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Abstract

In this master thesis, multi-agent reinforcement learning is used to teach robots to build a
self-supporting structure connecting two points. To accomplish this task, a physics simulator is
rst designed using linear programming. Then, the task of building a self-supporting structure is
modeled as a Markov game, where the robot arms correspond to the agents of the game. This
formalism is then used to design learning agents and train them using deep reinforcement learning.
Two di erent types of deep neural network models, based on image analysis and graph theory,
respectively, are used to develop their policy. The agents are then trained either centrally or
distributively to compare their learning processes and weaknesses. In a nal experiment, the
e ciency of the learning algorithm Soft Actor-Critic, is compared to Advantage Actor-Critic,
highlighting the e ectiveness of using Shannon entropy to search through the policy space. Finally,
the training procedure allows agents to successfully build a structure that spans ten times the width
of the building blocks without the need to use any binding between them or a removable sca old
during assembly.
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1 Introduction

1.1 Motivation

The idea of using robots in construction can be traced back to the beginning of the 20th century [1].
However, their use in large-scale projects, apart from their novelty, was not very attractive due to
the shift from masonry to concrete structures, which can hardly bene t from automation during the
construction phase. In the last decade, the environmental challenges caused by the use of concrete
(e.g., the impact of sand mining on biodiversity or the high amount of greenhouse gasses generated
by clinker production) have increased the trend towards alternative construction methods. Although
these issues cannot be overlooked, it would be a mistake to focus only on concrete production: The
end-of-life of concrete is as problematic as its production. Due to its almost indestructible resistance,
concrete is extremely di cult to recycle, and doing so can almost be reduced to grinding it up and
using it as an aggregate for road surfaces (in the best cases).

Masonry was not a ected by this last drawback, since the building components can be reused after
the destruction of a building. The most extreme example of such reusability is a dry stone wall, where
no cement is needed to x the blocks in place, as gravity and friction alone hold the structure together.
This makes such structures completely disassemblable. However, these methods cannot match the
incredible scalability of concrete. Concrete indeed allows for reliable construction in a much smaller
time frame than masonry. Massive structures like Notre Dame Cathedral in Paris were built with
masonry, but their construction took hundreds of years.

However, new developments in robotics and control could provide a solution to speeding up old
construction methods: larger blocks could be used because they would not need to be carried by
human or animal force. Moreover, the use of optimization methods could enable the construction of
more stable and e cient structures.

While most previous work has focused on the ne control of robots to precisely pick and place
blocks to obtain a given design [2], this thesis takes an orthogonal approach: the goal is to understand



where and in what order blocks should be placed to obtain a stable structure. To obtain a scalable
solution, in this thesis we propose to use multi-agent reinforcement learning (MARL) on simulated
robots. In our approach, we consider a discrete 2D environment in which blocks are placed to simplify
the development of learning algorithms by not using a continuous 3D environment. Although this
is a strong deviation from reality due to the limited number of block orientations and shapes that a
discrete environment allows, it is a rst step in addressing the di cult problem of learning to build

a self-supporting structure. It also allows di erent learning approaches to be compared, as is done in
this thesis.

1.2 Literature Review

In the literature review, we will cover two di erent topics of related work: The rst part deals with
self-supporting structures and the second with the application of reinforcement learning (RL) in the
eld of construction.

1.2.1 Self-Supporting Structures

So-called self-supporting structures are widely used in the domain of architecture. Constructions such
as bridges, church roofs, and even most types of camping tents fall under this designation.

From an assembly perspective, a self-supporting structure is an assembly of rigid components that
does not require any binder to connect the parts and is held in static equilibrium by friction and gravity-
induced compressive forces that immobilize all the parts [3]. These structures tend to be neglected in
favor of reinforced concrete in modern times: This last material allows for large constructions to be
built in a monolithic way, where each building component is solidly attached to the others. On the
other hand, Self-supporting structures have the advantage of being very light and disassemblable and
they can therefore still nd application, e.g. the Armadillo vault [4], where the fragile oor could not
support a heavy structure. Since self-supporting structures are well understood, most modern research
relates to shaping the parts to create a structure with the desired shape: either to nd straight cuts
in an existing structure [5], or to optimize the curvature of the building blocks to the forces [4]. To
the best of our knowledge, no simulations of spanning structures have been performed with a de nite
set of building blocks. On the other hand, this task has been addressed in the context of interlocking
assembly by using SL-blocks, a common interlocking shape consisting of 8 cubes (see Figure 1), to
build a structure that follows a line [6].

Figure 1: SL-block composition, adapted with permission from [6]

The main di erence between self-supporting and interlocking assemblies is that interlocking ones
not only resist gravity, but can actually withhold any force, requiring only 2 conditions to hold: The
force is not able to break the building blocks apart, and a particular block, called the key, is held in
place by other means. This type of structure and its assembly have received much more attention in
recent years than self-supporting structures [3, 7], and they have a number of common challenges, such



as the need to choose the position and orientation of the parts, as well as the need for the structure
to be physically stable or otherwise externally held during construction.

In this work, we consider a free structure, which is a di erent problem than assembly. The main
di erence between these two problems is that in the latter the shape of the nished object or the
position of the individual components is already known, whereas in a free structure, fewer speci cations
are given, like only the starting and end point of the structure.

Despite the attention paid to the interlocking framework, only the paper on SL blocks [6] deals
with free structures, while most papers consider the design process as an assembly problem [8].

1.2.2 Reinforcement Learning in Construction

In Bapst et. al. [9], the use of reinforcement learning is tested with a single agent for a set of
construction tasks. One of the tasks given to the agent is the placement of blocks to connect some
points while avoiding obstacles. In this work, it is found that representing the construction as a graph
of interconnected blocks is very bene cial, as is de ning the actions in a relative reference rather than
an absolute one, i.e., de ning actions such as "place block A on block B" rather than "place block A
at (x,y)".

More broadly, the block stacking task is a common theme in hierarchical reinforcement learning
[10], where the agent learns to perform a simple subtask, such as placing a single block on top of
another block. Then, the agent uses a planning algorithm to combine the subtasks into complete
sequences. This method of model-based RL only uses learning to t a model, and then uses a classical
tree search to nd the optimal way of reaching the target state. The key element of this method is the
assumption that stacking one block on top of another is the same task whether the rst block is on
the ground or already at the top of a tower. While this is true in the case of a vertical tower where
the physical stability conditions are almost the same for each block, this assumption fails our case.
Moreover, even in the experiment done in [10], where only up to four blocks are placed, some problems
due to a mismatch between reality and the human-made state reduction leads to some failures.

RL methods also nd some applications in real buildings, especially in assembly tasks to exploit
feedback from rich tactile sensors [11, 12]. In both of these works, the focus is on the precise placement
of each part given a target pose, which is a complementary approach to the objective of this thesis,
where the goal is to nd the target pose of the blocks.

1.3 Contribution

Figure 2: Last step in the construction of a wide structure: The aim of the agents controlling the robot
arms is to connect both grounds (in grey) by using blocks (in blue) of di erent shapes

The main contributions of this thesis are:

" The design of a discrete simulator using linear programming. This simulator is able to e ciently
check the stability of a structure and directly determine the forces that the robots must apply
to maintain it.

" The formalisation of the construction process as a Markov game with a state-dependent action
set.



The use of two deep policy models, one based on convolutional neural networks and the other
on graph neural networks, and their comparison in an experiment.

The implementation of a state-of-the-art learning algorithm, called Soft Actor-Critic, to train
the agents, and its benchmarking against an older algorithm, called Advantage Actor-Critic.

The training of the agents, either in a centralised way, where they share the same internal model,
or in a distributed fashion, where each agent is completely independent. These two approaches
were also compared in an experiment.

The design of macro-actions to help the learning process by directly enforcing the cooperation
of the agents.

The successful construction of a structure that spans a large distance, a snapshot of which is
shown in Figure 2.

The construction of prototype blocks, similar to those used in the simulator, to verify that the
structures created by the agents can be replicated in real life.



2 Setup

2.1 Discrete Setup

The main environment used during the experiments is a 2D isometric grid (see Figure 3), in which the
blocks visible in Figure 4 are placed. Compared to a classical square grid, this type of grid allows more
surface orientations: horizontal, 60 and 120 degrees, as opposed to horizontal or vertical for a square
grid. Although square blocks are more commonly used than triangular (or hexagonal) ones in practice,
it is not possible to build an arch-shaped structure: Non-parallel sides are required to dissipate the
vertical force horizontally. A continuous setup is also de ned in the appendix A.3, but was not used
because of the added complexity of training, the computational cost of detecting collisions between
blocks, and the additional assumption that are needed in a hyper-static structuré.

Figure 3: Isometric grid: the third coordinate describe whether the triangle points up or down

Although this environment could use any type of blocks made out of triangles, only two types were
used in the experiments: Hexagons and links (see gure 4).

Figure 4: From left to right: hexagon, link and ground

The hexagon is chosen to allow the construction of basic structures (see Figure 5a, 5b), and the
shape of the link was motivated by the wide variety of structures that can be built without relying
on friction of the blocks (see Figure 5c): The use of a non-convex polygon called links, such as the
middle one in Figure 4, allows to match them with two sides of the hexagon, and the resulting contact
force can be oriented arbitrarily within a range of 120 degrees. In addition, these links can create

1The discussion about what is a hyper-static structure is out of the scope of this thesis, but they represent structures
where the position is over-constrained whereas the forces applied are under-constrained.



(a) Small arch (b) Tower (c) Bigger arch

(d) Dislocation creation (e) Dierent levels (f) Double arch

Figure 5: Dierent types of structures. Each block is drawn in blue and is subject to gravity, while
the ground is drawn in gray and can absorb any force applied to it

dislocations in the network of hexagons necessary to achieve speci ¢ goals (see Figure 5d). Depending
on the task, either a single triangle or multiple aligned triangles are chosen to represent the ground.
Using a single triangle (as in Figure 5) reduces the number of possible actions at the beginning of the
construction, while using multiple triangles allows for small adjustments in the placement of blocks
while eliminating the need to create defects.

In the experiments in Section 5, we use two di erent targets that must be connected. However, the
environment allows the use of more targets (as in the structure 5f) and can also be modi ed to deal
with obstacles.

The robotic arms are sometimes represented, as on Figure 6, but they were generally not depicted
in the graphical interface to lighten the gures, and only their respective intentions and e ects on the
blocks were represented by their speci c colors, as shown in Figure 7. The color of a particular robot
was then used for all of its actions:

~ When a robot hold statically a block in a structure, a dot is drawn in the robot's color, as shown
in Figure 6b

“ When a robot intends to place a block, its skeleton is drawn in the robot's color at the wanted
position, as in Figure 6¢

A small scenario where two robots are holding a structure and want to place a new block can be seen
in 9. Any number N > 1 of robots could be used to build a self-supporting structure, but for simplicity
and because this is the minimum number of robots needed to build an arch without removable supports,
we consider two robots during the experiments in Section 5.

The color of the blocks depends on the strength of the forces acting on them. It ranges from dark
blue when no forces are acting to yellow when a robot would not be strong enough to counteract the
maximum force acting on the block, as shown in Figure 8. To simplify the gures, the grid is generally
not shown in the following sections of this paper.

2.2 Physics

The complete simulator has to handle two tasks: the collision detection and the static equilibrium
calculation. The task of collision detection is to make sure that no blocks (or grounds) are intersecting
one another, and can be trivially solved using the grid. On the other hand, the static equilibrium
computation is more subtle, so this section of the thesis describe precisely how it is computed.

A structure is in static equilibrium when it is not accelerating and is in a state of balance. According
to Newton's rst law, this is the case when the net forces and moments are zero.



(a) Color map used when up to (b) Robot 1 is holding this block (c) Robot 1 tries to place this
N =4 robots are used block there

Figure 6: Graphical depiction of the robots' actions

(a) Robot 1 is holding this block (b) Robot 1 tries to place this block there

Figure 7: Graphical depiction of the robots' e ect and intent

The simulator only considers the statics of the structure, and although most physics engines (such as
PhysX or pybullet) and optimization libraries (Gekko, Gurobi, ...) are able to handle this easily, these
programs are designed for more complex tasks, such as multi-body dynamics, and the time required
to send messages describing the structure to the external solver often exceeds the time required to
actually calculate the stability of the structure. Therefore, it was decided to calculate the physical
equilibrium directly using linear programming.



(a) Force (b) Example with strong robots (c) Example with weak robots
color map

Figure 8: In 8b, each block is colored according to the force applied to it, but since the weight of the
blocks is negligible compared to the force of the robot, the color change is hardly noticeable. For 8c
on the other hand, the weight of the blocks is close to the maximum force of the robot and the colors
of the blocks span the entire color map

(a) Initial situation (b) The robot O wants to place a (c) Result
new block

(d) Initial situation (e) The robot 1 wants to place a (f) The action cannot be performed
new block

Figure 9: Sequences that occur in the simulator during a typical scenario. On the rst line, the robot
0 acts, resulting in a successful action. On the second line, the robot 1 acts, which leads to a failure
because it cannot let go of the block it was holding



2.2.1 Static equilibrium

L7 0

Px1 Cx  Px2

Figure 10: A single block on the ground: in this simplest case, 6 distinct forces are needed to compen-
sate the weight of the block

As mentioned earlier, the static equilibrium conditions require that the sums of the forces and
moments acting on each block equal 0. When the block has only one interface oriented with a direction
8, as in the Figure 10, the equilibrium can be written asA.(af‘q)x(S) = b(esé), where x is the amplitude of
all the reaction forces, and where the rst two rows ofA(eS(q) are respectively tasked to calculate the sum
of the reaction forces along the x- and y-directions, and the third (and last) row is tasked to calculate
the sum of the moments. This last step justi es the choice of two separate sets of forces applied at
each end of the interface: by combining them linearly, the resulting force can be applied at any point
along the interface without the need for a nonlinear operation at any time. Finally, the vector bg'(fc'(
is simply composed of the weight of the block and its induced moment:

0 1 0 1
Sx Sy Py 1Sxi + Px 1Syi Fs1
Sy Sk Py1Syi *+ Px1Sxi Fri1 0,1
AQT = Sy Sx pyls-yi+ leS_xi x(3) = FFfr 1 bbock = @ mg A ;
Sx Sy py2$><| pXZSyI s2 cemg
Sy Sx  Py2Syi *+ Px2Sx Fii2 *
Sy Sx Py2Syi Px 2Sxi Ftr 2

where the component of the matrixAZ, are the x and y component of the vector normal to the surface
$ and the coordinate of the application point of each force (as seen on Figure 10).

2.2.2 Compression constraints

An important factor in our setup is that no mortar is used between the blocks, requiring that all of the
contact forces are compressive. Doing so creates a non-negativity constraints on the support forces:

Fs1 O Fs2 O

To simplify the calculation, the frictional forces were also constrained to be non-negative, but it can
be seen that the combination of the two forces acting in opposite directions already allows them to
bypass this constraint. One can then use the formulation

x) 0

10



2.2.3 Friction constraints

In solid physics, the maximum friction force that can be applied is equal to a coe cient  times the
support force (in the static case), i.eFf 1+ Fri1 cFs1 and Fsr o + Fy 0 ¢Fs2. This constraint
can then be written in matrix form, A™e" x 0, by using

AlS) = c 1 1 0 0 0.
-0 0O c 1 1°

This coe cient depends on the material of both the block and the ground, as well as other factors
such as the roughness of the surface. Its value in real building is generally around 0.7, but with the
prototype blocks used in the appendix A.1 to validate the model, a value of 0.5 better matched the
reality.

2.2.4 Combination of several interfaces

In a real construction, each block is generally not in contact with only one other, but with several (as
in Figure 11)

Figure 11: A block added to an existing structure. It shares its interface (1) with the blocki and its
interface (2) with the block j

In this case, the matrices de ned above can simply be stacked together, creating the system of
equations and inequation

Ablock X block — bblock
€q

Ablock Xblock 0

X block 0

In this case, the matrices de ned above can simply be stacked together, creating the system of equations
and inequation x=y. If the block has ng di erent interfaces, the composition of each matrix and vector

11



Aglc;mk = A(Sl) A‘(azz) - A(e?an)
0 Als1) 0 0 !
0 Als2) 0
Ab|0Ck - . ) i §
0 0 F(5ns)
X(Sl)
block %X(SZ) §
X(Sns)

where 0 is ller matrix composed exclusively of zeros.

2.2.5 Combination of several blocks

These constraints do not need to be satis ed only for a block, but for each block present in the
structure. The complete constraint system of a structure can then be built iteratively by adding a
block at each time step:

AW = A(t 1) Acolt
eq — 0 Ablockl
A D 0
A(t) = 0 Ablockl
(t 1)
X
x(® = 5 block,
o) = b(t 1)
eq — bblock‘
(t 1)
m- b :
b 0 ;

WhereAC"'l is taken care of the reactive forces according to Newton's third law by placing the opposite
of the matrix A(S' in the rows corresponding to the support block:

(

ACOl 0 if the block j does not share an interface with the new block
eq pajyim AL if the block j shares the interface i with the new block

where the indicesjx;jy;jm represent the three lines of the matrixAg‘c;'t that compute the equilibrium
of the block j .

2.2.6 Robot forces
The problem must also deal with a robot holding a block. This is done by using the initial matrices
and vector AQ | b©@ x© (while AS) and b?, are initialised empty). The vector

0 1
Fo

xO = & : K

Fn 1

12



contains the forces applied by each robot (numbered from O tdtN 1). EachF,, n=0;:::;N 1,
contains 6 components

1
Fx+

0
Fx
F
Fp = yri.
n Fy
M.
M

each representing the force (or moment) acting in a particular direction. If the robotn holds the block
i at a certain time during the simulation, Ae¢q is changed in the following way:

0 1

1 1 O 0 0 O
Aeq (ixiy;im ) n = @ o0 0 1 1 O OA;
Pry Pry Prx px 1 1

where the indices {x;iy;im ) n represent the three lines corresponding to the block and the six
columns corresponding to the robotn.
2.2.7 LP formulation of the physics module

A linear program (LP) has a linear objective and several linear equality and inequality constraints. In
matrix form, the problem can be formulated as follows:

min(c Xx)
X
Sit: AggX = Deg;
Ax b;
x 0

As can be seen, the constraints de ned above can be used directly in the LP, and only the cost vector
¢ remains to be de ned. As no preference is given to any of the forces, all forces were then given a
constant weight of 1.

13



2.2.8 Soft constraints

In the next section, the forces applied to each blocks are added to the structures. Another helpful aid
that can be added is the failure points of the structures, allowing to know whether a collapse originates
from a robot that is not able to sustain the force, a friction that is too large or an out of balance block.
To nd and indicate these failure points, the LP is extended with unbounded sticking forces that would
act on the mortar or binding if some was used:

(1) — t t
Aeqsoft - Ac(eq) A(9q)

Agto)ft = A® 0
W=
X stick
bt(atq)soft = bgq)
bgo)ft = bW
t
Cgo)ft = Cé(:)

where is an arbitrarily large constant ( xed at 10 © in the experiments). This softening of the equality
constraints allows a solution to always be found, and the nature of the linear cost tends to minimize
the number of soft constraints violated rather than the magnitude of those violations, leading to fewer
failure points and an easier-to-understand failure mode: The collapse of a structure is often caused by
a single frictional force that is too large or could be xed by using mortar in only a few locations. The
result of using such soft constraints can be seen on the second line of Figure 13, where the red arrows
show the failures points.

14



2.2.9 Visualisation

To illustrate the resulting forces when used in the setup, the forces acting on the corners of the same
interface are added together, and only the resulting force is then displayed. The application point of
the resulting forces is computed so the moment it creates equals the one created by all corner forées

(a) Colors used sequentially (b) Example: without using di erent colors, it would not be possible to determine
to draw the arrows whether the friction forces applied on the top block are pointing upward or down-
ward

Figure 12: Colors used to draw the arrows when no robot is holding the structure

The color rule used to visualize forces is shown in Figure 12, except for forces exerted by any robot.
Whenever the arrows were drawn, the force exerted by a robot was represented in its corresponding
color. With this notation, the rst scenario in Figure 9 looks like the rst scenario in Figure 13.

Thick red arrows are used to highlight failure points when soft constraints are not met, as shown
at the end of the second scenario in Figure 13

(a) Initial situation (b) The robot O wants to place a (c) Result
new block

(d) Initial situation (e) The robot 1 wants to place a (f) The action cannot be performed
new block

Figure 13: Same sequences as in gure 9, with the force arrows replacing the colored grid when a robot
is holding a block and a red arrows at the failure points of the structure: In the second scenario, the
robot would need to apply a torque and the third block would need to be stuck to the second one.

2This position can easily be computed by taking an amplitude-weighted average of the application points of each
force

15



To increase visibility when a larger number of block are used, the amplitude of each force is
normalized with respect to the largest one. Note that this information is still qualitatively visible by
the color of the blocks, as in Figure 14.

(a) When only three blocks need to be held, the force (b) While the actual force is greater, the size of the

received by each is quite small compared to the maxi- oblique arrows does not change when more blocks are

mum force of the robot, so the color remains uniform. used. However, the color of the blocks is modied
to indicate the increase in force, and the weight are
relatively smaller

Figure 14: To hold the structure together, the robot needs to apply a force whose amplitude and
direction changes with the number of blocks.

2.2.10 Safety kernel

To give the physics solver a sense of stability, the notion of a safety kernel is introduced. The concept
of safety kernel is to modify directly the application points of the forces (, and p, on Figure 10), to
create a safe region in which the forces can be applied. This method allows to eliminate some unstable
equilibria that occur when forces are applied too close to the corners of the block (see Figure 15a: in
practice, the stability of this structure is unreliable, as a slight shift of the top block to the left would

be enough to make it collapse). Instead, the point of application of each force is shifted toward the
center of the side by a fraction of its length. This simple trick eliminates most unrealistic equilibria,
and the resulting structures could always be tested with real blocks (see the appendix A.1). Note that
the implementation of this safety does not requires to modify the equation used above, but rather
modify the geometry of the blocks.

16



(a) No kernel (b) kernel amplitude: 0.2 (c) kernel amplitude: 0.5

(d) No kernel (e) kernel amplitude: 0.2 (f) kernel amplitude: 0.5

Figure 15: On the top line, a small deviation from the position would result in a collapse of the
structure, and the introduction of a kernel makes this structure always unstable, leading to safer and
more realistic constructions. The structure on the bottom line was consistently stable in the prototype,
justifying a kernel size of 0.2.

3 Agent

Several modeling methods and frameworks could be used to model multi-agent tasks such as the self-
supporting construction. We chose to use a Markov Decision process (MDP) as a framework, as this
method is extremely exible and commonly used in reinforcement learning. The following section
formally de nes a Markov process, a Markov decision process and a Markov game, while the one
thereafter describes how these concepts were adapted to our setup.

3.1 Framework
3.1.1 Markov Chain

A Markov chain or Markov process is a common way to describe a stochastic process. It consists of
a tuple (S;P) that models a set of statesS and their evolution through time. The evolution through
time is modeled by a transition function P : S'! S, where S represents the probability simplex
over S and the next state depends only on the current state. The state space can be either nite or
in nite, and the transitions can be either continuous or discrete, but in this master thesis, only the
nite-state discrete time Markov process is discussed. In this context, the transition function P can
be viewed as a matrix whose componentp;; are:

Pj = P(St+1 = ijst =)

A Markov process can also be described as a graph, where the nodes represent the states and the edges
represent all nonzero transition probabilities. For example, the transition matrix

0 1
05 0 01

P= @5 05 01A
0 05 08

can be equivalently modeled as the graph in Figure 16
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Figure 16: Example of Markov process

3.1.2 General formulation of Markov decision process

A Markov decision process (MDP) is an extension of the Markov process that includes an agent that
can in uence the transition function: To do so, three elements are added to the Markov chain tuple: a
set of actionsA from which an agent can choose, a reward functioflR : S A! R and a discount factor

2 [0;1]. The transition function must also be modi ed to take an action as input: P : S A S,
and the MDP tuple can nally be written as ( S;A;P;R; )
The agent's goal is thento nd a policy :S'! A, where A represents the probability simplex

over A such that maximizes the expected discounted cumulative reward/ :

X
V(so) = Ea, (so)[r(St;aO)]+ tEst P(st 1;ar 1);at (st)[r(st;at)];
t=1

where sp is an arbitrary initial state and T is the time horizon. To calculate this value, it is possible
to bootstrap it in the so-called Bellman equation:

X
V(s)= Ea (s)lr(s;a)+ P(Ste1 = SYst = s;@)V(Ste1)]
s02S

This equation, which underlies optimal control, model predictive control, and reinforcement learning,
simply states that the expected cumulative reward of a state is the average reward obtained in that
state added to the expected cumulative reward of the next state.V (s;) can then be interpreted as the
value of states; when using a policy .

Note that MDPs generally use a static action set (common to all states), while in the later cases of
this work a dynamic action set is often used where the available actions are state-dependent. Such an
action set is referred to asAs,s . While this has an important impact on the learning process, it makes
the notation more cumbersome. Alternatively, we de ne a base action seA such that As;s A , and
whether an action in the base set is available in states 2 S is integrated into the policy by setting

(s;a)=0;8a2AnA . This process will be referred to as masking in the following sections.

3.1.3 General formulation of a Markov game

A Markov game is a further extension of the Markov process that allows several di erent agents to
participate (compete or cooperate) in the same environment to achieve their own goals. Formally,

At o AN P:S Al S is the transition function, R' : S A! Ris the reward received by
agenti, and 2 [0;1] is a discount factor. The action vectora; 2 A denotes the action of each agent
at time t.

Note that a Markov game is not only an extension of MDP, but also a specic kind of repeated
game, so concepts from game theory can be applied.

A common way to train agents to solve a Markov game is to use a centralized training approach:
In the training phase, a single model is used to create the policy of all agents. Then, during execution,
each agent can either use the model as is, which is called centralized execution, or use only its own
observations of the state, which is called distributed execution. This type of execution is especially
useful when agents cannot communicate with each other outside of the training setup and cannot

18



observe the entire staté. For example, centralized execution can be used in board games such as
chess, since both agents have access to the entire situation on the board, while distributed execution
can be used in games such as poker, where each agent has a portion of the state (its cards) that is
available only to it.

In the task of coordinating multiple robot arms across a construction site, it can be assumed that all
robots have the same state description, allowing for centralized training and centralized execution. The
decentralized training, decentralized execution framework is also used and compared to in experiment
5.2, but with less success.

3.2 Stable structure construction

To adapt the above formulation to the task of building a self-supporting spanning structure, we consider
two approaches: In the rst one, the system is modeled as a Markov game solved by distributed training,
where each robot is an agent with its own model. In this approach, the agents only see the result of the
actions of the others, and the actions themselves as well as the policy are kept private. The rewards
can then be shared between agents or kept separate in a more individualistic perspective.

In the second approach, a supervisor or architect controls all robots sequentially in a centralized
training, centralized execution fashion, and the Markov game is reduced to an MDP, preserving the
theoretical guarantees of single-agent RL.

In the following section, we de ne the state space, action space, transition matrix, and reward
function for the task of building a spanning structure in both centralized and distributed training.
The reduction step from a Markov game to an MDP is discussed in 3.2.4, and the model used to build
and learn the optimal policy is nally discussed in Section 4.5.2

3.2.1 States

The state s; either contains the structure s present in the simulator at time t or corresponds to the
terminal state st. A structure is a set composed ofng grounds (@1, ... Gn,) and ny blocks (or,by,...,
b,,) which contains information about their types (links, hexagons, triangles, ...) , positions (in the
isometric grid), and whether or not they are held in the case of blocks.

3.2.2 Action set and transition matrix

Before de ning the action set and transition matrix, we de ne three logical operators: leave collision
and connection. Let the leaveoperatorL : S N !f 0;1g, where S is the set of structures andN is
the set of robots, represent whether or not the physical constraints de ned in section 2.2 are respected
when a given robot leaves the block it was holding, and let the collision operator Col : S ! f 0;1g,
represent whether or not some blocks intersect one-another in the structure. Finally Theconnection
operator Con : S ! f 0; 1g requires that we rst de ne a distance between the di erent elements of
the structure. Let d: B[ G B[ G! R, whereB is the set of possible blocks ands is the set

of possible grounds, represent the smallest euclidean distance between the corners of two blocks or
grounds. Then, the distance in free air between two elements of a structurd :B[ G B[ G! R

is de ned recursively by:

d (xy) =min (d(x;y);d (x;2) + d (zy));

where both x and y are elements (grounds or blocks) of the structures. The connection operatorCon

can then represent whether or notd (x;y) =0 8x;y 2 s. Con(s) would then be equal to 1 if a path

made of blocks links all of the grounds ins. Visually, the minimum distance in free air d between the
two grounds (g; and gy) of the structure in Figure 17 is shown in blue, whereas the distance between
them is shown in black. It can also be noted thatd (b;b) = 0 if b and Iy are blocks of the same
color, and d (b;b) = d (9:;9) otherwise. The distanced is then perfect to represent the shortest
distance between two disconnected regions.

3The notion of observation relies on partially observable MDPs, that are not covered in this master thesis
41f the robot r is not holding a block in the structure s, then L(s;r)=1
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Figure 17: Comparison betweerd and d .

The actions that can generally be taken by a robot are either to stay in place and keep holding
a block or to add a new block to the structure®. The action of the agenti is then denoted asH; if
the agent chose to keep holding the block it was holding and a®; (k) if the robot i tries to place a
new block ly. The transition matrix can then be de ned by either adding the blocks to the structure
(st+1 =% = s [f b : a4 = Pi(h) 8 2 Ng), or go to the terminal state (s;+1 = St). Three conditions
can potentially terminate the episode, i.e., setsi4+; = St:

" The structure s; is not stable once the robots try to leave, i.e.9i 2 N sit: L (s;;i) =0 and a =

Pi(b)

The potential new structure 4; contains some collisions:Col(4;) = 1. The decision to terminate
the episode as soon as a collision occurs is motivated by the fact that attempting to place a block
at this location results in unde ned behaviour in real life: Whether the structure collapses or
the new block is simply added at a di erent position than speci ed depends on the setting of the
real robot arms. So a conservative approach is taken and the collisions lead to the end of the
episode.

The structure successfully connects all the grounds, and all robots are able to leave&€on(%;) =
land L(%;i)=18i 2 N

The nal question regarding the action is how to choose the position of the new block. For this
we use the base action sef, whose elements are either thestay action or describe a way to place a
block given any state. Two ways to describe them are relative and absolute positioning: in absolute
positioning, a block is de ned by its position in the grid and its rotation, and the feasible action set
of a state can then be de ned as all possible ways to place a new block such that at least one of its
sides touches a side of the existing structure. On the other hand, this condition is always satis ed
if relative positioning is used: With this base action set, an action is directly de ned as placing the
side of a new block against one of the structure. Since this positioning has the pleasant property of
being translation invariant, and since it was more e ective in the literature [9], it was chosen in the
experiments.

Note that importantly the framework taken here is sub-optimal: We know the transition matrix
beforehand, and we know that it is deterministic. However, a MDP consider a stochastic transition and

51t was also tried to add other actions, such as leave, that results in the robot simply leaving the block it was holding
without adding a new one or remove, that allowed the robot to remove some blocks that were already placed. These
actions were later removed as they were unnecessary at best, and detrimental at worse.

20



the aim of a RL algorithm is precisely to learn what is the transition matrix. The matrix coe cients
are then not used by the agent, that is tasked to learn them by itself.

By taking advantage of this prior knowledge, one could then design a model-based RL algorithm,
that directly uses the information and thus converges faster to the optimal policy.

3.2.3 Reward choices

As reward design is still an open question, a modular reward was chosen: Di erent parameters could
be tuned to observe the resulting changes. This framework could accept several di erent inputs and
assign a positive or negative reward for each of them:

" Success: A binary ag that is set to true whenever all targets are connected and the robots do
not need to exert any force to maintain the structure.

Failure : A binary ag set to true if the selected action causes the structure to collapse or causes
a collision.

Closer : A binary ag set to true if a robot has set a block that reduces the distance between
two targets

Number of sides : The number of interfaces created by placing the new block.
Opposing sides : The number of opposing sides created by placing a new block.

The success and failure ags alone allow the construction of a self-supporting spanning structure, but
such a sparse policy is generally worse than a more dense one, that systematically gives a reward
for good actions and punishes bad ones. The other parameters allow for di erent types of helpers
that incentivise di erent structure shapes when the policy is learned: A high bonus for putting a block
closer leads to more direct constructions, while a smaller bonus leads to more convoluted constructions.
Adding a xed cost for each action speeds up the learning, but sometimes the agent learns that it is
better to fail early than to try anything. Adding a bonus to the number of new interfaces leads to
more intricate and stable structures. However, since the simulator ignores assembly dynamics, like
the friction forces applied when the robot adjust the position of the new block, the structures created
would most likely be impossible to build without penalizing the number of opposite sides: When a
block is in contact with two opposing sides, it must perfectly t the gap between the two. In the real
world, this would lead to two separate problems: Firstly the tolerances on the pieces would have to
be much higher (one block cannot be one centimeter thicker than the others, otherwise it would not
t). Secondly, the new block would forcefully have to be slided between the two faces, creating friction
forces on the blocks that could destabilize the whole structure.

Several sets weights for each components were tested, and the best ones can be found in the
appendix 8.

A subtle trick with the closer ag is that it does not change depending on how far the new block
is closer to the target. By using this trick, the cumulative reward is maximized when the shape of the
structure tends to a semicircle. Indeed, a semicircle is the longest structure that can be achieved with
doing in nitesimal changes in the distance, maximizing the number of rewarded actions that the agent
can do in an episode. As the semicircle is also a great way of obtaining a self-supporting structures,
the reward obtained by this ag is positive in all actions that tends to build an arch, reducing the
number of local minima in which the algorithm could get stuck. As an example, the agents generally
quickly nd the structure consisting of a straight line to connect two grounds. This shape allows to
span a gap of up to 4 triangles, but cannot be used to build bigger structures. Doing so need to nd
another kind of spanning shape, going toward the target in a more indirect fashion.

On the distributed training setup, two di erent reward aggregation could also compared: fully
shared or fully individual. The fully shared aggregation simply forms an homogeneous reward for all
agents by summing together the rewards for each individual agent, while the individual aggregation
keep them separate. The huge advantage of the shared reward is that no agent is encouraged to act
deceptively toward another, such as blocking the other agent to be the only one able to place new
blocks, thus accumulating more rewards. A full cooperation is then more easily obtained when using a
shared reward. Its main drawback, on the other hand, is that it adds up uncertainties in the training
process: If an agent does nothing and the others build the structure without it, the agent simply learn
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that doing nothing is the right way to build the structure. As the task of building a self-supporting
structure requires a tight coordination between the agents, the fully shared reward was used in the
experiment 5.2

3.2.4 Centralized training

In this setup, the robots are forced to act sequentially, alternating between a placing a block and
holding it while the other robots place their own blocks. Since only one action had to be chosen
at each time step (where to place the new block), only one reward was given. Combined with the
centralized training approach, this allows the transition from the perspective of a Markov game, where
each agent tries to maximize its own reward, to the perspective of an MDP, where the overall reward
is maximized and only one agent is considered. One could compare this approach to a supervisor who,
like an architect on a construction site, tells each worker where to place the blocks. The training task
would then no longer be to train each worker to place a block in the right place, but only to train the
supervisor.

Note that the centralized training would also be possible using simultaneous actions, like in the
previous approach, but doing so quadratically augment the size of the action set, resulting in a harder
problem to solve.

A nal heuristic can be used to constrain the policy space: By exploiting the sequential placement
of blocks, each robot can be forced to place a block only on the last block while it is still held by the
previous robot and thus directly release it®.

Removing the keep holding H;, actions highlight a powerful way to help agents learn an optimal
policy: If two actions must be executed sequentially in all cases, it is better to replace them with a
single action that executes both actions sequentially (which is then called a macro-action). Thelace
actions of the decentralized training could already be considered a macro-action, since it consists of
three steps:

" Leave the block that the robot is holding

Place a new block at a given location
" Hold it

Using such macro-actions was shown to be highly bene cial in term of training time, to the point
where some learning architectures tried to nd some when no human-made macro-action were easily
described [13].

4 Learning

With the task modeled as an MDP, the learning process combines three di erent modules: The sim-
ulator that takes the actions generated by the agents and outputs a new state, the agent that takes
the state and outputs the action thanks to its policy model, and nally a replay bu er that stores
together both the state, the action, the next state and the reward received. An illustration of the
learning setup, called gym, can be seen in Figure 18.

As can be seen in Figure 18a, the simulator and agents are divided into di erent sub-parts. The
agent architecture used in this thesis is called actor-critic: given a state, the agent can either use
its policy model (the actor) to generate an action, or its value estimator (the critic) to generate an
estimate of the expected discounted cumulative reward of the state. However, this second model is
used only to optimize the actor, using di erent algorithms described in Section 4.4. In this work, both
models are deep neural networks described in section 4.2, but any type of function approximator can
be used as long as it is di erentiable and contains enough parameters to store the optimal solution.

It is also interesting to note that the optimizer does not directly use the state generated by the
simulator, but instead uses the output of the replay bu er. This family of learning algorithms, called
0 -policy, does not rely on the current policy to optimize their models. This allows the optimizer to
use a random sample of past transitions stored in the replay bu er instead of the current state, which
is highly correlated with the previous one, and learn from older failures or successes.

8This heuristic can also not be used, as is the case in the experiment 5.2
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(a) Centralized gym (b) Distributed gym

Figure 18: Architecture of the gym for centralized and decentralized training

On the simulator side, one can see that in addition to the physics module (described in Section
2.2) and the grid containing the blocks, it also creates a graph. The rst learning step is indeed to
nd a representation that can be used e ciently to train a model, and the use of a graph encoding
has been shown in the literature to be one of these representations. For more details on the various
state encoders, see Section 4.1.

Finally, it can be seen in Figure 18b that the distributed agents are optimized independently by
using a separate replay bu er that does not contain the actions of the other agent. It can also be seen
that the simulator receives both actions to update itself and produces the same state for both agents

4.1 State visualisation

In both setups, the number of possible states is combinatorially huge. Using the grid de ned in Section
2.1, the number of possible states would be on the order af; ™ Y™ , but this is equivalent to
saying that the number of possible binary images is equal to @ : this is true, but most of the
possible images are never seen and have no meaning. The agent's rst task would then be to encode
the state more compactly.

A rst method is to use a convolutional neural network (CNN) on the grid, considering it as an
image with multiple channels, and already di erent ways of representing the state can be used and
compared. A rst possible method is to use a channel containing the identi er of each block, a channel
containing the ground to which the blocks are connected, and a channel indicating whether a block is
held or not (and by which robot). Such a representation can be seen in Figure 19.

(a) Human readable
version (b) Computer version

Figure 19: Order dependent state representation

In the centralized training setup, a di erent method can be used: Since the IDs of all but the last
block are irrelevant, omitting them reduces the amount of useless information. However, the agent
must still be able to distinguish whether or not a part of the structure consists of two di erent blocks
or only one: if a part of the structure consists of only one block, it cannot break internally. To describe
the state well and provide all the information needed to build the structure, the sides of each block are

"There is actually a small di erence between the states of the two agents, since they do not have the same feasible
action set Ag

23



used, as shown in Figure 20. As one can see on the rst row of the computer visualization, the center
triangles of the link are not shown as they do not contribute to the perimeter of the whole block.

(a) Human readable
version (b) Computer version

Figure 20: Order independent state representation. Note that this structure is only there as an
illustration, and could not be built as the agent is required to only place a block on the last one

The resulting channel decomposition is much harder for humans to read, but it implicitly eliminates
the encoding step of determining the edges of the blocks based on their IDs. Finally, since this encoding
cannot distinguish the di erent blocks, a single support block (the last one) against which the new
block have to be placed is marked with a separate channel.

4.1.1 Graph visualization

An even more optimised representation of the states, as found in [9], would be to use a graph repre-
sentation of the construction. In this thesis, we have chosen to use a heterogeneous, sparse graph with
di erent nodes and edges to represent the di erent objects and feasible actions in the simulation. This
is because it is more informative to describe a structure as "One block is placed on top of another,
which in turn is placed on top of the ground" than to use a more image-based description such as "A
blue block on top of a red block".

The set of nodes of the graph is the union of several sets. The rst ones are the set of grounds
and blocks in the structure G G and By B, where G is the set of all possible grounds and
is the set of possible blocks. As an example, the nodes corresponding to the blocks and grounds of
the structure in Figure 21a are shown in Figure 21b. In contrast to the previous representations, the
set of robots R = fry;::iry g is also added (as seen in Figure 21c), and the feasible action sat is
embedded directly into the state. To do this, each action is decomposed into two parts: the support
side against which the new block is placed (in grey in Figure 21d) and the potential new block that
would be placed against it (in yellow)®. The set of nodes of the graph representation can then be
described asN = Gs[ Bs[ R[ s[ Ps, where ¢ and Ps represent the set of support sides and
potential new blocks, respectively.

Each of the node types have a set of attributes: The grounds and the blocks have their types
(one hot-encoded) and their positions, the robots have the forces that they apply, the support sides
have their orientation and a unique ID used to di erentiate between two parallel sides, and nally the
potential new blocks have the type of the new block and the ID of the side that would be connected
to the one of the support.

The set of (undirected) edges of the graph is also the union of several type of edges.

8When the robots can act simultaneously, the stay action is modelled as a specic type of new block that is not
connected to anything other than the robot
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(a) Human readable  (b) Bs (in blue) and () R (d) s (in gray) and (e) Complete set of
structure s Gs (in gray) Ps (in yellow) nodesN

Figure 21: Nodes of the graph state representation

Each robot is connected to each block with an edge labelled agaches E1 = f(;rj);8b;r; 2
Bs; Rg. These edges are visible in blue on Figure 22a

Each robot is also connected to each ground, and as the type of the nodes is di erent, the type of
the edges also needs to beE, = f(gi;r;);80;r; 2 Gs; Rg. While these edges are also labelled
as reaches they are colored in gray on Figure 22a

All of the robots are densely connected by a type of edge labelled asommunicate: E, =
f(ri;rj);8ri;rj 2 Rg. The only edge of this type is visible in orange on Figure 22a.

Whenever a block is held, another type of robot-block edge is added to the graph, labelled
as holds As the name suggests, this kind of edge links the robot to the block it is holding:
By = f(H(ri);ri);s:it H(ri) 6 ; 8r; 2 Rg, where H(r;) returns the block that the robot r; is
holding or the empty set if it is not holding a block. These edges are visible in red on Figure
22b.

The support sides are linked to the block they are a part of by using a type of edge labelled as
put against When the agents have to place a block against the last one, the set of these actions
isE = f(argmax(b); j);8 ; 2 s0. These edges are visible in gray on Figure 22c.

Each of the support sides is then connected to the action nodes that would consist in placing a
new block against it, with an edge type labelled asaction description: Es = f( i;p;);8 i:pj 2

s;f( i)g, wheref ( ;) maps a support side to the set of all potential new blocks that could be
connected to it.

Each of the potential new block is connected to the robot that would place it with an edge
labelled aschooses E = f(pi;rj);8pi 2 Psg, wherer; is the robot that has to act. These edges
are visible in orange on Figure 22d.

The blocks are connected to their neighboring blocks by an edge labelled asuches E; =
f(b;h);8h; 2 Bs; s:it:d(b;b) =0g. These edges are visible in blue on Figure 22e

The blocks are nally connected to the neighboring grounds with an edge sharing the same
toucheslabel: B> = f(b;g);8b 2 Bs; g 2 Gs s:it: d(ly;gj) =0g. This edges are visible in gray
on Figure 22e

As said previously, the whole set of edges is the union of all the dierent typesE= E1[E2[E¢]|
E.[E [Ea[E [E+t1[Et2, and the graph obtained by using the node-edge tupleN ; E) can then be
visible on Figure 23

4.2 Models
4.2.1 Convolutional neural networks

As mentioned earlier, a convolutional neural network is used to encode the structures. The resulting
abstract vector then passes through a few fully connected layers to nally output a list of values or
probabilities, depending on what the network is used for. The length of this nal list is equal to the
size of the base action set, using the feasible action set of the state to ensure that the probability of
choosing an unfeasible action is equal to 0.
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(a) reaches and (b) holds (c) put against and (d) chooses (e) touches
communicates action description

Figure 22: Edges of the graph of the structure in Figure 21a. The node types that are not used in
each subplots are not shown for clarity

Figure 23: Full graph representing the structure on Figure 21a

An important design decision motivated by the learning behaviour of the neural network and the
use of relative positioning is to remove rotations from the simulator. The reason for this is that neural
networks do not behave well when a single change in input leads to a drastically di erent resuft, and
that a rotation of the block, i.e., the support side, actually greatly a ects the result of placing a block
against it. If we rotate a block 180 degrees, the action that previously placed a new block on the block
will now place it under the support.

Special care was also taken to design the base action set: Because of the properties of fully connected
neural networks, augmenting the base action set can be a very e ective way to add an implicit bias
to the model. The reasoning is as follows: When the same action is performed in two di erent states,
the top layer parameters of the network are updated each time. This behaviour allows the network to
generalise the model and provide good results for unseen states, but arbitrarily choosing which action
to update in which state can be a big help. Actions that generally change the state transition and
receive a similar reward should be the same, but they should be di erent if the state transition (or
reward) changes greatly. Let us take an example: If the new blocks must touch the last one in the
single agent setup, connecting a hexagon to side 1 of a horizontal link could use the same action as
connecting to side 1 of another hexagon: The problem, however, is that the two actions could result in
the hexagon being placed either to the left or right of the block, depending on the relative position of
side 1 on the support block, so a di erent action was used for each type of block, as in Figure 24. As
a result, it augmented the size of the base action set without changing the size of the state-dependent
feasible action sets: Only the action related to attaching a new block to the hexagon would be available
if the last block is actually a hexagon.

9While this is true for neural networks, other models such as decision trees handle such changes much more easily
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Figure 24: lllustration of the use of a base action set: each of the bars represents the base action set
A. The feasible action setAs in the state below is shown in yellow, while the infeasible actions are in
red. The e ect of the single action labelled "chosen action", plotted in green, is shown on each of the
states below. One can also notice that the top half of the action set is never feasible for the orange
agent: they represent the same action, but performed by the other agent.

27



4.3 Graph neural networks

Graph representation has the great advantage that the model can be based on the speci c topology
of the input: Graph Neural Networks (GNN), a type of neural network that has become increasingly
popular in the last decade [14, 15], directly use the input graph to share parameters between di erent
steps: each block is processed with the same parameters, each ground is processed with the same pa-
rameters, etc. GNNs are actually a generalization of the various e ective neural network architectures
in use today: If the graph used is a square grid, the resulting GNN would be a convolutional neural
network, while if the graph is fully connected, it would be a transformer. In the case of any sparse
graph like ours, the resulting architecture is called message passing networks: In each layer, a node
can use the information contained in the neighbouring nodes to update itself in the following layer.
Thus, information travels from node to node and retains a sense of locality. This, of course, makes it
extremely suitable for a task where forces follow the same pattern, and blurs the di erence between
model-free and model-based reinforcement learning.

To process the graph of the structure, the approach of [16] is adopted: In a rst step, the heteroge-
neous graph is mapped to a typed homogeneous graph by projecting each of its features onto a basis.
The homogeneous graph then goes through several graph convolution layers: The weight of each node
is updated based on its own value and the value of the nodes connected to it. The particular type
of graph convolution used in graph models is a Residual Gated Graph Convolution [17], which allows
values to ow directly through the network without being updated, and thus has an output that can be
based more directly on the input of the node in question. This is particularly useful for distinguishing
between di erent actions, since they are all near the same node.

At the end of processing, each node contains a single value. The values of the action nodes are
then collected and either used directly or to create the probability distribution of the policy.

One can also notice that in this model the base action set is not used: Instead, the feasible action
set is embedded directly into the graph.

4.4 Training algorithm

The training loop performed in the gym is de ned by the algorithm 1. As mentioned earlier, the
agent is trained o -policy,using a bu er of past transitions: After each action of the agent, the state,
the action, the reward and the next state are stored and only later used for training the policy. This
method has the advantage of having less correlated samples to train on than the on-policy counterpart.
The training loop consists of a xed number of episodes in which some actions are executed up to a
maximum number of time steps or until the terminal state is reached (see algorithm 2 for the centralized
training and algorithm 3 for the distributed version). The method used to place the grounds could be
either random or xed, depending on how much the agent should generalize, but was always random
in the experiments of Section 5.

Algorithm 1 Training loop with replay bu er

Require: agentsA, simulator sim
Initialise an empty replay buer B
Initialise A
Initialise sim
ep O
while ep < epmax do
resetsim
B  run episode@,B,sim)
ep ept+l

end while

At each time step of an episode, the agent rst de nes what is the feasible action set and produce
a maskm such that:
0 ifag 2AnA
m; = " S 8a 2 A
1 ifa 2Ag
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Algorithm 2 Episode with random initial state and sequential actions, centralized training

Require: a supervisorA ,a replay bu er B, a simulator sim
t 0
s  place grounds
while t<t nmax ands6 sy do
m  mask of feasible action produced byA given s and t
a action chosen byA
s®  sim(s;a)
r R(s;a)
Store (s;m;a;r;s%m9% in B
update A with B
s °
t t+1
end while
return B

Algorithm 3 Episode with random initial state and simultaneous actions, distributed training

Require: a set of agentsA ,a replay bu er for each agent B, a simulator sim
t O
s  place grounds
while t<t nmax ands6 sy do
for Aj 2 A do
m  mask of feasible action produced byA; given s
a action chosen byA;
end for
s®  sim(s;a)
r R(s;a)
Store (s;m; a;;ri;s%m% in B; . When using a shared reward, all rewards; are the same
for Aj 2 A do
update A; with B;
end for
s g°
t t+1
end while
return B
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And then randomly choose an action with either probability (s;m) (see algorithm 4%) or
greedy( (s;m)) (see algorithm 5).

Algorithm 4 Choose action: softmax

Require: state s, maskm, base set of actionsA and intermediate policy model f*
Ensure: m; =0if s 2AnAsandm; =1if &y 2A5;8a 2 A
val, f’\(s) + (m 1) . maxval,
p softmax (valy)
a sampleA with probability distribution p
Return a

Algorithm 5 Choose action: -greedy

Require: state s, feasible action setAg, and policy model f

p f(s;m)
r U ([0;1]) . Sample r uniformly between 0 and 1
if r then

a U (As) . Sample a feasible action uniformly
else

a argmax(p) . Pick the best action
end if
Return a

While the choosing step is fairly straightforward for both methods, updating the parameters of
the policy parameter update is more subtle. Two di erent training algorithms are tested: Advantage
Actor-Critic (A2C) and Soft Actor-Critic (SAC). As the names suggest, both methods are based on an
actor-critic architecture, where two di erent networks generate a policy and an estimate of the state
value, respectively. The main di erence between the two methods, highlighted in the next section, is
that A2C uses surprise to update its policy, while SAC acts as randomly as possible by maximizing its
entropy. The aim of using two di erent algorithms is to use the older A2C as a baseline and compare
the structures that each algorithm converges to.

4.4.1 Advantage Actor-Critic

The A2C model is a synchronous version of the Asynchronous Advantage Actor-Critique (A3C) pre-
sented in [18]. According to the authors, the asynchronous part of the algorithm is only useful when
trained on CPU, and better performance is obtained with A2C when a graphics card is used. The
algorithm uses three di erent networks: a policy network f , also called actor, and two value networks
g and g% which are initialized with the same parameters but follow di erent updating rules. The
updating of the weights is performed as follows:

After each action, the agent samples a mini-batchb of N transitions (s;m;a;r;s%m9 from the
replay bu er, respectively referring to a state, a mask of feasible actions, the action performed, the
reward received, the next state and the next mask.

In a rst step, network g generates an estimate of the discounted cumulative expected reward of
state s, V(s), while target network g° generates the estimate oV (s%. The objective for networks g
and g°is then to approximate the Bellman equation:

V(s)=r+ V(9
To do so, gradient descent can be used to minimize a mean square error loss over the mini-batch

o= 2 s g%y
97 N a(si) i g(s))

i=0

101n theory, the masking operation (chosen for its e ectiveness on a GPU) can produce infeasible actions with nonzero
probability ( P(a2 AnA sjs; ) > 0), but with a  that is su ciently large (i.,e. 10 19), this probability is smaller than
the computer's oating point error and is therefore rounded up to exactly 0
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The reason to use two separate networks can be highlighted here: if only one netwotk was used to
compute both values ofV (s) and V (s9, updating its weight 1, by gradient descent would result in

X
=g ()T h(s)H(r ,h(s) 1, h(s))
i=0

, meaning that the update step would optimize not only the value of the current states, but also that
of the next state s without regard to the action that would have been taken in that new state. This
approach has been shown to severely destabilize the network, and several methods are used to avoid
this problem. The original algorithm copies the parameters ofg into g° every few episodes, but the
algorithm used in this thesis is instead using a soft update, introduced with the Deep Deterministic
Gradient Descent (DDPG) algorithm [19]. In this method, the network g°is not updated by gradient
descent, but by a weighted average of its current parameters and the parameters @, slowly and
gradually changing the value of the next state.

On the actor side, the network f uses theadvantage (sometimes called surprise)g¥(s?) g(s) and
multiplies it by the negative log-likelihood (nll) of performing the action a with the current policy
to obtain its loss. This is equivalent to saying that the probability of performing action a in state s
increases if the outcome is better than expected, and decreases otherwise. The algorithm 6 summarizes
the di erent steps.

Algorithm 6  Update A2C

Require: buer B of transitions T = (s;m;a;r;s%m9, discount factor , policy network f parame-
terised by ¢, value network g parameterised by 4 , and target network g° parameterized by 8
Sample a minibatchb = (s;m;a;s%m9 of lenght L from B
for all s?2 s%do

if s°= sr then
0

\' I
else
VO i+ gqsd)
end if
end for
v og(s)
Iv ]J \ quZ
g g rglv . Update the parameters by using stochastic gradient descent
f(
b & v v9log( a) . Multiply the advantage by the nll of action a
f f r.lp . Update the parameters by using stochastic gradient descent
g @ )+ 4 . Soft-update the target network

4.5 Soft Actor-Critic

This model, which is newer than A2C [20, 21], uses ve separate neural networks, g, g2, ¢f, and g9.
As in A2C, the task of the actor network f is to generate the policy, that of the critic networks g; and
g: is to generate an estimate of the state value, and the task of the target critic networkgy? and gf is
to generate the estimate of the value of the next state (see algorithm 7). The reason that led to the
use of double-Q tables [22], in which two separate critic networks are used, is that a neural network
tends to overestimate the value of a state. Using two networks, both initialised independently, and
using the minimum value of their estimates e ectively reduces this overestimation.
The main innovation of SAC is the use of an entropy bonus added to the reward. The entropyH

of a discrete stochastic policy is de ned as

X

H()= Pa l0g(pa)
Pa2

where p, represents the probability of performing action a The maximum entropy is then equal to
log(n), where n is the number of actions, and occurs when is a uniform distribution over all actions.
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On the other hand, the minimum entropy is equal to 0 and occurs when one action is executed with
probability 1 and all others are never executed. A higher policy entropy would then mean that the
agent acts more randomly, leading to more exploratory behaviour.

To implement this bonus, the architecture SAC uses a Q-value system instead of a V-value system:
instead of computing V(s) 2 R directly, the critic networks actually generate a Q-table of Nagtion
values: gx : S| RMxiens  The V value of a state can then be calculated back by multiplying the
value of each action in the Q-table by the probability of its execution and adding the entropy bonus:

Vs = (9)TQR(S)+ H ((9)
V' (s) =min( VXs); VAs));

where is the amplitude of the bonus. The networksgx can then be optimized using the mean squared
error or, as proposed in recent work, using the Huber loss [23], which uses an L1 norm instead of the
L2 norm when the error is large, stabilizing the learning?*?.

_(G&w®@ Vo (9)2if g(5)® V()<
T (ig(9® V (s)i 05)else

where the superscript @) means that the element with index a is selected, and = 1 was chosen as it
matches well with the range of the reward function.

The policy network then directly uses the Q-value and the entropy bonus to update its parameters,
as the optimal policy obtain with SAC is actually a compromise between the obtained rewards and
the entropy of the policy:

Q

min S
k2f 1;2¢g gk( )

() Q  HI

It

Algorithm 7 Update SAC

Require: buer B of transitions T = (s;m;a;r;s%mY, entropy bonus , discount factor , policy
network f parameterised by , value networks g; and g, parameterised by ; and , respectively,
and target networks g? and g parameterized by ? and ,

Sample a mini-batchb = (s;m;a;s% m9 of length L from B
for all s?2 s’do
if s°= sr then

Vio I
else
v+ ming=yo(F(S?) gR(s)) + H (f(sD)
end if
end for

forall k2f1;29do
Vi k(@ + o H(f(s))
e i v vz

gk gk rog vk . Update the parameters by using stochastic gradient descent
end for
Q min(g.(s); 92(8)) . The minimum is taken betweeng; and g, action-wise
f (a . The tensor has shape [, Nactions )
b & iL=1 O Q)+ H () . Multiply the value by the probability of taking action a

f f rlp . Update the parameters by using stochastic gradient descent
g0 (1 ) g0+ gk fork2f1;2g

1170 add further stabilization, the target value was also pruned at the failure reward
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45.1 Dueling Q-tables

Since this learning method uses Q-tables, the critic networks could use the dueling architecture: In
some cases, due to a previous error in the policy, all actions lead to a failure of the task (e.g., when a
robot has to act when it actually holds the whole structure). In such cases, it can be very bene cial
to punish the state directly rather than the chosen action. The Q-values are then decomposed into
two di erent channels: a V-value common to all actions, and an advantage A that is specic to each
action this time. To ensure stability, it is still necessary to ensure that the advantage has a mean value
of zero (a detailed explanation can be found in the paper presenting this architecture [24]). The two
values are then simply added to obtain a complete Q-table, so this method is actually self-contained
and does not interact with the rest of the program.

4.5.2 Dynamic exploration

To remove the hyper-parameter , the method SAC was upgraded to instead use a target entropy
in [25] and optimize  such that the optimal policy stays above this value. This method adds a loss
function

= (H(s) Hy)

and use it to dynamically t using gradient descent. SinceH; is a lower bound, it is not desirable
to actually "pull" the entropy towards this value, so a simple non-negativity constraint is added

+

= max(; 0)

and the loss function is slightly modi ed so the gradient does not disappear whenever is smaller
than 0, and reduces its decay to keep some reactivity in the learning:

| + = ELU( )(H(s) Hi)

, where ELU is the exponential linear unit function. According to [25], using this method ensure that
the policy  that is obtained once the training converged is

X
:argmaX(an (so)[r(st;ao)]+ tEst P(st 1;at 1):at (st)[r(st;at)])
t=1

sttH( ) Hq

One nal detail that needed to be implemented is that the terminal cost or value of the terminal state

should not be set to 0: Since the value of has no upper bound, it is not possible to ensure that the
optimal policy nishes to link the di erent targets by granting a large reward in case of success.
This problem is solved by scaling the terminal valueVy as a function of

VT:HI

Adding this dynamic entropy bonus turn the algorithm 7 into the algorithm 8

33



Algorithm 8 Update SAC with target entropy

Require: buer B of transitions T = (s;m;a;r;s%m9, entropy bonus , target entropy H., discount

factor , policy network f parameterised by , value networks g; and g, parameterised by ; and

» respectively, and target networksg? and g2 parameterized by 2 and ,
Sample a mini-batchb = (s;m;a;s% m9 of length L from B
for all s?2 s%do
if s°= sr then
VO i+ tH

else

v+ ming=1o(F(SY) gR(s)) +  TH(f(sD)
end if
end for
forall k2f1;29do
Vi (9@ + T H(f ()
e i v VY%

gk gk rog vk . Update the parameters by using stochastic gradient descent
end for
Q min(gi(s); 92(9)) . The minimum is taken betweeng; and g, action-wise

f( . The tensor has shape [, Nactions )
b L L ® @)+ H() . Multiply the value by the probability of taking action a
I+ ELU( )(H(s) Hy)

ril-

f f r.lp . Update the parameters by using stochastic gradient descent

@ (@ )g+ ofork2fli2g
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5 Experiments

5.1 Dierent state representations

In this experiment, the three types of encoders described in section 4.1 were compared in a centralized
training setup. The experimental setup consist of two robots with in nite force, but unable to apply

a torque'?. At the beginning of each episode, a single triangle ground is placed at the bottom right of
the simulator as a starting point, and a target that needs to be connected is placed at the bottom left.
The width of the target was randomly chosen so that the gap between it and the starting point ranges
from 1 to 10, creating tasks of varying di culty to obtain a smoother learning curve and allow for
better measurement of performance. The training phase consists of only 10000 episodes. This amount
is too small to achieve convergence of the policy, but allows to highlight the di erent rate at which the
algorithm improves. The hyper-parameters of the setup and of all three encoders can be found in the
tables 1, 4 and 5.

5.1.1 Results

Figure 25: Success rate of the di erent models on speci c di culties, after 30000 optimization steps
(top) or 10000 episodes (bottom).The colors represent the proportion of the success rate attributed to
a speci c gap

Because the convolutional encoders (either order-dependent (OD) or order-independent (Ol)) used
a dierent policy search than the Graph Neural Network Processor (GNN), they were able to use
the xed number of episodes to train on around 43000 optimization steps, while the GNN could only
perform 31000. To allow a fair comparison, Figure 25 shows the results after 10000 episodes as well as
after 30000 optimization steps in the top and bottom rows, respectively.

The tasks are then divided into 3 categories: The easy tasks, where the agent has to connect two
regions separated by a gap from 1 to 4, allow a naive solution consisting of a straight line (examples
of this solution can be seen in the rst line of Figure 26). The hard tasks, i.e., the tasks with a gap
of 5 to 7, require the agent to build arch-shaped structures (examples of this can be seen in Figure
27). Finally, the extreme tasks (which are not shown in Figure 25) were not achieved once in this
experiment.

121n practice, the maximum force the agent could apply was set to 1000, as this was more than enough to never be a
problem
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The simplest tasks are not di cult for any of the encodings, although the graph-based agent strug-
gles with the gap size of 4. It can also be observed that the di erence between the two convolutional
encoders is small for the easy tasks, while the Ol encoder is much more successful for the hard tasks.
After the same number of optimization steps, the di erence between the GNN and the Ol encoder is
small, but the GNN is able to build slightly larger structures.

Throughout the training, the construction process was recorded once every 100 episodes, allowing
us to highlight the areas where each type of encoding had more di culty than the others. A selection
of successful structures is shown in Figures 26 and 27, and the last three failures of each model are
shown in Figures 28, 29, and 30.

Figure 26: Types of structure that all the agents were all able to build

(a) Structure made by the GNN (b) Structure made by the Ol CNN  (c) Structure made by the Ol CNN

Figure 27: Bigger structures, allowing to break past the gap limit of 4
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Figure 29: Last 3 failures of the OD CNN. The last action tried by the agent is depicted

Figure 30: Last 3 failures of the GNN. The last action tried by the agent is depicted

Figure 28: Last 3 failures of the Ol CNN. The last action tried by the agent is depicted

5.1.2 Discussion

As can be clearly seen in Figure 25, the Ol encoder seems to be the most e cient encoding. The fact
that the OD encoder can build a bridge of size 8 is remarkable, but the success rate is too low to be
signi cant. The di erent performances can be explained by the last failures of each model: The Ol
encoder, by using its expanded base action set, is able to easily learn which actions lead to a collision
between the new block and its support, so its failures are always (at least partially) due to the collapse
of the structure (see Figure 28). The OD encoder also relies on the same base of actions, but must
learn that the IDs of the blocks are irrelevant. As can be seen in Figure 29, this causes the agent to
attempt to place blocks that do not directly intersect with their support, but collide with previous
blocks in the structure. Finally, the graph processor does not rely on such base action state and must

37



learn the shape of each block, distinguishing whether the failure is due to a constraint non-satisfaction
or to a collision, which sometimes results in a new block colliding with its support (as in the third
example in Figure 30). Since these errors occur early in the episode, the number of optimization steps
that the GNN can perform in its limited number of episodes is reduced. Graph processing can then
be considered when the shape of the block is simple, as was the case in [9], but not for more complex
polygons

In addition, it can be noted that the number of episodes was the same for all encoders, but the
time required to train the graph processor was eight times greater than that for the CNNs (24 hours
for the graph processor versus 3 hours for the CNNs). For this reason, the GNNs are no longer used
in the remaining experiments.

5.2 Centralized versus decentralized

The purpose of this experiment is to compare the centralized training, where the Markov game is
reduced to an MDP with a single agent, to the decentralized training setup. To reduce the di culty

of the problem, only the hexagonal blocks are available to the agents, and all actions that lead to a
collision are removed from the feasible action set. One small di erence between this setup and that
of the previous experiment is that the two grounds that the agents must connect are now of similar

size, and since the agents are not forced to place the blocks on the last oor placed, they can start on
either of the grounds.

In the decentralized setup, two agents, each controlling a single robot arm, can either place a new
block or stay put. They then have the option of placing two blocks at a time, and must learn to avoid
placing a block in the same position as the other agent, or it would result in a dynamic collision (a
special kind of collision, where the agent cannot use the state to know if it would happen as it results
directly from the action of the other robot) and a failure of the episode. As described in Section 3,
the agents do not have any information about the action of the other except its concrete result on the
state. Finally, the fully-shared reward is used to help the agent cooperate.

In order to use the centralized training as a fairer baseline, the condition of placing a block only
on the last placed block is removed. However, it still has the advantage that both robots have a single
model and that their actions automatically switch between place and stay.

Since the order-independent encoder cannot be used when the agents can place a new block against
any other and not just the last, and since the graph processor is too slow to be e cient, the order-
dependent encoder is used. The agents are trained on 40000 episodes, and the gap between the
two grounds was randomly set between 1 and 7 at the beginning of each episode. The remaining
hyperparameters can be found in the tables 6 and 2.

5.2.1 Results

As in the rst experiment, the tasks were divided into 3 categories: Easy, hard and extreme. The easy
tasks, i.e., those with a gap between the grounds of 1 to 3, do not require active cooperation between
the agents, whereas the hard tasks require the agents to purposefully alternate between placing a
new block supporting the one held by the other robot and remaining in place until the now released
robot comes to place another new block. The extreme tasks additionally require the construction of a
support pillar to increase the frictional force on the ground, and have never been achieved

Figure 31: Success rate of the di erent setup on speci ¢ di culties

38



Figure 32: Successful structures. The sample were all taken from the single agent setup, but the
successful structures made by the multi-agent one look similar

Figure 33: Failed attempts made by the single agent

As before, a list of the successful structures is presented in Figure 32, and a sample of the last
failures of the two models is depicted in Figure 33 and 34

In addition, the sequence of action taken by the two agents to link the two grounds are also depicted
in Figure 35

5.2.2 Discussion

As can be seen, the distributed agents were unable to cooperate su ciently to compete with the
centralized training. However, looking at the failures of the multi-agent setup, we see that there is no
dynamic collision, indicating that both agents have specialized in their own set of location so that they
are not at risk of colliding. This underscores the importance of macro-actions: By forcing the robots
to hold its block for exactly one turn in the centralized training setup, their ability to cooperate is
greatly enhanced, as an error would systematically occur if the second robot was instructed to place a
block in a location that did not support the previous one.

It is also interesting to note that the success rate of the centralized training is lower for gaps of size
3 and 4 than for the gap of size 5. This is indeed due to a local minima: When the gap size is 5, the
agent must place its blocks on the edge of the each ground to successfully build the structure, whereas
when the gap size is 3 or 4, the agent must anticipate the subsequent reward and not simply perform
the action that yields the largest reward in that state. This local minima is particularly viscous in the
case of the gap size of 3: If the agent decides to place a block on the edge of each ground, the structure
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Figure 34: Failed attempts made by the multi-agent

Figure 35: Sequence of actions resulting in a success using the simultaneous actions
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cannot be built (as in the third situation in Figure 33). Another observation is that the helper reward
concerning the number of sides in contact, supposed to help the agent build a stable buttress against
which a longer bridge can be built is well maximized by the agents trained centrally trying to |l the
available space with blocks when no bridge building solution is found.

5.3 Dynamics of learning on harder tasks

This experiment attempts to illustrate the learning dynamics that occur when training on a large setup,
and how the simple tasks are used to support exploration when using SAC learning algorithm. To
compare this exploration method, the A2C algorithm is used as a baseline. A single agent is centrally
trained on a large setup with, once more, the goal of connecting two regions separated by a gap. As in
experiment 5.1, a single triangle is placed at the right of the simulator and a target of random width

is placed at the left, so that a gap of 1 to 19 triangles is created. On the SAC agents, the training
is performed for 70000 episodes and generally last around one day and 8 hours. The A2C agent is
then trained on 100000 episodes to match the same number of optimization steps and allow a fair
comparison, and also took roughly the same training time. The hyperparameters of the model can be
found in the table 7 in the appendix, and are the same for both learning agents.

5.3.1 Results

(a) Estimated V value of SAC and A2C (b) Average rewards sampled to optimize the model

Figure 36: Rewards over time

Figure 36 shows two di erent metrics for rewards achieved in an episode. As can be seen in Figure
36b, the average reward plateaus early on for both agents, and the A2C agent achieves a breakthrough,
obtaining the a similar average value as the SAC agent at around 400k steps. On the other hand, the
expected cumulative reward of the SAC agent (in blue on Figure 36a) increases continuously, and is
much higher than the one of the A2C agent (in green). Note that the metric on Figure 36 is the average
reward of the mini-batch sampled from the replay bu er, and the V-value of Figure 36a is produced
by the target value neural networks on the same mini-batch.

The entropy of the policy produced by each of the agents is shown on Figure 37c. The low entropy
of the A2C agent (in green) is not representative of its actual policy, as it is choosing its action using
an -greedy policy, thus the entropy of the agent is always around 0.25 (depending on the number
of feasible actions, this number can change slightly). The small increase in seen in Figure 37b has
negligible impact on the dynamics of the V value of SAC after 100k steps: the blue curve on Figure
37a represents the V value as calculated in algorithm 8, whereas the entropy bonus is subtracted in
the yellow curve, only keeping the actual expected returns. On the other hand, this entropy bonus
still allows the entropy of the policy to remain at its target value of 1.8 (as seen in Figure 37c).

The success rate of the agents was divided into four categories according to the size of the gap
between the two grounds, and the mean, minimum, and maximum are shown in Figure 38. As one
can see on Figure 38a, the A2C agent is not able to build a single structure before training for around
400k steps, and is then only able to build the easiest structures: Its success rate stays at O for the
harder tasks. On the SAC agent side, there is a clear overshoot early on for the easiest tasks on Figure
38a, followed by a plateau and nally a decay. Its success rate for the intermediate tasks, shown in
Figure 38b, does not show the same kind of overshoot as with the easy tasks, but still follows the same

41



(@) Comparison between the V (b) Entropy bonus used in SAC (c) Entropy of the policy for both
value estimated by SAC and its SAC and A2C
actual estimated return

Figure 37: Entropy bonus metrics

downward trend after 400k steps. The success for the hard and extreme tasks, shown in Figure 38c
and 38d, show no sign of this decrease, and the extreme tasks even show a signi cant increase only
after the other categories begin to decay.

(a) Success rate obtained on gaps of size 1, 2, 3 and 4 (b) Success rate obtained on gaps of size 5, 6 and 7

(c) Success rate obtained on gaps of size 8, 9 and 10 (d) Success rate obtained on gaps of size 11 to 19

Figure 38: Success rate: The solid line represent the mean of the category, and the shaded area goes
from its minimum to its maximum. On the intermediate tasks and harder, the A2C agent could not
nd a spanning structure a single time in the whole training

5.3.2 Discussion

Looking at Figure 36, the di erence between the average reward and the cumulative reward can be
explained by the following argument: As the policy gets better, the episodes get longer. Consequently,
the average reward, which aggregates rewards based on a state-action pair, is quickly dominated by
the helper reward. On the other hand, the cumulative reward aggregates the rewards on an episode
basis, so it does not overrepresent the non-terminating actions in the same way. Since the A2C policy
generally had a negative helper reward prior to its breakthrough, the average reward also increases at
400k steps. One can also notice that before the plateau, the average reward of the SAC agent grows
faster than the cumulative reward, and this di erence can be easily explained by the exponential
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average used to stabilize the target critic. The A2C agent's cumulative reward begins by decreasing,
even as the average reward increases. This is due to the fact that the initial values of the neural
network parameters are randomly initialized, which leads to biased estimation in the initial steps. To
measure the agent's performance on the task for which it is optimizing (i.e., maximizing the V-value),
one could rst observe the average reward and then gradually move to the estimated cumulative reward
as it becomes less biased as training progresses. Indeed, using the V-value gives a much better idea
of the success rate of the agents than the average reward: the average rewards of the A2C and SAC
agents are extremely similar once the A2C agent is able to perform the easiest tasks, but the V-value
allows one to see directly that the SAC learning algorithm actually has much better performance on
the more di cult tasks, as shown in 38.

To explain the sudden increase in performance of the A2C algorithm after 400k steps, one can look
at the structure it was able to build before and after this change:

(a) Failure caused by reaching the maximum height  (b) Failure caused by trying to place a block to far to
the right

Figure 39: Structures produced by the A2C learning algorithm after 350k steps

As can be seen in Figure 39, the A2C algorithm tends to produce a similar structure in each
episode, regardless of the gap. The worst thing about this policy is that by going toward the right, any
deviation from the structure in Figure 39a that occurs after the placement of the third block would
result in a direct failure (as in Figure 39b), and the straight line going in the wrong direction would
appear optimal to the algorithm. This is a good example of how easily local minima arise and how
di cult it is to overcome them.

(a) Success for gaps up to 4 triangle wide (b) Failure for bigger gaps: the friction force with the
ground is not big enough to sustain the structure

Figure 40: Structures produced by the A2C learning algorithm after 450k steps

Once the starting block is randomly changed to the horizontal link of Figure 40, the agent quickly
learns that this solution is better and changes its policy to systematically build the structure shown
in Figure 40a. However, this policy is still not optimal, since only the simple tasks can be solved with
this structure.

To explain the overshoot and decay of the success rate of the SAC in Figure 38, it is necessary
to recall the main result of the SAC learning algorithm: It converges to the policy that maximizes
the discounted cumulative reward, with the constraint that the entropy of the policy is higher than
a given target seen in Figure 37c. The curves in Figure 38 can then be explained as follows: In a
rst phase, the agent acts randomly on most tasks, so it can reduce its entropy on the simplest tasks,
acting more deterministically and achieving a high success rate. This is the e ect of averaging entropy

43



across batches: if the entropy of the policy is high in most states, it may be 0 in a few states. However,
the agent cannot increase its success rate on more di cult tasks without increasing the entropy of the
easiest tasks, which naturally lowers the success rate. Moreover, the extreme tasks require a higher
degree of determinism: if the correct action is performed with probability 0.9 and it takes 20 actions
to build the entire structure, the success rate is only 12%. The entropy of all other tasks must then be
higher to allow the success rate of the extreme tasks to grow. This phenomenon explains why in the
Figure 38d, the success rate increases only when the success rate in the Figure 38a and 38b decreases.

One might think that reducing the target value over time would x this problem, but there is
actually no need to do so. A success rate of 1, like the one obtained with the A2C algorithm, means
that the agent simply fully exploits the easy tasks and does not use them for exploration, and structures
such as the one of Figure 41b would not be tried. Using the easy tasks to learn to perform the harder,
more punitive, ones is a massive advantage of the SAC algorithm, and the diversity of structures
created allows it to make a better use of its sample: instead of having the same structure over and
over again like it is the case with the A2C algorithm, the entropy bonus forces a more varied set of
state to train on.

(a) The same strategy as A2C is sometimes used (b) Di erent structures are also tried

Figure 41: Structures produced by the SAC learning algorithm after 20k steps. Note that unlike the
structures created by A2C, these structures are di erent even though the initial state is the same,
which is an e ect of the bigger entropy of the policy

As long as the probability of the best action is slightly higher, one could choose to select it using a
greedy policy in a later, exploitative phase. This approach is demonstrated in Figure 42, which shows
various structures generated in this way. To demonstrate the usefulness of the slightly reduced success
rate of the smaller structures, the agent was forced to take sub-optimal actions at the beginning of the
building in Figure 43 and was still able to build the structures, while it always result in a failure when
using the policy obtained with A2C. This shows that in addition to being more sample e cient, the
SAC algorithm is also more noise resistant, and has better chances to be able to go from the simulation
to the reality: If an action is unfeasible in real life for any reason such as the robot kinematics or the
friction dynamics, the agent could adapt on the go and simply change plan mid-way.
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Figure 42: Structures obtained when using a greedy policy on the SAC agent

Figure 43: Structures obtained when using a greedy policy on the SAC agent and forcing it to take a
di erent start
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6 Conclusion

In conclusion, two tasks were successfully accomplished in this work: The rst one was to develop
an e cient simulator for static constructions, which allows to build structures exposed to gravity and

to check their stability. The resulting simulator was able to achieve good performance in terms of
realism: All structures that were found to be stable by the simulator were also stable in reality. The
conservative approach of the simulator, which uses a safety kernel and neglects the point forces at the
corners, resulted in some structures being incorrectly classi ed as unstable, but this was necessary to
allow coarser tolerances on the blocks. The computation time required by the simulator was optimised
so that one-third of the total exploitation time was spent on collision checking and calculating the
equilibrium of the structure. The remaining two-thirds was used to evaluate the policy, which was
performed on a GPU and without the optimization step.

The second task was to use this simulator to train agents, using reinforcement learning, to build
arch-shaped structures that could connect two grounds separated by di erent distances from each
other. Three experiments were conducted to test di erent approaches, and the following points could
be highlighted: To learn how to build a structure, the agent(s) must learn three subtasks. The rst
is to learn what components make up the structure and how they interact with each other. When
comparing di erent models in experiment 5.2, this subtask was well solved by combining convolutional
neural networks and augmented base action sets, which use visual input to learn whether a new block
would collide with the structure if placed in a particular location. Graph neural networks were unable
to do the same thing e ciently and were abandoned because they were struggling to handle di cult
objects like the links. The second subtask was to coordinate the agents to act sequentially when
needed. This subtask proved extremely di cult in experiment 5.2, where the distributed agents were
unable to learn it, and was successfully solved by implementing macro actions that force the agent
to act sequentially, although the ability to build structures in parallel was removed. A third subtask
was for the agent to learn the sequence of actions that would lead to a stable structure. This required
the agent to e ciently search the policy space, which was successfully accomplished in experiment 5.3
using the discrete actor-critic algorithm (SAC). Indeed, this algorithm allowed e cient use of average
entropy to search the policy space, and the resulting structures were able to recon gure themselves
during construction to allow for unexpected outcomes.

7 Outlook
7.1 Challenges

The task of building a self-supporting structure, compared to common RL benchmarks such as the
Atary games, have a signi cant amount of di erent actions, and requires long term planning. These

two factors are generally hard to manage by RL algorithms, and an intensive amount of work had to
be done, both in this thesis and in the literature, to handle such setup.

However, the biggest challenge in this task is the time required for the algorithm to converge. This
parameter alone limits the policy models that could be used to the simplest ones, since trying to use
models that better t the results, such as GNNSs, inevitably increases the time it takes the algorithm
to learn. Most of the best examples from MARL, such as the hiding game in [26], require hardware
accelerators that could not be matched. In this last work, they were able to run a model for hundreds
of millions of steps in just 16 hours, using a batch size hundreds of times larger than that used in the
experiments.

The successful construction of a self-supporting structure in a simulator is already a step in the
direction of mechanised building process. These methods could be helpful in the context of sustainable
building, where the aim is to use novel construction techniques to reduce the use of concrete and enable
the reuse of old building components. However, to reduce the environmental impact of building, it is
important to consider the huge energy cost of reinforcement learning, and few-shot learning methods,
such as imitation learning or model-based RL, should rather be used.

7.2 Next steps

While this work has shown that it is possible to build a self-supporting structure using MARL, some
improvements can be made. They fall into three categories: Improving the setup, improving the
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models, or improving the learning algorithm.

7.2.1 Setup

This category of next steps mainly focuses on adapting the setup and simulator to reality. An obvious
next step would be to use a continuous 3D environment where the blocks could be polygons of di erent
shapes or sizes, but one could also consider other directions. Including noise, for example, would already
be a step toward realism. It could easily be implemented by adding an uncontrolled force to each action
of the robot or even to each building step, but it would complicate the learning process. The idea of
modelling the static equilibrium of the structure as LP was motivated by the fast computation time,
but it may have been too zealous as the time required to check the stability of the structure is still
a factor of 2 less than the time required to select the action, even without the optimization step and
running the model on a GPU. While this in itself is not a problem, it de nitely allows for more latitude
in the simulator, and using a classic training simulator such as Grasshoper, Mujojo, or Webots would
allow the noise of the action and the continuous 3D environment to be incorporated directly. Moreover,
the use of one of these setup would allow to train not only the statics but also the dynamics of the
robots and to include their sensory feedback.

7.2.2 Model

Although the GNN compares poorly to the simple CNN, this rst network type has great potential:
testing di erent architectures, e.g., graph gated recurrent units, could potentially increase the quality
of the output policy signi cantly. Another advantage of these models is that they can handle many
more actions than their CNN counterparts, since they share more parameters. However, their weakness
in understanding the shape of the blocks should be addressed rst, especially for use with recuperated
blocks, which would all have a unique shape.

Model-based RL or model-predictive control could also be interesting prospects, since they generally
require fewer training steps than the model-free approaches and since the actual transition function
of the MDP is known (but costly to compute). A nal improvement that could de nitely make a
di erence is the use of a planning algorithm such as a Monte Carlo search tree. Performing a search
step in addition to the value estimation and policy optimization was e ectively proven to be highly
bene cial in MDP with large action space, such as the game of Go.

7.2.3 Algorithm

While the learning algorithm itself achieves acceptable performance and currently represents the state
of the art, a deeper look at distributed training could be interesting to e ectively use all robots
simultaneously. For example, centralized training with distributed execution would greatly improve
the chances of e ciently training robots simultaneously, but would only be useful if more than two
robots are used, as this would create a less constrained system that could better utilize all robots.
However, with only two robots, the sequential actions of the robots are too close to the optimal
solution to make a simultaneous solution worthwhile. This setup is also a good sandbox for learning
di erent types of general sum games: one could easily design orthogonal, cooperative, or adversarial
reward functions and test di erent algorithms to nd the optimal strategy for these di erent games.

Figure 44: Structure completed by robots having a smaller maximum force
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A  Annexes

A.1 Simulator validation and prototype

To validate the results, sometimes counter-intuitive, of the simulator, wooden pieces were laser-cut (see
Figure 45). They were then placed against an inclined plane, and held in place using magnets. These

Figure 45: Prototype of blocks

prototypes were rst used to estimate the friction coe cient between the blocks. As one can see on
Figure 46, the friction coe cient of these experimental blocks is between 0.5 and 0.7. After thorough
testing, all structures that are considered as stable in the simulator were possible to build using the
real blocks. Some of the structures that broke the constraints of the simulator were still possible to
build (see Figure 47), relying on 2 di erent reasons that were neglected by the simulator:

= Corner to corner forces: These forces were not considered in the simulator, as they are not reliable
enough in real life. Some of them, however, were able to maintain the structure (see Figure 47a)
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