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Band gaps of liquid water and hexagonal ice through advanced electronic-structure calculations
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The fundamental band gaps of liquid water and hexagonal ice are calculated through advanced electronic-
structure methods. We compare specifically the performance of state-of-the-art GW calculations with
nonempirical hybrid functionals. For the latter, we fix the free parameters either through the dielectric response
of the material or through enforcing Koopmans’ condition to localized states. The various approaches yield
consistent band gaps, in good agreement with available experimental references. Furthermore, we discuss the
critical aspects of each approach that underlie the band-gap predictions.
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I. INTRODUCTION

Liquid water is a ubiquitous material in nature and has
inevitably drawn great scientific attention. In particular, the
electronic structure of liquid water has been the subject of
numerous experimental [1-6] and theoretical studies [7-10].
These fundamental efforts enable a deeper understanding of
liquid water in technological applications such as solvation
processes [11-15] or catalytic reactions at solid-water inter-
faces [16-21]. In addition to the liquid phase, also various
solid phases of water have been investigated. The precise
knowledge of the electronic structure of these polymorphs
is relevant for atmospheric science [22-26], geoscience [27],
astronomy [28,29], and solid-state physics [30-33].

It is surprising that, despite this great scientific effort, the
fundamental band gap of water is only known with mediocre
accuracy. Indeed, the often-cited study of Bernas et al. reports
a band gap for liquid water of 8.7 £ 0.5 eV [5]. This value
and its sizable uncertainty reflect the lack of consensus among
the various studies from which this band-gap estimate has
been inferred. It is noteworthy that also the band gaps of the
solid phases of water have not been determined with a high
precision. In particular, the fundamental band gap of the most
prominent ice Th has been estimated to be 8.8 & 0.4 eV [34].
Such substantial uncertainties call for further investigation.

Complementary to experimental studies, also a great deal
of theoretical works have been devoted to this open question.
Many-body perturbation theory in the GW approximation
is generally considered as the most accurate computational
scheme for band-gap evaluation [35-38]. Various flavors of
this approach have been instrumental in predicting the band
gap of liquid water [7-9,16,39-41] and ice [42—44]. However,
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the various studies have not reached a consensus on the band
gap yet. Indeed, the reported values for liquid water range
from 7.8 to 10.5 eV with an uncertainty even larger than
that of the experimental measurements. Among these studies,
Chen et al. have deployed the most advanced method con-
sisting in quasiparticle self-consistent GW including vertex
corrections and obtained a band gap of 8.9 eV [8]. How-
ever, such high-level GW calculations are computationally
demanding and have remained rare. For further confirmation,
it is therefore necessary to take into consideration a larger
variety of electronic-structure approaches. Moreover, to allow
for applications involving larger systems, it is highly desir-
able that such alternative methods are computationally less
demanding.

Electronic-structure calculations based on hybrid func-
tionals [45-48] can serve as a valuable alternative to GW
calculations and enable an accurate description of liquid water
[10,11,14,49-52] and ice [49-52]. Despite these promising
aspects, hybrid functionals have the drawback of containing
undetermined parameters, such as the amount of incorporated
Fock exchange. The empirical adjustment of these param-
eters remains unsatisfactory and is furthermore relying on
accurate experimental references. To overcome these defi-
ciencies, significant scientific effort has been devoted to the
development of nonempirical hybrid-functional schemes. The
basic idea consists in fixing the parameters of the adopted
hybrid-functional forms by imposing properties of the ex-
act functional. Two properties have been instrumental in
achieving this target: (i) the asymptotically correct Kohn-
Sham potential [53], which reflects the long-range screening
[54-56], and (ii) the piecewise linearity of the functional
upon fractional electron occupation [57,58], also known as
Koopmans’ condition. The enforcement of these constraints
has given rise to two main directions of research, which
are identified either as dielectric-dependent hybrid (DDH)
functionals [19,54,55,59-71] or as hybrid functionals satisfy-
ing Koopmans’ condition [72—-80]. Both approaches exhibit
great potential due to the demonstrated accuracy achieved
at moderate computational cost. In particular, DDH func-
tionals have already been successfully applied to liquid
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water [19,63,66,70]. Similar investigations based on hybrid
functionals satisfying Koopmans’ condition are at present
still lacking. A comparison of both nonempirical hybrid-
functional schemes together with high-level GW approaches
might yield valuable insight into the fundamental band gap of
water and ice.

In this work, we set out to study the fundamental band gap
of liquid water and hexagonal ice through several advanced
electronic-structure methods. These comprise state-of-the-art
GW schemes as well as nonempirical hybrid functionals.
In particular, we consider quasiparticle self-consistent GW
(QSGW) calculations that account for vertex corrections in
the screening and hybrid functionals in which the free pa-
rameters are fixed either through the dielectric response of
the material or through enforcing Koopmans’ condition to
localized states. Both nonempirical procedures are applied to
global and range-separated hybrid functionals. The evaluation
of such a variety of different approaches within a consistent
computational setup allows us to achieve a robust band-gap
estimate and to overcome the spread of previous results in
the literature. The comparison with available experimental
references confirms the validity of our results.

This work is organized as follows. We review experimental
data and establish robust references for our band-gap calcula-
tions in Sec. II. In Sec. III we describe the theoretical schemes
used in this work. Section IV is devoted to computational
aspects of our calculations. This comprises information about
the structural models in Sec. IV A and computational details in
Sec. IV B. In Sec. V we present the band gaps as obtained with
the various advanced electronic-structure methods considered
in this work. We summarize in Sec. VL.

II. EXPERIMENTAL BAND-GAP REFERENCES

Prior to deploying advanced electronic-structure calcu-
lations, it is our interest to establish robust experimental
band-gap references. We infer such references through a crit-
ical review of various experimental studies in the literature.
The fundamental band gap, defined as the separation between
the valence-band maximum (VBM) and the conduction-band
minimum (CBM), is generally determined through the sepa-
rate investigation of the two band edges. The VBM is given
through the ionization potential (IP) as obtained in photoe-
mission experiments. The CBM is determined by the electron
affinity or equivalently by the position of the conduction band
with respect to the vacuum level (denoted by V;)). These prop-
erties are generally accessed through inverse photoemission
experiments or the analysis of thermodynamic data pertaining
to the hydrated electron. We note that the fundamental band
gap could also be inferred from the corresponding optical one
[81-83]. However, this route requires a proper assessment
of the excitonic binding energy for which a final consensus
has not yet been reached [39,42,83,84]. Therefore, we do not
include optical spectroscopy experiments in our analysis of
band-gap references.

First, we examine the fundamental band gap of liquid water
at ambient temperature. Early studies by Delahay and co-
workers reported a photoemission threshold of 9.3 0.3 eV
[3], which was later revised to 10.06 eV [4]. The more recent
work of Winter et al. indicated a very similar value of 9.9 eV

[6]. Based on the latest results, we assume 10.0 &= 0.1 eV for
the ionization potential of liquid water. For the unoccupied
states, Bernas et al. reported Vy = —1.2 eV [2], later revised
to —0.74 eV [5]. A recent study by Ambrosio et al. inferred
Vo = —0.97 eV from thermodynamical data for the hydrated
electron [14]. Overall, we estimate V; = —1.0 £ 0.2 eV. We
do not consider the value of Vj = —0.12 eV proposed by
Coe et al. [85] due to the criticism raised in Ref. [14]. Al-
together, we deduce a fundamental band gap for liquid water
0of 9.0 £ 0.2 eV. This value is consistent with previous works
by Bernas et al. and Painter et al., which reported band gaps
of 8.7£0.5eV [5] and 9 eV [86], respectively. Moreover,
the present estimation is based on more recent experimental
studies and subject to a smaller uncertainty. We remark that
a fundamental band gap of 9.1-9.2 eV was also inferred in
Ref. [10].

Next we consider the fundamental band gap of ice. Among
the various possible phases [87], we are particularly inter-
ested in hexagonal ice Ih. This phase is stable at ambient
pressure and has been subject to numerous experimental and
computational studies. To benchmark the fundamental band
gap of Th, we adopt in the following also results obtained for
polycrystalline and amorphous ice structures. This is justified
through the studies of Nordlund ez al. [88] and Kobayashi
[82], which have demonstrated a remarkable similarity in the
electronic structure of crystalline and amorphous ice based
on photoemission and optical spectroscopy, respectively. Fur-
thermore, we note that the considered experimental results
have generally been obtained at a temperature of 77 K. The
measurements in Refs. [88-90] were performed at a slightly
higher temperature of 90-103 K.

Early photoemission experiments by Shibaguchi et al. in-
dicated an ionization potential of 10.5 eV [89]. This result
has been confronted with the value of 8.7 == 0.1 eV obtained
by Baron et al. [91] and that of 8.8 eV by Campbell et al.
[92]. However, it should be considered that the latter studies
define the onset of the photoemission spectra according to
an extended tail at lower energies. Instead, the linearly ex-
trapolated threshold reveals a value of ~10 eV [92], in much
better agreement with that of Shibaguchi et al. [89]. Further-
more, from the work of Pache er al. [93], one also infers
an IP of ~10eV [94]. More recent photoemission studies
of Winter et al. [6] and Nordlund et al. [88] support these
values for the ionization potential. Specifically, Winter et al.
remarked that electron binding energies (and thus the IP) in
ice tend to be larger by ~0.1-1.0 eV than those obtained for
liquid water (10.0 £ 0.1 eV). We account for these various
experimental measurements by adopting an IP estimate of
10.3 £ 0.3 eV. For the conduction-band edge, early studies
of Baron et al. and Grand and Bernas reported rather distinct
values of Vy = —0.9 eV [91] and —0.1 eV [95], respectively.
Later, Michaud et al. derived a value of V) = —1 eV [94] on
the basis of the photoelectric threshold [96] and the photo-
conductivity [97] of hydrated electrons. Most recently, Stahler
et al. measured V) = —0.8 eV through time-resolved pho-
toemission experiments [90]. Overall, we take on the value
of Vo = —0.9 £ 0.1 eV, only marginally higher than the one
assumed for liquid water. Based on the present discussion of
IP and V|, we infer a fundamental band gap for hexagonal
ice of 9.4 £ 0.3 eV. This estimate is in overall agreement
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TABLE I. Fundamental band gaps Eg"" (in eV) of liquid water
£-H,O and hexagonal ice lh as inferred from a review of various
experimental data. The given band gaps correspond to temperatures
of 300 and 77 K, respectively. Band-gap corrections E;" (in eV) are
also given. These corrections account for the band-gap reduction due
to nuclear quantum effects in liquid water and to the zero-phonon
renormalization in hexagonal ice.

Phase of water Eg™ EZT
¢-H,0 9.0£+0.2 0.7*
Th 94+03 1.5°

4Reference [8], T = 300 K.
bReferences [34,98], T = 0 K.

with earlier studies by Michaud et al. and Engel et al., which
reported band gaps of ~9 eV [94] and 8.8 £ 0.4 eV [34], re-
spectively. The differences result from a more stringent review
of the recent literature in the present work.

Overall, we adopt a band-gap reference for liquid water at
300 K of 9.0 £ 0.2 eV. For hexagonal ice at 77 K, we esti-
mate a band gap of 9.4 0.3 eV. We observe a rather small
difference of 0.4 eV on average between these two phases of
water. This observation indicates that the fundamental band
gap of water depends only weakly on temperature and crystal
structure. A similar conclusion was reached by Bernas et al.
[5]. In this work, the band gap of liquid water is calculated
through configurations obtained at 300 K. For hexagonal ice,
we obtain the band gap through a calculation at relaxed atomic
positions. The comparison of the latter with the experimental
band-gap references at 77 K is justified insofar as the finite
temperature difference is expected to have a negligible effect.
Indeed, Engel et al. have shown that the calculated band gap of
Ih is almost independent of temperature between 0 and 77 K
[34]. Estimated variations are limited to ~0.02—-0.05 eV and
are therefore disregarded [34].

After the critical review of experimental band-gap refer-
ences, we discuss further effects that have to be taken into
account to ensure a consistent comparison between theory
and experiment. In particular, we consider nuclear quantum
effects (NQE) in liquid water and zero-phonon renormaliza-
tion (ZPR) in hexagonal ice. These effects originate from the
quantum mechanical nature of the nuclei and generally induce
arenormalization of the band gap. Since we consider classical
nuclei in our structural models (cf. Sec. IV A), these renormal-
izations are added as a posteriori corrections to the band gaps
calculated with the advanced electronic-structure methods. A
summary of the band-gap references and corrections adopted
in this work is given in Table I.

For liquid water, various studies have shown that the NQE
significantly affect the electronic structure [8,9,41,99]. In-
deed, Chen et al. found a band-gap reduction of 0.7 eV due to
NQE, consistently for various state-of-the-art GW approaches
[8]. For the semilocal Perdew-Burke-Ernzerhof (PBE) func-
tional [100], this effect reduces to 0.5 eV [8]. These results
are in overall agreement with other studies in the literature.
The NQE have been found to be 0.5 eV with the GoW, @RSH
method [9], 0.6 eV with the PBEO-ADMM-D3 hybrid func-
tional [99], and 0.65 eV with eigenvalue self-consistent GW

calculations (evGW) [41]. Among these various values, we
adopt throughout this work the GW value from Chen et al.
for the band-gap correction due to NQE. This choice is
motivated, on the one hand, by the fact that this estimate
results from one of the most accurate theoretical schemes
and, on the other hand, by the fact that we adopt in this
work the very same structural configurations obtained by
Chen et al. [101]. Therefore, we correct the band gap of
liquid water at ambient temperature by 0.7 eV due to NQE.
To provide further justification for this way of proceeding,
we additionally compute the NQE with the most accurate
hybrid-functional schemes considered in this work. More
specifically, we employ the functionals CAM(0, 1/&%;, ttr)
and CAM(ask, 1/65”, wrr), which are described later in
Secs. VB and V C, respectively. These functionals yield band-
gap reductions due to NQE of 0.63 and 0.73 eV, respectively.
These corrections are in good accord with the result of Chen
etal. [8]. This agreement further justifies the use of a band-gap
correction of 0.7 eV for the NQE in liquid water.

In analogy to liquid water, we also consider the ZPR of the
band gap in the case of hexagonal ice. Monserrat et al. calcu-
lated a ZPR of 1.52 eV by means of density functional theory
(DFT) calculations at the semilocal and hybrid functional
levels [98]. Engel ef al. confirmed this estimate in an extended
study involving various proton orderings in hexagonal ice
[34]. Therefore, we adopt throughout this work the value of
1.52 eV for the a posteriori correction of the calculated band
gaps in hexagonal ice.

It is noteworthy that the band-gap corrections for the two
considered water phases are significantly different. Indeed,
the ZPR of the band gap of hexagonal ice is larger than the
NQE on the band gap of liquid water by ~0.8 eV. Engel
et al. have found that the ZPR of hexagonal ice varies by only
~0.1 eV over the temperature range 0240 K [34]. Therefore,
the dominating part of this effect cannot solely be assigned
to the temperature difference between the two phases, but
should rather be related to the underlying atomic structures. In
particular, in the case of liquid water, the band-gap reduction
results from a complex interplay between the broadenings in
the density of states due to the NQE and to the molecular
disorder.

III. THEORETICAL SCHEMES
A. Quasiparticle self-consistent GW

The many-body perturbation theory in Hedin’s GW ap-
proximation is one of the most elaborate schemes to describe
the electronic structure of materials [35]. In recent decades,
it has evolved into a commonly accepted standard for band-
gap calculations. In the following, we briefly review various
flavors of this technique that are currently in use.

Technically, GW calculations are often carried out as
a perturbative correction to wave functions and eigenval-
ues obtained from DFT [102,103]. This so-called one-shot
GW (GoWy) correction generally improves the band gaps
[104,105] with respect to the underestimated ones from
semilocal DFT [106]. However, this approach remains un-
satisfactory insofar as it strongly depends on the considered

023182-3



BISCHOFF, RESHETNYAK, AND PASQUARELLO

PHYSICAL REVIEW RESEARCH 3, 023182 (2021)

Initial guess for
hybrid functional parameter(s)
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Yes

FIG. 1. Workflow for the construction of dielectric-dependent
hybrid functionals.

starting point [104]. In case the initial wave functions give
an inaccurate description, the GoW; corrections might fail
notably [107,108]. To overcome this deficiency, various GW
schemes have been developed in which perturbative correc-
tions are iterated until a self-consistent description is reached
[36,108-112].

One prominent representative of a self-consistent GW
scheme is the QSGW method [36,109,111]. It is based on a
Hermitian ansatz for the GW self-energy and has given more-
accurate band gaps and bandwidths than fully self-consistent
GW [36,113]. However, it was observed that QSGW sys-
tematically overestimates the band gap as a consequence of
the missing electron-hole interaction [37,38]. This obstacle
has been circumvented through the incorporation of vertex
corrections in the screened interaction W [37,38,114] result-
ing in the QSGW scheme. The accuracy of this approach
has been verified for numerous materials such as common
semiconductors and insulators [37,38,115], transition-metal
compounds [38,116,117], alkali-metal halides [75], metal-
halide perovskites [80,118], and liquid water [8]. It is
therefore generally acknowledged that QSGW ranks among
the most reliable GW approaches for band-gap predictions.

B. Dielectric-dependent hybrid functionals

The second advanced electronic-structure method inves-
tigated in this work consists in dielectric-dependent hybrid
functionals. In this approach, the dielectric response of
the considered material is used to determine the free
hybrid-functional parameters. In particular, the inverse high-
frequency dielectric constant 1/e4, has been shown to be in
close relation with the incorporated amount of Fock exchange
[54,55]. The extension of this basic finding has led to various
DDH schemes differing in technical aspects such as self-
consistency [60,63,64], range separation [66,68,69], or spatial
variability [19].

In this study, we determine DDH functionals through the
workflow visualized in Fig. 1. First, after an initial guess
of the hybrid-functional parameters is made, the general-
ized Kohn-Sham (GKS) equations [119] are solved and the
high-frequency dielectric constant €4, is evaluated. Then the
inverse of this quantity is used to obtain an updated set of

hybrid-functional parameters. These steps are iterated until a
self-consistent description is reached. We note that the param-
eter update in Fig. 1 is specific to the adopted class of hybrid
functionals. We discuss this aspect separately for the different
classes of hybrid functionals investigated in this work.

First, we consider the global hybrid functional PBEO(«),
which incorporates at all interaction distances the same
fraction o of Fock exchange [46]. The nonlocal exchange
potential of this functional reads

Vi(r,r') = aV e, r') + (1 — )VPBE)s(r — '), (1)

where Vo denotes the nonlocal Fock exchange potential
and VPBE represents the semilocal PBE exchange potential.
The correlation in the PBEO(«) functional is included at the
PBE level of theory. Employing the DDH scheme, the mixing
parameter « is determined in the standard fashion through o =
1/es. The self-consistent procedure in Fig. 1 then converges
to a dielectric constant &5 and a mixing parameter o« = 1/&5;.
The hybrid functional determined in this way is denoted by
PBEO(1/¢%). It is noteworthy that different notations for this
functional have been used in the literature, such as sc-hybrid
[63], DD-PBEH [69], and DD-PBEO [80].

Second, we derive the functional CAM(«s, ae, ) from
the functional PBEO(«) following the Coulomb-attenuating
method (CAM) of Yanai et al. [48]. This range-separated
hybrid functional offers a substantial amount of flexibility
through the appearance of three parameters. The range-
separation parameter p determines the partitioning of the
Coulomb potential through the use of an error function:

1 erfe(ulr —1']) | erf(ulr —r'|)

@)

r —r/| - r—r’| r —r/|

The first and the second term on the right-hand side of Eq. (2)
determine the short-range and the long-range part of the ex-
change potential, respectively. The exchange potential is then
determined starting from the semilocal PBE expression and
admixing distinct fractions of nonlocal Fock exchange in the
two regimes. We use the fraction o (oy) for the admixture in
the short (long) range. The resulting exchange potential of the
functional CAM(«, oy, 1) then reads

Ve(r, ') = [as + (o — aerf(ulr — ' DIVO*(r, 1)
+{1 — [ots + (g — aderf(palr — ' NIVFEE(r).
3)

It is noteworthy that this functional reverts to PBEO(«) for o =
o5 = ay irrespective of the p parameter. Furthermore, one
can distinguish two limiting regimes for the range separation.
For © — 0, one finds the PBEO(«5) functional. Analogously,
for u — oo, the CAM functional converges asymptotically to
PBEO(c¢). In addition, the functional form given in Eq. (3)
also encompasses various commonly used hybrid functionals.
For instance, the Heyd-Scuseria-Ernzerhof functional is ob-
tained for ooy = 0.25, ¢y = 0, and & = 0.11 bohr ™' [47,120].

The three parameters of the functional CAM(as, oy, )
are determined as follows within the self-consistent DDH
procedure. The short-range fraction « is taken as a constant
for which different values have been proposed in the litera-
ture. Chen et al. applied oy = 1 with the underlying idea of
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FIG. 2. Occupied and unoccupied single-particle energy levels of
the OH radical in hexagonal ice as a function of the mixing parameter
o used in the PBEO(«) functional. The deviation from Koopmans’
condition Ak corresponds to the separation between these energy
levels and varies with «. The point of intersection of the two single-
particle energy levels corresponds to the enforcing of Koopmans’
condition and is denoted by ak. The band edges vs « are also shown.
The dashed vertical line indicates the resulting band-gap estimate
prior to the application of the corrections discussed in Sec. II.

achieving a hybrid functional that reproduces the fully un-
screened Coulomb interaction in the short range [69]. Skone
et al. used instead an attenuated short-range exchange based
on oy = 0.25 [66]. In this work, we consider both ways of
fixing oy and compare the resulting implications for the con-
struction of range-separated DDH functionals. Moreover, we
investigate the effect of adopting purely semilocal exchange
in the short range as obtained by setting oy = 0. This def-
inition is motivated by the success of long-range corrected
hybrid functionals [121-125] and will be discussed in more
detail in Sec. V B. The second parameter of the CAM func-

) 4 oo v ¢ w\

E ‘!‘..t.
T?.@‘“‘ ‘J

b . r~<’
)4 ‘i ;»7{

FIG. 3. Graphical illustration of (a) an instantaneous configura-
tion of liquid water and (b) the Bernal-Fowler model of hexagonal ice
as viewed along the ¢ axis. Oxygen and hydrogen atoms are shown
in red and white, respectively.

€
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TABLE II. Comparison of the range-separated DDH functionals
considered in this work with respect to similar approaches reported
in the literature: DD-RSH-CAM [69], DSH [68], and RS-DDH [66].
The comparison is made in terms of the fraction of short-range Fock
exchange o, the fraction of long-range Fock exchange oy, and the
range-separation parameter ji.

Functional o oy "

CAM(L 1/e%, /'LTF)a 1 1/&3 MUTF
DD-RSH-CAM" 1 1/e% e
DSH¢ 1/ex Heger”
CAM(0.25, 1/&%, jurr)* 1/ JATF
RS-DDH! 1/ee i
CAM(0, 1/e¥, purr)* /e Hrr

*This work.

bReference [69].

‘Fitted pu parameter within a self-consistent loop.
dReference [68].

¢Effective TF parameter within a self-consistent loop.
fReference [66].

¢Fitted u parameter.

tional, namely, the long-range fraction of incorporated Fock
exchange «y, is determined analogously to the global mixing
parameter by setting oy = 1/¢5;. Finally, the inverse range-
separation length  is set to the Thomas-Fermi (TF) screening

parameter
o 3Ny
KTF = e )

where n, is the valence-electron density [66]. For liquid
water and hexagonal ice, Eq. (4) yields u equal to 0.58
and 0.57 bohr™!, respectively (cf. Sec. IV A). These val-
ues can be physically interpreted as the inverse of the OH
bond length, 1/(0.96 A) ~ 0.55 bohr~!, and represent in
this perspective a typical length scale of the considered
material. The values of urg are also consistent with those
obtained in Ref. [63]. We note that alternative definitions
of the u parameter relying on the effective TF screen-
ing [68], the Wigner-Seitz radius [66], or various fitting
procedures [66,69] have been suggested in the literature.
However, it has been shown that these definitions yield almost
identical p values [66,69,71] accompanied by insignificant
effects on the band-gap estimates [66]. Therefore, we con-
sider . = ptp throughout this work. Overall, we investigate
three range-separated DDH functionals in this study, de-
noted by CAM(1, 1/&%, urr), CAM(0.25, 1/&5, rr), and
CAM(O0, 1/&5, urr). We remark that the present functionals
can be compared to similar range-separated DDH functionals
in the literature, such as DD-RSH-CAM [69], DSH [68], and
RS-DDH [66]. A comparison of these functionals is given in
Table II. The differences are technical and originate from the
definition of ¢ and the determination of the range-separation
parameter (.

C. Hybrid functionals satisfying Koopmans’ condition

The third class of advanced electronic-structure methods
investigated in this work consists in hybrid functionals that
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TABLE III. Properties of the structural models used for liquid
water £-H,O and hexagonal ice Ih: space group, lattice parameters a
and ¢/a, number N of water molecules per unit cell, and mass density
0. The settings are taken from Refs. [8,128].

Phase of water ~ Space group  a (A) cla N o (g/cm’)
¢-H,0 P1 9.81 32 1.01
Th P6scm 7.82 0941 12 0.92

satisfy Koopmans’ condition. This physical constraint states
that within exact GKS theory [119] a single-particle en-
ergy level does not move upon electron occupation, thereby
ensuring piecewise linearity of the total energy upon fractional
electron occupation [57]. For approximate density functionals
this constraint is generally violated, leading to the appearance
of the many-body self-interaction error [126,127].

For the construction of hybrid functionals that satisfy
Koopmans’ condition, we apply the procedure outlined in
Refs. [75,78,80]. First, we consider a supercell of the inves-
tigated material in which a point defect has been introduced.
The associated single-particle energy level is then evaluated
with a hybrid functional in the occupied and in the unoccupied
charge state. The two calculations generally yield different
defect levels due to the departure from Koopmans’ condition.
The energy difference between the single-particle levels in the
two charge states is denoted by Ak. This deviation varies as
a function of the undetermined parameter of the hybrid func-
tional that we denote by «. When the deviation vanishes for a
specific value ok, i.e., Ag(ax) = 0, Koopmans’ condition is
fulfilled. The hybrid functional defined by ak is then instru-
mental in obtaining a band-gap estimate for the host material.
A graphical illustration of this procedure is given in Fig. 2 for
the representative case of the OH radical in hexagonal ice. To
ensure a consistent comparison with the DDH functionals, we
construct hybrid functionals satisfying Koopmans’ condition
by considering both the global PBEO and the range-separated
CAM functionals.

IV. COMPUTATIONAL ASPECTS

A. Structural models

The calculations carried out in this work make use of
well-established structural models for liquid water [8] and
hexagonal ice [128]. The properties of these models are
summarized in Table III. Graphical illustrations are given in
Fig. 3.

In the case of liquid water, we consider 20 snapshots
taken from a molecular-dynamics simulation performed by
Chen et al. [8,101]. The atomic structure in this simulation
has been shown to be well equilibrated and to be consistent
with the experimental radial distribution functions [8]. The
adopted snapshots are evenly spaced in time and correspond
to independent configurations of 32 water molecules at am-
bient temperature (300 K) [8]. The density of liquid water in
the considered trajectory is only marginally higher than the
experimental one [129] (by ~1%), which has been shown to
negligibly affect the calculated band gaps [8]. Van der Waals
interactions are incorporated in the water trajectory through

the use of the revised Vydrow—Van Voorhis nonlocal density
functional [130,131]. The empirical parameter b has been set
to 8.9, which ensures a realistic description of the structure of
liquid water [8,132]. As discussed in Sec. II, we account for
NQE through an a posteriori band-gap correction. It is there-
fore appropriate to consider configurations of liquid water in
which the nuclei have been treated classically.

For hexagonal ice, we consider a unit cell as given in
the Bernal-Fowler model [128]. This model comprises 12
water molecules arranged in a hexagonal lattice and has been
adopted in several theoretical studies [34,51,132—134]. To en-
sure a consistent description of liquid water and hexagonal ice,
we relaxed the atomic coordinates of the Bernal-Fowler model
with the same revised Vydrow—Van Voorhis functional as used
by Chen et al. [8]. The density of the original Bernal-Fowler
model (0.92 g/cm?) corresponds to that obtained at a temper-
ature just below the melting point [128]. The density at this
temperature differs only slightly from that obtained through
extrapolation to 0 K, namely, 0.93 g/cm3 (see Refs. [50,52]
and references therein). We checked that such an increase
of the density leads to negligible changes in the calculated
band gaps (less than 0.01 eV at the PBE level of theory).
Therefore, we adopt in this work the lattice constants (and
thus the density) as originally proposed by Bernal and Fowler
[128]. Furthermore, we remark that the present model car-
ries a net dipole moment which is closely connected to the
lattice-constant ratio ¢/a [133]. To investigate the effect of
this dipole, we modified this ratio such that the net dipole
moment vanishes, but we found no relevant change in the band
gap. Hence, we keep the unmodified c/a ratio throughout this
work.

‘We note that hexagonal ice is generally a proton-disordered
phase of solid water. To account for this effect, various struc-
tural models have been proposed in the literature [135]. The
most stable proton-ordered configuration of Ih is referred to
as XTh [134]. It has been observed below the order-disorder
transition temperature of 72 K [136] and exhibits the space
group Cmc2; [137]. However, Engel et al. have shown that
the band gaps calculated using the Cmc2; model and the
Bernal-Fowler model differ by less than 0.02 eV at the semilo-
cal and hybrid-functional levels of theory [34]. Likewise, the
computed band gaps for 16 distinct Ih models agree within
0.05 eV when the zero-phonon renormalization is taken into
account [34]. Therefore, it is justified to focus in our investiga-
tion on the Bernal-Fowler model as a representative structural
configuration of Th.

B. Computational details

The calculations presented in this work are carried out with
norm-conserving pseudopotentials to describe core-valence
interactions [138,139]. The energy cutoff for the plane-wave
basis set is set at 85 Ry. The adopted k-point samplings for
the bulk calculations in liquid water and hexagonal ice are
1 x 1 x 1 (only the I" point) and 2 x 2 x 2, respectively. We
calculate the VBM of liquid water following the procedure
outlined by Ambrosio et al. [11]. This implies the calcula-
tion of the average electron density of states (DOS) over the
adopted selection of 20 water snapshots. The VBM is then
determined through linear extrapolation of the valence-band

023182-6



BAND GAPS OF LIQUID WATER AND HEXAGONAL ICE ...

PHYSICAL REVIEW RESEARCH 3, 023182 (2021)

wing in the DOS. This way of proceeding is convenient for
two reasons. First, it leads to a fast convergence of the VBM
with respect to the adopted supercell size [8,11]. Second,
this procedure mimics the experimental determination of the
VBM, which is based on an analogous extrapolation [6]. We
note that the VBM obtained in this way is independent of
the broadening, provided the smearing remains reasonably
small (Gaussian broadening of 0.05 eV in our work). For
hexagonal ice, we determine the VBM through the highest
occupied Kohn-Sham level. It is noteworthy that the VBM in
hexagonal ice is located at the X point resulting in an indirect
band-gap transition X — I'. The direct band gap at the I
point is generally ~0.1 eV larger than the indirect one. The
band gaps reported in the following correspond to the indirect
transition.

The QSGW calculations in this work are performed with
nonlocal commutators for the optical matrix element in the
long-wavelength limit, as described in Ref. [140]. The con-
tour deformation technique is used to evaluate the frequency
dependence of the dielectric function [141]. We account for
eight real and four imaginary frequencies. For the calculation
of the dielectric function, we apply the formula of Adler [142]
and Wiser [143] using an energy cutoff Eg of 12 Ry and a
total number np,,q of 2000 bands. In the QSGW calculations,
we self-consistently update only the lowest 600 bands and
keep the higher-lying states unchanged as obtained with the
semilocal PBE functional [100]. For the vertex corrections
in the screening, we use the bootstrap exchange-correlation
kernel of Sharma et al. [114] in the efficient head-only im-
plementation of Chen et al. [8,38]. All QSGW calculations
presented in this study are performed with the ABINIT software
package [144].

In order to ensure the convergence of the GW calculations,
we separately extrapolate the band gap as a function of the
cutoff E.y', the total number of bands npang, and the num-
ber of self-consistently updated bands. These extrapolations
are performed through an exponential function of the energy
cutoff and through linear functions of the inverse number of
total bands and of the inverse number of updated bands [145].
For hexagonal ice, the extrapolations in E. and npang yield
corrections of ~0.08 eV, as illustrated in Fig. 4. The extrap-
olation in the number of updated bands gives a correction
of only 0.01 eV. For liquid water, the respective corrections
are 0.03, 0.28, and 0.13 eV. The corrections associated with
the number of bands are larger than in the case of hexagonal
ice, due to the larger simulation cell used for liquid water (cf.
Sec. IV A). Hence, the QSGW band gaps are corrected by the
sum of the three corrections determined above. This results in
global corrections of 0.44 and 0.17 eV for liquid water and
hexagonal ice, respectively.

For the construction of DDH functionals, it is necessary
to evaluate the high-frequency dielectric constant ... To this
end, we perform separate calculations using the finite electric
field approach [146]. The proper convergence of €., is ensured
through a four-times-denser k-point sampling in the direction
of the field. For hexagonal ice, we perform an isotropic aver-
age over the trace of the dielectric tensor to account for the
small anisotropy in &, [147,148].

The construction of hybrid functionals satisfying Koop-
mans’ condition is based on single-particle levels of point

band-gap correction (eV)

0.1 [|— fit
- — extrapolated limit
0.15
10 20 30 0 0.5 1
ESP® (Ry) 1000/nband

cut

FIG. 4. Band-gap corrections (in eV) for hexagonal ice Ih ac-
cording to the extrapolation of (a) the cutoff in the dielectric matrix
E:F and (b) the total number of bands np,ng. The yellow circle
indicates the parameter value generally used in the QSGW calcu-
lations and serves as reference for the band-gap corrections. The
solid and the dashed line illustrate the fit and the extrapolated limit,
respectively.

defects [75,78,80]. For liquid water, we generate such de-
fects within the snapshots of Chen et al. [8]. For hexagonal
ice, we generate the defects within a 2 x 2 x 2 supercell
based on the Bernal-Fowler model [128] (cf. Sec. IV A). For
both systems, a k-point sampling at the sole I point ensures
converged single-particle levels. Spin-polarized defect calcu-
lations are performed whenever unpaired electrons occur. We
note that no structural relaxation is allowed upon the creation
of the point defects. This way of proceeding implies that the
long-range screening is characterized entirely by the high-
frequency dielectric constant £,. The spurious interactions
with periodically repeated image charges is overcome through
the use of accurate finite-size corrections to the single-particle
levels [149,150]. To avoid systematic errors, we evaluate these
corrections using dielectric constants that consistently corre-
spond to the hybrid functionals used in the defect calculations.

All hybrid functional calculations in this work are per-
formed with the QUANTUM-ESPRESSO software code [151]. We
use the same numerical parameters and the same pseudopo-
tentials [139] as in the calculations with ABINIT to ensure a
meaningful comparison between the results of the two codes.

V. BAND GAPS OF LIQUID WATER AND HEXAGONAL ICE

A. Quasiparticle self-consistent GW

First, we examine the band gaps of liquid water and hexag-
onal ice as obtained with different flavors of the QSGW
approach. In particular, we consider (i) the standard QSGW
scheme and (ii) QSGW, which includes vertex corrections in
the screening. The results of our calculations are shown in
Table IV together with the experimental band-gap references.

The GW schemes applied to liquid water and hexagonal
ice give results that compare similarly with the corresponding
experimental references. The standard QSGW method yields
band gaps that are overestimated. Indeed, the calculated band
gaps are higher by 0.4 and 0.1 eV than the upper limit of the
reference range for liquid water and hexagonal ice, respec-
tively. Similar overestimations have been observed for various
other materials [37,38] and have been attributed to the neglect
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TABLE IV. Fundamental band gaps (in eV) for liquid water
¢-H,O and hexagonal ice lh as calculated with the QSGW and
QSGW methods. The band gaps correspond to temperatures of 300
and 77 K, respectively. The reported band gaps include the correc-
tions associated with NQE and ZPR (cf. Sec. II). Band gaps inferred
from experimental data are given as reference (cf. Sec. II).

Phase of water QSGW QSGW Expt.
¢-H,O 9.6 9.1 9.0£0.2°
Ih 9.8 9.3 9.440.3°
AT =300 K.

T =77 K.

of electron-hole interactions in the calculation of the screened
W. We overcome this limitation by carrying out QSGW
calculations, which include vertex corrections in the screening
(W). In this scheme, the band gaps are smaller by 0.5 eV
with respect to those obtained without vertex corrections.
When comparing to experimental values, we record very good
agreement for both phases of water since the calculated band
gaps fall within the reference range. Such an accuracy is in
agreement with previous studies, which have found typical
mean absolute errors of ~0.2 eV for such QSGW calculations
[37,38,118].

We note that our QSGW calculations can be confronted
with other GW studies in the literature. For liquid water, sev-
eral one-shot GoW, calculations have been performed. With
respect to our QSGW scheme, this method systematically
yields underestimated band gaps when semilocal results are
used as starting points [7,39,40,44] and overestimated band
gaps when hybrid functional results are used [9]. As far as
previous self-consistent GW methods are concerned, we take
into consideration the recent study of Chen ef al. [8]. These
authors obtained a band gap of 8.9 eV also by means of
QSGW calculations. The difference of 0.2 eV with respect
to the present results should be attributed to small differ-
ences in the computational setup. Indeed, we evaluate the
nonlocal commutators for the optical matrix element in the
long-wavelength limit as described in Ref. [140] and use more
stringent convergence criteria to overcome the criticism raised
in Ref. [41]. The latter work reported a band gap of liquid
water obtained with the evGW scheme. The calculated band
gap of 9.07 eV is in good agreement with the present QSGW
band gap, despite the absence of explicit vertex corrections in
the evGW approach [41]. Our results can also be compared
with those of Kharche et al. [16]. By means of full-frequency-
spectrum-only self-consistent GW calculations, these authors
calculated a band gap of 9.53 eV for classical water, which
was later revised to 9.7 eV [16]. Accounting for a band-gap
reduction of 0.7 eV due to NQE [8], we correct their band-gap
estimate to 9.0 eV. This result has been obtained without
including explicit vertex corrections, but is nevertheless in
agreement with our QSGW band gap of 9.1 eV.

For hexagonal ice, fewer GW band-gap calculations can
be found in the literature. Yim et al. reported a band gap of
8.9 eV obtained with one-shot GyW, calculations. Similarly,
Fang et al. found a band gap of 9.17 eV by means of a partially
self-consistent GW,, approach [43]. However, both studies did
not account for the sizable zero-phonon renormalization of

TABLE V. High-frequency dielectric constant &% of liquid water
¢-H,0O and hexagonal ice lh as calculated self-consistently within
the DDH procedure (cf. Sec. III B). The dielectric constants are
obtained either with the global functional PBEO(1/¢5) or with the
range-separated functional CAM(«as, 1/€%, wrp). Various settings
for the short-range fraction of Fock exchange o are distinguished.
Experimental dielectric constants are given for comparison.

CAM(as, 1/, pu1r)

Phase of water PBEO(I/SZ) o, =1a,=025a;,=0 Expt.
¢-H,O 1.69 1.66 1.72 1.74 1.77 £0.01*
Th 1.64 1.61 1.66 1.68 1.72°

4References [81,83].
bReference [152].

~1.5 eV (cf. Sec. I). Therefore, the apparent agreement with
our QSGW calculations results from error cancellation. In
another investigation, Hahn et al. determined a larger band gap
of ~10 eV using an approximate GW scheme, which incor-
porates a model dielectric function and lacks self-consistency
[42]. When this result is corrected for ZPR, one finds a band
gap of ~8.5 eV, to be compared with the band gap of 9.3 eV
obtained in the present work.

Overall, we conclude that the QSGW approach used in the
present work corresponds to the most elaborate theoretical
framework applied so far to either liquid water or hexagonal
ice. Thus, this scheme is expected to give the most accurate
estimates for the band gaps of these systems.

B. Dielectric-dependent hybrid functionals

We here devote special attention to DDH functionals and
to their band-gap estimates for liquid water and hexagonal
ice. The free parameters of these functionals are determined
through the dielectric response of the material under investi-
gation (cf. Sec. III B). In this section, we therefore present the
band gaps resulting from the DDH functionals together with
their corresponding dielectric constants.

First, we apply the DDH procedure to the global hybrid
functional PBEO(«). The dielectric constant as calculated
within the self-consistent workflow is shown in Fig. 5(a) for
the case of hexagonal ice. We observe that ¢,, converges
within four iterations to the self-consistent value &55. It is
noteworthy that this specific value is independent of the con-
sidered starting point [63], as we checked using two distinct
initializations, namely, from results obtained with the func-
tionals PBE and PBEO(0.7) (cf. Fig. 5). The calculated value
of £ is in agreement with its experimental counterpart show-
ing an underestimation of only ~5% (Table V). For liquid
water, the self-consistent calculation of the dielectric constant
proceeds analogously and results in a similar comparison with
experiment (Table V). In this case, £ is only marginally af-
fected by the considered water snapshot. We analyzed various
snapshots and observed variations in &3 smaller than ~0.02.
It is sufficient to average over five different water snapshots to
achieve a converged mean value with a standard deviation of
less than 0.01.
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FIG. 5. Convergence of (a) the dielectric constant €., and (b) the
band gap E, within the self-consistent DDH scheme for hexagonal
ice Ih. Iteration steps and converged results are visualized as circles
and squares, respectively. The global hybrid functional PBEO(1/£5)
and the range-separated hybrid functionals CAM(0, 1/&5, ptr),
CAM(0.25, 1/&%, wrr), and CAM(1, 1/&5, wrr) are examined. The
independence of the converged results from the starting point is
illustrated through distinct initializations: The global PBEO(1/£5)
functional has been started from either the PBE (solid orange line)
or the PBE0(0.7) (orange dashed line) functional, while the range-
separated CAM(I, 1/€5, wrr) functional has been started from
either the CAM(1, O, urg) (red solid line) or the CAM(1, 0.7, wtr)
(red dashed line) functional. The reported band gaps include the
corrections due to ZPR (cf. Sec. II). The horizontal gray line cor-
responds to the experimental high-frequency dielectric constant 5"
[152]. The shaded area indicates the interval corresponding to the
experimental reference values E| ;"P‘ inferred in Sec. II.

Next we consider the band gaps as obtained with the global
DDH functional. The convergence of the band gap within
the DDH procedure is shown in Fig. 5(b) for the case of
hexagonal ice. Analogously to the dielectric constant, the
band gap converges within four iterations irrespective of the
adopted starting point. The converged result for the band gap
corresponds to the functional PBEO(1/¢%). The convergence
behavior for liquid water is analogous to that of hexagonal
ice shown in Fig. 5(b). The spread of 0.01 in & due to

TABLE VI. Fundamental band gaps (in eV) of liquid water
¢-H,O and hexagonal ice Ih as calculated with DDH function-
als. The band gaps correspond to temperatures of 300 and 77 K,
respectively. The band gaps are obtained either with the global
functional PBEO(1/e%) or with the range-separated functional
CAM(a, 1/€%, prr). The value of the parameter 1/&5 is given in
parentheses. Various settings for the short-range fraction of Fock
exchange o are distinguished. The reported band gaps include the
corrections associated with NQE and ZPR (cf. Sec. II). Band gaps
inferred from experimental data are given as reference (cf. Sec. II).

CAM(ay, 1/6%, 1u1)

Phase of water PBEO(1/¢%) as =1 oy =0.25 o, =0  Expt.

¢-H,O 10.0 10.9 9.5 9.0 9.0+0.2*
(0.59) (0.60) (0.58) (0.57)

Th 10.3 11.0 9.6 91 94403
0.61) (0.62) (0.60) (0.59)

T =300 K.

T =77 K.

the statistical variety of water snapshots results in variations
smaller than 0.1 eV in the band-gap estimate.

The band gaps obtained with the PBEO(1 /&) functional
for both liquid water and hexagonal ice are given in Table VI
together with experimental references. We observe an overes-
timation of the band gap for both water phases. With respect
to the upper limit of the reference interval, the deviations
amount to 0.8 and 0.6 eV for liquid water and hexagonal ice,
respectively. We attribute this band-gap overestimation to the
underestimation of the dielectric constant with respect to the
experimental value [cf. Fig. 5(a) and Table V].

Our result for the band gap of hexagonal ice can be com-
pared with that obtained by Skone ef al., who used a similar
self-consistent approach [63]. These authors reported a band
gap of 11.71 eV for hexagonal ice [63]. When this result is
corrected for the ZPR, one obtains a band gap of 10.2 eV,
in good agreement with the value of 10.3 eV obtained in the
present work.

In the second part of this section, we apply the DDH
construction procedure to the range-separated functional
CAM(as, oy, ). This functional incorporates different frac-
tions of Fock exchange in the short («5) and in the long
range (o¢). The transition between the two limiting regimes
is mediated by the range-separation parameter . For the
determination of these parameters, we proceed as discussed
in Sec. III B. In particular, we consider three different settings
for the short-range fraction of Fock exchange o, namely,
as equal to 1, 0.25, and 0. The respective range-separated
DDH functionals are then denoted by CAM(1, 1/&5, utr),
CAM(0.25, 1/&%, prr), and CAM(O, 1/e%;, ).

The convergence of the DDH scheme for the three func-
tionals considered is shown in Fig. 5 in the case of hexagonal
ice. The convergence behavior is generally very similar to that
of the global DDH functional. More specifically, convergence
is similarly achieved within four iterations irrespective of the
adopted starting point (cf. Fig. 5). This observation underlines
the remarkable numerical stability of the DDH scheme in
accord with previous studies in the literature [63,66,68,69].
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However, the results obtained with different settings of the
parameter o exhibit differences that deserve close attention.
First, we focus on the self-consistently determined dielectric
constants 5. The values resulting from the three range-
separated DDH functionals are given in Table V for both
liquid water and hexagonal ice. We observe a systematic vari-
ation of & as a function of . More specifically, the smaller
the short-range Fock exchange o, the higher the dielectric
constant &5’. This systematic trend manifests in deviations
from the experimental references ranging from only ~2%
for oy = 0 up to ~6% for oy = 1. Overall, these dielectric
constants agree with experiment irrespective of «,. However,
the best agreement is clearly achieved for g = 0 and the
corresponding functional CAM(0, 1/%;, puE).

Next we investigate the band gaps resulting from the three
range-separated DDH functionals. Our results for liquid wa-
ter and hexagonal ice are given in Table VI. We find that
also the band gap exhibits a systematic variation according
to the value set for the parameter og. More specifically, the
smaller the short-range Fock exchange o, the smaller the
band gap obtained with the corresponding DDH functional
CAM(o, 1/€55, prr). In the following, we separately discuss
the results for the three settings of .

For oy=1 and the associated DDH functional
CAM(1, 1/€%, ntr), we obtain strongly overestimated
band gaps. With respect to the upper limit of the reference
interval, the deviations amount to 1.7 and 1.3 eV for
liquid water and hexagonal ice, respectively. This result
is unexpected insofar as the similar DD-RSH-CAM approach
of Chen et al. provides accurate band gaps for a variety
of semiconductors and insulators [69]. Similarly, good
agreement with experiment has been found for a series of
metal-halide perovskites [80]. The origin of the failure of this
method for liquid water and hexagonal ice remains unclear at
the moment and deserves further investigation.

For os = 0.25 and the corresponding DDH functional
CAM(0.25, 1/€%, ntr), we observe good agreement with
the experimental references. Indeed, for hexagonal ice the
computed band gap falls within the reference interval. For
liquid water, we observe a small overestimation of 0.3 eV
with respect to the upper limit of the range of experi-
mental values. Interestingly, the band gaps obtained with
CAM(0.25, 1/&5, utr) can be confronted with the similar
RS-DDH approach of Skone et al. [66]. These authors re-
ported a band gap for hexagonal ice of 10.94 eV [66]. When
this result is corrected for ZPR, one finds a band gap of 9.4 eV,
in good agreement with the value of 9.6 eV found in the
present work.

For oy =0 and the associated DDH functional
CAM(O0, 1/€%, ptr), we achieve the highest accuracy among
the examined range-separated DDH functionals. Indeed, we
find band-gap estimates falling within the experimental range
for both considered phases of water.

On the basis of the agreement with experiment for the
dielectric constant, we are led to elect the CAM(0, 1/&%;, wrr)
as the most reliable range-separated DDH functional for liquid
water and hexagonal ice. This assessment is further supported
by the band gaps achieved with this functional, which fall
within the range of experimental values for the two phases
of water.

TABLE VII. Fundamental band gap (in eV) of hexagonal ice
Th as calculated with range-separated DDH functionals of the form
CAM(a, 1/€55, ). Two values for the range-separation parameter
w are considered: pws = 0.53 bohr™! and prr = 0.57 bohr™'. The
short-range fraction of Fock exchange o is set to 1, 0.25, or 0. The
value of the self-consistently determined dielectric constant &5 is
given in parentheses. The reported band gaps include the correction
associated with the ZPR (cf. Sec. II).

2 as =1 a, = 0.25 a, =0
Hws 11.1 (1.60) 9.5 (1.67) 9.0 (1.69)
HTF 11.0 (1.61) 9.6 (1.66) 9.1 (1.68)

The various range-separated DDH functionals investigated
in this work yield differing results both for liquid water
and for hexagonal ice. More specifically, the different set-
tings of the parameter o result in notable variations in the
self-consistently determined dielectric constant &5 (~0.1) as
well as in the band-gap estimate E, (~2 eV). These sizable
variations raise the question to what extent these results are
affected by setting the range-separation parameter i to (LE.
To address this issue, we construct range-separated DDH
functionals using a different setting for i, namely, the Wigner-
Seitz screening parameter pws as defined in Ref. [66]. The
results of these calculations are given in Table VII. We observe
that the distinct settings of the range-separation parameter
p affect €55 only by ~0.01. These changes in the dielectric
constant are accompanied by variations in the band-gap es-
timates of ~0.1 eV. Therefore, we conclude that setting the
range-separation parameter u to purr does not critically af-
fect the performance of the range-separated DDH functionals.
The observed variations among these functionals can thus
be attributed predominantly to the different settings of the
short-range fraction of Fock exchange .

Before closing this section, we question to what extent
the nature of the present DDH functionals can be considered
nonempirical. The global hybrid functional PBEO(1/£%}) is
entirely determined through the dielectric response of the
material and is therefore fully nonempirical. However, for the
range-separated functionals, the specific value adopted for o
has a significant effect on the resulting band gaps. In a fully
nonempirical DDH scheme, these different settings should be
either irrelevant for the outcome or determined on the basis
of an exact property of generalized Kohn-Sham theory [119].
This is manifestly not the case for the range-separated DDH
functionals. This remaining indetermination also underlies the
lack of consistency among the various range-separated DDH
approaches in the literature [66,68,69]. Despite this open is-
sue, we consider the functional CAM(0, 1/&5, utr) as the
most reliable DDH functional on the grounds that it achieves
the best agreement with the experimental dielectric constants.

C. Hybrid functionals satisfying Koopmans’ condition

We now focus on hybrid functionals satisfying Koopmans’
condition. For the construction of such functionals, we ap-
ply the procedure outlined in Sec. IIIC to various localized
states in the two investigated phases of water. We introduce
such states through interstitial atoms (H;, F;, Cl;, and Br;),
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FIG. 6. (a) Band edges and defect energies for various localized
states in hexagonal ice displayed versus the mixing parameter o
incorporated in the PBEO(«) functional. The degree of hybridization
8 of each localized state is visualized through the color scale. The
indicated band gaps are obtained with the functional PBEO(«) prior
to the application of the corrections described in Sec. II. (b) The rms
deviation from Koopmans’ condition Ag™ as a function of the mixing
parameter «. The value of ok and the corresponding minimum of
AR™ are indicated.

substitutional atoms (Fy,0, Cly,0, and Bry,p), or inorganic
radicals (OH and NH,). In the case of hexagonal ice, we also
consider the Bjerrum defect pair, which results from locally
disregarding the second ice rule [153—155]. More specifically,
one water molecule is pivoted in such a way that one pair
of neighboring oxygen atoms is formed with no intermediate
hydrogen atom and another pair occurs with two intermediate
hydrogen atoms [155]. For each considered localized state,
the degree of hybridization § is computed [78]. This quantity
measures the undesired hybridization between the localized
defect state and the delocalized band-edge states. Through the
minimization of §, we can identify the most reliable localized
defect states [78,80,156].

First, we examine the global hybrid functional PBEO(«)
and determine the mixing parameter oy which satisfies Koop-
mans’ condition. Our results are shown in Fig. 6(a) for the
case of hexagonal ice. We find different values of g for the
various localized states. The 4/0 and 0/— charge transitions
of the hydrogen interstitial H; determine the maximal and
minimal values of ak. Their sizable variation can be attributed
to strong hybridizations with the band-edge states. The mixing
parameters obtained through the other localized states fall

within a much narrower range. This property goes together
with a systematically lower degree of hybridization for the
involved defects. The smallest § are observed for the radical
OH, the radical NH,, the fluorine interstitial F;, the fluorine
substitutional Fy, 0, and the chlorine substitutional Cly,o. The
Bjerrum defect pair, the bromine substitutional Bry,o, and
chlorine interstitial Cl; also show rather small values of §, but
yet noticeably larger than the previous five defects.

To account for the different behaviors of the various local-
ized states, we proceed in the following way. We consider the
five defects with the lowest degree of hybridization and com-
pute the root mean square (rms) of their individual deviations
from Koopmans’ condition through

&)

The rms deviation AL™ resulting from Eq. (5) is displayed
in Fig. 6(b) for the case of hexagonal ice. We find that AZ™
depends continuously on the fraction of Fock exchange « and
reaches a minimum for a specific value in close proximity
to the crossing points of the individual defects. Hence, this
minimum accounts effectively for the various localized states
and enables us to determine ok in a robust fashion. The
minimum value of AY™ is found to be ~0.2 eV, which corre-
sponds to ~2% of the band gaps involved. This indicates that
Koopmans’ condition is effectively fulfilled for the various
localized states, albeit with a finite accuracy. We checked that
the inclusion of the more hybridized bromine substitutional
Bry,o0 and Bjerrum defect pair among the defects considered
in Eq. (5) affects the extracted ax by less than 0.01, cor-
responding to changes of less than 0.1 eV in the band-gap
estimate. We therefore consider only the five defects with the
lowest §. With the procedure outlined above, we find mixing
parameters ok of 0.47 and 0.48 for liquid water and hexagonal
ice, respectively. In particular, the result for liquid water is
in good agreement with the value of o = 0.45 determined
empirically by Ambrosio et al. [10]. In the case of liquid
water, ok is found to be almost independent of the considered
water snapshot, with variations within ~0.01. Therefore, it
is sufficient to average over five different water snapshots to
achieve a converged mean value.

The band gaps obtained with the functional PBEO(ak)
are compared with the experimental reference values in
Table VIII. The corresponding mixing parameter g are given
in parentheses. For liquid water, we observe a small band-gap
underestimation of 0.1 eV with respect to the lower bound of
the experimental range. Similarly, we find an underestimation
of 0.2 eV for hexagonal ice. This level of accuracy is in line
with previous studies employing the nonempirical functional
PBEO(ok) for band-gap predictions [75,78,80].

It is of interest to compare the present results obtained
with the functional PBEO(xx) with those obtained with the
functional PBEO(1/¢) (cf. Table VI). Both originate from
the global hybrid functional PBEO(x), but the parameters
are determined through distinct construction schemes. We
find that the mixing parameter 1/&5 is systematically higher
than ag. Consequently, the same holds for the respective
band gaps obtained with PBEO(1/¢%}) and PBEO(ak). With
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TABLE VIII. Fundamental band gaps (in eV) of liquid water
£-H,O and hexagonal ice Ih as calculated with hybrid function-
als satisfying Koopmans’ condition. The band gaps correspond to
temperatures of 300 and 77 K, respectively. The band gaps are
obtained either with the global functional PBEO(«x) or with the
range-separated functional CAM (o, 1/822”‘, utr). The values of
the parameters ax and o5k are given in parentheses. The reported
band gaps include the corrections associated with NQE and ZPR
(cf. Sec. II). Band gaps inferred from experimental data are given
as reference (cf. Sec. II).

Phase of water PBEO(ax) CAM(argx, 1/€5™, prr) Expt.
¢-H,O 8.7 (0.47) 9.2 (0.18) 9.0£0.2%
Th 8.9 (0.48) 9.3 (0.18) 9.440.3°
4T =300 K.

T =77 K.

respect to the experimental band-gap references, PBEO(ak)
shows a significantly better accord than PBEO(1/&). We
note that similar considerations have been found to apply to
the metal-halide perovskites studied in Ref. [80]. While both
Koopmans’ condition and the asymptotic long-range dielec-
tric screening correspond to properties of the exact underlying
generalized Kohn-Sham functional, the present results further
support that these two properties are physically distinct [157].
The class of global PBEO(«) hybrid functionals described by
the single parameter « is thus clearly insufficient to describe
both properties at the same time and thus motivates us to
consider more elaborate hybrid functionals.

Next we examine CAM functionals that satisfy Koopmans’
condition. These functionals include three parameters o, oy,
and w. Since Koopmans’ condition is not sufficient to fix
all three parameters, we proceed in the following way. First,
we narrow down the parameter space by setting o, equal to
1/¢2. For the high-frequency dielectric constant £, we
consider 1.77 [81,83] and 1.72 [152] in the cases of liquid
water and hexagonal ice, respectively. We remark that taking
the experimental value for the dielectric constant introduces
an empirical parameter in the scheme. However, this could in
principle be eliminated by employing a self-consistent DDH
cycle. To avoid an exceedingly complex workflow, we thus
set in this work the experimental value from the beginning,
thereby ensuring the physically correct screening in the long
range. Second, we treat the inverse range-separation length
© as a free parameter that we vary systematically. Third,
we fix ay through the enforcement of Koopmans’ condition.
The determined parameter is denoted by sk and depends
parametrically on . We note that the resulting functional
CAM(ak, 1/e5P, i) incorporates two exact physical con-
straints, namely, the correct long-range screening as well as
Koopmans’ condition [157]. The free parameter p allows
one to mediate between two extreme regimes. Indeed, for
u — 0, the present CAM functional reverts to the global
hybrid functional PBEO(«ek ), which is entirely determined by
Koopmans’ condition. Instead, for © — oo, the functional
converges asymptotically to the functional PBEO(1/e%™),
which is entirely determined by the dielectric response. In the
latter limit, the piecewise linearity can no longer be satisfied.

The continuous variation of p allows one to study the band-
gap estimate in between these two extreme cases.

For the enforcement of Koopmans’ condition to the
functional CAM(ats ., 1/, i), we adopt the following pro-
cedure. We carry out an extended study on hexagonal ice and
assume that an analogous analysis would also hold for liquid
water insofar as both phases of water exhibit very similar
electronic structures. We solely consider the five localized
states with the smallest degrees of hybridization, namely, the
radical OH, the radical NH,, the fluorine interstitial F;, the
fluorine substitutional Fy,o, and the chlorine substitutional
Cly,0. We verify that the degree of hybridization of these
defects remains small when considering the range-separated
CAM functional. Thereby, we ensure a reliable enforcement
of Koopmans’ condition and a consistent comparison with
the PBEO(ak) functional. We evaluate the deviations Aj for
these five localized states and compute the rms deviation
A" using Eq. (5). The minimum of AZ™ defines a,x for
each specific value of the range-separation parameter . It
is noteworthy that the adopted construction scheme requires
numerous supercell calculations at the hybrid functional level.
To reduce the computational burden, we first compute AZ™
using the Bernal-Fowler unit cell with 12 water molecules
(cf. Sec. IVA). We use a grid in the two-dimensional space
(a5 x, 1) including six values of ok and six values of .
Subsequently, we refine these results using a supercell with
96 water molecules. We generally observe small variations of
AY™ as compared to the smaller supercell. Hence, the values
of the grid obtained with the smaller supercell are adjusted
using a linear interpolation of the differences achieved for a
2 x 2 subset of relevant points in the space (o, ().

Based on the procedure outlined above, we determine o
as a function of u. The obtained curve (o k, p) is referred to
as Koopmans’ curve and is shown in Fig. 7(a). We observe
that ag g decreases continuously with increasing p. For u =
0, the range-separated CAM functional reverts to the global
hybrid functional PBEO and we thus consistently have asx =
ak. The upper limit for y is reached at ~0.75 bohr~!, when
o, x vanishes. For larger values of i, AZ"™ shows no minimum
and it is therefore no longer possible to enforce Koopmans’
condition.

Next we monitor the band gap along Koopmans’ curve
highlighted in Fig. 7(a) to identify the range of values con-
sistent with the hybrid functionals CAM(asx, 1/65", 11). The
extracted band gaps are given as a function of u in Fig. 7(b).
We observe an almost linear increase of the band gap with
w. For vanishing ©, we recover the band gap of 8.9 eV per-
taining to the PBEO(ak) functional. For the upper limit of u,
we achieve a band gap of 9.4 eV. This allows us to restrain
the range of values achieved with the CAM functionals to
9.15 £ 0.25 eV. We remark that these values are obtained for
functionals that reproduce both Koopmans’ condition and the
asymptotic behavior of the Coulomb interaction. To restrain
the value of the band gap even further, it is necessary to
invoke additional physical constraints. Similarly to the dis-
cussion for selecting the optimal DDH functional, we could
use the deviation of the calculated dielectric constant from the
experimental value to identify the optimal functional along the
Koopmans’ curve. However, the calculated dielectric constant
is found to vary little among the functionals defined in this
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FIG. 7. Band gaps (in eV) of hexagonal ice Ih as obtained
with the CAM functional. (a) Isocontour plot for the band gap as
obtained with the hybrid functional CAM(cy, 1/65", it). The short-
range fraction of Fock exchange o, and the screening parameter 1
are varied systematically. The red line indicates Koopmans’ curve
(a5, 1) as obtained through the minimization of A™. The shaded
region indicates deviations of less than 0.1 eV from the minimum
of AP™®. (b) Band gaps as obtained with the hybrid functionals
CAM(ak, 1/, 1) along Koopmans’ curve. The vertical dashed
line limits the range in which Koopmans’ condition can be ful-
filled. Data points corresponding to the functionals PBEO(«k) and
CAM(ak, 1/e5%, wrr) are indicated with squares and circles, re-
spectively. The reported band gaps include the corrections resulting
from the ZPR (cf. Sec. II).

way (1.65 £ 0.01) and thus cannot be used for this purpose.
Another physically motivated way to identify the optimal
functional consists in realizing that the variation along the
Koopmans’ curve is determined by the scale of spatial vari-
ation in the screening. It is therefore reasonable to adopt the
value of u = prr (cf. Sec. III B). For hexagonal ice, utr =
0.57 bohr~!. An explicit fit of the spatially dependent dielec-
tric constant would give 2 = 0.52 bohr~! [66], corresponding
to a band-gap difference of only 0.04 eV. This leads us to
favor the functional CAM(asx, /655", jr), which gives a
band gap of 9.3 eV for hexagonal ice.

In light of the present considerations, the functional
CAM(a k., 1/e2P, jurp) satisfies Koopmans® condition, re-
produces the long-range asymptotic potential, and includes
the correct length scale for the variation in the screening.
This form of hybrid functional should be preferred over the
functional PBEO(«), which does not possess sufficient free
parameters to concomitantly account for all these properties.

Hence, we adopt this form of CAM functional to predict not
only the band gap of hexagonal ice but also that of liquid
water. In the case of water, we thus adopt 4 = ptp and deter-
mine o5k by imposing Koopmans’ condition on the same set
of five defects employed for hexagonal ice. The consideration
of five water snapshots is again sufficient to converge the
mean value of ask. The calculated band gaps are given in
Table VIII for both phases of water. We observe that the band
gaps resulting from the functional CAM(a k., 1/e5", wrr)
increase by ~0.4-0.5 eV with respect to those obtained with
the functional PBEO(ak). This result is consistent with the
trend observed in Fig. 7(b). The agreement with experiment is
very good as the band gaps obtained with this CAM functional
fall within the range of the experimental reference values.

Before closing this section, it is noteworthy to compare
the extension to CAM functionals with results for other ma-
terials previously reported in the literature [75,80]. So far,
Koopmans’ curve has generally been found to remain close to
a band-gap isoline, indicating that the range-separated func-
tional does not improve the description achieved with the
simpler global hybrid functional. However, in the case of NaF,
the band gap obtained with PBEO(1/e4,) differed from that
obtained with PBEO(«k) by about 0.5 eV and some deviation
from the isoline appeared [75]. Similarly, we here find for
the two phases of water deviations from the isoline as large
as 0.5 eV. This suggests that such deviations primarily occur
in materials with large band gaps and low dielectric con-
stants. More generally, from the analysis presented above [cf.
Fig. 7(b)], such a behavior arises when the band gap achieved
with the PBEO(ax) substantially differs from that obtained
with PBEO(1/ex).

VI. CONCLUSION

In this work, we calculated the fundamental band
gap of liquid water and hexagonal ice through advanced
electronic-structure methods. We investigated specifically the
performance of both state-of-the-art GW calculations and
nonempirical hybrid functionals. The free parameters of the
hybrid functionals were determined either through the dielec-
tric response of the material or the enforcement of Koopmans’
condition to localized states. We applied both construction
schemes to two classes of hybrid functionals, namely, the
global PBEO and the range-separated CAM functionals. The
comparison of such a variety of advanced electronic-structure
methods within a consistent computational setup corresponds
to one of the main strengths of our work and provides valuable
insight into the issue concerning the fundamental band gaps
of liquid water and hexagonal ice. The results obtained in this
work are summarized in Fig. 8. In addition, we report in Ta-
ble IX a summary of the parameters of all hybrid functionals
retained in this work.

Preliminary to the theoretical investigations, we critically
reviewed various experimental studies in the literature. We
discussed different estimates for the ionization potential and
the electron affinity for both considered water phases. Based
on the most reliable results, we inferred experimental values
0f 9.0 0.2 and 9.4 £ 0.3 eV for the fundamental band gaps
of liquid water and hexagonal ice, respectively. These values

023182-13



BISCHOFF, RESHETNYAK, AND PASQUARELLO

PHYSICAL REVIEW RESEARCH 3, 023182 (2021)

12 l-HZO (300 K) (@ 1F 1h (77 K) (b) A
Expt.: 9.0+0.2 eV Expt.: 9.4+0.3 eV 11.0
11} Theory: 9.120.1 eV 10.9 1t Theory: 9.2+0.1 eV m= 1
10.3
o= 10l g0 1l 9.8 ]
> 9.6 9.5 93 [ 1 9.6 93
SN N W - B I F—— 2:2 s o944 et~ ey E
a 911 i 1 1 P87 ~ [F — 1 ~ | 7
© —~ ] W — w
o = = = £
B S E | & = E | g 2]
= :;_— mwS { X s :5'_— u,ws :;_— X g
< Tr gl A ||~ |8 s S 28|23 ||~ ||8% S
e |82 Y] |~ Wil la | [9,2] Y =
o ~N L — N4 = = o~ & = ~ X
6 slles|Z2|ld S |2 1r silellZ|la S |27 T
=2 = =2 B E = Il & = (D SHENENE = Il &
212 IZ1Z118112] B1I5| A (RIB] 3112|121\ B|Z
5r o|lo © UIE o Elu 11 [o]lo © UIE © Elu 1
QsGw DDH Koopmans QSGwW DDH Koopmans

FIG. 8. Fundamental band gaps (in eV) of (a) liquid water £-H,O and (b) hexagonal ice Th. Vertical bars indicate the band gaps as calculated
with the various advanced electronic-structure methods. The reported band gaps include the corrections associated with NQE and ZPR (cf.
Sec. II). The most reliable band-gap calculations are shown in green. Based on these calculations, we infer the range of best theoretical
estimates (between dashed lines). The shaded areas indicate the ranges of experimental reference values inferred in Sec. I1.

served as robust references for the electronic-structure meth-
ods examined in this work.

Then we investigated band gaps as obtained with different
state-of-the-art GW calculations. We showed that the QSGW
method yields band gaps that overestimate the experimental
references. The incorporation of vertex corrections in the
screening (W) is then instrumental to overcoming the miss-
ing electron-hole interaction in W. With the resulting QSGW
scheme, we found band gaps of 9.1 and 9.3 eV for liquid water
and hexagonal ice, respectively. In comparison with the ex-
perimental references, these results are in good agreement for
both phases of water. Herewith, we confirmed QSGW being
one of the most accurate schemes for band-gap predictions
[37,38].

Subsequently, we studied dielectric-dependent hybrid
functionals for the band gaps of liquid water and hexagonal
ice. The band gaps obtained with the global DDH functional
overestimate the upper limit of the reference interval by 0.6—
0.8 eV. Such a poor performance is in line with a previous
result for ice [63], but worse than the typical accuracy of
this approach for other materials [63,69]. Then we studied
DDH functionals based on the CAM functional. We consid-

TABLE IX. Parameters of all the hybrid functionals retained in
this work describing liquid water ¢-H,O and hexagonal ice Ih. The
fraction of short-range Fock exchange «s, the fraction of long-range
Fock exchange o, and the range-separation parameter p pertaining
to the functional CAM(«, o, ) are given. When oy = oy = «, one
recovers the functional PBEO(«).

¢-H0 Th
Functional o o n o o n
PBEO(1/%) 0.59 0.59 0.61 0.61
CAM(1, 1/&%, prr) 1 060 058 1 062 057
CAM(0.25,1/e, ure) 025 058 0.58 025 0.60 0.57
CAM(0, 1/€%, pu1r) 0 057 058 0 059 057
PBEO(ak) 047 047 0.48 0.48
CAM(at;x, 1/es™, urp)  0.18 056 058 0.18 0.58 0.57

ered three range-separated DDH functionals differing in the
short-range fraction of Fock exchange. Based on the compar-
ison with experimental references for the dielectric constant,
we identified the functional CAM(O0, 1/&5, wtr) as the most
reliable DDH functional. This functional incorporates pure
semilocal exchange in the short range, thereby extending the
scope of long-range corrected hybrid functionals [121-125].
This scheme yields band gaps of 9.0 and 9.1 eV for liquid
water and hexagonal ice, respectively.

Finally, we investigated hybrid functionals satisfying
Koopmans’ condition. We found that the enforcement of this
physical constraint also gives accurate band gaps. The min-
imization of the degree of hybridization between localized
defects and delocalized band-edge states is thereby key to en-
suring proper band-gap predictions. First, we constructed the
global functional PBEO(«k ) and achieved band gaps for liquid
water and hexagonal ice of 8.7 and 8.9 eV, respectively. These
results lie lower than the onset of the range of experimental
references by only 0.1-0.2 eV. This is in contrast to the global
DDH functional, which is unable to attain such an accuracy.
Then we constructed range-separated hybrid functionals that
satisfy Koopmans’ condition. In particular, we investigated
the functional CAM(asx, /65", 1), which additionally en-
forces the correct long-range screening [157]. The obtained
band-gap estimate exhibits a parametric dependence on the
range-separation parameter y encompassing the result of the
global hybrid functional PBEO(ak) as a lower bound. We
overcame the p dependence by invoking the scale of spatial
variation of the screening, i.e., 4 = wrp. This nonempiri-
cal and physically motivated setting leads to the functional
CAM(as . /65, 1rr). We employed this functional for the
band-gap estimates of liquid water and hexagonal ice and
found 9.2 and 9.3 eV, respectively.

Overall, we showed that the three advanced electronic-
structure methods considered in this work provide consistent
results for the band gaps of liquid water and hexagonal ice.
Indeed, the band gaps of the most reliable schemes, namely,
QSGW, CAM(0, 1/&%, urr), and CAM(asx, 1/, rp),
differ by at most 0.2 eV, which corresponds to only ~2%
of the band gaps involved. We remark that this agreement
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originates from a consistent computational setup and from
the critical consideration of each method. In this way, our
analysis allows us to resolve the discord arising from pre-
vious studies. Based on the present results, we inferred best
theoretical estimates of 9.1 £ 0.1 and 9.2 £ 0.1 eV for liquid
water and hexagonal ice, respectively. The comparison of
these theoretical ranges with the experimental ones obtained
in Sec. Il indicates a remarkable agreement. The present com-
parison provides strong evidence for the reliability of both
experimental and theoretical estimates and reduces the resid-
ual uncertainty on the fundamental band gaps of liquid water
and hexagonal ice.

Additionally to the accuracy in the band-gap predictions,
it is of interest to compare also the computational costs and
the robustness of the examined electronic-structure methods.
Quasiparticle self-consistent GW calculations require exten-
sive computational resources and remain therefore limited to
relatively small unit cells. Nevertheless, the reliability of the
QSGW scheme has been verified not only for water and ice
but also for numerous other materials. Dielectric-dependent
hybrid functionals have the potential to replace such high-
level GW methods due to their efficient implementation in
many electronic-structure codes and their fast convergence
within only a few iterations. However, the present results
indicate that the band gaps obtained with DDH functionals
can span a large interval of values, leading to considerable
uncertainty. In this work, we overcame this problem by taking

into consideration the description of the dielectric constant
€00, but the validity of this way of proceeding for a larger
variety of materials remains to be ascertained. Hybrid func-
tionals satisfying Koopmans’ condition also serve as a viable
alternative to QSGW. This approach yields robust band-gap
estimates irrespective of the considered class of hybrid func-
tionals. However, the application of this method generally
requires defect calculations at the hybrid functional level with
relatively large supercells, thereby limiting its potential.

In view of employing the present electronic-structure
methods to applications involving liquid water and hexagonal
ice, it is clear that the hybrid functional approaches offer
significant advantages in terms of computational cost and the
availability of a total-energy scheme. The present work shows
that the compromise on accuracy is limited as the hybrid
functional approaches achieve band gaps comparable to those
obtained with the most elaborate GW scheme.
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