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Abstract. We study the use of feed-forward convolutional neural net-
works for the unsupervised problem of mining recurrent temporal pat-
terns mixed in multivariate time series. Traditional convolutional autoen-
coders lack interpretability for two main reasons: the number of patterns
corresponds to the manually-fixed number of convolution filters, and the
patterns are often redundant and correlated. To recover clean patterns,
we introduce different elements in the architecture, including an adap-
tive rectified linear unit function that improves patterns interpretability,
and a group-lasso regularizer that helps automatically finding the rele-
vant number of patterns. We illustrate the necessity of these elements on
synthetic data and real data in the context of activity mining in videos.

1 Introduction

Unsupervised discovery of patterns in temporal data is an important data mining
topic due to numerous application domains like finance, biology or video analysis.
In some applications, the patterns are solely used as features for classification
and thus the classification accuracy is the only criterion. This paper considers
different applications where the patterns can also be used for data analysis, data
understanding, and novelty or anomaly detection [5,6,4,18].

Not all time series are of the same nature. In this work, we consider the diffi-
cult case of multivariate time series whose observations are the result of a com-
bination of different recurring phenomena that can overlap. Examples include
traffic videos where the activity of multiple cars causes the observed sequence of
images [6], or aggregate power consumption where the observed consumption is
due to a mixture of appliances [10]. Unlike many techniques from the data min-
ing community, our aim is not to list all recurrent patterns in the data with their
frequency but to reconstruct the entire temporal documents by means of a lim-
ited and unknown number of recurring patterns together with their occurrence
times in the data. In this view, we want to un-mix multivariate time series to
recover how they can be decomposed in terms of recurrent temporally-structured
patterns. Following the conventions used in [6], we will call a temporal pattern
a motif, and an input multivariate time series a temporal document.

Artificial neural networks (or deep learning architectures) have (re)become
tremendously popular in the last decade due to their impressive, and so far



not beaten, results in image classification, speech recognition and natural lan-
guage processing. In particular, autoencoders are artificial neural networks used
to learn a compressed, distributed representation (encoding) for a set of data,
typically for the purpose of dimensionality reduction. It is thus an unsupervised
learning method whose (hidden) layers contain representations of the input data
sufficiently powerful for compressing (and decompressing) the data while loosing
as few information as possible. Given the temporal nature of your data, our pat-
tern discovery task is fundamentally convolutional (the same network is applied
at any instant and is thus time-shift invariant) since it needs to identify motifs
whatever their time(s) of occurrence To tackle this task, we will thus focus on
a particular type of autoencoders, the convolutional ones. However, while well
adapted for discriminative tasks like classification [1], the patterns captured by
(convolutional) autoencoders are not fully interpretable and often correlated.

In this paper, we address the discovery of interpretable motifs using convo-
lutional auto-encoders and make the following contributions:
– we show that the interpretability of standard convolutional autoencoders is

limited;
– we introduce an adaptive rectified linear unit (AdaReLU) which allows hid-

den layers to capture clear occurrences of motifs,
– we propose a regularization inspired by group-lasso to automatically select

the number of filters in a convolutional neural net,
– we show, through experiments on synthetic and real data, how these elements

(and others) allow to recover interpretable motifs3.
It is important to note that some previous generative models [21,6] have obtained
very good results on this task. However, their extensions to semi-supervised set-
tings (i.e. with partially labelled data) or hierarchical schemes are cumbursome
to achieve. In contrast, in this paper, to solve the same modeling problem we
present a radically different method which will lend itself to more flexible and
systematic end-to-end training frameworks and extensions.

The paper is organized as follows. In Section 2, we clarify the link between
our data mining technique and previous work. Section 3 gives the details of our
method while Section 4 shows experiments both on synthetic and real data. We
conclude and draw future directions in Section 5.

2 Related Work

Our paper shows how to use a popular method (autoencoders) to tackle a task
(pattern discovery in time series) that has seldom been considered for this type
of method. We thus briefly review other methods used in this context and then,
other works that use neural networks for unsupervised time series modeling.

Unsupervised pattern discovery in time series. Traditional unsupervised
approaches that deal with time series do not aim at modeling series but rather
at extracting interesting pieces of the series that can be used as high level de-
scriptions for direct analysis or as input features for other algorithms. In this

3 The complete source code will be made available online



category fall all the event-based (e.g. [23,22,7]), sequence [15] and trajectory
mining methods [25]. On the contrary of the previously cited methods, we do
not know in advance the occurrence time, type, length or number of (possibly)
overlapping patterns that can be used to describe the entire multivariate time
series. These methods cannot be directly used in our application context.

The generative methods for modeling time series assume an apriori model and
estimate its parameters. In the precursor work of [16], the unsupervised problem
of finding patterns was decomposed into two steps, a supervised step involving
an oracle who identifies patterns and series containing such patterns and an
EM-step where a model of the series is generated according to those patterns. In
[13], the authors propose a functional independent component analysis method
for finding linearly varying patterns of activation in the data. They assume the
availability of pre-segmented data where the occurrence time of each possible
pattern is known in advance. Authors of [10] address the discovery of overlapping
patterns to disaggregate the energy level of electric consumption. They propose
to use additive factorial hidden Markov models, assuming that the electrical
signal is univariate and that the known devices (each one represented by one
HMM) have a finite known number of states. This also imposes that the motif
occurrences of one particular device can not overlap. The work of [6] proposes to
extract an apriori unknown number of patterns and their possibly overlapping
occurrences in documents using Dirichlet processes. The model automatically
finds the number of patterns, their length and occurrence times by fitting infinite
mixtures of categorical distributions to the data. This approach achieved very
good results, but its extensions to semi-supervised settings [19] or hierarchical
schemes [2] were either not so effective [19] or more cumbursome [2]. In contrast,
the neural network approach of this paper will lend itself to more flexible and
systematic end-to-end training frameworks and extensions.

Networks for time series mining. A recent survey [11] reviews the network-
based unsupervised feature learning methods for time series modeling. As ex-
plained in Sec. 1, autoencoders [17] and also Restricted Boltzmann Machines
(RBM) [8] are neural networks designed to be trained from unsupervised data.
The two types of networks can achieve similar goals but differ in the objective
function and related optimization algorithms. Both methods were extended to
handle time series [14,1], but the goal was to minimize a reconstruction error
without taking care of the interpretability or of finding the relevant number of
patterns. In this paper, we show that convolutional autoencoders can indeed
capture the spatio-temporal structure in temporal documents. We build on the
above works and propose a model to discover the right number of meaningful
patterns in the convolution filters, and to generate sparse activations.

3 Motif Mining with Convolutional Autoencoders (AE)

Convolutional AEs [12] are particular AEs whose connection weights are con-
strained to be convolution kernels. In practice, this means that most of the



Fig. 1: Autoencoder architecture. Temporal documents of L time steps of d di-
mensional observations are encoded (here using M convolutional filters of size
d×Lf forming the eW weights) to produce an activation layer. A decoding pro-
cess (symmetric to encoding; parameterized by the weights dW of M decoding
convolutional filters of size d× Lf ) regenerates the data.

learned parameters are shared within the network and that the weight matrices
which store the convolution filters can be directly interpreted and visualized.
Below, we first present the traditional AE model and then introduce our contri-
butions to enforce at the same time a good interpretability of the convolutional
filters and a clean and sparse activation of these filters.

3.1 Classical Convolutional Autoencoders

A main difference between an AE and a standard neural network is the loss
function used to train the network. In an AE, the loss does not depend on
labels, it is the reconstruction error between the input data and the network
output. Fig. 1 illustrates the main network modeling components of our model.
In our case, a training example is a multivariate time series x whose L time steps
are described by a vector x(:,t) ∈ Rd, and the network is parameterized by the

set of weights W = {eW, dW} involved in the coding and decoding processes.
If we denote by X = {xb ∈ RL×d, b = 1 . . . N} the set of all training elements,
the estimation of these weights is classically conducted by optimizing the cost
function C(W,X) = MSE(W,X)+Rreg(W,X) where the Mean Squared Error
(MSE) reconstruction loss can be written as:

MSE(W,X) =
1

N

N∑
b=1

d∑
i=1

L∑
t=1

(
xb
(i,t) − ob

(i,t)

)2
(1)

where ob (which depends on parameters W) is the AE output of the bth input
document. To avoid learning trivial and unstable mappings, a regularization term
Rreg is often added to the MSE and usually comprises two terms. The first one,
known as weight decay as it avoids unnecessary high weight values, is a `2 norm
on the matrix weights. The second one (used with binary activations) consists of

a Kullback-Leibler divergence
∑M

j=1KL(ρ||ρ̂j) encouraging all hidden activation
units to have their probability of activation ρ̂j estimated across samples to be
close to a chosen parameter ρ, thus enforcing some activation sparsity when ρ is
small. The parameters are typically learned using a stochastic gradient descent
algorithm (SGD) with momentum using an appropriate rate scheduling [3].



3.2 Interpretable Pattern Discovery with Autoencoders

In our application, the learned convolution filters should not only minimize the
reconstruction error but also be directly interpretable. Ideally, we would like
to only extract filters which capture and represent interesting data patterns,
as illustrated in Fig. 2-c-d. To achieve this, we add a number of elements in
the network architecture and in our optimization cost function to constrain our
network appropriately.

Enforcing non-negative decoding filters. As the AE output is somehow
defined as a linear combination of the decoding filters, then these filters can
represent the patterns we are looking for and we can interpret the hidden layers
activations a (see Fig. 1) as the occurrences of these patterns. Thus, as our
input is non-negative (a temporal document), we constraint the decoding filters
weights to be non-negative by thresholding them at every SGD iteration. The
assumption that the input is non-negative holds in our case and it will also hold
in deeper AEs provided that we use ReLU-like activation functions. Note that
for encoding, we do not constrain filters so they can have negative values to
compensate for the pattern auto-correlation (see below).

Sparsifying the filters. The traditional `2 regularization allows many small
but non-zero values. To force these values to zero and thus get sparser filters, we
replaced the `2 norm by the sparsity-promoting norm `1 known as lasso:

Rlas(W) =

M∑
f=1

d∑
i=1

Lf∑
k=1

∣∣∣eWf
(i,k)

∣∣∣+

M∑
f=1

d∑
i=1

Lf∑
k=1

∣∣∣dWf

(i,k)

∣∣∣ (2)

Encouraging sparse activations. The traditional KL divergence aims at mak-
ing all hidden units equally useful on average, whereas our goal is to have the
activation layer to be as sparse as possible for each given input document. We
achieve this by encouraging peaky activations, i.e. of low entropy when seen as a
document-level probability distribution, as was proposed in [20] when dealing on
topic models for motif discovery. This results in an entropy-based regularization
expressed on the set A = {ab} of document-level activations:

Rent(A) =− 1

N

N∑
b=1

 M∑
f=1

L−Lf+1∑
t=1

âb
f,t log

(
âb
f,t

)with âb
f,t =ab

f,t

/ M∑
f=1

L−Lf+1∑
t=1

ab
f,t (3)

Local non-maximum activation removal. The previous entropy regularizer
encourages peaked activations. However, as the encoding layer remains a convo-
lutional layer, if a filter is correlated in time with itself or another filter, then the
activations cannot be sparse. This phenomenon is due to the feed forward nature
of the network, where activations depend on the input, not on each others: hence,
no activation can inhibit its neighboring activations. To handle this issue we add
a local non-maximum suppression layer which, from a network perspective, is
obtained by convolving activations with a temporal Gaussian filter, subtracting
from the result the activation intensities, and applying a ReLU, focusing in this
way spread activations into central peaks.



Handling distant filter correlations with AdaReLU. The Gaussian layer
cannot handle non local (in time) correlations. To handle this, we propose to
replace the traditional ReLU activation function by a novel one called adaptive
ReLU. AdaReLU works on groups of units and sets to 0 all the values that
are below a percentage (e.g., 60%) of the maximal value in the group. In our
architecture, AdaReLU is applied separately on each filter activation sequence.

Finding the true number of patterns. One main advantage and contribution
of our AE-based method compared to methods presented in Section 2 is the
possibility to discover the “true” number of patterns in the data. One solution
to achieve this is to introduce in the network a large set of filters and “hope” that
the learning leads to only a few non null filters capturing the interesting patterns.
However, in practice, standard regularization terms and optimizations tend to
produce networks “using” all or many more filters than the number of true
patterns which results in partial and less interpretable patterns. To overcome
this problem, we propose to use a group lasso regularization term called `2,1
norm [24] that constrains the network to “use” as few filters as possible. It can
be formulated for our weight matrix as:

Rgrp(W) =

M∑
f=1

√√√√ d∑
i=1

Lf∑
k=1

(
eWf

(i,k)

)2
+

M∑
f=1

√√√√ d∑
i=1

Lf∑
k=1

(
dWf

(i,k)

)2
(4)

Overall objective function. Combining equations (1), (2), (4) and (3), we
obtain the objective function that is optimized by our network:

C(W,X) = MSE(W,X) + λlasRlas(W) + λgrpRgrp(W) + λentRent(A(W,X)) (5)

4 Experiments

4.1 Experimental Setting

Datasets. To study the behavior of our approach, we experimented with both
synthetic and real video datasets. The synthetic data were obtained using a
known generation process: temporal documents were produced by sampling ran-
dom observations of random linear combinations of motifs along with salt-and-
pepper noise whose amount was defined as a percentage of the total document
intensities (noise levels: 0%, 33%, 66%). Six motifs (defined as letter sequences
for ease of visualization) were used. A document example is shown in Fig. 2-a,
where the the feature dimension (d = 25) is represented vertically, and time hor-
izontally (L = 300). For each experiments, 100 documents were generated using
this process and used to train the autoencoders. This controlled environment
allowed us to evaluate the importance of modeling elements. In particular, we
are interested in i) the number of patterns discovered (defined as the non empty
decoding filters4; ii) the “sharpness” of the activations; and iii) the robustness of

4 We consider a filter empty if the sum of its weights is lower or equal to 1
2

(the average
sum value after initialization).



our method according to parameters like λlasso, λgrp, λent, the number of filters
M , and the noise level.

We also applied our approach on videos recorded from fixed cameras. We used
videos from the QMUL [9] and the far-field datasets [21]. The data pre-processing
steps from the companion code of [6] were applied. Optical flow features were
obtained by estimating, quantifying, and locally collecting optical flow over 1
second periods. Then, temporal documents were obtained by reducing the di-
mensionality of these to d = 100, and by cutting videos into temporal documents
of size L = 300 time steps.

Architecture details and parameter setting. The proposed architecture is
given in Fig. 1. As stated earlier, the goal of this paper is to make the most of
a convolutional AE with a single layer (corresponding to the activation layer)5.
Weights are initialized according to a uniform distribution between 0 and 1

d∗Lf
.

In general, the filter length Lf should be large enough to capture the longest
expected recurring pattern of interest in the data. The filter length has been
set to Lf = 45 in synthetic experiments, which is beyond the longer motif of
the ground-truth. In the video examples, we used Lf = 11, corresponding to 10
seconds, and which allows to capture the different traffic activities and phases
of our data [21].

4.2 Results on the Synthetic Dataset

Since we know the “true” number of patterns and their expected visualization,
we first validate our approach by showing (see Fig. 2-c) that we can find a set of
parameters such that our filters exactly capture our given motifs and the number
of non empty filters is exactly the “true” number of motifs in the dataset even
when this dataset is noisy (this is also true for a clean dataset). In this case (see
Fig.2-e) the activations for the complete document are, as expected, sparse and
“peaky”. The output document (see Fig.2-b) is a good un-noisy reconstruction
of the input document shown in Fig.2-a.

In Fig. 3, we evaluate the influence of the given number of filters M and the
noise level on both the number of recovered motifs an the MSE while fixing the
parameters as in Fig. 2. We can see that with this set of parameters, the AE is
able to recover the true number of filters for the large majority of noise levels
and values of M . For all noise levels, we see from the low MSE that the AEs is
able to well reconstruct the original document as long as the number of given
filters is at least equal to the number of “true” patterns in the document.

Model selection: influence of λgrp. Fig.4 shows the number of non zero
filters in function of λgrp and of the noise level for the synthetic dataset with 6
known motifs when using 12 filters (left) and 16 filters (right). The light blue area
is the area in which the AEs was able to discover the true number of patterns.

5 Note however that the method can be generalized to hierarchical motifs using more
layers, but then the interpretation of results would slightly differ.
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Fig. 2: Results on the synthetic data built from 6 patterns, with 66% of noise,
M = 12 filters, and unless stated otherwise λlas = 0.004, λgrp = 2, λent = 0.2.
a) Sample document; b) Obtained output reconstructed document; c) Weights
of seven out of the 12 obtained filters (the 5 remaining filters are empty); d)
Weights of seven filters when not using group lasso, i.e. with λgrp = 0 (note that
the 5 remaining filters are non empty); (e,f,g) Examples of activation intensities
(colors correspond to a given filter) with default parameters (e); without the
entropy sparsifying term (λent = 0) (f); with ReLU instead of AdaReLU (g).

With no group lasso regularization (λgrp = 0), the AE systematically uses all
the available filters capturing the original patterns (see 2nd, 4th or 5th filters in
Fig. 2-d), redundant variants of the same pattern (filters 1st and 3rd in Fig. 2-d)
or a more difficult to interpret mix of the patterns (filters 6th and 7th in Fig. 2-d).
On the contrary, with too high values of λgrp, the AE does not find any patterns
(resulting in a high MSE). A good heuristic to set the value of λgrp could thus
be to increase it as much as possible until the resulting MSE starts increasing.
In the rest of the experiments, λgrp is set equal to 2.

Influence of λent, λlasso, AdaReLU, and Non-Local Maxima suppres-
sion. We have conducted the same experiments as in Fig. 2 on clean and noisy
datasets (up to 66% of noise) with M =3, M =6 M =12 to assess the behavior
of our system when canceling the parameters: 1) λent that controls the entropy
of the activation layer, 2) λlas, the lasso regularizer 3) the AdaReLU function
(we used a simple ReLU in the encoding layer instead) and 4) the Non-Local
Maxima activation suppression layer. In all cases, all parameters but one were
fixed according to the best set of values given in Fig.2. For lack of space, we do
not give all the corresponding figures but we comment the main results.

The λent is particularly important in the presence of noise. Without noise
and when this parameter is set to 0, the patterns are less sharp and smooth
and the activations are more spread along time with much smaller intensities.
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Fig. 4: Evolution of the number of non-zero filters (sparsity) with respect to the
noise level when we vary the parameter λgrp (λglasso in the figure) that controls
the group lasso regularization for the synthetic dataset with 6 known motifs
when using 12 filters (right) and 16 filters (left).

However, the MSE is as low as for the default parameters. In the presence of
noise (see Fig.2-f), the AE is more likely to miss the recovery of some patterns
even when the optimal number of filters is given (e.g. in some experiments only
5 out of the 6 filters were not empty) and the MSE increases a lot compared
to experiments on clean data. This shows again that the MSE can be a good
heuristic to tune the parameters on real data. The λlas has similar effects with
and without noise: it helps removing all the small activation values resulting in
much sharper (and thus interpretable) patterns.

The non-local maximum suppression layer (comprising the Gaussian filter) is
compulsory in our proposed architecture. Indeed, without it, the system was not
able to recover any patterns when M =3 (and only one blurry “false” pattern in
the presence of noise). When M =6, it only captured 4 patterns (out of 6) in the
clean dataset and did not find any in the noisy ones. When M =12, it was able
to recover the 6 original true patterns in the clean dataset but only one blurry
“false” pattern in the noisy ones.

The AdaReLU function also plays an important role to recover interpretable
patterns. Without it (using ReLU instead) the patterns recognized are not the
“true” patterns, they have a very low intensity and are highly auto-correlated
(as illustrated by the activations in Fig.2-g).

4.3 Results on the Real Video Dataset

Due to space limitations, we only show in Fig. 5 some of the obtained results.
The parameters were selected using grid search by minimizing the MSE on the
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Fig. 5: Traffic patterns. M =10 filters. a) The four motifs recovered on the Junc-
tion 1 dataset, (6 empty ones are not shown). b) Two filters (out of the five
recovered) on the far-field dataset.

targeted dataset. For instance, on the Junction 1 dataset, the final parameters
used are λlas = 0.2, λgrp = 50, λent = 5. Note that this is larger than in the syn-
thetic case but the observation size is also much larger (100 vs 25) and the filters
are thus sparser in general. In the Junction 1 dataset, the autoencoder recovers
4 non-empty and meaningful filters capturing the car activities related to the
different traffic signal cycles, whereas in the far-field case, the main trajectories
of cars were recovered as also reported in [21].

5 Conclusion

We have shown that convolutional AEs are good candidate unsupervised data
mining tools to discover interpretable patterns in time series. We have introduced
a number of layers and regularization terms to the standard convolutional AEs to
enforce the interpretability of both the convolutional filters and the activations
in the hidden layers of the network. The filters are directly interpretable as
spatio-temporal patterns while the activations give the occurrence times of each
patterns in the temporal document. This allow us to un-mix multivariate time
series. A direct perspective of this work is the use of multi-layer AEs to capture
combination of motifs. If this was not the aim of this article, it may help to
reduce the number of parameters needed to obtain truly interpretable patterns
and capture more complex patterns in data.
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