels. In all scenarios laptop PCs are used
as routers. We install “Click Modular Router” software [16]
to emulate topologies with different characteristics. We em-
ulate links with configurable bandwidth and delay with RED
queuing (drop-tail queuing is also studied in htsim simula-
tion, see Section 6.2). Figure 2 represents the testbed con-
figuration of the scenario described in Figure 1(a).

Figure 2: Testbed implementation of scenario A:
router R1 emulates the bottleneck at the server side
and router R2 the shared AP bottleneck. Iperf is
used to emulate multiple connections. The red PCs
use MPTCP and the blue PCs use regular TCP.

3.2 Scenario A: MPTCP is not Pareto-optimal
and penalizes regular TCP users

Consider a network with two types of users as shown in
Figure 1(a). There are N1 users of type1, each with a high-
speed private connection, accessing different files on a media
streaming server. The server has a network connection with
capacity limit of N1C1 Mbps. These users can activate a
second connection through a shared access point (AP) by
using MPTCP. There are also N2 type2 users that have con-
nections only through the shared AP. They download their
contents from the Internet. The shared AP has a capacity
of N2C2 Mbps.

Let x1 be the rate that a type1 user receives over its pri-
vate connection (by symmetry, every user of type1 will re-
ceive the same rate x1). Similarly, let x2 (resp. y) be the
rate that a type1 (resp. type2) user receives over the shared
connection. We denote by p1 and p2 the loss probability at

the link connected to the streaming server and the shared
AP, respectively (the loss probabilities at the Internet back-
bone and the private APs are negligible).

When type1 users use only their own private AP, we have
x1=C1, x2=0, and y=C2. In this case the normalized through-
put for both type1 and type2 users is 1. In the other case,
assuming that all paths have RTT rtt, when all type1 users
activate their public connections and use MPTCP with LIA
to balance load between their connections, we have

(a) N1(x1+x2) = N1C1 N1x2 +N2y = N2C2

(b) x1 + x2 = 1
rtt

√
2
p1

x2 = 1
2+p2/p1

1
rtt

√
2
p1

(c) y = 1
rtt

√
2/p2

where (a) are the capacity constraints at the two bottle-
necks, (b) comes from the loss-throughput formula for LIA
(Eq.(2)), and (c) follows the TCP loss-throughput formula
[17]. This system has a unique solution (see [18], Appendix
A). Figure 1(b) depicts the normalized throughput of type1
and type2 users, i.e. (x1 + x2)/C1 and y/C2. As shown
in [18], Appendix A, these values depend only on the ratios
C1/C2 and N1/N2.

A theoretically optimal algorithm (as discussed in [4, 5])
will allocate a normalized throughput of 1 to both type1
and type2 users. In practice, however, the value of the
congestion windows are bounded below by 1 MSS. Hence,
with a window-based congestion-control algorithm, a mini-
mum probing traffic of 1 MSS per RTT will be sent over a
path. In this paper, we introduce a theoretical baseline for
window-based congestion-control algorithms, called theoret-
ical optimum with probing cost ; it provides optimal resource
pooling in the network, given that a minimum probing traf-
fic of 1 MSS per RTT is sent over each path. It serves as a
reference to see how far from the optimum LIA is.

We measure the performance of LIA in Scenario A, by
using the testbed, as shown in Figure 2. The measurements
are taken for N2 = 10 and three values of N1 = 10, 20, 30.
The capacities of R1 and R2 are N1C1 and N2C2 Mbps,
where we set C2 = 1Mbps and C1 = 0.75, 1, 1.5 Mbps.
All paths have similar RTTs (link delay plus queuing delay
is around 150 ms over all paths). For each case, we took
5 measurements. The results are reported in Figure 1(b).
Note that in all cases we present confidence intervals, but

3

ISP X

ISP Y

ISP Z

ISP T

blue users

red users

Figure 3: Scenario B. Thick lines represent peer-
ing agreements. Blue users are downloading from
servers in ISP Z and Red users from servers in ISP
T . Blue users use multi-homing and have access to
ISPs X and Y . Initially, Red users have access only
to ISP Y but upgrade to MPTCP and connect to
both X and Y (by activating the dashed connection).

in many cases they are too small to be visible. The loss
probability p1 depends only on C1 and is 0.02, 0.009, 0.004
for C1 = 0.75, 1, 1.5 Mbps. We also show our analytical
analysis of LIA, as well as the theoretical optimum with
probing cost as defined above.

These figures have multiple implications. First, they show
that MPTCP with LIA exhibits problem (P1) from the in-
troduction: upgrading type1 users to MPTCP penalizes type2
users without any gain for type1 users. As the number
of type1 users increases, the throughput of type2 users de-
creases, but the throughput of type1 users does not change
as it is limited by the capacity C1 of the streaming server.
For N1=N2, type2 users see a decrease of about 30%. When
N1=3N2, this decrease is between 50% to 60%. This is ex-
plained by the fact that LIA does not fully balance con-
gestion, as shown in Figure 1(c). It excessively increases
congestion on the shared AP (not in compliance with goal
3). We observe that LIA performs far from how an optimal
algorithm with probing cost would perform. Furthermore,
these figures show that the fixed point analysis predicts ac-
curately the behavior of the algorithm: the two curves (theo-
retical and experimental) exhibit the same trend. As a sum-
mary for this section, we conclude that MPTCP with LIA
is not Pareto-optimal and can penalize TCP users without
any benefit for anybody.

3.3 Scenario B: MPTCP is not Pareto-optimal
and can penalize other MPTCP users.

Consider the multi-homing scenario depicted in Figure 3.
We have four Internet Service Providers, ISPs, X, Y , Z,
and T . Y is a local ISP in a small city, which connects
to the Internet through Z. X, Z, and T are nation-wide
service providers and are connected to each other through
high speed links. X provides Internet services to users in
the city and is a competitor of Y . They have access capacity
limits of CX , CY , CZ , and CT .
Z and T host different video streaming servers. There are

two types of users: NB Blue users download contents from a
server in Z, and NR Red users download from a server in ISP
T . Blue users use multi-homing and are connected to both
ISPs X and Y to increase their reliability. Red users can
connect either only to Y or to both X and Y . We assume
that only ISPs X and T are bottlenecks and denote by pX
and pT the loss probabilities. We assume that all paths have
similar RTTs.

0 0.5 1 1.5
0.4

0.6

0.8

1

1.2

1.4

1.6

C
X

/C
T

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Blue users when Red use MPTCP
Red users when Red use MPTCP
Blue users
Red users

(a) Performance of LIA.

0 0.5 1 1.5
0.4

0.6

0.8

1

1.2

1.4

1.6

C
X

/C
T

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Blue users when Red are multipath
Red users when Red are multipath
Blue users
Red users

(b) Optimum w. probing cost

Figure 4: Scenario B: analytical results for 15 Blue,
15 Red users and CT =36 Mbps where CY = CZ = 100
Mbps. We show the normalized throughput (15(x1 +
x2)/CT and 15(y1 + y2)/CT) as a function of CX/CT .
Dashed curves: normalized throughput when Red
users connect only to ISP Y . Solid curves: the case
when Red users upgrade to multipath. For all values
of CX/CT , the throughput of all users decreases when
Red users upgrade to MPTCP.

We first present a theoretical analysis of the rate that each
user would achieve (to simplify the analysis, we assume sim-
ilar numbers of Blue and Red users). There are two possible
cases. When Red users connect only to Y , the analysis is the
same as the one of scenario C, given in Section 3.4. Here,
we analyze the case when Red users upgrade to MPTCP.
The loss throughput formula (Equation (2)) shows that the
throughput of the different connections are:

y1 =
1/rtt

2 + pX
pT

√
2

pT

y2 =
pX
pT

y1

,

x1 =

1/rtt

1 + pX/pT

√
max

2

pX
,

2

pT

x2 =
1/rtt

1 + pT /pX

√
max

2

pX
,

2

pT

As shown in [18], Appendix B, this set of equations has
a unique positive solution. A numerical evaluation of these
formulas is depicted in Figure 4(a). Figure 4(b) depicts the
performance of a theoretical optimum with probing cost (see
[18], Appendix B). The results are presented for RTT=150
ms, CY = CZ = 100 Mbps, and CT = 36 Mbps. We consider
15 Blue users and 15 Red users in the network. We depict
the normalized throughput (15(x1 + x2)/CT and 15(y1 +
y2)/CT) as a function of CX/CT . The results show that
upgrading Red users to MPTCP with LIA decreases the
performance for everyone. As an example, when CX/CT ≈
0.75, by upgrading the Red users we reduce the throughput
of the Blue users by up to 21%. This decrease is about
3% when we use an optimal algorithm with probing cost
(Fig. 4(b)).

We emulate this scenario in our testbed in a similar man-
ner as for Scenario A. The measurement results are reported
in Table 1 for a similar setting with CX = 27 Mbps. We
observe that when Red users only connect to ISP Y, the
aggregate throughput of users is close to the cut-set bound,
63 Mbps. However, Blue users get a higher share of the
network bandwidth. Now consider that Red users upgrade
to MPTCP by establishing a second connection through X
(shown by dashed line in Figure 3). Our results in Table 1
show that Red users do not receive any higher throughput.
However, the average rate of Blue users drops by 20%, which
results in a drop of 13% in aggregate throughput. This con-
firms our analytical observation and shows that MPTCP

4

In
te

rn
etN
1

m
u
lt
ip

a
t
h

AP1

N1C1

...

N
2

s
in

g
le

-p
a
t
h

...
AP2

N2C2

Servers

...

x1

y

x2

(a) Scenario C: N1 multipath
users and N2 single-path users
are connected to two APs with
capacities N1C1 and N2C2 Mbps

0 0.5 1 1.5
0.4

0.6

0.8

1

1.2

1.4

1.6

C
1
/C

2

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

LIA: single−path users
LIA: multipath users
Optimum w. prob.: multipath users
Optimum w. prob.: single−path users

(b) Analytical results: nor-
malized throughput of all
users using LIA (solid) or
optimum with probing cost
(dashed) for N1 = N2.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

multipath

N
1
/N

2

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

single-path users

single-path: optimum
with probing cost

multipath: optimum
with probing cost

C
1
/C

2
 = 1.0

C
1
/C

2
 = 2.0

(c) Normalized throughputs
using LIA, obtained by mea-
surement (points) or analysis
(lines).

0 1 2 3
0

0.02

0.04

0.06

N
1
/N

2

L
os

s
pr

ob
ab

ili
tie

s

C
1
/C

2
 = 1.0

C
1
/C

2
 = 2.0

(d) Loss prob. p2 at AP2:
LIA fails to balance the
congestion.

Figure 5: Scenario C: MPTCP with LIA excessively penalizes TCP users (when C1/C2≥1, for any fairness
criterion, MPTCP users should not impact TCP users). We show the normalized throughputs ((x1+x2)/C1

and y/C2) received by the users, as well as p2. The performance of LIA is far from the theoretical optimum
with probing cost.

Red users
Rate/user

Aggregate
Blue users Red users

Single-path 2.5 1.5 59.8
Multipath 2.0 1.4 52.0

Table 1: Measurement results for scenario B, show-
ing the effect of upgrading the Red users from regu-
lar TCP to MPTCP with LIA. The number of Red
and Blue users is 15 and all values are recorded in
Mbps. By upgrading Red users to MPTCP, the
throughput drops for all users and the aggregate
throughput falls by 13%.

with LIA is not Pareto-optimal and could penalize other
MPTCP users without any benefit for anybody.

3.4 Scenario C: MPTCP users could be exces-
sively aggressive towards TCP users.

We consider a scenario withN1 multipath users, N2 single-
path users, and two APs with capacities N1C1 and N2C2

Mbps (see Figure 5). Multipath users connect to both APs
and they share AP2 with single-path users.

If the allocation of rates is proportionally fair, multipath
users will use AP2 only if C1<C2 and all users will receive
(N1C1+N2C2)/(N1 +N2). When C1 > C2, a fair multipath
user will not transmit over AP2. This fair allocation is rep-
resented by dashed lines in Figure 5(b) when we take into
account the minimum probing cost. However, using MPTCP
with LIA, multipath users get a larger share of bandwidth
as soon as C1 ≥ C2/(2+N1/N2). We show this analytically.
Let p1 and p2 be the loss probabilities at APs, x1 and x2
be rates that a multipath user receives over its paths, and y
be the rate of a single-path user. Assume all RTTs are the
same. When C1/C2 < 1/(2+N1/N2), we have p1 > p2 and
all users receive the same rate: x1+x2 = y = (C1+C2)/2.
When C1/C2 > 1/(2+N1/N2), we have p1 < p2 and the
fixed point formula of LIA gives:

x1 =
p2

p1 + p2

1

rtt

√
2

p1
and x2 =

p1
p1 + p2

1

rtt

√
2

p1
.

Moreover, both the APs are bottlenecks and we have x1 =

C1 and x2 + y = C2. As shown in [18], Appendix C, this
set of equations has a unique positive solution that only
depends on the ratio N1/N2 and C1/C2. Figure 5(b) re-
ports a numerical evaluation of these fixed point equations
for the case N1 = N2. We show the normalized throughputs
((x1+x2)/C1 and y/C2) received by the users, as well as p2.
We observe that LIA is fair with regular TCP users, as long
as C1 < C2/3. However, as C1 exceeds C2/3, it takes most
of the capacity of AP2 for itself.

We emulate the scenario in our testbed and measure the
performance of MPTCP with LIA. The results are reported
in Figures 5(c) and 5(d) for C2=1 Mbps and C1=1, 2Mbps,
with N2=10 and N1=5, 10, 20, 30. As in scenario A, we
also present the theoretical optimum with probing cost in
Figure 5(c).

When C1/C2 ≥ 1, multipath users should not use AP2 at
all. However, our results show that, MPTCP users are dis-
proportionately aggressive and exhibit problem (P2). Fig-
ure 5(d) shows the loss probability at AP2. We observe
that LIA excessively increases congestion on AP2 and is un-
able to fully balance congestion in the network. Also, we
have p1=0.01 and 0.003 for C1=1 and 2Mbps, respectively.
These results confirm our analytical observation and show
that LIA is overly aggressive towards TCP users.

4. OLIA: THE OPPORTUNISTIC LINKED
INCREASES ALGORITHM

In this section, we introduce OLIA as an alternative for
MPTCP’s LIA. OLIA is a window-based congestion-control
algorithm that couples the increase of congestion windows
and uses unmodified TCP behavior in the case of a loss.
The increase part of OLIA has two terms. The first term is
an adaptation of Kelly and Voice’s increase term and pro-
vides the Pareto-optimality (Kelly and Voice’s algorithm is
based on scalable TCP; the first term is a TCP compatible
version of their algorithm that compensates also for different
RTTs). The second term, with α, guarantees responsiveness
and non-flappiness. We first present the algorithm and its
Linux implementation. Then, we illustrate with an example
its operation and its difference with LIA.

5

4.1 Detailed Description of OLIA
Let Ru be the set of paths available to user u and let

r ∈ Ru be a path. We denote by `1r(t) the number of bits
that were successfully transmitted by u over path r between
the last two losses seen on r, and by `2r(t) the number of
bits that are successfully transmitted over r after the last
loss. If no losses have been observed on r up to time t, then
`1r(t) = 0 and `2r(t) is the total number of bits transmitted
on r. Also, let `r(t) = max{`1r(t), `2r(t)} and let rttr(t) and
wr(t) be respectively RTT and the window on r at time t.
We define

M(t) =

{
i(t) | i(t) = arg max

p∈Ru

wp(t)

}
(3)

B(t) =

{
j(t) | j(t) = arg max

p∈Ru

`p(t)

rttp(t)2

}
(4)

M(t) is the set of the paths of u with the largest window
sizes at time t. B(t) is the set of the paths at time t that are
presumably the best paths for u, as 1/`r(t) can be considered
as an estimate of packet loss probability on path r at time
t, and the rate that path r can provide to a TCP user can
be estimated by

√
2`r(t)/rttr [17].

Our algorithm is as follows (to simplify notation, we drop
the time argument t; however, note that wr, rttr, `r, M,
and B are all functions of time):

• For each ACK on path r, increase wr by:

wr/rtt
2
r

(
∑

p∈Ru
wp/rttp)2

+
αr

wr
, (5)

where αr is calculated as follows:

αr =

1/|Ru|
|B \M| if r ∈ B \M 6= ∅

−1/|Ru|
|M| if r ∈M andB \M 6= ∅

0 otherwise.

(6)

B\M is the set of elements in B but not inM, ∅ is the
empty set, and |Ru| is the number of paths available
to u at the time. Note that

∑
r∈Ru

αr=0.

• For each loss on path r, decrease wr by
wr

2
.

We can see from (3), (4), and (6) that if the best paths
have the maximum window size, then αr=0 for any r ∈ Ru.
However, if there is any best path with a small window size,
i.e. if B\M6=∅, then αr would be positive if r ∈ B\M, neg-
ative if r ∈ M, and zero otherwise. Hence, OLIA increases
windows faster on the paths that are the best but that have
small windows. The increase is slower on the paths with
maximum windows.

4.2 Linux Implementation of OLIA
We implemented OLIA in the MPTCP release supported

on the Linux kernel 3.0.0 [19]. Similarly to LIA, our al-
gorithm only applies to the increase part of the congestion
avoidance phase. The fast retransmit and fast recovery al-
gorithms, as well as the multiplicative decrease of the con-
gestion avoidance phase, are the same as in TCP [1]. We
also use a similar slow start algorithm as in TCP, with the
modification that we set the ssthresh (slow start threshold)
to be 1 MSS if multiple paths are established. In the case
of a single path flow, we use similar minimum ssthresh as in
TCP (2 MSS). The purpose of this modification is to avoid

transmitting unnecessary traffic over congested paths when
multiple paths are available to a user. The minimum conges-
tion windows size is 1 MSS as in TCP. Our implementation
is available online [18].

One important part of our implementation is the measure-
ment of `r on a path r. This can be done easily by using
information that is already available to a regular TCP user.
Our algorithm for computing `r is as follows:

• For each ACK on r: `2,r ← `2,r+ (number of bits that
are acknowledged by ACK)

• For each loss on r: `1,r ← `2,r and `2r ← 0

where `r = max{`1,r, `2,r}. `1,r and `2,r are initially set
to zero when the connection is established. To compute a
smoothed estimate of rttr, we use the algorithm, proposed
in [20] and implemented in the Linux kernel.

4.3 Illustrative Example of OLIA’s Behavior
To give more insight into how OLIA performs, we show

the evolution of window sizes and α values for a two-path
flow in Figure 6. The measurement results on our testbed
are reported in Figures 7 and 8.

5 TCP flows

5 TCP flows

C

C

(a) Symetric scenario
10 TCP flows

5 TCP flows

C

C

(b) Asymetric scenario

Figure 6: A multipath user sharing two bottlenecks
of the same capacity C with single-path users.

We first consider a symmetric case, depicted in Figure
6(a). As both of the paths are equally good, a multipath
user will benefit from using both of them. Figure 7(a) shows
the evolution of wr and αr as a function of time. We observe
that OLIA simultaneously uses both of the paths, similarly
to LIA (Figure 7(b)), which is the desired behavior. There
is no sign of flappiness as α1 and α2 react quickly and adjust
w1 and w2 accordingly.

We now study the asymmetric scenario of Figure 6(b). In
this case, the second path is shared with 10 TCP flows and
it will be beneficial if multipath users use only the first path.
This is what we observe in Figure 8(a). The window on the
congested path is 1, most of the time (because of the first in-
crease term). However, due to α, the window increases from
time to time over the congested path whenever the path
has the largest inter-loss distance `r. This increase is brief
as losses occur more frequently on this path. LIA, how-
ever, transmits significant traffic over the congested paths
and lower traffic, compared to OLIA, over the good path as
depicted in Figure 8(b).

5. PARETO-OPTIMALITY OF OLIA
In this section, we build a fluid model of OLIA by using

differential inclusions. We show that this model provides
a Pareto-optimal allocation (Theorem 3) that satisfies the
three design goals of MPTCP [10] (Corollary 2). Also, we
prove that MPTCP with OLIA is fair with TCP: If all routes
of a user have the same RTT, then OLIA maximizes the
same fairness criteria as the regular TCP (Theorem 4).

6

0 20 40 60 80 100 120
0

10

20

30

time (in sec)

w
1

0 20 40 60 80 100 120
0

10

20

30

time (in sec)

w
2

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

time (in sec)

α 1

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

time (in sec)
α 2

(a) MPTCP - OLIA: window size and αr as a function of time.

0 20 40 60 80 100 120
0

10

20

30

time (in sec)

w
1

0 20 40 60 80 100 120
0

10

20

30

time (in sec)

w
2

(b) MPTCP - LIA: window size.

Figure 7: Evolution of w and α values for a two-path
flow. Each path is shared with 5 regular TCP users.
OLIA uses both of the paths, similarly to LIA, and
there is no sign of flappiness.

5.1 Fluid Model of OLIA
We consider a network model similar to [3]. The network

is static and composed of a set L of links (or resources). We
denote by Ru the set of paths available to a user u, each
path being a set of links. If the route r is available to user
u, we write r ∈ Ru. If a route r uses a resource `, we write
` ∈ r. Similarly, we refer to all routes that cross ` as r 3 `.

Let xr(t) ≥ 0 be the rate of traffic transmitted by the user
u on a path r ∈ Ru. We assume that the RTT of a route r
is fixed in time and we denote it by rttr. In the fluid model,
the rate xr is an approximation of the window size divided
by the RTT, i.e. xr = wr/rttr.

Let p`(
∑

`∈r xr) be the loss rate at link `. p` depends on
the capacity of the link, C`, and the total amount of traf-
fic sent through the link,

∑
`∈r xr. We assume that p` is

an increasing function of the total traffic. To simplify the
notation, we omit the dependence on x and write only p`.
However, note that if x varies with time, p` will also vary.
We assume that the loss probabilities of links are indepen-
dent and small; hence, the loss probability on a route r is
pr=1−

∏
`∈r(1−p`) ≈

∑
`∈r p`.

When pr is small, a user u receives acknowledgments on
a route r ∈ Ru at rate xr and increases the window wr

as Equation (5). Losses occur at rate prxr on r, and the
user decreases wr by half whenever it detects a loss. We
consider a fluid approximation of OLIA in which we replace
the stochastic variations of rates by their expectation. This
leads to the differential equation:

dxr
dt

= x2r

(
1/rtt2r

(
∑

p∈Ru
xp)2

− pr
2

)
+

αr

rtt2r
, (7)

αr depends on the values pp and wp for all paths p ∈ Ru of
users u. It is defined by Equation (6). To compute αr, we
approximate `r by its average: lr = 1/pr.

0 20 40 60 80 100 120
0

10

20

30

time (in sec)

w
1

0 20 40 60 80 100 120
0

10

20

30

time (in sec)

w
2

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

time (in sec)

α 1

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

time (in sec)

α 2

(a) MPTCP - OLIA: window size and αr as a function of time.

0 20 40 60 80 100 120
0

10

20

30

time (in sec)

w
1

0 20 40 60 80 100 120
0

10

20

30

time (in sec)

w
2

(b) MPTCP - LIA: window size.

Figure 8: Evolution of w and α for a two paths flow.
The first path is shared with 5 TCP flows and the
second with 10. OLIA uses only the good path. LIA
transmits significant traffic over the congested path
and less than OLIA over the good path.

For a user u, the set of best paths Bu and the set of paths
with maximum window size Mu depend non-continuously
on the probability of loss on each route, as well as on the
various window sizes of the routes of this user. This implies
that the right-hand side of Equation (7) is not a continuous
function of xr. Therefore, this differential equation is not
well defined and can have no solutions. A natural way to
deal with a differential equation with a discontinuous right-
hand size is to replace the differential equation (7) by a
differential inclusion dx/dt ∈ F (x) where the discontinuous
αr of (7) is replaced by the convex closure of the possible
values of α in a small neighborhood of x [21, 22].

We show in [18], Appendix D, that the differential inclu-
sion corresponding to the Equation (7) is

dxr
dt

= x2r

(
1/rtt2r

(
∑

p∈Ru
xp)2

− pr
2

)
+

ᾱr

rtt2r
, (8)

where ᾱ = (ᾱ1 . . . ᾱ|Ru|) is such that

(ᾱr ·|Ru|) ∈

[1|Bu|=1, 1] if r ∈ Bu \Mu

[−1,−1|Mu|=1] if r ∈Mu \ Bu

[−1|Bu|≥2,1|Mu|≥2] if r ∈Mu ∩ Bu

{0} if r 6∈ Mu ∪ Bu

(9)

with
∑

r∈Ru
ᾱr = 0 and

∑
r∈Bu ᾱr = 1/|Ru| if Bu∩Mu = ∅.

The notation 1|Bu|=1 means that this term is equal to 1 if
|Bu| = 1 and 0 otherwise. For example, when there is only
one best path (i.e. |B| = 1), αr = 1/|Ru| for r ∈ Bu \Mu.
If there are two or more best paths (i.e. |B| 6= 1), then
αr ∈ [0, 1/|Ru|] for r ∈ Bu \Mu.

Note that there are multiple ᾱ that correspond to defi-
nition (9). The differential inclusion might have multiple
solutions, but this does not affect our analysis [18].

7

5.2 Pareto Optimality of OLIA
A fixed point of the congestion control algorithm (8) is

a vector of rates x = (x1 . . . x|R|) such that there exists ᾱ
satisfying (9) and such that, Equation (8) is equal to zero for
any route r. We say that x is a non-degenerate allocation
of rates if each user transmits with a non-zero rate on at
least one of its paths. In practice, due to re-establishment
routines in traditional TCP, the allocation of rates will not
be degenerate. Hence, in our analysis, we consider only the
non-degenerate fixed points and analyze their properties.

Theorem 1. Any non-degenerate fixed point x of
OLIA congestion control algorithm, given by Equation (8),
has the following properties:

(i) Only the best paths will be used, i.e. paths r with max-

imum
√

2/pr/rttr.

(ii) The total rate obtained by a user u is equal to the rate
that a regular TCP user would receive on the best path
available to u: ∑

r∈Ru

xr = max
r∈Ru

1

rtt r

√
2

pr
.

Proof. The proof is given in Appendix A.

This theorem implies the following corollary:

Corollary 2. OLIA satisfies the three design goals sug-
gested by the RFC [10].

Proof. The proof is given in Appendix B.

The following theorem gives a global optimality property
of OLIA. For a rate allocation x, we define the total conges-

tion cost by C(x) =
∑

`

∫∑
r3` xr

0
p`(y)dy.

Theorem 3. Any non-degenerate fixed point x of our con-
gestion control algorithm (8) is Pareto optimal, i.e.:

• It is impossible to increase the quantity∑
r∈Ru

xr/rtt
2
r for some users without decreasing it for

others or increasing the congestion cost C(x).

Proof. The proof is given in Appendix C.

Remark 1. If the probability p` is sharp around C`, i.e. if
p`(y) ≈ 0 when y < C` and p` grows rapidly when y exceeds
C`, then the cost C is a binary function: it is very small if the
capacity constraints

∑
r∈` xr ≤ C` are respected and grows

rapidly otherwise. In this case, Theorem 3 shows that if x is
a fixed point of our algorithm, it is impossible to increase the
quantity

∑
r∈Ru

xr/rtt
2
r for some users without decreasing

it for others while respecting the capacity constraints.
Remark 2. As pointed out by Kelly [2], as C(x) is an

increasing function of rates, single-path congestion control
mechanisms are always Pareto optimal and the choice of an
allocation of rates is only a matter of fairness. However, if we
have multiple paths, it is likely that an algorithm will lead to
a non-Pareto optimal allocation [2]. Theorem 3 guarantees
that this cannot happen with OLIA. As a consequence, our
algorithm will not exhibit either problem P1 nor P2.

Remark 3. Although the utility function of each user∑
r∈Ru

xr/rtt
2
r could appear to be an ad-hoc utility func-

tion, it reflects the fact that like TCP, OLIA favors paths
with low rtt. When all paths belonging to a user have the

same RTT, this theorem implies that the rate allocation of
OLIA is such that one user cannot increase its rate without
decreasing the rate of some other users. Hence, OLIA can
successfully avoid problems P1 and P2. When RTTs over
paths available to a user are different, satisfying goals 1 and
2 of the RFC [10] can lead to sending traffic on paths that are
not the least congested but have a small round trip times.
Therefore, using a TCP-compatible algorithm, it is not pos-
sible to avoid problems P1 and P2 in all possible settings.
However, we can see from Theorem 1 that by using OLIA,
only the best paths available to a user would be used. This
indicates that OLIA provides an allocation as close as or
closer to the optimal than any TCP-compatible algorithm.
To completely avoid problems P1 and P2, it is necessary to
depart from the compatibility with regular TCP by using
congestion mechanisms that are less sensitive to round trip
times, such as CUBIC [23] or STCP [24].

5.3 TCP Compatibility
As we show in Appendix C, OLIA maximizes the utility

function V ∗(x) given by Equation (11). We now show that
our algorithm is fair with the regular TCP under the as-
sumption (A): all the paths belonging to a user u have the
same RTT rttu. Under this assumption, V ∗(x) simplifies as
follows:

V (x) =
∑
u∈U

− 1

rtt2u
∑

r∈Ru
xr
− 1

2

∑
l∈L

∫ ∑
r3l xr

0

p`(x)dx,

where x is the set of all the rates of the users.

Theorem 4. Under the assumption (A), the congestion
control algorithm defined by Equation (8) converges to a
maximum of the utility function V :

lim
t→∞

V (x(t)) = max
x≥0

V (x).

Proof. The proof is given in Appendix D.

This implies that OLIA maximizes the same utility function
as the regular TCP of [25] where we replace the rate of a
connection by the total rate that a user achieves on all its
paths. If the probabilities of loss p` are sharp around C`,
then our algorithm converges to an optimum of the following
global maximization problem:

max
∑
u∈U

− 1

rtt2u
∑

r∈Ru
xr

subject to

{ ∑
r3` xr ≤ C`

xr ≥ 0.

This is analog to the TCP maximization problem.

6. OLIA EVALUATION: MEASUREMENTS
AND SIMULATIONS

In this section, we study the performance of MPTCP with
OLIA, through measurements and by simulations. We first
perform measurements on our testbed to show that OLIA
outperforms LIA in all the scenarios from Section 3, as evi-
dence that OLIA solves problems P1 and P2. Results from
this section are in line with our theoretical analysis from
Section 5. We then study the performance of OLIA in a
data center by using htsim simulator [7].

6.1 Performance of OLIA in Scenarios A,B, C
In this section, we study the performance of MPTCP with

OLIA, in the scenarios A,B and C described in Sections 3.2

8

1 2 3
0

0.2

0.4

0.6

0.8

1
OLIA

N
1
/N

2

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

LIA

type1 users

type2 users: OLIA

type2 users: LIA

type1: optimum with probing cost

type2: optimum
with probing cost

C
1
/C

2
 = 0.75

C
1
/C

2
 = 1.0

C
1
/C

2
 = 1.5

Figure 9: Scenario A - Normalized throughput of
type1 and type2 users: we compare performance of
LIA and OLIA. By using OLIA, type2 users achieve
up to 2 times higher rates. OLIA performs close to
the theoretical optimum with probing cost.

to 3.4. We show that in practice, OLIA is very close to the
theoretical optimum with probing cost. These results are
obtained through measurements over our testbed, by using
our Linux implementation of OLIA.

6.1.1 Scenario A
We have shown in Section 3.2 that when the addition

of an extra link does not help (like in Scenario A), using
MPTCP with LIA can reduce the throughput of compet-
ing TCP users. In this section, we show by measurements
that MPTCP with OLIA significantly outperforms MPTCP
with LIA and comes close to the theoretical optimum with
probing cost.

Figures 9 and 10 report measurements obtained on the
testbed shown in Figure 2. Figure 9 depicts the normalized
throughput of type1 and type2 users that use LIA or OLIA.
The results show that OLIA performs close to an optimal
multipath algorithm that transmits the minimum traffic over
congested paths (theoretical optimum with probing cost).
OLIA significantly outperforms LIA: by using OLIA, type2
users achieve rates up to two times higher than with LIA,
with no reduction for type1 users.

Figure 10 depicts the measured loss probability p2 on the
shared access point. We observe that OLIA balances conges-
tion much better than LIA. When we use OLIA, p2 increases
only by a factor of 1.3 in the worst case, whereas with LIA,
p2 increases by a factor of 5. p1 is almost the same when
using LIA or OLIA.

6.1.2 Scenario B
We now show the performance of OLIA in the scenario B

described in Section 3.3. As we have shown, OLIA is Pareto
optimal. Hence, taking into account the minimum probing
cost, we expect only 3% reduction in the Blue users’ rates
and in the aggregate throughput when we upgrade Red users
to OLIA (see Figure 4(b)).

Table 2 presents the measurements for the scenario de-

0 1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

N
1
/N

2

L
os

s
pr

ob
ab

ili
tie

s

p2 with LIA

p2 with OLIA

C
1
/C

2
 = 0.75

C
1
/C

2
 = 1.0

C
1
/C

2
 = 1.5

Figure 10: Scenario A - Loss probability p2 at shared
AP: we observe that OLIA significantly reduces the
congestion level at this bottleneck and improves the
congestion balancing.

scribed in Section 3.3 using OLIA. We set CX=27, CT =36,
CZ=100, all in Mbps. We have 15 Red and 15 Blue users.
We set RTTs to 150 ms over all paths. Our results show that
there is a 3.5% decrement in aggregate throughput when
we update Red users to OLIA, which is much smaller than
the 13% reduction we observed when we used LIA (see Ta-
ble 1). This 3.5% reduction in the aggregate throughput is
due to the minimum traffic transmitted by users over con-
gested paths and cannot be reduced as it is bounded below
by 1/rtt packets/sec.

6.1.3 Scenario C
Finally, we study the performance of MPTCP with OLIA

in scenario C described in Section 3.4. Theorems 1 and 4
imply that by using our algorithm, multipath users do not
send any traffic on their path crossing AP2. Hence, in the-
ory, OLIA provides a fair allocation among users and per-
forms as an optimal algorithm (Figure 5(b), dashed lines).
Next, we show by measurements that OLIA is also fair in
practice.

Figure 11 depicts the normalized throughput of single-
path and multipath users, as a function of N1/N2 and for
C1/C2=1, 2. We show the results for LIA and OLIA, as
well as for an optimal algorithm with minimum probing cost.
This figure shows that with OLIA multipath users transmit
only one packet per RTT over AP2. Compared to LIA, type2
users receive up to 2 times higher throughput. Hence, OLIA
is less aggressive than LIA towards regular TCP users.

Red users
Rate/user

Aggregate
Blue users Red users

Single-path 2.2 1.8 59.3
Multipath 2.2 1.7 57.8

Table 2: Measurement results for scenario B show-
ing the effect of upgrading the Red users from regu-
lar TCP to MPTCP with OLIA. We observe a small
drop of 3.5% in the aggregate throughput, which is
due to the overhead of minimum traffic (1/rtt) over
the congested path. Compared to LIA (see Table 1),
we see significant improvement.

9

0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

single-path

N
1
/N

2

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
multipath

LIA

OLIA

OLIA

LIA

single-path: optimum
with probing cost

multipath: optimum
with probing cost

C
1
/C

2
 = 1.0

C
1
/C

2
 = 2.0

Figure 11: Scenario C - Normalized throughput of
single-path and multipath users: we compare the
performance of LIA and OLIA. We observe that by
using OLIA, type2 users achieve up to 2 times higher
rates. OLIA performs close to the theoretical opti-
mum with probing cost.

Figure 12, shows the measured loss probability p2. The
results show again that OLIA balances congestion in the
network and reduces the loss probability in bottlenecks much
better than LIA. In particular, we observe that by increasing
N1 from 0 to 3N2, p2 increases by a factor of 2 using OLIA,
whereas the increase is in the order of 4 to 6 times when
using LIA. p1 is almost the same when using OLIA or LIA.

6.2 Performance of OLIA in Data Center and
Dynamic Scenarios

The three preceding examples show that by providing a
better congestion balance, MPTCP with OLIA outperforms
MPTCP with LIA in Scenarios A, B, and C. In this sec-
tion, we show that, by being non-flappy and as responsive
as LIA, OLIA can fully use the multiple paths available in
a data center. Our study is based on a series of scenarios in
which MPTCP with LIA is studied in [7]. Because of space
constraints, we present the results for only two of the cases
where LIA was shown to be very efficient. We observe that
OLIA performs as well or better than LIA in these two sce-
narios. This indicates that it is not flappy and has a very
good responsiveness. These results are obtained using htsim

simulator used in [7], provided by Raiciu et al. We imple-
mented OLIA in the simulator and use the same scenarios
as [7].

6.2.1 Static FatTree Topology
We first study exactly the same scenario as in [7], Section

4.2-Throughput: the network is a FatTree with 128 hosts,
80 eight-port switches, 100Mb/s links. Each host sends a
long-lived flow to another host chosen at random. Figure
13(a) shows the aggregate throughput achieved by long-lived
TCP and MPTCP (LIA and OLIA) flows. We show the
results for different numbers of subflows used. Our results
show that OLIA can successfully exploit the multiple paths
that exist in the network and can use the available capacity.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N
1
/N

2

L
os

s
pr

ob
ab

ili
tie

s

p2 with OLIA

p2 with LIA

C
1
/C

2
 = 1.0

C
1
/C

2
 = 2.0

Figure 12: Scenario C - Loss probability p2 at shared
AP: we observe that OLIA significantly reduces the
congestion level at this bottleneck (4 to 6 times lower
compared tp LIA).

2 3 4 5 6 7 8
0

20

40

60

80

100

Number of subflows

T
hr

ou
gh

pu
t (

%
 o

f
op

tim
al

)

MPTCP with LIA
MPTCP with OLIA
TCP

(a) Aggregated throughput.

0 50 100
0

20

40

60

80

100

Rank of flows

T
hr

ou
gh

pu
t (

%
 o

f
op

tim
al

)

MPTCP with LIA
MPTCP withOLIA
TCP

(b) Throughput of users.

Figure 13: Performance of OLIA in a FatTree with
many possible parallel paths between users. It suc-
cessfully explores the path diversity that exists in
the network and uses the available capacity (a sign
of non-flappiness). LIA performs similarly as, in this
scenario, it can successfully balance the congestion.

This is a sign that it is not flappy. Regular TCP shows a
poor performance. Figure 13(b) shows the throughput of
individual users ranked in order of achieved throughputs,
for LIA and OLIA with 8 subflows per user and with TCP;
LIA and OLIA provide similar fairness among users and are
more fair than TCP. We observe that, in this scenario, LIA
performs close to an optimal algorithm and exhibits a similar
performance to OLIA. The reason is that the users have
multiple equally good paths. Hence, LIA also successfully
balances the congestions in the network, similarly to OLIA,
and performs optimally. We measured the loss probabilities
of links available to users and results confirm our reasoning.

6.2.2 Dynamic Setting with Short Flows
We study the same scenario as the one described in Section

4.3.4-ShowFlows of [7]. The scenario is a 4:1 oversubscribed
FatTree where each host sends to one other host. One-third
of the hosts send a continuous flow by using either TCP,
MPTCP with LIA (8 subflows) or with OLIA (8 subflows).
The remaining hosts send short flows of size 70Kbyte every
200ms on average (they generate these flows according to a
Poisson process). They use regular TCP. This is a highly

10

algorithm Short flow finish Network core
time (mean/stdev) utilization

MPTCP - LIA 98± 57 ms 63.2%
MPTCP - OLIA 90± 42 ms 63%

Regular TCP 73± 57 ms 39.3%

Table 3: Performance of OLIA in a highly dynamic
setting. It uses the available capacity as efficient as
LIA, but decreases the average completion time of
short flows by 10%.

dynamic setting in which changes occur in the order of mil-
liseconds. Table 3 shows the average completion time for
short flows and the network core usage. Figure 14 shows
the distribution of completion times of short flows. Our re-
sults show that although OLIA uses the available capacity
as efficiently as LIA, the average completion time of short
flows decreases by 10% using OLIA. Moreover, we observe
in Figure 14 that OLIA decreases the completion time of
both fast and slow short flows. For slow flows, the decrease
is more than 25%. This shows that OLIA has a better re-
sponsiveness than LIA, is more fair to TCP users, and uses
capacity quickly when it is available. With TCP, we have a
lower average completion time for short flows, but very low
network utilization.

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

Short flow completion time (ms)

PD
F

MPTCP with LIA
MPTCP with OLIA
TCP

Figure 14: Completion time of short flows com-
peting with long-lived TCP, MPTCP with LIA, or
MPTCP with OLIA flows in a highly dynamic set-
ting. OLIA reacts faster to the changes in the net-
work and is fairer toward short flows.

7. CONCLUSION
We have shown that MPTCP with LIA suffers from im-

portant performance issues. Moreover, it is possible to build
an alternative to LIA, which performs close to an optimal
algorithm with probing cost while being as responsive and
non-flappy as LIA. Our theoretical results show that our
proposed algorithm, OLIA, is Pareto-optimal and satisfies
the three design goals of MPTCP [10]. Moreover, we have
shown through measurements and by simulation that OLIA
is as responsive and non-flappy as LIA, and that it solves
identified problems with LIA.

Multiple directions could be explored to go further. A
first one would be to act on the minimum probing traffic
rate by an adjustment of the retransmit timer – in our cur-
rent implementation, the minimum window size is 1 and the
minimum probing rate is 1/rttr. Another direction comes
from the fixed point analysis of Theorem 3. The stability
and convergence of OLIA is another important question that
will be studied in future work.

8. REFERENCES
[1] M. Allman, V. Paxon, and E. Blanton. Tcp congestion

control. In RFC 5681, September 2009.

[2] F.P. Kelly. Mathematical modelling of the internet.
Mathematics unlimited-2001 and beyond.

[3] F.P. Kelly, A.K. Maulloo, and D.K.H. Tan. Rate
control for communication networks: shadow prices,
proportional fairness and stability. Journal of the
Operational Research Society, 49, 1998.

[4] F. Kelly and T. Voice. Stability of end-to-end
algorithms for joint routing and rate control. ACM
SIGCOMM CCR, 35, 2005.

[5] H. Han, S. Shakkottai, CV Hollot, R. Srikant, and
D. Towsley. Multi-path tcp: a joint congestion control
and routing scheme to exploit path diversity in the
internet. ToN, 14, 2006.

[6] W.H. Wang, M. Palaniswami, and S.H. Low. Optimal
flow control and routing in multi-path networks.
Performance Evaluation, 52, 2003.

[7] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh,
D. Wischik, and M. Handly. Improving datacenter
performance and robustness with multipath tcp. ACM
Sigcomm, 2011.

[8] D. Wischik, M. Handly, and C. Raiciu. Control of
multipath tcp and optimization of multipath routing
in the internet. NetCOOP, 2009.

[9] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handly.
Design, implementation and evaluation of congestion
control for multipath tcp. Usenix NSDI, 2011.

[10] C. Raiciu, M. Handly, and D. Wischik. Coupled
congestion control for multipath transport protocols.
RFC 6356 (Experimental), 2011.

[11] A. Ford, C. Raiciu, M. Handley, S. Barre, and
J.Iyengar. Architectural guidelines for multipath tcp
development. RFC 6182 (informational), 2011.

[12] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure.
Tcp extensions for multipath operation with multiple
addresses. IETF Internet Draft, 2011.

[13] C. Cetinkaya and E.W. Knightly. Opportunistic traffic
scheduling over multiple network paths. In
INFOCOM, 2004.

[14] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and
R. Wang. A transport layer approach for improving
end-to-end performance and robustness using
redundant paths. In USENIX, 2004.

[15] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and
H. Tokuda. Multipath congestion control for shared
bottleneck. In PFLDNeT workshop, 2009.

[16] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Trans.
Comput. Syst., 18, 2000.

[17] V. Misra, W.-B. Gong, and D. Towsley. Fluid-based
analysis of a network of AQM routers supporting TCP
flows with an application to RED. In SIGCOMM,
2000.

[18] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and
J.-Y. Le Boudec. Non pareto-optimality of mptcp:
Performance issues and a possible solution. EPFL
Technical report. Available at
http: // infoscience. epfl. ch/ record/ 177901 , 2012.

[19] http://mptcp.info.ucl.ac.be/.

11

http://infoscience.epfl.ch/record/177901
http://mptcp.info.ucl.ac.be/

[20] V. Jacobson. Congestion avoidance and control. In
ACM SIGCOMM CCR, volume 18, 1988.

[21] N. Gast and B. Gaujal. Mean field limit of
non-smooth systems and differential inclusions. ACM
SIGMETRICS Performance Evaluation Review,
38(2):30–32, 2010.

[22] N. Gast and B. Gaujal. Markov chains with
discontinuous drifts have differential inclusion limits.
Performance Evaluation, 2012.

[23] S. Ha, I. Rhee, and L. Xu. Cubic: A new tcp-friendly
high-speed tcp variant. ACM SIGOPS Operating
Systems Review, 42, 2008.

[24] T. Kelly. Scalable tcp: Improving performance in
highspeed wide area networks. ACM SIGCOMM
CCR, 33, 2003.

[25] S. Kunniyur and R. Srikant. End-to-end congestion
control schemes: Utility functions, random losses and
ecn marks. ToN, 11, 2003.

APPENDIX
We provide sketches of proofs for the results in Section 5.
Detailed proofs are available in [18], Appendices E to H.

A. SKETCH OF PROOF (THEOREM 1)
Proof of (i). Let x be a non-degenerate fixed point of

OLIA. For any path p ∈ Ru, the equation dxp/dt contains
two terms, denoted term A and term B in the next equation:

0 =
dxp
dt

= x2p

(
1/rtt2p

(
∑

s∈Ru
xs)2

− pp
2︸ ︷︷ ︸

term A

)
+ ᾱp︸ ︷︷ ︸

term B

. (10)

Assume that there exists a non-best path r 6∈ Bu such
that xr > 0. We show that this leads to a contradiction.

Equation (10) shows that the term A is positive for r and
hence is strictly positive for any best paths (by definition of
best path). If Bu ∩Mu 6= ∅, there exists a best path p with
maximum window size. Thus, we have xp 6= 0, which implies
that dxp/dt > 0 as αp is non-negative. If Bu ∩ Mu = ∅,
then there exists p ∈ Bu such that αp > 0, which implies
that αp > 0 and thus dxp/dt > 0. In both cases, we have
dxp/dt > 0 which contradicts that dxp/dt = 0.

This shows that for any non-best path r 6∈ Bu, we must
have xr = 0.

Proof of (ii). Because of (i), we have ᾱr = 0 for all
routes r 6∈ Bu. Thus, we can show that ᾱr = 0 for all
paths r ∈ Ru. Therefore, any fixed point x satisfies xr = 0
or
∑

p∈Ru
xp = 1/rttr

√
2/pr. By assumption, x is non-

degenerate, which means that there exists a route r ∈ Ru

such that xr 6= 0. This concludes the proof of (ii).

B. SKETCH OF PROOF (COROLLARY 2)
Point (ii) of Theorem 1 implies that OLIA satisfies goal

1: the total rate that OLIA gets (
∑

r∈Ru
xr) is the same

as the rate that a regular TCP would get on its best link
(maxr∈Ru

√
2/pr/rttr). Moreover, as OLIA only uses its

best paths, it does not transmit more than a regular TCP
does on any of its paths and satisfies goal 2. Finally, as OLIA
only uses its best path, it perfectly balances congestion and
satisfies goal 3.

C. SKETCH OF PROOF (THEOREM 3)
Let x∗ be a fixed point of the algorithm and define the

utility function V ∗(x) as∑
u∈users

− 1

τ2u
∑

r∈Ru

xr
rtt2r

− 1

2

∑
`∈links

∫ ∑
r∈` xr

0

p`(x)dx, (11)

where τu is defined by: τu = (
∑

r∈Ru
x∗r)/(

∑
r∈Ru

x∗r/rtt
2
r).

The function V ∗ is a non-positive function that goes to
−∞ when x → ∞. Therefore, it has a maximum, attained
for a finite x. By concavity of V ∗, a necessary and sufficient
condition for a point x to be a maximizer of U is that for
every route r, we have

∂V ∗

∂xr
(x) ≤ 0 and

∂V ∗

∂xr
(x) = 0 or xr = 0.

By the definition of V ∗ and Theorem 1, the fixed point x∗

is a maximum of V ∗. Since V ∗ is an increasing function of∑
r∈Ru

xr/rtt
2
r and a decreasing function of the congestion

cost, it is impossible to increase
∑

r∈Ru
xr/rtt

2
r for some

users without decreasing it for others or increasing the con-
gestion cost.

D. SKETCH OF PROOF (THEOREM 4)
Theorem 4 assumes that all the paths belonging to user

u have the same round trip time rttu. In that case, the
function V is the same as V ∗ of Equation 11 with τu = rtt2.

Let x be one of the solutions of the differential inclusion
given by Equation (8). Then, there exists a function ᾱ(t)
satisfying Equation (9) for all t and such that dxr/dt satisfies
Equation (8).

When running the algorithm, the derivative of V (x(t))
w.r.t. time satisfies dV/dt =

∑
u,r(∂V/∂xr)(dxr/dt). Thus:

d

dt
V (x(t)) =

∑
u∈U

∑
r∈Ru

∂V

∂xr

dxr
dt

=
∑
r

(
1

rtt2u(
∑

r∈Ru

wr
rttu

)2
− pr

2

)

·

(
w2

r

rttu

(
1

(
∑

p∈Ru
wp)2

− pr
2

)
+

αr

rttu

)

=
∑
u∈U

∑
r∈Ru

x2r

(
1

rtt2u(
∑

p∈Ru
xp)2

− pr
2

)2

(12)

+
∑
u∈U

∑
r∈Ru

(
1

rtt2u(
∑

p∈u xp)2
−pr

2

)
ᾱr

rtt2u
(13)

By definition of ᾱ, we have
∑

r∈Ru
αr = 0. Moreover,

when all rtt are equal, the best paths are the paths with
minimal probability loss and αr ≤ 0 for such paths. Thus:∑

r∈Ru

αrpr =
∑
r∈Bu

αrpr +
∑
r 6∈Bu

αrpr ≤
∑
r

αrpmin = 0.

These two properties together show that the term (13) is
non-negative. Since (12) is also non-negative, this shows
that dV (x(t))/dt ≥ 0 for all t. Thus, the function V is
non decreasing. Since V is non-positive, this shows that
limt→∞ dV (x(t))/dt = 0.

Let x∗ be a limit point of x(t). We show in [18], Ap-
pendix H, that x∗ is a fixed point of the algorithm. Thus,
by Theorem 3, it is a maximizer of V .

12

	Introduction
	MPTCP and related work
	Performance problems of MPTCP
	Testbed Setup
	Scenario A: MPTCP is not Pareto-optimal and penalizes regular TCP users
	Scenario B: MPTCP is not Pareto-optimal and can penalize other MPTCP users.
	Scenario C: MPTCP users could be excessively aggressive towards TCP users.

	OLIA: The Opportunistic Linked Increases Algorithm
	Detailed Description of OLIA
	Linux Implementation of OLIA
	Illustrative Example of OLIA's Behavior

	Pareto-optimality of OLIA
	Fluid Model of OLIA
	Pareto Optimality of OLIA
	TCP Compatibility

	OLIA evaluation: measurements and simulations
	Performance of OLIA in Scenarios A,B, C
	Scenario A
	Scenario B
	Scenario C

	Performance of OLIA in Data Center and Dynamic Scenarios
	Static FatTree Topology
	Dynamic Setting with Short Flows

	Conclusion
	References
	Sketch of proof (Theorem 1)
	Sketch of proof (Corollary 2)
	Sketch of proof (Theorem 3)
	Sketch of proof (Theorem 4)

