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The calculation of turbulent transport is a significant bottleneck for integrated modelling of

tokamak scenarios. Fast and accurate core turbulence transport models are vital for various

applications such as: efficient offline tokamak scenario preparation and optimization, discharge

supervision, realtime trajectory optimization.

Significant speedup is achieved through the quasilinear approximation, valid when δn/n∼O(%).

This is typically the case in the confined region within the last closed flux surface [1]. While 6

orders of magnitude faster than nonlinear simulations, quasilinear models still require ∼10 CPU

seconds for a flux calculation at single radial point. This is sufficient for for integrated mod-

elling, leading to ∼100 CPUh for 1 second of plasma evolution on a JET-scale device. However,

it’s still far from realtime and efficient scenario optimization applications.

Our approach to circumventing the conflicting constraints of accuracy and tractability is the

following: apply quasilinear models to construct large-scale transport flux databases in experi-

mentally relevant parameter space. Then, sift from these databases training sets for neural net-

work regression. The neural network transport model is then realtime capable.

For this purpose, we apply the QuaLiKiz gyrokinetic quasilinear transport model [2, 3, 4].

For recent QuaLiKiz validation in ASDEX-U and JET, see [5].

An existing multilayer perceptron neural network (NN) proof of principle for regression of

QuaLiKiz output [6] with 4D input has now been extended to include kinetic electrons. The

input range is shown below in table 1. It consists of a reduced 4D database of QuaLiKiz re-

sults, valid for ITG turbulence regimes. These dimensions are R/LTi ≡− R
Ti

dTi
dr , safety-factor q,

magnetic shear ŝ, and ion to electron temperature ratio Ti/Te. 16 ion-scale wavenumbers are in-
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Table 1: Summary of input parameters for the QuaLiKiz kinetic electron ITG database employed in this work
Parameter Min value Max value No. of points

R/LTi 2 12 30
Ti/Te 0.3 3 20

q 1 5 20
ŝ 0.1 3 20

kθ ρs 0.05 0.8 16
Total no. of points 3 840 000

tegrated over. The database consists of dense uniform input grids, with ∼ 50000 unstable points

used in training sets. The NN transport model developed from regression of this database is

named QLKNN-4Dkin.

The NN outputs are ion and electron heat flux, electron particle diffusivity and pinch. Exten-

sions of this database and NN fitting to 9D and beyond are ongoing [7].

The QLKNN-4Dkin transport model is coupled to the control-oriented RAPTOR tokamak

simulation suite [8]. The use of the NN as a transport model is applicable for the implicit PDE

solver within RAPTOR, due to the availability of analytical derivatives of the NN outputs with

respect to the RAPTOR simulation state variables.

RAPTOR is now upgraded to include simultaneous Te, Ti, density and poloidal flux evolution.

We now describe the first self-consistently coupled Ti and Te simulations using RAPTOR, in

conjunction with a first-principle-based transport model. These simulations consist of validation

of QLKNN-4Dkin on ITER and JET simulations.

Figure 1: Comparison of RAPTOR/QLKNN-

4Dkin with CRONOS/GLF23 for an ITER hy-

brid scenario extrapolation

For the ITER simulation, we compare RAPTOR/QLKNN-

4Dkin to previous CRONOS/GLF23 modelling of

the ITER hybrid scenario [9, 10, 11]. GLF23 and

QuaLiKiz are comparable in a pure ITG regime.

The comparison, during flattop following 300 s of

plasma evolution, is shown in figure 1. The key

point is that RAPTOR/QLKNN-4Dkin is faster than

realtime, taking 20s to calculate 300 ITER seconds.

CRONOS/GLF23 took 48 hours. This is a ∼ 4 order

of magnitude speedup. However, this speedup was

not only due to the transport model, even if that was

the primary bottleneck. The RAPTOR equilibrium

and heat sources were prescribed.

For JET, QLKNN-4Dkin was then benchmarked

between CRONOS and RAPTOR for baseline H-
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Figure 2: Comparison of CRONOS/QLKNN-4Dkin with RAPTOR/QLKNN-4Dkin for JET H-mode base-
line discharge 73324

mode 73324 at flattop [12]. This is shown in figure 2. RAPTOR/QLKNN-4Dkin was again

faster than realtime, needing 2s to calculate 4 JET seconds. This is unprecedented for first-

principle-based integrated modelling. CRONOS/QLK took 100CPUh. This is a ∼ 5 order of

magnitude speedup. However, we again stress here that in CRONOS the equilibrium and heating

sources were self-consistently predicted. In the RAPTOR simulation these were prescribed. The

remaining ∼ 10% RAPTOR vs CRONOS discrepancies in this case are to be investigated, and

may lie in differences in the equilibrium.

Figure 3: Comparison of critical thresholds

for qi and qe throughout the entire QLKNN

This validation work has uncovered an interest-

ing and challenging aspect of the neural network

fitting, that of ‘threshold matching’. Since the neu-

ral network transport model consists of two separate

nonlinear mappings of qi and qe, there is no forcing

that the ITG thresholds exactly match. See figure 3

for the statistics of threshold mismatch throughout

the 4D NN.

While the critical threshold mismatch observed

between qe and qi is typically low in relative terms

(< 5%), this can still lead to non-physical states due

to profile stiffness. To alleviate this, we have em-

ployed a tunable bias to the input R/LTi in the qe
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critical threshold. This is needed to avoid qe = 0 for a case where R/LTi is already fixed through

flux balance. Since this is only an ITG transport model, there is then nothing to balance the

source qe apart from electron-ion heat exchange, and the Te profile can thus run away. This is

shown in figure 4. A potential solution is to fit NN outputs of qe +qi and qi/qe, instead of to qe

and qi directly. This ensures threshold matching, and such training is in progress.

Figure 4: Sensitivity test to R/LTi bias in the

electron heat flux, for the RAPTOR/QLKNN-

4Dkin ITER hybrid scenario modelling

To summarize, we have shown the first ever

RAPTOR predictive Te+Ti simulations. These were

employed for validation of a proof-of-principle neu-

ral network turbulent transport model based on

QuaLiKiz. This leads to faster than realtime capa-

bilities. The validation was comprised of compar-

ison to a ITER hybrid scenario simulation using

CRONOS/GLF23, and a JET H-mode simulation

using CRONOS/QLKNN-4Dkin.

Regarding the JET benchmark with CRONOS, ∼

10% discrepancies remain for Te and Ti, and are to

be investigated. A full benchmark including density

prediction is also planned.

Work is ongoing to generalize the QLKNN trans-

port model to higher dimensions. This will be employed within RAPTOR for scenario optimiza-

tion and realtime monitoring applications.
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