
1

An Evaluation Framework for Dynamic Thermal
Management Strategies in 3D MultiProcessor

System-on-Chip Co-Design
Darong Huang, Luis Costero, David Atienza, Fellow, IEEE

Abstract—Dynamic thermal management (DTM) has been
widely adopted to improve the energy efficiency, reliability,
and performance of modern MultiProcessor SoCs (MPSoCs) on
runtime. However, the evolving industry trends and heteroge-
neous architecture designs have introduced significant challenges
in state-of-the-art DTM methods. Specifically, the emergence
of heterogeneous design has led to increased localized and
non-uniform hotspots, necessitating accurate and responsive
DTM strategies. Additionally, the increased number of cores to
be managed requires the DTM to optimize and coordinate all
aspects of the system. To address these challenges, an accurate
thermal modeling and an efficient DTM evaluation framework
are needed that encompasses both precise thermal modeling
in localized hotspots and fast architecture simulation. However,
existing methodologies fail in both these areas, preventing the
development and exploration of new DTM approaches.

To tackle these existing challenges, we first introduce the
latest version of 3D-ICE 3.1, with a novel non-uniform thermal
modeling technique, to improve the accuracy of thermal analysis
and reduce overhead. Then, in conjunction with an efficient and
fast offline application profiling strategy utilizing the architecture
simulator gem5-X, we propose a novel DTM evaluation frame-
work. This framework enables us to explore novel DTM methods
to optimize the energy efficiency, reliability, and performance of
contemporary 3D MPSoCs.

The experimental results demonstrate that 3D-ICE 3.1 achieves
high accuracy, with only 0.3K mean temperature error, without
incurring overall computation overhead by allowing customized
discretization levels of thermal grids. Subsequently, we evaluate
various DTM methods using the aforementioned DTM evaluation
framework and propose a Multi-Agent Reinforcement Learning
(MARL) control to address the demanding thermal challenges of
3D MPSoCs. The experimental results show that the proposed
DTM method based on MARL can reduce power consumption
by 13% while maintaining a similar performance level to the
comparison methods.

Index Terms—Dynamic thermal management, DTM evaluation
framework, non-uniform thermal modeling, multi-agent rein-
forcement learning

I. INTRODUCTION

The high temperature issue has been identified as a signifi-
cant factor that limits a higher performance of MultiProcessor
System-on-a-Chip (MPSoC) [1]. On-chip hotspots not only
degrade the performance of the chip, but also negatively
impact its reliability, resulting in a shortened lifetime for

Darong Huang and David Atienza are with the Embedded Systems Lab-
oratory (ESL), École polytechnique fédérale de Lausanne (EPFL), 1015
Lausanne, Switzerland. E-mail: {darong.huang, david.atienza}@epfl.ch.

Luis Costero is with the Dpto. de Arquitectura de Computadores y
Automática at Universidad Complutense de Madrid (UCM), 28040 Madrid,
Spain. E-mail: lcostero@ucm.es.

the MPSoC [2]. The implementation of 3D MPSoC, which
utilizes the z-direction to integrate more semiconductors in
the same area of the chip, has been proposed as a solution to
continue Moore’s law [3]. However, 3D MPSoCs suffer from
more significant high-temperature problems due to their higher
power density compared to traditional 2D chips [4]. To alle-
viate arising thermal concerns, a diverse selection of thermal
simulators is proposed to model and characterize the thermal
dynamics of 3D MPSoCs during the design phase. Notable
examples include HotSpot [5] and 3D-ICE [6]. However, with
the growing trend towards heterogeneity in the industry [7]
and the increasing use of accelerators within chips, localized
and non-uniform hotspots have become more prevalent [2]. For
instance, consider a heterogeneous MPSoC that includes a mix
of high-performance out-of-order cores and energy-efficient
in-order cores [7]. During a compute-intensive task, the high-
performance cores can be extensively utilized to maximize
performance, leading to increased power consumption and
heat generation in those specific areas. In contrast, the in-
order cores may remain relatively underutilized and cool. This
differential utilization creates localized hotspots around the
high-performance cores while other areas of the chip remain
cooler, resulting in a non-uniform temperature distribution
across the chip [2]. As a result, accurately and efficiently
analyzing the thermal behavior of MPSoCs with state-of-the-
art thermal simulators has become more challenging.

In addition to addressing thermal issues during the design
phase, runtime workload and power peaks can also cause se-
vere thermal problems that negatively impact the performance
and reliability of MPSoCs. As more cores and accelerators are
integrated into a single package, power and thermal constraints
prevent all cores and units of MPSoCs from operating at full
performance simultaneously [8]. Several techniques can be
employed to mitigate runtime thermal problems in MPSoCs.
For example, the dark silicon approach involves power gating
certain cores and units to reduce temperature, but this method
significantly sacrifices performance by completely deactivating
computing units [9]. Therefore, dynamic thermal management
(DTM), which can reduce the frequency of different units in
real time rather than completely shutting them off, plays a cru-
cial role in the balance of performance, reliability, and thermal
considerations in modern MPSoCs [10]. Various DTM strate-
gies have been proposed to address these challenges [11]–[14].
Advancements in heuristic and machine learning techniques
have enabled the prediction of thermal behavior and the opti-
mization of thermal management strategies [15]–[17]. Further-
more, research on thermal-aware application scheduling has

2

Performance
trace

Temperature
trace

Fig. 1. The proposed DTM evaluation framework, premised on the
non-uniform 3D-ICE 3.1 and architecture simulator gem5-X, provides ac-
curate and fast thermal, power and, performance simulation for target 3D
MPSoCs running different workloads.

shown promise in mitigating thermal issues by dynamically
adjusting workloads in real time [1], [18]. Despite these
developments, contemporary MPSoCs persistently increase the
number of cores [19], thereby augmenting the management
overhead and diminishing the efficacy of existing DTM meth-
ods. Furthermore, the increasing prevalence of heterogeneous
architecture designs [7] poses a challenge to existing DTM
methods to effectively and efficiently orchestrate the overall
performance of the system.

Moreover, assessing the efficacy of DTM methods for 3D
MPSoCs in a precise manner is still an elusive task. Although
these methods might undoubtedly mitigate thermal and relia-
bility issues, they could also potentially result in performance
degradation. As an example, lowering the frequency of the
cores can effectively reduce the temperature of the chip, but
at the expense of performance deterioration [10]. Similarly,
deactivating overheated cores to ensure MPSoC reliability
sacrifices computing power and overall performance [4].

Within this context, this paper proposes a comprehensive
system-wide DTM evaluation framework, as illustrated in
Fig. 1. The framework is based on the novel non-uniform
thermal simulator developed in this work, 3D-ICE 3.1, which
accurately simulates temperature by using the MPSoC floor-
plan and power trace. The power trace is generated by the
architecture simulator gem5-X, which also provides accurate
and fast performance simulation for target 3D MPSoCs run-
ning different workloads. Together, these components enable
the proposed DTM evaluation framework. We then propose
a novel multi-agent reinforcement learning-based DTM ap-
proach to effectively address the emerging complexities of
optimal thermal management for 3D MPSoCs, demonstrating
the validity of the proposed DTM framework.

� To better model the localized and non-uniform hotspots
existing in the modern 3D MPSoCs, we introduce the
latest version 3D-ICE 3.1 with enhanced non-uniform
modeling ability. 3D-ICE 3.1 achieves high accuracy,
with only 0.3K mean temperature error, without incurring
overall computation overhead by allowing customized
discretization levels of thermal grids.

� We developed a system-wide DTM evaluation frame-
work, based on the non-uniform 3D-ICE and architec-
ture simulator gem5-X. The framework provides thermal,
power, and performance metrics that allow for a compre-
hensive evaluation of DTM methods. Thus, allowing a

more accurate assessment of the overall effectiveness of
DTM methods.

� Based upon this evaluation framework, we evaluated
different DTM methods and developed novel Multi-Agent
Reinforcement Learning DTM methods to address the
demanding challenges of optimal thermal management
for 3D MPSoCs. Experimental results show that the
proposed MARL-based DTM method can reduce power
consumption by 13% while maintaining a similar perfor-
mance level to other compared methods.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work and our motivations. In
Section III, we introduce our proposed DTM evaluation frame-
work, followed by Multi-Agent Reinforcement Learning DTM
methods presented in Section IV. Sections V and VI present
the experimental setup and results. Finally, the conclusions and
future work are given in the last Section.

II. RELATED WORKS AND MOTIVATIONS

Thermal issues have been one of the major challenges in
MPSoC design. To better characterize the thermal behavior
of MPSoCs and fully exploit their performance in the design
phase, thermal simulators are utilized to create the thermal
model and perform the thermal simulation for MPSoCs. There
is a diverse selection of thermal simulators that are readily
available. HotSpot [5] is a popular thermal simulator capable
of accurately modeling the temperature profile of both con-
ventional 2D and advanced 3D MPSoCs. The foundation of
HotSpot is an equivalent electrical circuit that incorporates
thermal resistances and capacitances to provide an accurate
analysis of the thermal behavior of the system. However,
HotSpot [5] is limited in its ability to support new heat
solutions and non-linear equation systems.

In comparison, the original version of 3D-ICE [6] leads
the trend to support the thermal modeling for 3D MPSoCs
with inter-tier microchannel liquid cooling. It is based on
compact transient thermal modeling of both solids and liquids
and can perform accurate and efficient thermal analyses of
vertically stacked 3D integrated circuits. Recently, 3D-ICE
3.0 [20] offers pluggable heatsink simulation with a flexible
co-simulation interface, enabling the simulation of arbitrary
cooling models without the need to change the thermal model
of the underlying chip.

However, with the growing trend towards heterogeneity in
the industry [7] and the increasing use of accelerators, local-
ized and non-uniform hotspots have become more prevalent
and impact the performance and reliability of MPSoCs [2].
As a result, state-of-the-art thermal simulators need to apply a
very fine thermal grid to capture the local hotspot and achieve
better accuracy. However, this tremendously increases the
computational and memory overhead. Therefore, accurately
and efficiently analyzing the thermal behavior of modern
3D MPSoCs with consideration of local hotspots remains a
challenge. In this context, we propose a novel non-uniform
thermal modeling to effectively address the aforementioned
challenges.

In addition to efforts focused on modeling and alleviating
thermal issues throughout the design phase with the help

3

of thermal simulators, the utilization of dynamic thermal
management (DTM) also plays a critical role during runtime
to regulate performance, reliability, and thermal considerations
associated with modern MPSoCs. DTM method was first fully
explored and evaluated in a 2001 research paper by Brooks et
al. [10]. It was demonstrated with the SimpleScalar architec-
ture simulator and the Wattch power modeling tool, showing
significant improvements in the performance and reliability of
the microprocessors. The paper concludes that DTM is a viable
and effective solution for managing the thermal behavior
of high-performance microprocessors. However, this method
relies on “in-house” thermal models, which were manually
designed and tailored specifically for the architecture under
study, requiring extensive expert knowledge and significant
time to create and tune. Moreover, the accuracy of thermal
models is highly dependent on the number of smaller ther-
mal grids. Manually designed in-house thermal models often
lacked the necessary complexity, as it is infeasible for humans
to create a large number of thermal grids and determine their
thermal conductance connections. Consequently, this reduces
the overall effectiveness and applicability of the research. To
address these limitations, more recent DTM approaches have
shifted towards using standardized and well-validated thermal
simulation tools like HotSpot [5] and 3D-ICE [6]. These
tools leverage computer-aided design techniques to provide
more flexible, accurate, and widely accepted thermal models
based on the provided MPSoC descriptions, facilitating the
development and evaluation of DTM strategies. Over the years,
the architecture simulator used in the DTM workflow has
improved with the introduction of more powerful simulators
such as gem5 [21] and sniper [22]. The power modeling
tool also changed to McPAT [23] for better accuracy. Addi-
tionally, HotSpot was improved and extended to support 3D
MPSoCs simulation and 3D-ICE was introduced for inter-tier
microchannel liquid cooling 3D MPSoCs.

As a result of these advancements, the DTM development
framework has been widely adopted in state-of-the-art DTM
methods for various DTM studies. Table I compares the dif-
ferent DTM schemes. Despite the popularity of existing DTM
frameworks, their key components have become outdated and
have not kept up with advances in technology because they
suffer from slow simulation speed of architecture simulators.
Additionally, the used thermal simulator lacks support for the
off-the-shelf thermal cooling solutions and non-uniform ther-
mal hotspots, limiting the development of new and innovative
DTM methods.

To address these issues, we propose a new DTM evaluation
framework that takes advantage of the strengths of an up-
to-date architecture simulator gem5-X and 3D-ICE 3.1 with
non-uniform thermal modeling. gem5-X [26] is a powerful
full-system simulation platform for ARM-64 in-order and
Out-of-Order (OoO) architectures. It enhances the existing
gem5 simulator, providing higher accuracy and performance
when simulating real-world systems. The in-order and OoO
cores are tuned and validated for performance against a real
ARM JUNO platform (comprising cores ARM Cortex A53
and ARM Cortex A57) with a mean absolute error below
4% [26]. 3D-ICE 3.1 provides great flexibility and efficiency

SPEC CPU
2017

gem5-X

Power
characterization

Performance
characterization

Power
model

Performance
model

Application
scheduling

Power trace

Performance
trace

3D-ICE
Temperature

trace

DTM

Voltage/
Frequency

MPSoC
specification

Offline

Online

Applications gem5-X

Power
characterization

Performance
characterization

Power
model

Performance
model

Application
scheduling

Power trace

Performance
trace

3D-ICE
Temperature

trace

DTM

Voltage/
Frequency

MPSoC
specification

Offline

Online

Fig. 2. The workflow of the proposed DTM evaluation framework, which
has two phases: the offline application profiling and the runtime DTM
management, highlighted in the grey and white boxes, respectively.

to model modern 3D MPSoCs thanks to its non-uniform
modeling features, improving the accuracy of thermal analysis
and reducing overhead.

In general, the proposed DTM workflow provides a more
efficient and accurate simulation platform for the development
of thermal management methods. As an example, we have
proposed a multi-agent reinforcement learning-based thermal
management method that is premised on this new DTM
evaluation framework.

III. DYNAMIC THERMAL MANAGEMENT EVALUATION
FRAMEWORK

The proposed DTM evaluation framework is illustrated in
Fig. 2. The framework consists of two distinct phases: the
off-line application profiling phase and the runtime DTM
management phase, highlighted in the gray and white boxes,
respectively. As mentioned previously, the slow application
simulation speed of architecture simulators hinders the ex-
ploration of DTM design for new architecture designs. To
tackle this challenge and improve the efficiency of designing
new DTM methodologies, we propose an efficient offline ap-
plication characterization method to decouple the application
characterization from the runtime DTM management phase.

The proposed offline application characterization phase
takes advantage of the gem5-X tool to perform profiling of
both the performance and power behavior of the application
on the targeted 3D MPSoCs at different frequency levels.
Subsequently, the offline performance and power models are
constructed to enable efficient and precise inference in the
future and to avoid the slow simulation speed and high
overhead of architecture simulators.

Then, at runtime, the DTM framework initiates the appli-
cation scheduling process that generates a randomized appli-
cation arrival pattern for a more realistic scenario. As the
application runs on the 3D MPSoC at a specific voltage and
frequency level, its runtime power and performance levels can
be inferred from the offline power and performance models,
which are constructed in the offline application characteriza-
tion phase. The next step is to utilize non-uniform 3D-ICE
3.1 to simulate the temperature distribution of the target 3D
MPSoC by utilizing the power information as input. Finally,
using both the temperature and the performance information,
the DTM controller can dynamically adjust the frequency level

4

TABLE I
COMPARISON OF DIFFERENT DTM SCHEMES

Thermal model Architecture 3D MPSoC DTM
Method Non-uniform Exploration Fast-paced

Khdr et al. [1] HotSpot × ✓ × × Analytical
Wang et al. [4] HotSpot × ✓ × ✓ Analytical

Brooks et al. [10] in-house × ✓ × × Analytical
Chao et al. [11] HotSpot × ✓ × ✓ Analytical
Das et al. [12] Measurement × × × × ML

Maity et al. [14] Measurement × × × × Analytical
Singla et al. [15] Measurement × × × × Analytical
Iranfar et al. [16] Measurement × × × × ML
Siddhu et al. [17] HotSpot × ✓ × ✓ Analytical
Huang et al. [18] 3D-ICE 3.0 × × ✓ × ML
Safari et al. [24] HotSpot × ✓ × × Analytical
Khdr et al. [25] HotSpot × ✓ × × Analytical

This work 3D-ICE 3.1 ✓ ✓ ✓ ✓ MARL

of the system to balance the temperature, performance and
energy consumption of the whole system.

Following the workflow, the offline application characteri-
zation is first introduced in the next section.

A. Offline application characterization

The state-of-the-art methods run the application with ar-
chitecture simulators, i.e., gem5 [21] or sniper [22], on the
target MPSoC design and dump the performance and power
information [1], [24]. In this work, similar to the others,
we choose the gem5-X simulator, which enhances gem5, a
full-system simulation of ARM-64 in-order and Out-of-Order
(OoO) architectures running on a modern Linux operating
system. The gem5-X architectural extensions comprise both
compute sub-system and memory sub-system extensions [26].

However, the architecture simulator has a major disadvan-
tage in its simulation speed, which is a critical factor for
slowing down the evaluation of different DTM designs. More
specifically, to simulate the ARM V8 architecture on a server
equipped with Intel Xeon Gold 6242R Processor (released in
2020), gem5-X takes an average of 23 hours to complete the
execution of a single SPEC CPU 2017 benchmark [27]. This
limits the practicality of state-of-the-art works to only a limited
set of application running scenarios due to the slow simulation
speed. For example, only 18 workload mix scenarios were used
in [25].

To address this issue, we present an efficient approach that
decouples application characterization from the online DTM
evaluation framework to achieve a significant speedup. Our
approach involves the use of gem5-X to run each benchmark
at different frequency levels in an offline way once. During the
simulation, gem5-X is configured to dump runtime statistics
periodically, including performance metrics and hardware uti-
lization statistics. The performance metrics include executed
instructions, instructions per second (IPS), and execution time,
while the hardware utilization metrics capture information on
the usage of different functional units inside the core, including
CPU active cycles, cache hits, cache misses, etc. For instance,
Fig. 3 shows cycles and instructions of SPEC benchmark lbm
executed on both the Out-of-Order (OoO) and in-order systems
at different frequency levels.

Fig. 3. The cycles (blue line with circle markers) and instructions (orange
line with asterisk markers) for the SPEC CPU 2017 lbm benchmark were
executed on both Out-of-Order (OoO) and in-order systems, shown on the
left and right figures, respectively, under different frequency levels ranging
from 130MHz to 2.3GHz.

In Fig. 4, simulated power for the OoO core is plotted
as circles. We also manually fitted a power trace, which is
cubically proportional to the frequency, on the orange line.
For the performance characterization of the application, we use
the IPS metric (instructions per second), which captures the
number of instructions executed by the application per second
on the target platform. In short, the increase in performance
is not linearly proportional to the change in frequency. This
means doubling the frequency does not necessarily double the
performance, but it does cubically increase power consump-
tion, as illustrated in Fig. 4. This disproportionate increase
in power can lead to higher energy consumption and thermal
hotspots, and increases thermal stress on MPSoCs. Therefore,
in this work, we utilize this non-linear relationship to help
design more energy efficient DTM strategies.

B. Offline power and performance models

The preceding analysis focuses on average power and
performance metrics across the entire duration of the appli-
cation’s execution under a fixed voltage and frequency level.
However, given that voltage and frequency levels can fluctuate
at runtime, this introduces a more complex scenario for power
and performance characteristics. Consequently, the power and
performance models that are developed must be a function that
depends both on the current runtime status of the application
and the runtime frequency level of the system.

5

Fig. 4. The normalized power and IPS for the SPEC CPU 2017 lbm
benchmark with an OoO core under different frequency levels from 130MHz
to 2.3GHz. The power increases cubically with the frequency. However, the
IPS cannot even increases with the frequency. This allows our proposed
method to co-optimize performance and power consumption.

Building upon the idea that the number of instructions to be
executed by an application with a determined workload is con-
stant and independent of the core frequency, we can leverage
the executed instructions of the target application to accurately
label its execution phase during runtime. To demonstrate this
methodology, we consider the SPEC benchmark lbm and
measure its runtime power consumption under two different
frequencies: 1GHz and 2GHz. Fig. 5(a) shows the power
trace of the lbm benchmark under these two frequencies. As
expected, the execution time and power differ for the two
power traces. Suppose that the application runs at 2GHz for 44
seconds, completing half of its instructions. Then, the system
switches to 1GHz due to thermal constraints. In this scenario,
following the power trace with 1GHz (orange line) starting
from 44 seconds for power traces would result in con�icting
executed instructions, i.e., wrong remaining instructions for
the application. Instead, the 1GHz power trace should be
adapted starting from 67 seconds, ensuring that the executed
instructions be the same for both power traces. This results in
a synthetic power trace, as shown in Fig. 5(b), with the �rst
44 seconds running at 2GHz and the remaining 67 seconds
running at 1GHz. The application now takes 111 seconds to
complete instead of 88 seconds at 2GHz or 134 seconds at
1GHz.

Mathematically, for a speci�c timet, the power consump-
tion of the application is determined by the frequency of the
core (f req (t)), and executed instructionsins exe (t):

power(t) = � (f req (t); ins exe (t)) (1)

whereins exe (t) is de�ned as:

ins exe (t) =
tX

t =0

IPS (t)� t (2)

ins exe (t) accumulates the executed instructions since the
application starts by multiplying the instructions per second
at time t (IPS (t)) with the time step� t. Similarly to the
power modelpower(t), IPS (t) is de�ned as follows:

IPS (t) = � (f req (t); ins exe (t)) (3)

(a) The power traces for the SPEC lbm benchmark at 2GHz
and 1GHz. The blue and orange triangle indicates the anchor
point for the same executed instructions point for two power
traces.

(b) The synthetic power trace when the system �rst runs at
2GHz and then switch to 1GHz at 44s.

Fig. 5. The methodology used to create a synthetic power trace with executed
instructions as the anchor point.

where the runtime IPS is determined by the function� . It takes
both runtime frequencyfreq (t) and executed instructions
ins exe (t) as the input.

In summary, the of�ine application characterization step
involves running each application for every possible combi-
nation of frequency and core type, while measuring power
consumption and performance in each scenario. This process
only needs to be done once of�ine and can be expedited
signi�cantly through parallelization, that is, pro�ling as many
scenarios as possible on the host server at the same time. In
this study, we leveraged gem5-X and successfully completed
the of�ine pro�ling step for all SPEC CPU 2017 benchmarks
on both OoO and in-order cores. By creating such models
in advance, we avoid running simulations with gem5-X, thus
signi�cantly accelerating the entire work�ow.

C. Application scheduling

The latest DTM techniques [1], [25] lack in their ability to
provide a reliable approach to application scheduling. These
methods depend on the execution of individual applications
or predetermined limited combinations of such applications,
which cannot effectively accommodate the unpredictable and
dynamically varying conditions that are common characteris-
tics of real-world scenarios. Given this limitation, we have
developed an application scheduling method in the DTM
evaluation framework that emulates the real conditions of a
realistic scenario. An overview of our proposed application
scheduling process is shown in Fig. 6.

We dispatch applications following a Poisson distribution,
as the arrival intervals of the applications have been proven
to follow a Poisson distribution in real life [28], [29]. The
corresponding application and the number of threads required

6

Fig. 6. Overview of the application scheduling function in our proposed DTM
evaluation framework. Note that the application execution phase is not part
of the application scheduling phase and is managed separately by the rest of
the DTM evaluation framework. We have visually represented this distinction
by presenting the execution phase in a dotted box.

for processing are then determined by the use of a uniform
distribution. Subsequently, this information is stored in a
dedicated database, known as the task queue. Please note that
two distinct types of random number generator are employed.
The Poisson distribution determines the patterns of application
arrival, while the uniform distribution maintains the equal
probability that each application can be executed.

Once tasks are queued for execution and suf�cient idle cores
are available, the core assignment phase will commence, and
relevant tasks will be assigned to the corresponding cores.
During this phase, idle cores that possess lower temperatures
will be selected to have higher priority for assignment. This
approach ensures that there is a more evenly average tempera-
ture distribution for MPSoCs, and avoids the creation of local
hotspots. So, we call it the lowest temperature policy.

Following the assignment of the task to the idle cores,
the remaining components of the DTM evaluation framework
will facilitate the simulation of the application's execution.
This phase involves the emulation of power, performance, and
temperature aspects associated with running the application on
the target MPSoC. Please note that the execution phase is not
part of the application scheduling process. However, it serves
as an essential interface, indicating completion of the assigned
task and labeling the respective cores idle.

D. Non-uniform temperature simulation with 3D-ICE 3.1

In the preceding sections, we presented the application
scheduling, power, and performance model of the DTM eval-
uation framework. However, to allow proper management of
the system by DTM, a crucial piece of information is still
required: the precise temperature of the 3D MPSoC.

The uniform and �nite-volume thermal modeling technique
has been widely adopted in existing thermal simulators [5],
[30], due to its simplicity. In this approach, each thermal grid
is connected to its neighboring ones in six directions. The
only grids exempted from experiencing six connections are
those situated in the boundary, as they have fewer neighboring
grids. A representative example of uniform thermal modeling
is depicted in Fig. 7(a), where each layer is discretized into
exactly 5x5 thermal grids.

However, the industry is witnessing a growing trend towards
heterogeneity [7], and the use of accelerators is also increas-

ing. Consequently, localized and non-uniform hotspots have
become more prevalent [2]. Uniform modeling schemes tend
to impose higher overhead as all elements of the 3D MPSoC
are modeled with the same thermal grid size, disregarding the
non-uniform distribution of power and temperature pro�les.
To combat this issue, we have proposed a novel thermal mod-
eling method that demonstrates a more ef�cient and precise
non-uniform modeling approach, which incorporates two main
features:

� Each �oorplan element can be assigned a customized dis-
cretization level, with higher power density components
utilizing �ner thermal grids and lower power density
elements having coarser thermal grids.

� Different layers can have unique thermal grid con�gura-
tions based on their accuracy requirements.

The proposed non-uniform modeling scheme is exempli�ed
in Fig. 7(b), where the thermal interface material (TIM) and
the Bump layers are modeled with an intermediate level as 3x3
thermal grids, while the Substrate (Sub) layer is con�gured
with coarser 2x2 thermal grids because it is far from the Die
layer and requires less accuracy level. This illustrates how
different layers can have adaptive discretization levels. More-
over, in the die layer, there are four �oorplan elements, namely
Core0 to Core3. In the non-uniform modeling scheme, each
�oorplan element can have a distinct discretization level based
on its power density. For example, Core0, with a lower power
density, can have only one thermal grid to reduce computation
overhead. While Core3, with a higher power density, can have
�ner 4x4 thermal grids for better accuracy. The utilization
of non-uniform thermal modeling in this scenario results in
a decrease in the overall number of thermal grids, thereby
reducing computation and space overheads. Furthermore, this
modeling approach maintains or even enhances the accuracy
of the thermal simulation thanks to �ner localized thermal
grids. Consequently, non-uniform thermal modeling technique
provides an unprecedented level of �exibility and ef�ciency
in modeling contemporary 3D MPSoCs.

Fig. 7. Different thermal modeling techniques: (a) Traditional uniform thermal
modeling and (b) proposed �exible non-uniform thermal modeling.

E. Implementation of non-uniform 3D-ICE 3.1

Undoubtedly, one of the signi�cant challenges associated
with non-uniform thermal modeling is the indeterminate num-
ber of neighbors belonging to each thermal grid. To address
this problem ef�ciently, we have introduced the Minkowski
difference algorithm [31] into 3D-ICE 3.1. Minkowski dif-
ference algorithm is typically utilized for collision detection.

7

This algorithm can also act as an effective tool to identify in-
terconnected thermal networks within and between individual
layers.

AssumeM and N are two convex sets, that is, thermal
grids, in Euclidean space. The Minkowski difference ofM
andN is de�ned as a convex setDM;N such that:

DM;N = f m � n j 8m 2 M; 8n 2 N g (4)

wherem is any point inM , and n is any point inN . In
other words, the Minkowski difference is the set of all the
differences between any point inM andN . In 3D-ICE 3.1, if
two thermal grids interconnect with each other, there exists a
line, composed of any two points in the Minkowski difference
set DM;N , that crosses the origin point. If two thermal grids
interconnect between adjacent layers, there exists one plane,
composed of any three points ofDM;N , containing the point of
origin. More speci�cally, the Minkowski difference algorithm
is implemented in Algorithm 1.

The algorithm starts by computing the Minkowski differ-
ence points for the thermal gridsM and N . It is essential
to note that the Minkowski difference set should contain 16
vertices, since each ofM andN has four vertices. However,
the lower left vertex (dl) and the upper right (du) vertex are
the most crucial, as they can adequately de�ne the Minkowski
difference set, which is represented as a rectangle in Euclidean
space. Thus, to reduce computation overhead, 3D-ICE 3.1 only
utilizes these two pivotal vertices.

There are two potential scenarios for interconnected thermal
grids: M andN are in the same layer (line 3) or in neighbor
layers (line 13). If they are in the same layer, 3D-ICE
can discern interconnected thermal grids if one edge of the
Minkowski difference set crosses the origin point. Based on
the interconnected directions of the two thermal grids, either
in the X or Y direction, there are two possible scenarios. If
the two grids interconnect in the X direction, then one edge of
the Minkowski difference set will cross the origin point and
overlap with the y-axis, i.e.,x = 0 . This requires that either
the X component ofdl or du be 0, which is identi�ed using
the statementdx

l � dx
u == 0 & dy

l � dy
u != 0. The interconnected

length is formulated using the Minkowski difference set and is
given by the minimum absolute value ofdx

l anddx
u . A similar

method is used to determine interconnected thermal grids in
the Y direction, as lines 7-9 indicate.

In the case of interconnected thermal grids in neighbor
layers, they will overlap in Euclidean space, as shown in the
Minkowski difference set when it contains the origin point.
This is expressed asdx

l � dx
u < 0 & dy

l � dy
u < 0 in

line 14. The minimum interconnected length and width can
also be calculated from the set with the added check that
the interconnected length/width should be smaller than the
length/width of grids A and B. Finally, the interconnected area
can be determined by multiplying the interconnected length
and interconnected width in line 20.

After determining the interconnected thermal grids, we can
leverage the well-known duality between the thermal system
and the electrical circuit system to construct the thermal model
for the target system [5], [6], [20]. To accomplish this, we

Algorithm 1: Proposed algorithm for detecting inter-
connected thermal grids.

1 For the lower-left vertex pointml in thermal gridM ,
and upper-right vertexnu in N , compute the
Minkowski difference pointdl = ml � nu ;

2 For the upper-right vertex pointmu in M , and
lower-left vertexnl in N , compute the difference
du = mu � nl ;

3 if M and N are in the same layerthen
4 if dx

l � dx
u == 0 & dy

l � dy
u != 0 then

5 interconnected direction = “X” ;
6 interconnected length =

min (abs(dx
l); abs(dx

u)) ;
7 else if dy

l � dy
u == 0 & dx

l � dx
u != 0 then

8 interconnected direction = “Y” ;
9 interconnected length =

min (abs(dy
l); abs(dy

u)) ;
10 else
11 No interconnection detected
12 end
13 else
14 if dx

l � dx
u < 0 & dy

l � dy
u < 0 then

15 lm = min (abs(dx
l); abs(dx

u)) ;
16 wm = min (abs(dy

l); abs(dy
u)) ;

17 ln = min (mx
u � mx

l ; nx
u � nx

l);
18 wn = min (my

u � my
l ; ny

u � ny
l);

19 interconnected direction = “Z” ;
20 interconnected area = min(lm ,ln) �

min(wm ,wn) ;
21 else
22 No interconnection detected
23 end
24 end

utilize thermal equivalent resistors and thermal equivalent
capacitors, as exempli�ed in Fig. 8(a). In particular, each
thermal grid is linked to the thermal equivalent ground via
a thermal capacitor. The thermal capacitance is de�ned as:

Cth = v � � � cp (5)

where thermal capacitanceCth is dependent on the volume of
the gridv, density of the material� , and thecp is the speci�c
heat.

To simulate the thermal dissipation path between each set of
interconnected thermal grids, a thermal resistor is employed.
For instance, N1 and N3 grids are connected with thermal
resistanceRN 1;N 3. This resistance is equivalent to the aggre-
gate resistance in the interconnected direction of these two
thermal grids (RN 1 and RN 2). Thus, we consider the length
of the grids (lN 1 andlN 3), the thermal conductivity (k) of the
material, and the interconnected areaA between N1 and N3
to formulate the thermal resistance as:

RN 1;N 3 = RN 1 + RN 3 =
lN 1 + lN 3

2kA
(6)

In the non-uniform scenario depicted in Fig. 8(b), we
divided the N3 and N4 grids equally into three smaller grids,

8

Fig. 8. Different modeling techniques and their thermal equivalent circuits: (a)
Traditional uniform thermal modeling and (b) proposed �exible non-uniform
thermal modeling.

namely N5, N6, and N7. In terms of thermal capacitance, once
the material is determined, the capacitance depends solely
on the volume of the thermal grids according to Eq. 5. In
contrast, thermal resistance varies more prominently, since
both the length of each grid and the interconnected area
between thermal grids differ due to the non-uniform modeling
technique. For example, with regard to the thermal grids N1
and N5, the thermal conductance (RN 1;N 5) should be 1.5
times greater thanRN 1;N 3 as the interconnected area between
them is smaller. In contrast,RN 5;N 6 is 2/3 of RN 3;N 4 due to
the same interconnected area but a reduced grid length.

In light of the non-uniform modeling methodologies dis-
cussed earlier, 3D-ICE can formulate a comprehensive ther-
mal model that incorporates crucial details pertaining to the
targeted 3D MPSoC. This includes the stacking con�guration
of the 3D IC and the layout arrangement of �oorplan com-
ponents. Mathematically, the thermal model consists of three
system matrices, i.e.,G, C, andB .

� The G matrix encompasses thermal conductance, the
inverse of thermal resistance, of the targeted MPSoC. In
other words, the matrix records the thermal conductance
value between all interconnected thermal grids.

� The C matrix contains the thermal capacitance infor-
mation for each thermal grid of the target chip and is
represented as a diagonal matrix.

� The B matrix, also known as the power injection matrix,
is used to map the power information of the �oorplan
elements to the corresponding thermal grids.

Together, these matrices allow for the formulation of the
thermal system as:

G
dT(t)

dt
+ CT(t) = BP (t) (7)

The variable vectorT(t) comprises temperature information
concerning all thermal grids in the targeted system, while
the vectorP(t) contains power information. Both vectors are
subject to variations over time. To solve the aforementioned
equation, 3D-ICE utilizes the backward Euler method, which
is applied in the following manner:

(G+
1
h

C)T(t) = BP (t) +
1
h

CT(t � 1)

) T(t) = A � 1Ut

(8)

whereh is the time step used for the numerical integration,
A = G + 1

h C andUt = BP (t) + 1
h CT(t � 1).

F. Dynamic thermal management with external controller sup-
port

In this work, thermal control is implemented using the
Dynamic Voltage and Frequency Scaling (DVFS) method, a
widely adopted technique in modern MPSoCs [1], [32]. The
goal of DVFS is to regulate the system's runtime voltage
and frequency to maintain a temperature below a speci�ed
limit. In cases where the temperature exceeds this limit, the
core's frequency is decreased as a means of reducing the
voltage, frequency, and power consumption and lowering the
temperature. In contrast, when the temperature is within the
limit, the core frequency can be increased or maintained.

Furthermore, the DTM framework in this work is de-
signed to be fully extensible to external controllers, i.e., the
framework's DVFS control interface is exposed. This allows
external controllers to assess the system's current status and
apply control decisions accordingly. Thanks to this feature, we
improve the adaptability and �exibility of the DTM framework
and enable it to support a wide range of thermal optimization
scenarios with ease.

G. Evaluation metrics

In order to effectively evaluate the performance of devel-
oped DTM methods, several key evaluation metrics are utilized
in this work. These include performance metrics, control
quality, and energy consumption.

Performance metrics for the DTM method include the
frequency of cores and the execution time of the application.
For example, if the DTM is too conservative in terms of
performance, this may indicate that the system is operating
at a lower frequency and has a longer application execution
time.

Control quality metrics are used to assess the effectiveness
of the DTM system in regulating temperature. These metrics
include the number of thermal violations and DVFS throttling
events. More speci�cally, a higher number of thermal viola-
tion events indicates that the DTM method fails to regulate
the temperature below the set limit, while a higher number
of DVFS throttling events indicates an unstable temperature
control.

Power and energy consumption are also important aspects
of the DTM method, as power increases at a faster rate with
increasing frequency and application performance. Combined
with the execution time of the application, energy consumption
metrics can be used to evaluate the energy ef�ciency of the
DTM method. An ef�cient DTM method should allow the
system to consume less energy while maintaining a good level
of performance.

In summary, we selected the above key evaluation metrics to
provide valuable insights into the effectiveness and ef�ciency
of DTM methods and to provide a better and comprehensive
comparison between different DTM methods.

IV. M ULTI -AGENT REINFORCEMENTLEARNING-BASED

DTM METHODS

Thanks to the developed DTM evaluation framework, we
are able to propose and evaluate different DTM methods for

9

Fig. 9. The work�ow of the MARL-based DTM. MARL agents interact with
the DTM evaluation framework with an interpreter and the DVFS control
method.

modern 3D MPSoCs. In this work, we focus on Reinforcement
Learning-based methods.

Traditional heuristic DTM methods typically require expert
knowledge to design effective schemes. As system complexity
increases, especially with more cores being integrated into the
same package, manually designed DTM becomes increasingly
impractical. Therefore, we proposed Reinforcement Learning
(RL)-based DTM because of its capacity to autonomously
learn and adapt to complex, dynamic environments by de�ning
only the reward function. RL refers to a subset of machine
learning that is concerned with developing intelligent agents
that can effectively act within their environment to maximize
cumulative reward [33]. Multi-Agent Reinforcement Learning
(MARL) further advances this concept by allowing interac-
tions among multiple intelligent agents within competitive or
cooperative settings [34]. MARL-based techniques have been
shown to be highly effective in improving the performance of
complex systems [35] due to their scalability and shared expe-
rience replay mechanism. Given these characteristics, MARL-
based control methods constitute a promising candidate to
optimize the complex MPSoCs that we are targeting in this
work.

The integration of the MARL-based control method into
our proposed approach is shown in Fig. 9. The proposed
work�ow enables MARL agents to interact with the environ-
ment, namely, the DTM evaluation framework, using relevant
actions. This capability is made possible by the external con-
troller support of the DTM framework, which was introduced
in Section III. Subsequently, the DTM framework evaluates
the new system stateSt +1 in accordance with the proposed
action by MARL agents and the previous state of the system
St . The updated system stateSt +1 comprises comprehensive
information related to the 3D MPSoC, including core tem-
perature, core frequency, power consumption, and task states,
among others. Since the agent does not require processing
all this information, an Interpreter block is introduced, which
selects only the observable information de�ned for the agents,
such as core temperature, power, frequency, etc. In addition,
the interpreter provides rewards to MARL agents based on
their actions and changes in their environmental state. This
approach enables MARL agents to learn to control the system
effectively while maximizing their cumulative rewards.

A. MARL algorithm

In MARL, as illustrated in Fig. 9, each agent receives a
reward according to its own actions and the observation of

the environment. The agents use this information to update
their own policies and learn to make better decisions over
time. The challenge in MARL is to train the policies that
can coordinate the actions of multiple agents, leading to an
optimized collective behavior.

In this work, we propose to adapt the APEX-DQN [35]
algorithm, originally developed for playing Atari games, to
design optimal DTM schemes with following reasons and
improvements:

Model-free: APEX-DQN is a model-free algorithm, mean-
ing it does not require an embedded system model to predict
future system states before making decisions. This character-
istic makes it well-suited for our proposed DTM evaluation
framework, as the state changes alone are suf�cient for the
algorithm to train and develop optimal DTM schemes.

Scalability: Compared to the Q-learning algorithm used in
existing DTM schemes, APEX-DQN offers greater scalability
and is better suited for more complex systems and problems.
Q-learning �rst learns a Q-functionQ(s; a) based on the
Bellman equation. After training,Q(s; a) returns the Q value
of the corresponding state and action inputs. The policy then
maximizes the expected rewards in any given states by taking
the actiona that yields the highest Q-value. Mathematically,
the actions taken by the Q-learning agent are given by:

a(s) = argmax
a

Q(s; a) (9)

This means that Q-learning needs to implicitly learn a DTM
policy by greedily �nding the DVFS action that maximizes the
Q-value for each system state, which is a combination of all
cores' states. However, using Q-learning for an MPSoC with
a large number of states is impractical, as the size of the Q-
table grows exponentially with the number of cores [36]. To
solve this scalability problem, we adopt the deep Q-network
(DQN), originally introduced in [36], which approximates the
Q-table using neural networks.

Moreover, in a Q-learning system, the action space needed
to represent all possible frequency adjustments for a single
core, decrease, maintain, or increase the current frequency
level, would require three states using one-hot encoding. With
multiple cores, the action space also grows exponentially,
expanding from31 actions with one core to324 with 24 cores,
making the action space infeasibly large for computation and
space overhead. In contrast, the MARL approach used in our
study simpli�es this complexity by treating each core as an
independent agent, optimizing the collective reward function
for 24 single agents. This strategy allows the action space for
each core to remain at three, regardless of the number of cores
involved, leading to a total action space of 24×3.

Off-policy : APEX-DQN is an off-policy algorithm, mean-
ing it can use data collected at any point from the DTM
evaluation framework, which is stored in the replay buffer.
In contrast, on-policy algorithms can only use data collected
from the most up-to-date policy and make decisions based on
that. Therefore, off-policy algorithms are substantially more
sample ef�cient [35], making them suitable for fast training
of DTM schemes.

Overall, the architecture of the APEX-DQN algorithm is
illustrated in Fig. 10. Multiple agents, each with its own

10

Fig. 10. The architecture of APEX-DQN algorithm.

Fig. 11. The 3D stack of target MPSoC. It comprises several layers, arranged
in a bottom-to-top sequence, including Substrate, Bump, SRAM, Micro bump
(uBump), Die, thermal interface material (TIM), and Lid layers.

instance of the DTM framework, can run in parallel to generate
experience, i.e., sample batches. Then the experience is added
to a shared replay buffer. The trainer samples experience from
this shared buffer to train the neural network parameters,
and adjusts the priorities of the experience in the memory.
After training, the agents' networks are updated with the
latest network parameters from the trainer. Finally, this loop
continues until it meets the termination conditions.

V. EXPERIMENTAL SETUP

A. Benchmark Description

We use the industry standard SPEC CPU 2017 benchmark
suite [27] as a set of workloads to simulate realistic scenarios.
Benchmark power and performance statistics (i.e., power,
execution time, instructions, and LLC read/write accesses)
are collected at different frequency levels using the gem5-X
tool [26].

B. Target 3D MPSoC

The 3D stack of the target MPSoC, provided by one of
our industrial partners, is illustrated in Fig. 11. It has seven
layers, namely substrate, buffer, SRAM, microbump (uBump),
die, thermal interface material (TIM), and lid.

More speci�cally, the target 3D MPSoC has a total of 24
cores on the die layer, as illustrated in Fig. 11. Among these
24 cores, 8 of them are high-performance Out-of-Order cores.

The remaining 16 are higher-ef�ciency in-order cores. The in-
order and OoO cores are tuned and validated for performance
against a real ARM JUNO platform (comprising cores ARM
Cortex A53 and ARM Cortex A57) with a mean absolute error
below 4% [25], [26]. Both types of cores have a private 32KB
L1 cache. These 24 cores share a 24MB LLC, which is located
in the SRAM layer. These two layers are connected with micro
bumps. Each core has nine different frequency levels ranging
from 127MHz to 2.29GHz.

For energy analysis, the power models for the 28nm CMOS
bulk technology node of ARM 64-bit in-order and OoO cores
proposed in [26], [37] are used. The power model accounts
for core active, wait-for-memory (WFM), and static energy
(in terms of J/cycle), and the last level cache (LLC) read and
write energy (in J/access).

C. DTM methods

Thanks to the external DTM controller support of the
proposed DTM evaluation framework, we implemented both
heuristic and MARL-based DTM methods as follows:

1) Heuristic DTM methods:We choose the off-the-shelf
DTM method, Intel Running Average Power Limit
(RAPL) [38], [39]. By monitoring the power and temperature
information of the CPU, RAPL can automatically adjust the
DVFS level to adjust system performance while operating
within its power and thermal limits. In this study, we
implemented two variations of RAPL. The �rst method,
namedrapl-basic, operates by adjusting the frequency of the
core based on the temperature of the core. If the temperature
is below the set limit, the core frequency increases. In
contrast, if the temperature is higher than the limit, the
frequency decreases. The second method, namedrapl-stable,
follows a similar principle, but introduces hysteresis for
more stable control, i.e., when the temperature falls within a
speci�ed range, the frequency level remains steady.

2) MARL-based methods:The proposed MARL-based
DTM method enables different cores to work collaboratively
and make DVFS decisions based on the collective goals of
the system. Therefore, the reward function plays a crucial role
in the proposed MARL-based DTM method. In this work, we
propose three different reward function designs to explore the
full potential of MARL-based DTM methods.

marl-a1: The �rst reward function design aims to optimize
the overall system frequency as illustrated in Eq. 10. If the
core temperature (Tc) is lower than the temperature limit of
Tth � � T , the reward function is designed to optimize the
performance by getting higher rewards while increasing the
frequency level (f). � T is a constant set to 2K in this work
for all methods to ensure steady control while optimizing the
performance. The range of frequency level is from 127MHz
to 2.29GHz. Thef max is the upper boundary of the frequency
level, i.e., 2.29GHz. Therefore, the maximum core frequency
gives the highest reward value of 0. If the temperature is in
the designed margin ofTth � � T to Tth , it always receives a
reward of 0 for maintaining the temperature below the limit.
Otherwise, if the temperature is above the temperature limit,
the reward contains a temperature penalty� (Tth � Tc)2, which

11

increases with the distance between the temperature limit and
the core temperature. It also entails a negative reward� f max

to ensure that the reward for breaking the temperature limit
is the lowest reward in all cases. The action space of MARL-
based control has three options as de�ned in Eq. 10, i.e., [-1,
0, +1]. -1 means to decrease the current frequency level by
one level, 0 means to keep the current frequency level, and +1
means to increase the current frequency level.

rew =

8
<

:

� (Tth � Tc)2 � f max ; Tc > T th

0; Tth � � T � Tc � Tth

f � f max ; Tc � Tth � � T

act = [� 1; 0; +1]
(10)

marl-a3: One of the advantages of proposed MARL-based
DTM is its ability to handle complex state and action spaces
that cannot be properly covered by heuristic policies due to
uncountable state and action space. For example, MARL-based
methods can effortlessly support an expanded action space, as
de�ned in Eq. 11, without requiring any modi�cations to the
algorithm. This expanded action space includes a wider range
of frequency actions, ranging from -3 to +3, while the reward
function remains the same as in the previous design. With this
expanded action space, the MARL-based DTM can take more
rapid actions, particularly when the temperature exceeds the
set threshold.

rew =

8
<

:

� (Tth � Tc)2 � f max ; Tc > T th

0; Tth � � T � Tc � Tth

f � f max ; Tc � Tth � � T

act = [� 3; � 2; � 1; 0; +1 ; +2 ; +3]
(11)

marl-ef:Besides the above two reward functions to optimize
the overall system frequency, we propose another new reward
function design to optimize both executed instructions per
second (IPS) and power consumption. The reward function
is designed in Eq. 12. When the core temperature is higher
than the temperature limit ofTth , the agent receives a negative
reward value of -10. The principal of choosing this value is
to ensure that the agent receives a large enough penalty when
the temperature limit is exceeded. If the temperature is lower
than Tth (that is, in the safe region), the reward function is
designed to optimize both the IPS and the power consumption,
where the IPS equals IPC multiples with frequency. Note that
trade-offs must be considered in the design (� and �). This
in�uences how much weight we place on optimizing IPS and
power. For instance, in this work, we explored different pairs
of � and � settings. Finally,� = 10 and � = 1 are chosen
to achieve a good trade-off between performance and energy
ef�ciency.

rew =
�

� 10 Tc > T th

� � IPC � f � � � power Tc � Tth

act = [� 1; 0; +1]
(12)

Fig. 12. Temperature simulation results of the die layer with (a) Ansys and
(b) non-uniform 3D-ICE 3.1.

VI. EXPERIMENTAL RESULTS

A. Veri�cation of non-uniform 3D-ICE 3.1

Following the development of the non-uniform 3D-ICE 3.1,
a key component in the proposed DTM evaluation framework,
we conducted a veri�cation analysis with both Ansys [40]
and the previous version of 3D-ICE. Ansys is a popular com-
mercial �nite element analysis software. It has been widely
employed to simulate various physical effects. In this work,
we use it to establish the temperature distribution for the 3D
MPSoC as the baseline for comparison. Then, we constructed
the same 3D stack using both uniform and non-uniform 3D-
ICE and collected the simulation results.

1) Validation of 3D-ICE 3.1 against Ansys:To validate the
non-uniform thermal modeling technique proposed in 3D-ICE
3.1, we �rst conducted a comparative analysis of its simulation
results with that of Ansys. To facilitate a complete comparison,
we implemented a test chip comprising four cores and 13
uncore elements. The results of the temperature simulation
are illustrated in Fig. 12. As can be observed from the graph,
the non-uniform 3D-ICE 3.1 produces results that are in
perfect agreement with those of Ansys, thereby indicating its
exceptional level of accuracy.

2) Accurate non-uniform thermal modeling technique:The
advantages of the non-uniform thermal modeling technique
were evaluated by comparing the accuracy of the non-uniform
3D-ICE 3.1 with the previous version of 3D-ICE, i.e., uniform
3D-ICE 3.0. Compared to Ansys, the mean absolute error of
various elements of the �oorplan is shown in Fig. 13. Based
on the �gure, non-uniform 3D-ICE 3.1 outperforms 3D-ICE
3.0 across all aspects. This advantage can be attributed to the
fact that, in non-uniform 3D-ICE and Ansys, each �oorplan
element is independently divided into several thermal grids
without in�uencing each other, as illustrated in Fig. 8(b). In
contrast, in the uniform modeling method, some thermal grids
may share power and temperature from different �oorplan ele-
ments, as shown in Fig. 8(a). This can lead to a degradation in
simulation accuracy, particularly when neighboring �oorplan
elements have varying power density and temperature pro�les.

3) Ef�cient non-uniform thermal modeling technique:The
�exibility of non-uniform 3D-ICE offers the customization
of discretization levels for individual layers and �oorplan
elements. Consequently, the default thermal grid con�guration

12

Fig. 13. Temperature simulation error (with Anys as the baseline) of both
uniform 3D-ICE and non-uniform 3D-ICE 3.1. Compared with uniform 3D-
ICE 3.0, non-uniform 3D-ICE 3.1 achieves better accuracy for all elements
on the chip.

Fig. 14. Temperature traces of Ansys, uniform 3D-ICE 3.0, and non-uniform
3D-ICE 3.1. Non-uniform 3D-ICE 3.1 demonstrates more accurate simulation
results than uniform 3D-ICE 3.0, even with fewer thermal grids.

in Aysys can be closely replicated using non-uniform 3D-ICE.
In this work, the non-uniform 3D-ICE was con�gured to
contain 21 thousand thermal grids for the targeted 3D MPSoC,
ensuring a close match with Ansys.

The simulation results, as depicted by the blue dashed
line in Fig. 14, match the Ansys simulation results most of
the time. In all, non-uniform 3D-ICE has a mere 0.3K of
mean temperature error. To ensure a fair comparison with
uniform 3D-ICE 3.0, it is also adjusted to incorporate 21
thousand grids. However, in the uniform thermal modeling
mode, the discretization level cannot be tailored to match
the con�guration in Ansys. As a result, despite sharing the
same level of complexity with 21 thousand thermal grids,
the uniform 3D-ICE 3.0 exhibits an average error of 1.8K.
Even when employing 14% more thermal grids than the non-
uniform 3D-ICE, a total of 24 thousand, the uniform 3D-ICE
still reports an average error of 1.0K, thus failing to match the
accuracy achieved by the non-uniform 3D-ICE.

B. RAPL-based DTM methods with the proposed DTM eval-
uation framework

In order to validate the effectiveness of the proposed DTM
evaluation framework, two RAPL-based DTM methods were
�rst implemented with this framework. The results are illus-
trated in Fig. 15, which provides a comprehensive comparison
of the temperature, power, energy, and frequency behaviors of
the RAPL-based DTM methods and highlights the capabilities
of the proposed DTM evaluation framework.

1) Temperature behavior:The �rst column of Fig. 15
shows the temperature responses of different methods. The
rapid-basicmethod attempts to control the temperature around

the set threshold, but struggles with frequent temperature vio-
lations due to the unstable control ability. On the other hand,
the rapl-stable method achieves a more stable control than
therapl-basicmethod by utilizing an intermediate temperature
state level, which stabilizes the system temperature response
and signi�cantly reduces temperature violations.

2) Power and energy behavior:The second column of
Fig. 15 illustrates the information on power and energy
consumption for the 3D MPSoC. The black line represents
the power consumption of the big cores, while the blue
line represents the power consumption of the little cores.
The overall power consumption (big+little) of the MPSoC is
illustrated in the sky blue line. In our work, we have considered
power gating for the processor cores. Speci�cally, when the
cores are inactive, they are deactivated to conserve power. This
is further supported by power traces in Fig. 15, which show
that the power consumption of various cores drops to zero.

Similar to the temperature behavior analysis, we can
draw the same conclusion about the control ability, i.e.,
the rapl-stable method provides a more stable control than
rapl-basic.

The energy traces for these two methods are basically the
same, indicating that these two methods consume the same
amount of energy despite the control stability.

3) Frequency behavior:The frequency data in the third
column of Fig. 15 provides a clear indicator of the usage of dif-
ferent types of cores in different DTM methods. RAPL-based
methods decrease both the frequency of the big and little cores
to control the temperature, which can result in reduced system
performance.

The analysis of therapl-basic and rapl-stable approaches
highlights the comprehensive capabilities of the proposed
DTM evaluation framework to evaluate different DTM meth-
ods. Therefore, this framework can serve as a valuable tool
for the exploration and evaluation of more complex DTM
methods.

C. Exploration of MARL-based DTM methods with the pro-
posed DTM evaluation framework

To further demonstrate the abilities of the proposed DTM
evaluation framework and address the demanding thermal
challenges of 3D MPSoCs, we implemented and evaluated
three MARL-based DTM methods with the framework. The
results are illustrated in Fig. 16, including the temperature,
power, energy, and frequency behaviors of the MARL-based
DTM methods.

1) Temperature behavior:All MARL-based DTM methods
steadily throttle the temperature level within the set threshold
and experience much fewer temperature violations compared
to the rapid-basicmethod. Speci�cally, themarl-a3 method
delivers the best temperature control results with the least
number of temperature violations. This is becausemarl-a3has
more control steps, and the neural network is able to learn how
to select the optimal control steps under different scenarios,
especially when the temperature exceeds the set threshold.

2) Power and energy behavior: Compared to
RAPL-based methods, MARL-based methods tend to

13

Frequency
Power and

Energy

(a
) r

ap
l-b

as
ic

(b
) r

ap
l-s

ta
bl

e
(c

) m
ar

l-a
1

(d
) m

ar
l-a

3
(e

)
m

ar
l-e

f

Temperature

FrequencyPower and Energy

(a
) r

ap
l-

ba
si

c
(b

) r
ap

l-
st

a
bl

e

Temperature

Fig. 15. The outcome of the proposed DTM evaluation framework, including temperature, power, energy, and frequency traces, for RAPL-based DTM methods
(a) rapl-basic and (b) rapl-stable. In comparison, rapl-stable provides a more stable control due to the hysteresis setting.

Frequency
Power and

Energy

(a
) r

ap
l-

b
as

ic
(b

)
ra

p
l-

st
ab

le
(c

)
m

ar
l-

a1
(d

)
m

ar
l-

a3
(e

)
m

ar
l-

ef

Temperature

FrequencyPower and Energy

(a
)

r
a
p

l-
b

a
si

c
(b

)
r
a
p

l-
st

a
b

le

Temperature

(a
)

m
a
r
l-

a
1

(b
)

m
a
r
l-

a
3

(c
)

m
a
r
l-

ef

FrequencyPower and EnergyTemperature

Fig. 16. The evaluation results for MARL-based DTM methods (a) marl-a1, (b) marl-a3, and (c) marl-ef.

use more of the small cores. For marl-a1 and marl-a3, they
prefer to use more little cores as their reward function is
designed to maximize the overall frequency of the 3D MPSoC
by using more little cores. On the other hand, the marl-ef
method aims to achieve a balanced usage of both little and
big cores for the best energy efficiency, which is reflected
in the energy consumption trace. Among all methods, the
marl-ef method consumes the least amount of energy.

3) Frequency behavior: In contrast to RAPL-based meth-
ods (Fig. 15), marl-a1 and marl-a3 lower the frequency of the
big cores while keeping the little cores running at their max-
imum level to maximize the overall frequency of the system
and control the temperature. However, these two approaches
sacrifice the performance of the big cores. The marl-ef method
takes a different approach by lowering the frequency of little

cores to avoid excessively reducing the frequency of big cores,
as the other two MARL-based methods. This results in a more
balanced usage of both big and little cores while controlling
the temperature and maintaining the system’s performance
level.

D. Numerical comparison of all implemented DTM methods

Table II collects various aspects of runtime statistics of
different DTM methods, consisting of two RAPL-based meth-
ods and three MARL-based methods. The overall comparison
metrics include the average frequency of the big cores, little
cores, and all cores. The average temperature violation time
is included as a metric to measure the temperature control
stability. We regard the average execution time of executed
benchmarks as a performance indicator. The lower it is,

