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Heading for new shores! Overcoming pitfalls in BCI design

Research in brain-computer interfaces has achieved impressive progress towards

implementing assistive technologies for restoration or substitution of lost motor

capabilities,  as  well  as  supporting  technologies  for  able-bodied  subjects.

Notwithstanding  this  progress,  effective  translation  of  these  interfaces  from

proof-of  concept  prototypes  into  reliable  applications  remains  elusive.  As  a

matter of fact, most of the current BCI systems cannot be used independently for

long periods of time by their  intended end-users.  Multiple factors that  impair

achieving this goal have already been identified. However, it is not clear how do

they affect the overall BCI performance or how they should be tackled. This is

worsened by the publication bias where only positive results are disseminated,

preventing the research community from learning from its errors. This paper is

the result of a workshop held at the 6th International BCI meeting in Asilomar.

We summarize here the discussion on concrete research avenues and guidelines

that  may help  overcoming common pitfalls  and  make  BCIs become a useful

alternative communication device. 

Keywords: BCI, EEG, limitations, user centered design, user training, signal 

processing, artifacts, publication bias 

Introduction

Brain-Computer  Interfaces  (BCIs)  have  proven  promising  for  a  wide  range  of

applications  ranging  from communication  and  control  for  motor  impaired  users,  to

gaming targeted  at  the  general  public,  real-time mental  state  monitoring  and stroke

rehabilitation, to name a few [1, 2]. Despite this promising potential, BCIs are scarcely

used outside laboratories for practical applications.  Several publications and reviews

have pointed out some of the roadblocks faced on the translation of BCIs -using either

invasive  and  non-invasive  techniques-towards  practical  applications  [3,  4].  These

include safety and biocompatibility of invasive approaches, as well as wearability and

ergonomics of non-invasive recording techniques.  In the later case,  the main reason

preventing  electroencephalography  (EEG)-based  BCIs  from  being  widely  used  is



arguably their poor usability, which is notably due to their low robustness and reliability,

as well as their often long calibration and training times. Although, BCIs based on P300,

Steady-State  Visual  Evoked  Potentials  (SSVEP)  generally  require  shorter  training

periods [9, 10]. 

As their  name suggests,  BCIs require communication between two components:  the

user’s brain and the computer. In particular, users have to volitionally modulate his/her

brain activity to operate a BCI. The machine has to decode these patterns by using

signal processing and machine learning. So far, most research efforts have addressed the

reliability issue of BCIs by focusing on command decoding only [5,6,7,8]. While this

has contributed to increased performances, improvements have been relatively modest,

with correct mental command decoding rates being still relatively low and a reportedly

significant amount of study participants unable to achieve satisfactory BCI control [1, 9,

10, 11]. Thus, the reliability issue of BCI is unlikely to be solved by solely focusing on

command decoding [12, 13].

We argue that limiting factors on the successful translation of BCI systems stem from

inadequate  practices  commonly  followed  by  the  research  community.  This  paper

summarizes the discussions on this topic held at the workshop  “What’s wrong with us?

Roadblocks and pitfalls in designing BCI applications” held on May 30th 2016 at the

6th  International  Brain-Computer  Interface  Meeting  in  Asilomar,  CA,  USA.  The

workshop  was  attended  by  35  people  of  different  backgrounds  who  identified

methodological aspects worth of improving. Although we discussed here mainly the

cases of non-invasive approaches, most of the topics addressed are relevant to the BCI

research field as a whole. The paper is organized around four main topics, each of which

represents a major component of any closed-loop BCI system. (i)  End users. So far,

little focus was on put on the inclusion of user-requirement aspects when designing BCI



solutions.  The  need of  end-user  (group)  specific  tailoring  of  the  system,  of  course,

requires  additional  resources,  which  limits  the  possibility  of  successful  transfer  into

marketable applications.  However,  design and evaluation of  BCI systems should go

beyond  the  “plain”  decoding  of  neural  signals  and  should  take  into  account  all

components of the brain-machine interactions. Including, but not limited to feedback,

human factors, learning strategies, etc. [12, 13, 14].  (ii) Feedback and user training.

BCI researchers seem to neglect the fact that these systems consist of a closed loop

between the human and the machine. In spite of this, the human is typically considered

as a static, compliant entity that always perform what the experimenter asks for in a

precise  and  consistent  way.  In  reality,  subject’s  behavior  is  determined  by  his/her

understanding  of  the  task,  abilities,  motivation,  etc.  Therefore,  both  feedback  and

training instructions should be designed such as to maximize the interplay among them

and help the user to learn a proper strategy to achieve good BCI control skills.  (iii)

Signal  processing  and  decoding.  Real  end  user  application  environments  are  much

noisier, dynamic and provide multi-sensory impressions to the user, leading to drastic

changes in EEG signals as compared to well-controlled lab environments or during BCI

calibration situations. As result, lab-based BCIs potentially fail in real-life contexts. (iv)

Performance  metrics  and  reporting.  There  is  a  lack  of  clear  metrics  to  assess  the

effective performance of a BCI system. It is generally acknowledged that these metrics

should comprise both machine and human factors altogether (e.g. decoding accuracy

and usability), but it is not clear how to weigh them. This in turn means that it is also

not clear on how to explicitly report BCI results. This prevents the field from having a

scientific discussion based on proper reporting and interpretation of results. 



These topics and related pitfalls and challenges are further elaborated below. The aim of

this  paper  is  to  start  a  discussion  on  strategies  to  improve  current  research  and

evaluation practices in BCI research. The vision is that open discussion on pitfalls and

opportunities eventually leads to the development of systems that end-users can operate

independently.

End-user-related issues

Several roadblocks within the aim of transferring BCI technology to end-user’s homes

were addressed and discussed in our workshop. We suggest improvements in the areas

of end-user selection, BCI system selection and discuss the potential of a common BCI

end-user database. Furthermore,  we point out how to reach the circumstances under

which the user can be successfully included during the BCI application design process

and thereby contribute to the integration of human factors in the usability of a BCI

application (e.g. by following a user-centered design, UCD). 

Identifying a potential BCI end-user

The choice of a potential candidate for using a BCI-based device is not trivial since not

every  end-user  per  se  is  suited.  Kübler  and  colleagues  stated  several  internal  and

external preconditions for successful BCI use [15]: (1) A potential candidate should be

interested  in  and  (2)  in  need  of  assistive  technology,  (3)  be  able  to  give  informed

consent, (4) be skilled concerning the cognitive abilities required to control the BCI

system  and  (5)  be  supported  by  family  members  or  caregivers.  Already  proper

judgement  of  an  end-user’s  interest  might  be  challenging  (both  for  his/her

relatives/caregivers as well as for outsiders like us as researchers). We might be tempted

to believe that the enthusiasm we experience after implementing a working BCI system

should also be felt by the end-user. But even though generally high satisfaction with the



currently available BCI systems was reported, a clear demand for BCI improvements

was  also  articulated  by  end-users  [16]  and  caregivers  [17].  Some  of  these  aspects

concern technological  and practical  aspects  such as usability  and ergonomics of the

setup. For instance, the use of electrode cables and electrode gel as well as the general

design of the BCI cap has been criticized. Furthermore, end-users reported not being

able to use a BCI system on a regular basis as they would not be supported by family

members or caregivers [16]. Several reports of end-user outcomes for BCI [18-22] show

that  successful  translation  of  BCI  systems  not  only  depends  on  technology-related

matters but also on personal, transactional, and societal challenges. Some of them are

imposed by the healthcare system leading to a lack of external support for potential BCI

end-users. Including healthcare providers in the BCI application design process might

raise awareness of end-users needs. Additionally, their perspective might be valuable

concerning the identification of potential BCI end-user groups.

On the other hand, there are single reports of successful BCI system transitions

to  end-users’ homes  [23-25].  End-users  in  these  studies  not  only  fulfilled  internal

prerequisites for successful BCI use, but were also supported by caregivers or family

members  and thereby share beneficial  external  preconditions.  Additionally,  they had

something  else  in  common:  Incentives  to  use  the  BCI  were  tremendously  high  as

end-users were enabled by the BCI system to do something another assistive technology

would not have allowed them. While the end-user reported by Sellers and colleagues

[24], ran his research lab using the BCI system for up to 8 hours a day, the end-user

reported by Holz and colleagues used the system for artistic self-expression which gave

her back a lost communication channel. Therefore, it is our challenge as researchers, to

create BCI applications that really increase incentives for potential BCI end-users. 



Identifying a potential BCI system

As the choice of a BCI system that fits  the end-user might be time consuming and

frustrating  for  the  end-user,  several  approaches  feasible  at  bedside  were  suggested

within  the  BCI  community  to  facilitate  this  process.  These  approaches  can  be

sub-divided into physiological and behavioral approaches.

Physiological approaches to predict BCI performance with one specific BCI system

The possibility of finding markers to predict future performance may help to rapidly

screen suitable users to a given BCI system. A neurophysiological predictor within the

sensorimotor rhythm (SMR) based on recordings of two-minutes of resting state data

was found to be significantly (r=.53) correlated with SMR BCI performance [26]. Also

gamma  activity  during  a  one-minute  resting  state  period  showed  significantly

correlations with later motor imagery performance [27].  The resting state EEG network

(two minutes assessment) can be a predictor for successful use of a SSVEP based BCI

[28]. However, these studies have only involved able-bodied subjects. Further research

with subjects with motor impairments is required to evaluate transferability of results. 

One challenge to be faced is the assessment of resting state activation with a reduced

number of electrodes and in  clinical  samples to  realize bedside data assessment.  To

achieve this goal, advice from neuroscientists might be helpful as this interdisciplinary

approach could facilitate choosing a reliable screening method. Recent works both with

able-bodied subjects and one end-user with locked-in syndrome have proposed methods

to assess performance variation within a session and during runtime. They may help to

better  assess  the  suitability  of  a  given  BCI  approach,  and  to  provide  user-specific

support during the training periods [29,30].

Concerning the P300 BCI, resting state heart rate variability (HRV) which is an

indicator  of  self-regulatory  capacity  was  found  to  explain  26%  of  the  P300  BCI

performance variance [31]. Other screening paradigms basically rely on using standard



neuropsychological paradigms that assess the same EEG correlations the BCI system

relies  upon.  One  easily  applicable  paradigm  is  the  oddball  paradigm  [32].  P300

amplitudes  in  the  oddball  paradigm  measured  at  frontal  locations  were  found  to

correlate up to r=.72 with later P300 BCI performance [33]. P300 amplitude responses

to  oddball  paradigms  were  also  successfully  utilized  to  decide  which  stimulation

modality  -among auditory,  visual  or  somatosensory-  would most  likely  lead to  best

classifiable results [34].

Behavioral approaches to predict BCI performance with one specific BCI system

The assessment of behavioral predictors of BCI performance is usually based on either

questionnaires or button-press response tasks. Concerning psychological predictors of

BCI performance, the willingness and ability to allocate attention towards a task was

found to explain 19% of variance when using an SMR BCI [35]. Also the ability to

kinesthetically imagine motor movements was significantly correlated with later SMR

BCI performance [36]. Finally,  the user’s spatial  abilities, as measured using mental

rotation tests, were also found to correlate to mental-imagery BCI performance, both for

motor  and non-motor  imageries  [37].  In  P300 BCI  use,  one  specific  component  of

attention, the ability for temporal filtering was found to predict P300 BCI performance

in  people  diagnosed with  Amyotrophic  Lateral  Sclerosis  (ALS)  [38].  Motivation  as

measured with a visual analogue scale was reported to explain up to 19% of variance in

P300 based BCI applications [39, 40].

In conclusion, the identification of potential BCI performance predictors has not been

exhaustively investigated so far [7]. A standardized screening procedure including easily

applicable instruments and methods should be agreed upon. One such suggestion was

already proposed for the identification of potential BCI users for a rapid serial visual



presentation  keyboard  [41].  In  case  researchers  could  collaboratively  and

interdisciplinary contribute to the identification of reliable predictor variables, end-users

might be equipped fast with the BCI system best suited for their individual needs.

Advantages of an end-user database

Another step towards identifying methods for fast and reliable BCI system selection

might  be  sharing  a  common database [42,  43]  in  which  selected  information  about

end-users and the BCI systems that fit them are merged. Possible information of interest

might be diagnoses and assessed predictor variables (see above). An end-user database

might also be based on level of function rather than diagnosis as a primary descriptor.

Similar to the International Classification of Functioning, Disability and Health (ICF)1

that have been developed for specific patient groups [44, 45, 46], an end-user database

could describe functional limitations, and include a full range of diagnoses that lead to

needs for potential BCI use.

Furthermore, experience reports by caregivers, BCI experts and people with additional

backgrounds who work with an end-user might add crucial information which allow to

deduce the choice of the best BCI system for a user by evaluating previous success

stories.  Additionally,  potential  dead ends once detected could help others to  prevent

wasting time and effort on a less efficient BCI based approach.

Of course, ethical issues must be taken into account as highly detailed reports about

end-users including their diagnoses and their BCI experiences might threaten end-users

anonymity which must be prevented. However, after having gathered a sufficiently big

and  meaningful  database,  for  which  criteria  must  be  agreed  upon,  data  mining

approaches can be used to support the decision making process. Not only physiological

1 http://www.who.int/classifications/icf/en/



data (brain activation) but also behavioral data (questionnaire data) could be integrated

and utilized to support the best possible fit between end-users and specific BCI systems.

To reach this goal, collaborations between BCI researchers, clinicians, caregivers and

family members all over the world is crucial, as well as common efforts to decide which

information  should  be  shared  and  how.  This  would  require  standard  protocols  and

procedures to collect physiological or behavioral data, such that they can be compared

between different research and clinical groups, different EEG recording devices, or BCI

processing pipelines for instance. Alternatively, this could also be the opportunity to

design  data  analysis  tools  dedicated  to  compare  BCI  performances  or  EEG signals

collected with different devices or BCI processing pipelines, in order to enable such

comparisons.

The user-centered design (UCD) and why it is rarely implemented

In case a BCI user and the appropriate BCI system were selected, the system still needs

to be adjusted to the end-users’ needs as otherwise, long-term use remains elusive. One

procedure that was successfully implemented [23] is  the user-centered design,  UCD

[14]. The end-user should be involved as early as possible by being asked to express

needs and requirements the BCI based assistive technology (AT) is supposed to fulfill.

Methods  to  elicit  involvement  and  feedback  from  potential  BCI  users  have  been

proposed [47]. End-users should be encouraged to actively influence the process of their

BCI system being adjusted. First trials of using the technology are to be evaluated and

the technology or features of it should be accustomed to the user’s requirements. This

process is to be iterated such that by trying new solutions and re-adjusting the system,

the end-user receives an AT device that truly supports him or her in daily life. Another

key factor suggested by UCD is the multidisciplinary approach. In case an end-user is in

a  medical  condition  requiring  professional  care,  close  interaction  between  family,



caregivers and medical staff tremendously facilitates the process of transferring an AT to

the end-user’s home as not only the needs and requirements of the end-user can be taken

into account, but also the device should be adjusted to the needs and requirements of the

ones who support the end-user. Furthermore, a multidisciplinary approach would allow

for  improvement  of  end-user  training.  For  example,  by  taking  into  account  experts

opinions on how to create learning paradigms that promote success but also facilitate

BCI use for the end-user (See next section). 

To mention just one example of UCD-based development: The aim of the FP7 ABC

project  was  to  develop  an  interface  for  individuals  with  cerebral  palsy  (CP)  that

improves  independent  interaction,  enhances  non-verbal  communication  and  allows

expressing and managing emotions [48]. As described above, as first step the potentially

most useful BCI system was identified [49]. Then, based on the end users preferences

and demands, a BCI-operated communication board was implemented [50]. To provide

a better training experience (see next section) and educate end user on how to use BCI

technology,  a  game-based  training  environment  was  implemented  [51].  BCI-based

communication  only  works  when  end  users  understand  the  working  principles  and

relevance of their own active involvement. Not providing clear and detailed information

to end users will become one major pitfall. Finally, cooperative/competitive elements

were added to the game-based user training [52]. Users can now train together with

friends and not alone in front of the computer. Each developmental step was discussed

with end users and caregivers. Development, however, was not linear. Advances in the

end users understanding of BCI technology, let to the redesign of several aspects of the

system over and over again. 



 A crucial point to be addressed when applying UCD is the resources it requires. So far,

only rare cases of long-term independent BCI use were reported [23-25], which might

be due to limited resources available. Not only is the hardware expensive, also experts

need time to adjust the system properly. And after UCD based BCI system transfer to an

end-users home, we can report results of this one single case. Thus, awareness for the

value of case studies must be increased. Even though for fundamental research the claim

of generalizability of results is a valid one, this claim cannot be transferred to a BCI

context,  in  which  per  definition,  every  end-user  might  present  different  needs  and

requirements [53]. As a consequence, researchers are faced with the conundrum of how

to  provide  the  possibility  of  permanently  refining  of  the  system depending  on  the

(changing)  conditions  of  the  user  given  the  available  resources.  The  truth  is  that

currently few research groups can afford such process due to lack of funding programs

in this type of long-term, high-risk research, as well as little interest from publishing

venues  as  outcomes appear  to  be  incremental.  Some alternatives  to  improve in  this

respect is to develop better, formal strategies to support the interface adaptation to the

user. These strategies can be based on the typification of the experience from previous

studies, along with the characterization of the users for which they worked. This process

can identify which parts of the process can or not rely on automatic processes (using

strategies for co-adaptation,  online performance evaluation,  shared control,  etc.)  and

devise guidelines for evaluating potential design alternatives. Finally, the engagement of

other  actors,  besides  the  research  community,  specifically  focused  on  translational

aspects of the technology is a no-brainer for creating the conditions of successful design

of BCI solutions.



Feedback and training

BCI control is known to be a skill that must be learned and mastered by the user [54,

55]. Indeed, user’s BCI performances (i.e., how accurately his/her mental commands are

decoded) become better with practice and BCI training leads to a reorganization of brain

networks  as  with  any  motor  or  cognitive  training  [54,  55].  Therefore,  to  ensure  a

reliable BCI, users must learn to successfully encode mental commands in their brain

signals, with high signal-to-noise ratio. In other words they should be trained to produce

neural activity patterns that are as stable, clear and as distinct as possible. With poor

BCI command encoding skills, even the best signal processing algorithms will not be

able to decode commands correctly. Unfortunately, how to train users to encode these

commands has been rather scarcely studied so far. As a consequence, the best way to

train users to successfully encode BCI commands is still unknown [1,7, 54]. Worse, as

we  argue  in  this  paper,  current  user  training  approach  in  BCI  are  actually  even

inappropriate, and most likely one of the major causes of poor BCI performance, and

high BCI deficiency rates. In the following, we present recent evidences explaining why

they are  inappropriate,  and present  open research  questions  that  would  address  this

fundamental limitation.

Current BCI user training approaches are inappropriate

One common approach used in non-invasive BCI training consists in asking users to

perform mental imagery tasks i.e., the kinesthetic imagination of body limb movements

[56]. These tasks are mapped used to encode commands (e.g., imagining left or right

hand movements to move a cursor in the corresponding direction). Meanwhile, users are

being provided with some visual feedback about the mental command decoded by the

BCI  [54].  However,  currently  used  standard  BCI  training  tasks  and  feedbacks  are

extremely simple, based on heuristics, and provide very little information. Typical BCI



feedback indeed often consists of a bar displayed on screen whose length and direction

vary according to the EEG signal processing output and the decoded command. Is that

really the best way we can train our users to gain BCI control? To answer that question,

we have studied the literature from the fields of human learning, educational science

and  instructional  design  [11,  57].  These  fields  have  indeed  studied  across  multiple

disciplines, e.g., language learning, motor learning or mathematical learning, what are

the principles and guidelines that can ensure efficient and effective training approaches.

We  have  then  compared  such  principles  and  guidelines  to  the  training  approaches

currently  used  in  BCI.  In  short,  we  have  shown  that  standard  BCI  user  training

approaches do not satisfy general  human learning and education principles ensuring

successful learning [11, 58, 59]. Notably, typical BCI feedback is corrective only, i.e., it

only  indicates  users  whether  they  performed  the  mental  tasks  correctly.  Oppositely,

human learning principles  recommend providing explanatory feedback by indicating

what was right or wrong about the task performed [58]. BCI feedback is also usually

unimodal, based only on the visual modality, whereas exploiting multimodality is also

known to favor learning [60]. Moreover, training tasks should be varied and adapted to

the user’s skills, traits (personality or cognitive profile) and states [58]. They should also

include self-paced training tasks, to let the user explore the skills he/she has learnt. BCI

training  tasks,  in  contrast,  are  fixed  over  time and users,  synchronous and repeated

identically  during  training.  Finally,  and  intuitively,  training  environments  should  be

motivating and engaging, whereas standard BCI training environments may not favor

engagement, and appear to be boring after prolonged used as often informally reported

by users. As mentioned in the previous section, feedback and training tasks design may

as well take into account the user’s preferences and psychological profile to maximize

his/her motivation. Note that an engaging environment does not necessarily have to be a



visually  appealing  but  complex  and  charged  visual  environment  (like  most  modern

video games), as it may overload the user. Unfortunately, there are many other training

principles and guidelines not satisfied by classical BCI training [11, 57].

We have also shown that in practice, standard feedback and training tasks used for BCI

are also suboptimal to teach even simple motor tasks [61]. In particular, we studied how

people could learn to do two simple motor  tasks  using the same training tasks and

feedback as those given to motor imagery (MI) BCI users. More precisely, we asked

subjects to learn to draw on a graphic tablet a triangle and a circle (the correct size,

angles and speed of drawing of these two shapes being unknown to the subject) that can

be recognized by the system, using a synchronous training protocol and an extending

bar as feedback, like for standard MI-based BCI training. Our results show that most

subjects  (out  of  N=53 subjects)  improved  with  this  feedback  and practice  (i.e.,  the

shapes they draw are increasingly more accurately recognized by the system), but that

17% of  them completely  fail  to  learn  how to  draw the  correct  shapes,  despite  the

simplicity  of  the  motor  tasks  [62].  This  suggests  that  the  currently  used  training

protocols may be suboptimal to teach even a simple skill. As such, and although not a

definitive proof, this could suggest such protocols are in part responsible for the poor

BCI control achieved by some users, and thus should be improved.

Therefore, both theory and practice suggest that current BCI training approaches are

likely to be suboptimal. This a bad news for current BCI systems and users, but a good

news for BCI research and BCI future: it means there is a lot of room for improvement,

and  many  exciting  and  promising  research  directions  to  explore,  as  described  in

following section.



Open research questions in BCI user training

As shown in the previous section, evidence converges towards indicating that current

BCI user training approaches are inappropriate. A promising direction to change them in

a relevant way would be to make them satisfy principles and guidelines from human

learning theories and educational science.

At  the  level  of  the  training  tasks  we  propose  our  BCI  users,  educational  science

recommends providing varied, adaptive and adapted training tasks. This raises a number

of currently unanswered questions. How to design varied and relevant training tasks

(e.g., by taking into account the end user objective and needs, as mentioned in UCD

above)? What should these tasks train? In order to design adapted training tasks, we

should also find out about how the user’s profile impact BCI learning and performances.

Some recent research results go into that direction and are worth being further studied

(35, 62, 63, 64]. To design adaptive training tasks also requires adjusting the training

tasks sequence to each user over time. How to do so to ensure an efficient and effective

learning? The BCI community could learn on this topic from the field of Intelligent

Tutoring Systems (ITS), which are tools specifically designed for digital education, to

find an optimal sequence of training exercises for each user, depending of this user’s

skills, traits and states [62].

At  the  level  of  the  feedback  provided,  educational  science  recommends  to  exploit

multimodal  feedback and to provide feedback that  is  explanatory rather than purely

corrective, which it is so far for BCI. This raises the question of whether we can exploit

other feedback modalities (e.g., auditory, tactile) for training, and how? Recent results

show  that  complementary  tactile  feedback  can  enhance  motor  imagery  BCI

performances  for  instance [65,  66],  which  confirms this  is  a  promising direction  to



explore. Designing an explanatory feedback for BCI is currently very challenging given

the lack of fundamental knowledge on motor imagery and on BCI feedback [67]. For

instance,  why  mental  commands  are  sometimes  erroneously  recognized?  Which

feedback content providing to the user? Which feedback presentation should be used to

represent this content? These are crucial research questions that the BCI community will

have to answer to design appropriate feedbacks for BCI, and thus to efficiently and

effectively train our BCI users.

Finally,  at  the level of the training environment,  improving BCI training requires to

design motivating and engaging training environment. How to do so? How to keep BCI

users being motivated and engaged in the training? Some recent  works  showed the

positive impact of video games and virtual reality on BCI training and performance [51,

52,  68].  There  is  now  a  need  to  understand  why  it  is  so,  and  to  formalize  these

approaches to ensure the next generation of BCI training approaches will be motivating

and engaging at all times, for all types of users.

From a non-technical and non-scientific point of view, all this research also depends on

how to report such studies on BCI user training. Indeed, many different training tasks,

feedbacks and environments could be tested and explored. Not all of them will lead to

improve BCI training efficiency or improved BCI performances. However, it is essential

to know what works and what does not work to deepen our knowledge on BCI training.

It  would  also  be  really  inefficient,  especially  considering  how  costly  (in  time  and

money) BCI experiments on user training can be, if several research groups were to try

the same experiments without knowing that other groups have already tried before but

that it failed. This all points to the necessity to publish negative results in BCI research,

to ensure an efficient research and to ensure access to all available relevant knowledge.



Signal processing and decoding

As  mentioned  before,  research  in  signal  processing  and  decoding  algorithms  have

played a significant role in the field of BCI in the past two decades. First attempts to

gain BCI control were based on operant conditioning [69]. The BCI decoding algorithm

was pre-defined and users had to learn by trial-and-error to modulate brain rhythms (for

example, by controlling a cursor to hit targets). By introducing machine learning (ML)

and pattern recognition (PR) methods the burden of learning was shifted towards the

machine.  The parameters  of  the BCI decoding algorithm were adapted to the user's

individual EEG signatures [70]. PR refers to methods that translate characteristic EEG

features (patterns) into messages. ML refers to methods that optimize feature and PR

parameters. According to the guiding principle let the machine learn, followed by some

groups,  a  number  of  ML  and  PR  methods  have  been  applied  [6,  71].  Some

improvements in gaining BCI control have been made. However, the goal of yielding

good control for everyone was not achieved. Today, a co-adaptive approach is most

common.  First  the  PR  methods  are  trained  to  detect  user  specific  patterns.  Then

feedback training, based on the trained PR model output, is used to reinforce the EEG

pattern generation. By repeated application of the two steps the user and the machine

mutually co-adapt. More recent approaches include online co-adaptation and transfer

learning [72- 77]. In the former case BCI model parameters are adapted and iteratively

updated during feedback training. In the latter case models are transferred between users

and/or between days. 

The above discussion mostly applies to BCIs that are based on the detection of changes

in spontaneous EEG. PR performance in BCIs that are based on the detection of evoked

potentials (EP) is robust. Since properties of EP signatures are time-locked to visual,

auditory or sensorimotor stimuli, increased detection performance can be achieved. In



the vast majority of healthy users detection rates higher than 90% are achieved in the

case of SSVEP in less than 30 minutes of time [9]. The performance, however, drops

considerably when moving out of the lab and into end users’ homes [49]. Some studies

have  shown  EP-based  BCIs  that  yield  good  performance  with  subject-independent

classifiers, i.e., without calibration at all for a new user [78, 79]. However, so far these

approaches have mainly been tested in offline studies and with healthy users only. It is

therefore  still  unknown  whether  this  results  generalize  to  end-users.  Moreover,

performances are still  better  when exploiting subject-specific data and user training,

even for P300-based BCI [79, 80]. 

Significant  improvement  in  performance  was  achieved  by  using  co-adaptation.

However, fundamental issues of BCI learning were not tackled. ML/PR were mostly

treated separately without considering all components in the BCI feedback loop [12,

13].  As a matter of fact,  typically linear time invariant models are used to translate

non-stationary and inherently variable EEG signals. This means that BCI models may

perform well for limited periods of time - BCI experiments typically will not take more

than one hour - but not for extended time or 24/7 use. 

Statistical PR methods such as linear discriminant analysis  (LDA) or support vector

machines  (SVMs)  are  most  commonly  used  [6].  Feature  extraction  and  decoding

parameters are optimized based on collected EEG data. Since data collection is time

consuming, optimization is typically based on a limited amount of data. It is therefore

essential  to  estimate  the  generalization  of  selected  models.  Methods  such  as

regularization, shrinkage or cross validation may prevent over fitting to the data [81-84].

Overfitting  means  that  PR  models  memorize  the  training  data.  Due  to  EEG



non-stationarity,  this  may  lead  to  suboptimal  performance  on  unseen  data.  Another

important prerequisite is to select PR models based on the properties of the selected

EEG  features.  Hence,  the  probability  density  function  of  features  and  of  the  PR

framework should match for optimal performance. For example, using power spectral

density  (PSD)  estimators  with  LDA will  likely  fail,  since  LDA assumes  Normally

distributed  data,  which  PSDs are  usually  not.  Computing  the logarithm of  the  PSD

features  will  make  them  more  Normal-like,  thus  increasing  the  LDA classification

performances.  This  leads  to  the  most  crucial  aspect:  features.  Optimal  performance

requires  the  proper  choice  of  features.  For  instance,  ERP  and  MRCP-based  BCI

typically reach better performances when using time-domain features, whereas SSVEP

and  mental  imagery-based  BCIs  should  use  PSD  or  similar  features  [85,  86,  87].

Preprocessing  and  decoding  algorithms  should  also  be  selected  depending  on  the

amount  of  available  training  data  and  EEG channels  [85,  87].  Typically,  the  more

training  data,  the  more  complex  the  algorithms  can  be.  For  multi-channel  mental

imagery-based BCIs, a very common pre-processing approach is the common spatial

pattern (CSP) and its  evolutions  [85,88,89].  Despite  recent  improvements  in  feature

extraction and preprocessing algorithms (see [71] for a review), there are still a large

number of users that are not able to control a BCI (BCI inefficiency). At least not in the

short term. And there is not enough experience with long-term training! Which features

are most informative and lead to enhanced performance? There is no answer to this

question  at  this  time.  More  basic  research  and  a  better  understanding  of  brain

functioning is required to be able to answer this question. Some attempts to enhance the

interpretability of brain oscillations are already ongoing (e.g. [90,91]).



Obviously, BCI end users that are able to reliably generate EEG patterns achieve higher

PR performance. Typical mental tasks used to encode messages for imagery-BCIs are

hand and feet motor imagery combinations. It turns out that a user-specific combination

of  “brain-teaser”,  i.e.,  tasks  that  require  problem specific  mental  work  (e.g.  mental

subtraction or word association), and “dynamic imagery” tasks (e.g. motor imagery or

spatial navigation) significantly enhance BCI performance in healthy [92-93] as well as

in users with disability [94-95]. In the latter case binary classification accuracy was up

to 15% higher  when compared to  a classical  motor  imagery task combination [94].

These results again emphasize the need to consider the different components in the BCI

feedback loop and their interplay. 

 

Another  important  aspect  that  impacts  on  PR  and  ML are  contamination  artifacts.

Artifacts are interference signals that share some of the characteristic features of EEG

and can produce misleading EEG signals or destroy them altogether. When developing

BCIs, one has to take care that cortical signals are used for communication and control

and not artifacts  [96-98].  Muscle artifacts,  for example,  are highly correlated to the

user's behavior and have much higher amplitudes. This means that they are also easier

to detect and may impact on PR performance. If the aim is to establish communication

for an end user and muscular activity is voluntarily generated then this approach may be

suitable. However, the nature of the signal used for control should be clearly identified

by the developers, i.e. this communication device does not qualify as BCI if no brain

activity is used; alternatively, it may correspond to a hybrid BCI if both muscle and

EEG signals contribute for control [99-101]. Artifact or not an artifact? Labeling and

characterization  of  artifacts  is  one  major  issue.  Often,  the  performance  of  artifact

removal  algorithms  is  derived  from  comparisons  to  human  ratings  (e.g.  [97,102]).



Scorings between humans,  however,  may vary to a large extent.  Finding a common

definition and elaborating scoring guidelines may help creating an artifact database that

serves as benchmarking for algorithms validation. One idea is to setup a web-based

artifact-scoring tool where experts from all over the world can score EEG signals and

contribute to the building of such a comprehensive database. However, as said before,

not only EEG data and scoring information should be shared, but also source code and

protocols. Only that would allow an open and transparent validation of new methods

and lead to intense scientific discussion. 

Performance metrics and reporting

Another pitfall that hinders advancement of BCI technologies lies on the methods used

to  assess  the  quality  of  the  developed  systems.  To  a  large  extent,  the  research

community has mainly focused on evaluating the performance of the decoding engine

and  applied  mainly  PR and  ML performance  metrics.  A widely  used  metric  is  the

accuracy of the classifier (true positive rate, TPR)2. Other metrics also take into account

the effect of misclassifications (false positive rate, FPR) and estimating the specificity

(1-FPR) of the decoder as well as the true and false negative classification (TNR and

FNR, respectively) [103].  Other metrics, inspired from information theory have also

been proposed by analyzing the BCI as a communication channel between the brain and

the controlled device [104].  However, these metrics have their limitations as it has been

already pointed out in previous works [105-108].

Besides these limitations, they are often poorly used in an important proportion of BCI

related literature. One important characteristic of most BCI studies is that they rely on a

small quantity of data, both in terms of the number of subjects that participate in the

2 Also called hit-rate, sensitivity or recall.



experiments as well  as the number of trials  recorded for each of them. This clearly

limits  the  conclusions  that  can  be  drawn  from  these  studies.  Nevertheless,  BCI

published works rarely address nor discuss the population effect size and often overstate

the impact of their findings by implying they would generalize to greater populations.

Since  the  interpretation  of  the  numerical  values  depends  on  the  amount  of  data

available, it is important to consider the chance level performance [109]. The less data

available,  the  higher  the  chance level  or  the  broader  the  confidence  interval  of  the

performance  estimation.  This  means  for  a  limited  amount  of  data  the  chance  level

performance may be very high. This in turn leads to an overly optimistic interpretation

of the results. Moreover, special care should be taken when choosing the statistical tests

used for comparing different experimental conditions [83,110,111], and the decoding

performance evaluation  should specifically take into account the characteristics of the

dataset used (in terms of number of trials and class distribution).

In addition,  these metrics typically evaluate the output of the classification function

against a set of labelled samples acquired during a calibration period (i.e. supervised

learning paradigms).  Therefore,  these  metrics  rely  on  the  assumption  that  the  brain

activity that is fed to the classifier during operation follows the same distribution than

the one observed during calibration. This assumption is widely recognized as incorrect

and often brushed off by arguing that EEG signals are non-stationary, we claim that

there  is  a  more  fundamental  reason  for  changes  in  the  neural  activity  during  BCI

operation. As a matter of fact, the BCI system is inherently a closed loop system and, in

consequence the feedback it provides is one of the causes of signal changes in the user’s

brain activity. Therefore, even though offline evaluation of the classifier performance

may be useful for preliminary evaluation of different decoding methods it is not enough



to assess the performance of a BCI and performance evaluation during online usage is

necessary. 

The aforementioned aspects concern exclusively the evaluation of the BCI decoding

engine.  Thus,  they  only  reflect  one  element  in  the  BCI  loop  and  do  not  provide

information about how suitable the system is for its user. Several studies have shown

that human factors and user characteristics influence performance [39, 112, 113,114]. In

consequence,  proper  evaluation  of  the  BCI  system  cannot  be  limited  to  decoding

metrics, and should also include efficiency/effectiveness metrics in the human-computer

interaction  sense  [115,116],  as  well  as  explicit  assessment  of  the  human  factors

(cognitive  workload,  sense  of  agency,  among  others),  e.g.,  through  the  use  of

questionnaires  [117,118].  This  implies  the  need  for  combining  both  quantitative

objective  performance  measures  with  subjective,  qualitative  assessments  based  on

self-reporting,  and  highlights  the  fact  that  BCI  performance  may  not  be

comprehensively reflected by a single figure [14]. Nevertheless, The appropriate way to

weigh  in  these  different  metrics  is  strongly  application  dependent  and  remain  one

outstanding challenge in the field. 

Note, that introducing mechanisms that support users to control BCIs (for example word

prediction  or  evidence  accumulation  for  decision  making)  positively  impact  on  the

performance. It is essential to identify the impact of such mechanisms when computing

chance performance levels [50], and properly evaluate the contribution of the BCI to the

achievement of the task. 

Last  but  not  least,  it  is  necessary  to  improve  the  way  BCI  research  is  reported  in

peer-reviewed  publications.  At  the  current  state,  other  research  groups  cannot

independently  replicate  most  experiments.  Mainly  due  to  the  lack  of  a  complete

description of the methods used for processing the signals (from signal acquisition and



conditioning to feature selection and classification), as well as the specific instructions

given to user. We exhort the community to be more careful in the design and reporting

of their experiments. As mentioned above, experimental studies are typically performed

with  small  populations  of  subjects  that  do  not  match  the  intended  BCI  users  (e.g.

graduate  students),  thus  their  results  may  not  be  applicable  to  a  large  population.

Besides these issues, the BCI field also suffers from problems inherent to the scientific

literature,  as  is the  bias  to  publish  only  positive  results  that  prevents  the  research

community of learning from its errors [119]. As a countermeasure for these weaknesses

we proposed the need of clear a guidelines for good reporting practices. Even though we

can adopt guidelines from related fields (c.f., [111, 120-122]) some aspects inherent to

BCI  systems may  require  specific  new guidelines  to  be  drawn (e.g.  procedures  for

decoder calibration, evaluation performance on small populations, among others). Such

guidelines can be endorsed by the BCI society encouraging authors and reviewers to

follow them. Importantly, a great amount of information about these systems can be

obtained from qualitative data, good practices for collecting, reporting and analyzing it

can be extremely helpful to the research community. Last but not least, encouragement

for reporting negative BCI results, e.g., through dedicated peer reviewed journal special

issues can be also beneficial.  However,  reporting of these results  should come from

rigorous  and  unbiased  studies  that  yield  results  that  are  strong  enough  to  refute  a

hypothesis and help to design follow up studies. Only in these cases they can be useful

to advance the field towards more robust and reliable systems.

Conclusion

The design of BCI systems reliable and robust enough to allow independent use is a

challenging task involving significant advances in diverse domains. Researchers in the

field  have  gone  a  long  way  demonstrating  the  feasibility  of  extracting  meaningful



information from neural signals to  control external  devices.  However,  there are still

several roadblocks to surmount for these systems to be successfully deployed to their

intended end-users. We have summarized in this paper several methodological aspects

that  need  to  be  taken  into  account  in  order  to  achieve  this  goal.  A first  aspect

corresponds to the need of better ways integrate the user’s needs and preferences into

the design of the BCI solution. Several actions have been suggested along this line (see

Figure  1),  which  require  intense  and  interdisciplinary  collaborations  in  order  to  go

beyond the existing success stories of single cases of independent BCI use, towards

formal methods for effective translation from the research lab into real applications.

Experience from other cases in neurotechnologies can serve as model or inspiration for

the BCI case. One model to be used as a starting point on how the design process might

be  optimized  is  Scherer’s  Matching  Persons  and  Technology  Model  [123,124]  that

examines the psychotechnological interplay of device and end-user from the perspective

of optimizing user outcomes. 

In addition, at the user training level, there are also a number of pitfalls we have to

overcome. Indeed, currently used training protocols are most likely highly suboptimal,

both from a theoretical and practical point of view. It is therefore necessary to conduct

fundamental research to understand what BCI skills users are learning, how they are

learning, and what makes them fail or succeed at BCI control. It is also necessary to try

to  go  towards  adapted  and  adaptive  training  tasks,  as  well  as  towards  explanatory

feedback, to ensure successful BCI skills acquisition.

Digital  signal  processing,  pattern  recognition  and  machine  learning  are  essential

components of modern BCIs that allow for brain-computer co-adaptation. Dealing with

artifacts and brain signal non-stationarity, i.e., finding appropriate features, are issues

that  have  the  largest  potential  to  increase  performance  and  need  closer  attention.



Sophisticated machine learning methods s may help tackling these issues and contribute

to the further advancement of BCI. However, the highly multidisciplinary nature of BCI

research makes it very difficult  for researchers in the field to know enough of each

discipline involved to avoid all methodological flaws associated to each of them (e.g.,

statistical flaws or protocol design with confounding factors). This has lead to a number

of BCI publications with biases, confounding factors, and contradictory results that may

slow down progress in the field. We identify a need within the field to be more cautious

on the  application  and evaluation  of  these  methods.  This  can  be  improved  through

published guidelines and more interdisciplinary participation in BCI related events and

research projects.

Last  but  not  least,  it  is  crucial  for  the  BCI  community  to  fully  embrace  its

interdisciplinary nature and effectively engage all possible stakeholders on its scientific

events, and development projects.  It should be widely acknowledged that successful

translation  of  these  technologies  go  beyond  scientific  research  and  should  involve

interest groups (e.g., patient associations), insurance and public health representatives,

and the private sector so as to identify clear user needs, as well as strategies to support

research and development of BCI solutions in a sustainable way.

Acknowledgments

Authors would like to thank the workshop attendants, in particular to J. Huggins, C. Jeunet, B.

Lance,  KC  Lee,  and  B.  Peters,  for  their  involvement  and  valuable  contributions  to  the

discussion.  This  work  was  supported  by  the  Swiss  National  Science  Foundation  NCCR

Robotics (Dr. Chavarriaga), the French National Research Agency with project REBEL (grant

ANR-15-CE23-0013-01,  Dr.  Lotte)  and  the  Land  Steiermark  project  rE(EG)map!  (grant

ABT08-31142/2014-10,  Dr.  Scherer).  Dr.  Fried-Oken’s  participation  was  supported  by  NIH

grant #DC009834-01 and NIDILRR grant #90RE5017. Dr. Scherer would also like to thank the

FP7 Framework EU Research Project  ABC (No. 287774) for giving him the opportunity to



work with end users with cerebral palsy. This paper only reflects the authors' views and funding

agencies are not liable for any use that may be made of the information contained herein.



References

[1]  Wolpaw J, Wolpaw E. Brain-computer interfaces: principles and practice.

Oxford University Press; 2012.

[2]  Lotte  F,  Bougrain  L,  Clerc  M.  Electroencephalography  (EEG)-based

Brain-Computer  Interfaces.  In:  Wiley  Encyclopedia  on  Electrical  and

Electronics Engineering. Wiley; 2015.

[3] Borton D, Micera S, Millán JDR, Courtine G. Personalized neuroprosthetics.

Sci Transl Med. 2013; 5:210rv2.

[4] Thakor NV. Translating the brain-machine interface. Sci Transl Med,  2013;

5:210ps17.

[5] Bashashati A, Fatourechi M, Ward RK, et al. A Survey of Signal Processing

Algorithms  in  Brain-Computer  Interfaces  Based  on  Electrical  Brain  Signals.

Journal of Neural engineering. 2007; 4:R32-R57

[6] Lotte F, Congedo M, Lécuyer A, et al. A Review of classification algorithms

for EEG-based Brain-Computer Interfaces. Journal of Neural Engineering, 2007;

4:R1-R13.

[7] Allison B, Neuper C. Could Anyone Use a BCI? Brain-Computer Interfaces.

Springer; 2010.



[8]  Makeig  S,  Kothe  C,  Mullen  T,  et  al. Evolving  signal  processing  for

brain–computer interfaces. Proceedings of the IEEE. 2012; 100:1567-1584.

[9]  Allison B, Luth T, Valbuena D, et al. BCI Demographics: How Many (and

What Kinds of) People Can Use an SSVEP BCI? IEEE Transactions on Neural

Systems  and  Rehabilitation  Engineering.  2010;18(2):107-116.  doi:

10.1109/TNSRE.2009.2039495.

[10] Guger C, Daban S, Sellers E, et al. How many people are able to control a

P300-based  brain-computer  interface  (BCI)?  Neuroscience  Letters,  2009;

462:94-98.

[11]  Lotte F, Larrue F, Mühl C. Flaws in current human training protocols for

spontaneous  Brain-Computer  Interfaces:  lessons  learned  from  instructional

design. Front Hum Neurosci, 2013; 7:568: doi: 10.3389/fnhum.2013.0056.

[12]  Scherer R, Faller J, Balderas D, et  al.  Brain-computer interfacing: more

than the sum of its parts. Soft computing. 2013; 17(2):317-331.

[13]  Scherer  R,  Pfurtscheller  G.  Thought-based interaction  with  the  physical

world. Trends in cognitive sciences. 2013; 17(10):490-492.

[14]  Kübler  A,  Holz  E,  Riccio  A,  et  al.  The  user-centered  design  as  novel

perspective  for  evaluating  the  usability  of  BCI-controlled  applications.  PLoS

One, 2014, 9, e112392.

[15] Kübler A, Holz EM, Sellers EW, et al. Toward independent home use of

brain-computer  interfaces:  a  decision  algorithm  for  selection  of  potential



end-users.  Arch  Phys  Med  Rehabil,  2015;  96(3  Suppl):S27-32.  doi:

10.1016/j.apmr.2014.03.036.

[16]  Zickler  C,  Halder  S,  Kleih  SC,  et  al.  Brain  Painting:  usability  testing

according to the user-centered design in end users with severe motor paralysis.

Artif Intell Med. 2013; 59(2):99-110. doi: 10.1016/j.artmed.2013.08.003.

[17] Nijboer F, Plass-Oude Bos D, Blokland Y, et al. Design requirements and

potential  target  users  for  brain-computer  interfaces–recommendations  from

rehabilitation professionals. Brain-Computer Interfaces, 2014; 1(1):50-61.

[18]  Huggins JE, Wren PA, Gruis KL. What would brain–computer interface

users want? Opinions and priorities of potential users with amyotrophic lateral

sclerosis. Amyotrophic Lat Scler. 2011; 12(5):318–324.

[19]  Blain-Moraes S, Schaff R, Gruis KL, et al.  Barriers to and mediators of

brain–computer  interface user  acceptance:  focus  group findings.  Ergonomics.

2012; 55(5):516–525.

[20]  Andresen  EM,  Fried-Oken  M,  Peters  B,  et  al.  Initial  constructs  for

patient-centered  outcome  measures  to  evaluate  brain–computer  interfaces.

Disabil Rehabil Assist Technol. 2015; 1–10.

[21] Huggins JE, Moinuddin AA, Chiodo AE, et al. What would brain–computer

interface users want: opinions and priorities of potential users with spinal cord

injury. Arch Phys Med Rehabil. 2015; 96(3):S38–S45.e5.



[22] Peters B, Bieker G, Heckman SM,  et al.  Brain-computer interface users

speak up: the Virtual Users'  Forum at the 2013 International Brain-Computer

Interface  meeting.  Archives  of  physical  medicine  and  rehabilitation,  2015;

96(3):S33-S37.

[23]  Holz  EM,  Botrel  L,  Kaufmann  T,  et  al.  Long-term  independent

brain-computer interface home use improves quality of life of a patient in the

locked-in state: a case study. Arch Phys Med Rehabil, 2015; 96(3 Suppl):S16-26.

doi: 10.1016/j.apmr.2014.03.035.

[24]  Sellers  EW,  Vaughan  TM,  Wolpaw  JR.  A brain-computer  interface  for

long-term  independent  home  use.  Amyotroph  Lateral  Scler.  2010;

11(5):449-455. doi: 10.3109/17482961003777470.

[25]  Sellers EW, Ryan DB, Hauser CK. Noninvasive brain-computer interface

enables communication after brainstem stroke. Sci Transl Med. 2014; 6:257re7.

[26]  Blankertz B, Sannelli C, Halder S, et al. Neurophysiological predictor of

SMR-based  BCI  performance.  Neuroimage.  2010;  51(4):1303-1309.  doi:

10.1016/j.neuroimage.2010.03.022.

[27] Ahn M, Ahn S, Hong JH, et al. Gamma band activity associated with BCI

performance – Simultaneous MEG/EEG study. Front Hum Neurosci, 2013; 7.

doi: 10.3389/fnhum.2013.00848.

[28] Zhang Y, Xu P, Guo D, et al. Prediction of SSVEP-based BCI performance

by the resting-state EEG network. J Neural Eng, 2013; 10(6):066017.



[29]  Saeedi  S,  Chavarriaga R,  Leeb R,  Millán JDR. Adaptive Assistance for

Brain-Computer Interfaces by Online Prediction of Command Reliability IEEE

Computational Intelligence Magazine. 2015; 11:32-29.

[30]  Saeedi  S,  Chavarriaga  R,  Millán  JDR.  Long-term  stable  control  of

motor-imagery  BCI  by  a  locked-in  user  through  adaptive  assistance.  IEEE

Transactions of Neural System and Rehabilitation Engineering. In Press

[31]  Kaufmann  T,  Vögele  C,  Sütterlin  S,  et  al.  Effects  of  resting  heart  rate

variability on performance in the P300 brain-computer interface. International

Journal  of  Psychophysiology.  2012;  83(3):336-341.  doi:

http://dx.doi.org/10.1016/j.ijpsycho.2011.11.018.

[32] Sutton S, Braren M, Zubin J, et al. Evoked-Potential Correlates of Stimulus

Uncertainty.  Science.  1965;  150(3700):1187-1188.  doi:

10.1126/science.150.3700.1187.

[33] Halder S, Furdea A, Varkuti B, et al. Auditory standard oddball and visual

P300  brain-computer  interface  performance.  International  Journal  of

Bioelectromagnetism. 2011;13(1):5-6.

[34]  Kaufmann T,  Holz  EM, Kubler  A.  Comparison of  tactile,  auditory,  and

visual modality for brain-computer interface use: a case study with a patient in

the locked-in state. Front Neurosci. 2013; 7:129. doi: 10.3389/fnins.2013.00129.



[35]  Hammer  EM, Halder  S,  Blankertz  B,  et  al.  Psychological  predictors  of

SMR-BCI  performance.  Biol  Psychol,  2012;89(1):80-86.  doi:

10.1016/j.biopsycho.2011.09.006.

[36] Vukovic A. (2010). Motor imagery questionnaire as a method to detect BCI

illiteracy.  Paper  presented  at:  2010 3rd  International  Symposium on Applied

Sciences  in  Biomedical  and  Communication  Technologies  (ISABEL 2010);

2010 7-10 Nov. 

[37]  Jeunet  C,  N’Kaoua  B,  Lotte  F.  Advances  in  User-Training  for

Mental-Imagery Based BCI Control: Psychological and Cognitive Factors and

their Neural Correlates. Progress in Brain Research, 2016

[38]  Riccio  A,  Simione L,  Schettini  F,  et  al.  Attention  and P300-based BCI

performance in people with amyotrophic lateral sclerosis. Front Hum Neurosci.

2013; 7. doi: 10.3389/fnhum.2013.00732

[39]  Kleih  SC,  Nijboer  F,  Halder  S,  et  al.  Motivation  modulates  the  P300

amplitude  during  brain-computer  interface  use.  Clin  Neurophysiol.  2010;

121(7):1023-1031. doi: 10.1016/j.clinph.2010.01.034.

[40]  Käthner  I,  Ruf  CA,  Pasqualotto  E,  et  al.  A  portable  auditory  P300

brain–computer  interface  with  directional  cues.  Clinical  Neurophysiology.

2013;124(2):327-338. doi: http://dx.doi.org/10.1016/j.clinph.2012.08.006.



[41] Fried-Oken M, Mooney A, Peters B, et al. A clinical screening protocol for

the  RSVP Keyboard  brain–computer  interface.  Disability  and  Rehabilitation:

Assistive Technology, 2015;10(1):11-18. doi: 10.3109/17483107.2013.836684

[42] Zander TO, Ihme K, Gärtner M, et al. A public data hub for benchmarking

common brain–computer interface algorithms. J Neural Eng, 2011; 8(2):025021.

[43] Ledesma-Ramirez C, Bojorges-Valdez E, Yáñez-Suarez O, et al. (2010). An

Open-Access P300 Speller Database.  Paper presented at:  Fourth International

Brain-Computer  Interface  Meeting;  2010;  Monterey,  USA.

https://hal.inria.fr/inria-00549242.

[44] Bernabeu M, Laxe S, Lopez R, et al. Developing core sets for persons with

traumatic brain injury based on the International Classification of Functioning,

Disability, and Health. Neurorehabil Neural Repair. 2009; 23(5): 464-467.

[45] Schwarzkopf SR, Ewert, T, Dreinhofer KE, et al. Towards an ICF Core Set

for  chronic  musculoskeletal  conditions:  commonalities  across  ICF  Sets  for

osteoarthritis,  rheumatoid  arthritis,  osteoporosis,  low  back  pain  and  chronic

widespread pain. Chin Rheumatol. 2008; 27:1355-1361.

[46] Cieza A, Ewer T, Ustun B, et al. Development of ICF core sets for patients

with chronic conditions. J Rehabil Med 2004; Suppl. 9-11.

[47]  Peters  B,  Mooney  A,  Oken  B,  et  al. Soliciting  BCI  user  experience

feedback  from  people  with  severe  speech  and  physical  impairments.  Brain

Computer Interfaces. 2016. DOI:10.1080/2326263X.2015.1138056.



[48]  Scherer  R,  Wagner  J,  Billinger  M,  et  al.  Augmenting  communication,

emotion  expression  and  interaction  capabilities  of  individuals  with  cerebral

palsy.  Paper  presented  at:  2014  6th  International  Brain-Computer  Interface

Conference; 2014 Graz, Austria; 312 – 315. doi:10.3217/978-3-85125-378-8-78.

[49]  Daly  I,  Billinger  M,  Laparra-Hernández  J,  et  al.  On  the  control  of

brain-computer  interfaces  by  users  with  cerebral  palsy.  Clinical

Neurophysiology. 2013;124(9):1787–1797. doi:10.1016/j.clinph.2013.02.118

[50]  Scherer  R,  Billinger  M,  Wagner  J,  et  al.  Thought-based  row-column

scanning communication board for individuals with cerebral palsy.  Annals of

Physical  and  Rehabilitation  Medicine,  2015;  58(1):14–22.

doi:10.1016/j.rehab.2014.11.005.

[51] Scherer R, Schwarz A, Müller-Putz GR,  et al. Game-based BCI training:

Interactive design for individuals with cerebral palsy.  Paper presented at: 2015

IEEE International Conference on Systems, Man, and Cybernetics (SMC); 2015

Oct; Hong-Kong; 2015a; 3175-3180.

[52]  Scherer R, Schwarz A, Müller-Putz GR, et al. Let’s play Tic-Tac-Toe: A

Brain-Computer Interface case study in cerebral palsy. Paper presented at: 2016

IEEE International Conference on Systems, Man and Cybernetics (SMC); 2016

Oct 9-12; Budapest, Hungary.

[53] Neumann N, Kubler A. Training locked-in patients: a challenge for the use

of  brain-computer  interfaces.  IEEE  Transactions  on  Neural  Systems  and



Rehabilitation  Engineering.  2003;  11(2):169-172.  doi:

10.1109/TNSRE.2003.814431.

[54]  Neuper  C,  Pfurtscheller  G.  Brain-Computer  Interfaces  Neurofeedback

Training for BCI Control. The Frontiers Collection. 2010:65-78.

[55]  Wander  JD,  Blakely  T,  Miller  KJ,  et  al. Distributed  cortical  adaptation

during learning of a brain-computer interface task. Proceedings of the National

Academy of Sciences. 2013; 110(26):10818-23.

[56] Neuper C, Scherer R, Reiner M, et al. Imagery of motor actions: differential

effects  of kinesthetic  and visual-motor  mode of imagery in  single-trial  EEG.

Cognitive  Brain  Research.  2005;  25(3):668–77.

doi:10.1016/j.cogbrainres.2005.08.014.

[57]  Lotte  F,  Jeunet  C.  Towards  Improved  BCI  based  on  Human  Learning

Principles.  Paper  presented  at: 3rd  International  Brain-Computer  Interfaces

Winter Conference; 2015.

[58] Shute V. Focus on Formative Feedback. Review of Educational Research,

2008; 78(1):153-189.

[59]  Hattie  J,  Timperley H.  The Power of Feedback.  Review of  Educational

Research. 2007; 77(1):81-112

[60]  Merrill  M.  First  principles  of  instruction:  a  synthesis.  In:  Reiser  RA,

Dempsey JV, editor Trends and issues in instructional design and technology

(2nd ed). Hill; 2007. p. 62-71.



[61] Jeunet C, Jahanpour E, Lotte F. Why Standard Brain-Computer Interface

(BCI) Training Protocols Should be Changed: An Experimental Study. Journal

of Neural Engineering, 2016; 13(3):036024.

[62] Jeunet C, N'Kaoua B, N'Kambou R, et al. Why and How to Use Intelligent

Tutoring Systems to Adapt MI-BCI Training to Each User?, Paper presented at:

International BCI meeting, 2016; Monterey, USA. 

[63]  Jeunet  C,  N’Kaoua  B,  Subramanian  S,  et  al. Predicting  Mental

Imagery-Based  BCI  Performance  from  Personality,  Cognitive  Profile  and

Neurophysiological Patterns. PLoS ONE, 2015; 10(12):e0143962.

[64]  Kleih  SC,  Kübler  A.  Psychological  Factors  Influencing Brain-Computer

Interface  (BCI)  Performance.  Paper  presented  at:  2015  IEEE  International

Conference  on  Systems,  Man,  and  Cybernetics  (SMC);  2015;  Hong-Kong.

3192-3196.

[65]  Jeunet  C,  Vi  C,  Spelmezan  D,  et  al. Continuous  Tactile  Feedback  for

Motor-Imagery  based  Brain-Computer  Interaction  in  a  Multitasking  Context.

Paper presented at: Proc. Interact 2015. 2015. 

[66] Gomez Rodriguez M, Peters J, Hill J, et al. Closing the sensorimotor loop:

haptic  feedback  helps  decoding  of  motor  imagery.  Journal  of  Neural

Engineering, 2011; 8:036005



[67] Sollfrank T, Ramsay A, Perdikis S,  et  al. The effect  of multimodal and

enriched  feedback  on  SMR-BCI  performance.  Clin  Neurophysiol.  2016;

127:490-498.

[68]  Lotte,  F,  Faller  J,  Guger  C,  et  al. (Eds.)  Combining  BCI  with  Virtual

Reality:  Towards  New  Applications  and  Improved  BCI  Towards  Practical

Brain-Computer Interfaces, Springer Berlin Heidelberg, 2013, 197-220.

[69] Birbaumer N, Ghanayim N, Hinterberger T, et al. A spelling device for the

paralysed. Nature. 1999; 398(6725): 297–298. doi:10.1038/18581.

[70]  Blankertz  B,  Dornhege G,  Krauledat  M,  et  al.  The non-invasive  Berlin

Brain–Computer  Interface:  Fast  acquisition  of  effective  performance  in

untrained  subjects.  NeuroImage.  2007;  37(2):539–550.

doi:10.1016/j.neuroimage.2007.01.051.

[71] Mason SG, Bashashati A, Fatourechi M, et al. A comprehensive survey of

brain  interface  technology  designs.  Annals  of  Biomedical  Engineering,

2007;35(2),:137–69. doi:10.1007/s10439-006-9170-0.

[72]  Vidaurre  C,  Kawanabe  M,  von  Bünau  P,  et  al.  Toward  unsupervised

adaptation  of  LDA  for  brain-computer  interfaces.  IEEE  Transactions  on

Biomedical  Engineering,  2011;  58(3):587–97.

doi:10.1109/TBME.2010.2093133

[73] Faller J, Vidaurre C, Solis-Escalante T, et al. Autocalibration and recurrent

adaptation: Towards a plug and play online ERD-BCI. IEEE Transactions on



Neural  Systems  and  Rehabilitation  Engineering,  2012;20(3):313–319.

doi:10.1109/TNSRE.2012.2189584.

[74]  Faller  J,  Scherer  R,  Costa  U,  et  al.  A  Co-Adaptive  Brain-Computer

Interface  for  End  Users  with  Severe  Motor  Impairment.  PLoS  ONE,

2014;9(7):e101168. doi:10.1371/journal.pone.0101168.

[75]  Samek W, Meinecke FC, & Müller KR. Transferring subspaces between

subjects  in  brain--computer  interfacing.  IEEE  Transactions  on  Biomedical

Engineering, 2013; 60(8):2289–2298. doi:10.1109/TBME.2013.2253608

[76]  Perdikis  S,  Leeb  R,  Millán  JDR.  Subject-oriented  training  for  motor

imagery  brain-computer  interfaces.  Paper  presented  at:  2014  Annual

International  Conference  of  the  IEEE Engineering  in  Medicine  and  Biology

Society, EMBC’14, 2014; p. 1259-1262.

[77]  Kobler R, Scherer R. Restricted Boltzmann Machines in Sensory Motor

Rhythm  Brain-Computer  Interfacing:  A Study  on  Inter-Subject  Transfer  and

Co-Adaptation.  Paper  presented  at:  2016  IEEE  International  Conference  on

Systems, Man and Cybernetics (SMC); 2016 Oct 9-12; Budapest, Hungary.

[78] Cecotti, H. A self-paced and calibration-less SSVEP-based brain–computer

interface  speller.  IEEE  Transactions  on  Neural  Systems  and  Rehabilitation

Engineering, 2010, 18(2), 127-133.



[79]  Kindermans,  P.  J.,  Schreuder,  M.,  Schrauwen,  B.,  Müller,  K.  R.,  &

Tangermann, M. True zero-training brain-computer interfacing–an online study.

PloS one, 2014; 9(7), e102504.

[80] Baykara, E., Ruf, C. A., Fioravanti, C., Käthner, I., Simon, N., Kleih, S. C.,

&  Halder,  S.  Effects  of  training  and  motivation  on  auditory  P300

brain–computer interface performance. Clinical Neurophysiology, 2016; 127(1),

379-387.

[81] Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning

(Second Ed). Springer-Verlag New York; 2009. doi:10.1007/978-0-387-84858-7.

[82] Ledoit O, Wolf M. Honey, I Shrunk the Sample Covariance Matrix. The

Journal of Portfolio Management. 2004; 30(4):110–119.

[83]  Lemm  S, Blankertz B, Dickhaus T, Müller K-R. Introduction to machine

learning for brain imaging. Neuroimage. 2011; 56:387-399

[84] Lotte F. Signal Processing Approaches to Minimize or Suppress Calibration

Time in Oscillatory Activity-Based Brain--Computer Interfaces. Proceedings of

the IEEE, 2015;103(6):871-890. 

[85] Blankertz B, Tomioka R, Lemm S, et al. Optimizing spatial filters for robust

EEG single-trial analysis. IEEE Signal Processing Magazine. 2008; 25:41–56.

doi:10.1109/MSP.2008.4408441.

[86]  Xu,  R.,  Jiang,  N.,  Mrachacz-Kersting,  N.,  Dremstrup,  K.,  & Farina,  D.

Factors of Influence on the Performance of a Short-Latency Non-Invasive Brain



Switch:  Evidence in  Healthy Individuals and Implication for Motor Function

Rehabilitation. Frontiers in neuroscience, 2015; 9.

[87] Lotte, F. A tutorial on EEG signal-processing techniques for mental-state

recognition in  brain–computer  interfaces.  In Guide to  Brain-Computer  Music

Interfacing. Springer London. 2014; 133-161.

[88] Ramoser H, Müller-Gerking J, & Pfurtscheller, G. Optimal spatial filtering

of  single  trial  EEG during  imagined hand  movement.  IEEE Transactions  on

Rehabilitation Engineering, 2000; 8:441–446. doi:10.1109/86.895946.

[89]  Samek W,  Kawanabe M, Muller  K-R.  Divergence-based framework for

common spatial patterns algorithms. IEEE Reviews in Biomedical Engineering.

2013; 2014;7:50-72.

[90]  Seeber  M,  Scherer  R,  Wagner  J,  et  al.  EEG beta  suppression  and  low

gamma modulation are different elements of human upright walking. Frontiers

in Human Neuroscience, 2014; 8:485. doi:10.3389/fnhum.2014.00485.

[91]  Seeber  M,  Scherer  R,  Wagner  J,  et  al.  High  and  low  gamma  EEG

oscillations in central sensorimotor areas are conversely modulated during the

human  gait  cycle.  NeuroImage,  2015;  112:318–26.

doi:10.1016/j.neuroimage.2015.03.045.

[92]  Friedrich  EVC,  Scherer  R,  Neuper  C.  The  effect  of  distinct  mental

strategies  on  classification  performance  for  brain-computer  interfaces.



International  Journal  of  Psychophysiology,  2012;84(1):86–94.

doi:10.1016/j.ijpsycho.2012.01.014.

[93]  Friedrich  EVC,  Neuper,  C,  Scherer  R.  Whatever  works:  a  systematic

user-centered  training  protocol  to  optimize  brain-computer  interfacing

individually. PLoS ONE, 2013;8(9):e76214. doi:10.1371/journal.pone.0076214.

[94]  Scherer  R, Faller  J,  Friedrich EVC, et  al.  Individually adapted imagery

improves  brain-computer  interface  performance  in  end-users  with  disability.

PloS One. 2015b;  10(5):e0123727. doi:10.1371/journal.pone.0123727.

[95]  Scherer  R,  Faller  J,  Opisso  E,  et  al.  Bring  mental  activity  into  action!

Self-tuning  brain-computer  interfaces.  Paper  presented  at:  2015  Annual

International  Conference  of  the  IEEE Engineering  in  Medicine  and  Biology

Society, EMBC’15; 2015c. 

[96]  Fatourechi M, Bashashati A, Ward RK, et al. EMG and EOG artifacts in

brain  computer  interface  systems:  A  survey.  Clinical  Neurophysiology,

2007;118(3);480–494. doi:10.1016/j.clinph.2006.10.019.

[97] Schlögl A, Keinrath C, Zimmermann D, et al. A fully automated correction

method of EOG artifacts in EEG recordings. Clinical Neurophysiology, 2007;

118(1):98–104. doi:10.1016/j.clinph.2006.09.003.

[98] Daly I, Scherer R, Billinger M, et al. FORCe: Fully online and automated

artifact removal for brain-computer  interfacing.  IEEE Transactions on Neural

Systems and Rehabilitation Engineering, 2015;23(5):725–736.



[99]  Pfurtscheller G, Allison B, Bauernfeind G, et al.  The hybrid BCI Front.

Neurosci., 2010; 4:42.

[100]  Leeb R, Sagha H, Chavarriaga R, Millán JDR. A hybrid brain-computer

interface based on the fusion of electroencephalographic and electromyographic

activities. J Neural Eng. 2011; 8:025011

[101]  Müller-Putz  G,  Leeb  R,  Tangermann  M,  et  al.  Towards  Noninvasive

Hybrid Brain-Computer Interfaces: Framework, Practice, Clinical Application,

and Beyond. Proceedings of the IEEE, 2015; 103:926-943.

[102] Urigüen JA, Garcia-Zapirain B. EEG artifact removal-state-of-the-art and

guidelines. J Neural Eng. 2015; 12:031001.

[103]  Fawcett T. An introduction to ROC analysis Pattern Recognition Letters,

2006; 27:861 - 874.

[104] Wolpaw JR, Birbaumer N, Heetderks WJ, et al. Brain-computer interface

technology:  a  review of the first  international  meeting IEEE Transactions on

Rehabilitation Engineering. 2000; 8.164-173.

[105]  Quitadamo  LR,  Abbafati  M,  Cardarilli  GC,  et  al.  Evaluation  of  the

performances of different P300 based brain-computer interfaces by means of the

efficiency metric. J Neurosci Methods, 2012; 203:361-368.

[106] Thomas E, Dyson M, Clerc M. An analysis of performance evaluation for

motor-imagery based BCI. J Neural Eng. 2013; 10:031001.



[107] Antelis JM, Montesano L, Ramos-Murguialday A, et al. On the usage of

linear  regression  models  to  reconstruct  limb  kinematics  from low frequency

EEG signals. PLoS One.  2013; 8:e61976.

[108]  Spüler  M, Sarasola-Sanz A, Birbaumer N, et  al.  Comparing metrics to

evaluate performance of regression methods for decoding of neural signals. In:

Conf Proc IEEE Eng Med Biol Soc, 2015; Milano (Italy) 2015; 1083-1086.

[109] Müller-Putz G, Scherer R, Brunner C, et al. Better than random: A closer

look  on  BCI  results.  International  Journal  of  Bioelectromagnetism,  2008;

10:52-55.

[110] Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG- and

MEG-data. J Neurosci Methods, 2007; 164:177-190.

[111]  Wasserstein RL,  Lazar  NA. The ASA's statement on p-values:  context,

process,  and  purpose  The  American  Statistician,  Taylor  &  Francis,  2016;

70(2):129-133.

[112]  Nijboer F, Birbaumer N, Kübler A. The influence of psychological state

and  motivation  on  brain-computer  interface  performance  in  patients  with

amyotrophic lateral sclerosis - a longitudinal study. Frontiers in Neuroscience.

2010;  4:55.

[113] McCane LM, Sellers EW, McFarland DJ, et al. Brain-computer interface

(BCI)  evaluation  in  people  with  amyotrophic  lateral  sclerosis.  Amyotrophic

lateral sclerosis and frontotemporal degeneration. 2014; 15(3-4);207-215.



[114]  Schlögl  A,  Kronegg J,  Huggins  JE,  et  al.  Evaluation  Criteria  for  BCI

Research.  In: Dornhege G, Millán  JDR, Hinterberger T. et al,  editor; Toward

brain-computer interfacing. MIT press; 2007.

[115] Dal Seno B, Matteucci M, Mainardi LT. The utility metric: a novel method

to assess the overall performance of discrete brain–computer interfaces. IEEE

Transactions  on  Neural  Systems  and  Rehabilitation  Engineering.

2010;18(1):20-28.

[116]  Hill  NJ,  Häuser  AK,  Schalk  G.  A  general  method  for  assessing

brain–computer  interface  performance  and  its  limitations.  Journal  of  Neural

Engineering. 2014;11(2):026018.

[117]  Riccio  A,  Leotta  F,  Bianchi  L,  et  al.  Workload  measurement  in  a

communication  application  operated  through  a  P300-based  brain–computer

interface. J Neural Eng, 2011; 8(2):025028.

[118]  Hart  S,  Staveland L.  Development of  NASA-TLX (Task Load Index):

Results  of  Empirical  and  Theoretical  Research.  In  Hancock  P,  Meshkati  N,

editor (Eds.) Human Mental Workload, North-Holland; 1988. p. 139-183.

[119] Nuzzo R. How scientists fool themselves - and how they can stop. Nature.

2015; 526:182-185

[120]  Brouwer AM, Zander TO, Van Erp JB, et al.  Using neurophysiological

signals that reflect cognitive or affective state:  six recommendations to avoid

common pitfalls Frontiers in Neuroscience. 2015; 9:136.

http://cognet.mit.edu/contributor/jos%C3%A9-del-r-mill%C3%A1n
http://cognet.mit.edu/contributor/jos%C3%A9-del-r-mill%C3%A1n


[121]  Duncan  CC,  Barry  RJ,  Connolly  JF,  et  al.  Event-related  potentials  in

clinical research: Guidelines for eliciting, recording, and quantifying mismatch

negativity, P300, and N400. Clin Neurophysiol, 2009;120:1883-1908.

[122]  Kass RE, Caffo BS, Davidian M, et al. Ten Simple Rules for Effective

Statistical Practice. PLoS Comput Biol. 2016;12:e1004961.

[123]  Scherer  MJ,  Craddock  G.  Matching  person  &  technology  (MPT)

assessment process. Technology and Disability. 2002; 14(3):125-131.

[124]  Scherer  M,  Jutai  J,  Fuhrer  M,  et  al.  A framework  for  modelling  the

selection  of  assistive  technology  devices  (ATDs).  Disabil  Rehabil  Assist

Technol. 2007;2(1):1–8.



 Figure 1. User related topics to avoid roadblocks in transferring BCI systems from the

lab to the end-users home.


	Introduction
	End-user-related issues
	Identifying a potential BCI end-user
	Identifying a potential BCI system
	Behavioral approaches to predict BCI performance with one specific BCI system

	Advantages of an end-user database
	The user-centered design (UCD) and why it is rarely implemented

	Feedback and training
	Current BCI user training approaches are inappropriate
	Open research questions in BCI user training

	Signal processing and decoding
	Performance metrics and reporting
	Conclusion
	Acknowledgments

	References

