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When I meet God, I am going to ask him
two questions, why relativity? and why turbulence?
I really believe he will have an answer for the first.

Werner Heisenberg





Résumé

En mécanique des fluides, la turbulence peut se produire dans des géométries d’écoulement très
simples, pour des fluides newtoniens et sans la nécessité de conditions supplémentaires, telles que
gradients de température ou réactions chimiques. Dans les cas standard, des hypothèses intuitives
sur la physique des échelles de sous-maille couplées avec les théories classiques de la turbulence peu-
vent être bien adaptées pour la simulation des grandes échelles. Cependant, pour des situations plus
complexes, le comportement des échelles de sous-maille n’est pas clairement identifié, certainement
pas aussi intuitif et les théories correspondantes ne sont pas encore disponibles.

La question est de savoir comment procéder lorsque la modélisation fonctionnelle, qui impose
un comportement connu aux échelles de sous-maille, n’est pas possible. Ce problème pourrait
être résolu par l’utilisation de modèles basés sur une approche de déconvolution qui consiste en
l’approximation des variables originales depuis leur homologue filtrée. Les quantités originales sont
obtenues par le truchement d’une inversion approchée de l’opérateur de filtrage qui est appliqué aux
équations décrivant le système au niveau macroscopique. Toutefois, cet avantage est généralement
perdu puisque ces modèles sont associés à des approches auxiliaires, directement basées sur une
modélisation fonctionnelle, afin de tenir compte des interactions avec les échelles qui ne sont pas
représentables sur la discrétisation spatiale utilisée pour la simulation des grandes échelles.

La principale motivation de ce travail est d’éviter le recours à cette modélisation auxiliaire
de manière à étendre l’utilisation des modèles de déconvolution à la simulation d’écoulements
dont le comportement des échelles de sous-maille n’est pas identifié. En considérant les effets
de la discrétisation spatiale comme le seul filtre appliqué aux équations macroscopiques, une in-
terprétation des modèles de déconvolution comme un moyen d’approcher l’effet du filtre de maillage
sur les échelles résolues de l’écoulement est démontrée. Par conséquent, une nouvelle catégorie de
modèles de sous-maille, les modèles de filtre de maillage, est définie et propose une justification
théorique à l’utilisation de modèles de déconvolution pour l’ensemble de la modélisation.

Dans cette perspective, une méthode générale pour le calcul du filtre de convolution permettant
de modéliser l’effet du filtre de maillage sur les échelles résolues de la solution est présentée, ce qui
constitue une première réponse à la question clé de la discrétisation numérique en simulation des
grandes échelles. Cette approche de modélisation est tout d’abord validée en effectuant la simulation
des grandes échelles de l’écoulement incompressible d’un fluide newtonien dans une cavité entrâınée.
Les comparaisons avec des modèles de sous-maille classiques permettent de valider cette approche
ainsi que la suppression de modélisation fonctionnelle.

Afin d’étendre le domaine de validité de ces modèles, la simulation des grandes échelles d’un
problème de turbulence élastique est envisagée. Dans ce cas, les simulations numériques sont sujettes
à des instabilités numériques et la charge de calcul est considérablement accrue par rapport au cas
newtonien. En conséquence, les simulations numériques directes disponibles dans la littérature
sont limitées à des domaines périodiques et bidimensionels. Parmi ces études, l’écoulement de
Kolmogorov viscoélastique est choisi comme cas test.

Mots-clés: Modélisation de sous-maille, modèles de déconvolution, turbulence inertielle, turbu-
lence élastique, fluides viscoélastiques, inversion approchée d’opérateurs projectifs





Abstract

In fluid mechanics, turbulence can occur in very simple flow geometries, for Newtonian fluids and
without the need for additional flow conditions such as temperature gradients or chemical reactions.
In standard cases, intuitive assumptions on the physics of the subgrid scales coupled with the
classical theories of turbulence can be well suited for subgrid modelling in large eddy simulation.
However, considering more complex situations such as elastic or plasmas turbulence, the behaviour
of the subgrid scales is not clearly identified, certainly not as intuitive and the corresponding theories
are not available yet.

The question is how to proceed when the functional modelling, which imposes a known behaviour
to the subgrid scales of the flow, is not possible. For instance, this issue could be overcome using
deconvolution-based subgrid models which aim at a partial recovery of the original quantities from
their filtered counterpart. In principle, functional modelling is avoided by attempting to invert
the filtering operator applied to the governing equations. However, this apparent advantage is
completely lost since these models are usually coupled with auxiliary approaches, directly based
on functional modelling, in order to account for the interactions with the scales which are not
representable on the coarse spatial discretization used for large eddy simulation.

The driving motivation of this work is to suppress the need for this secondary modelling which
would allow to extend the use of deconvolution-based models to the large eddy simulation of flows
whose behaviour of subgrid scales is not identified. Considering the effects of the coarse numerical
discretization as the only effective filter applied to the macroscopic equations, an interpretation
of the deconvolution models as a way to approximate the effect of the scales lost by numerical
discretization on the resolved scales of the flow is demonstrated. Consequently, a new category of
subgrid models, the grid filter models, is defined and gives a theoretical justification to the use of
deconvolution models for the entire subgrid modelling process.

In this perspective, a general method for the computation of the convolution filter which models
the effect of the grid filter on the computable scales of the solution is proposed, thereby addressing
the key issue of the numerical discretization in large eddy simulation. This modelling approach is
validated performing the large eddy simulation of the incompressible flow of a Newtonian fluid in
a lid-driven cubical cavity. Comparisons with classical subgrid models allow to assess the validity
of this modelling approach and the suppression of the need for functional modelling.

In order to extend the validity domain of the grid filter models, the large eddy simulation of
an elastic turbulence problem is envisaged. Numerical simulations of elastic turbulence are lim-
ited by numerical instabilities which are particularly stringent at high elasticity. Moreover, the
computational burden resulting from the required space-time resolutions is significantly increased
as compared to the Newtonian case. Consequently, available direct numerical simulations are re-
stricted to periodic and two-dimensional cases. Among these studies, the large eddy simulation of
the viscoelastic Kolmogorov flow is chosen as benchmark problem.

Keywords: Subgrid modelling, deconvolution models, inertial turbulence, elastic turbulence, vis-
coelastic fluids, approximate inverse of projective operators
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problèmes.
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Avant-propos

Lausanne, le 27 septembre 2010

Il se dit souvent qu’un tiers d’une thèse est compréhensible par tout le monde, qu’un autre
tiers est dédié aux experts du domaine et que la partie restante ne demeure accessible qu’à l’auteur
lui-même. En raison de la spécialisation croissante des sujets de recherche scientifique, je pense que
la réalité est en fait bien pire, du moins en ce qui concerne la première partie.

Ainsi, même si ce travail s’adresse en premier lieu au jury de thèse, puis à une partie restreinte
de communauté scientifique, le lectorat visé est plus étendu. En partant de bases relativement
générales illustrées par des exemples pratiques, et en retardant autant que possible l’apparition
du langage mathématique indispensable à l’expression d’une pensée scientifique et quantitative, le
travail présenté dans les pages qui suivent est abordable par un lecteur qui ne disposerait pas de
connaissances scientifiques approffondies. Toutefois, par souci de concision, tous les concepts utilisés
ne peuvent pas être présentés dans le détail mais des références à d’autres publications jalonnent
le texte pour aider le lecteur à poursuivre son parcours.

Dans cette perspective, le choix de la langue est aussi un point crucial, surtout en Suisse, pays
aux quatre langues nationales. Au sein de la communauté scientifique, la langue la plus utilisée
pour les échanges fut autrefois le grec, puis le latin, et devint le français. Aujourd’hui, l’hégémonie
est celle de l’anglais. Comme l’explique très clairement Libero Zupirolli [63], ce choix favorise
indéniablement les anglophones. En contrepartie, ils doivent affronter la lecture de textes écrits en
anglais apauvri qui ne doivent pas sonner de manière très musicale à leurs oreilles. Comme ils le
disent si bien, “there is no free lunch!”

Ce travail est le fruit de quatre ans d’apprentissage et de recherche. Il s’inscrit dans l’étude
de la turbulence en mécanique des fluides et, par un choix délibéré, il est présenté sous une forme
non dogmatique. En effet, peut-être par manque de compétences, de connaissances, d’acharnement,
d’imagination, ou simplement de temps, ce travail soulève des questions non encore résolues. Ainsi,
les incertitudes et les lacunes ne sont pas passées sous silence mais sciemment soulignées de manière
à constituer autant de points d’ancrage pour des recherches ultérieures. Le format s’avère ainsi plus
proche de la disputatio médiévale que des cours ex cathedra dispensés aujourd’hui. Je serais donc
particulièrement heureux de voir ces développements repris dans le futur et d’avoir l’occasion de
contribuer à leur amélioration.

La proportion de publications exemptes de fautes ou imprécisions est etrêmement réduite. Et
même si le jury et divers relecteurs attentifs on passé le manuscrit au peigne fin, cette thèse n’en
fait vraisemblablement pas partie. Tout commentaire sur ce texte est donc le bienvenu dans une
perspective d’amélioration, de complément et de manière à éviter la propagation d’erreurs.





Foreword

Lausanne, September 27, 2010

People say that a third of a thesis is understood by everyone, another third is dedicated to the
experts of the domain and the remainder will only remain accessible to the author himself. Due to
the increasing specialisation of scientific research topics, I think the reality is actually much worse,
at least regarding the first part.

Thus, even if this work is primarily intended for the jury, then for a small part of the sci-
entific community, the target audience is wider. Starting from relatively general bases illustrated
by practical examples, and by delaying the onset of the mathematical language necessary for the
expression of scientific and quantitative thoughts, the work presented in these pages is affordable
by a reader who does not have a great scientific knowledge. However, for the sake of conciseness,
all the concepts can not be presented in details, but references to other publications mark the text
to help the reader to continue its journey.

In this perspective, the choice of the language is also a crucial point, especially in Switzerland,
a country with four national languages. Within the scientific community, the most widely used
language for trade once was Greek, then Latin, and became French. Today the hegemony is that
of English. As explained very clearly Libero Zupirolli [63], this choice favours undeniably English
speaking people. In return, they must confront the reading of texts written in poor-English which
do not sound that musical in their ears. As they say so, “there is no free lunch!”

This work is the result of four years of learning and research addressing the study of turbulence
in fluid mechanics. By choice, it is presented in a non-dogmatic way. Indeed, and perhaps because of
the lack of skills, knowledge, dedication, imagination, or simply time, this work raises unanswered
questions. Thus, the uncertainties and gaps are not ignored but deliberately highlighted to form
as many starting points for further research. The presentation is therefore closer to the medieval
disputatio than to the actual ex cathedra lectures. Hence, I would be particularly pleased to see
these developments further investigated in the future and to have the opportunity to contribute to
their improvement.

Unfortunately, the proportion of publications without errors is extremely small. And despite the
useful comments of the jury and some reviewers which read the manuscript with great attention,
this thesis makes probably not part of it. Any comment is therefore most welcome in order to
improve and complete the content of this work, but also to avoid the propagation of errors.
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Chapter 1

Introduction

The huge development and the accumulation of the scientific knowledge make the research fields
and the resulting studies more and more specific. Therefore, setting the stage of a research work,
whose title is perhaps only evocative to the few experts of the field, often becomes a challenging
task.

The general context of this study is fluid mechanics and more precisely the introduction of a
novel approach for turbulence modelling in the numerical simulation of fluid flows. The meaning
of these words is perhaps more explicit but they shall be described into more details. In this
introduction, as suggested by Stephen Hawking in The Brief History of Time, “Each equation
included in a book halves the potential readers”, the presentation of the ideas and the concepts is
privileged over equations and technical aspects.

1.1 Fluid mechanics

The famous quote by Herakleitos of Ephesus “παντα ρǫι, και oυδǫν µǫνǫι.”, which means “Ev-
erything flows, nothing stands still.”, perfectly reflects the huge domain of application of fluid
mechanics. Fluid flows can be illustrated by natural phenomena such as the blowing of the wind,
the flow of a river, a snow avalanche, a landslide, a volcanic eruption, or the formation of moun-
tains by the interaction of tectonic plates. The fundamental difference between these flows lies on
their time-scale. Over sufficiently long periods of time, materials which are commonly classified as
solids are observed in flow. For instance, the glass flow in windows due to gravity forces is only
observable over centuries when the bottom becomes thicker than the top. The distinction between
fluids and solids appears somewhat blurred and relies on the material behaviour as discussed by
Robert Owens and Timothy Phillips [45].

The first known human applications related to fluid mechanics date back to Mesopotamia with
the use of hydraulic machinery for irrigation and to the ancient Egypt with the invention of water
clocks. Among the conserved works in this area, the earliest go back to the days of the ancient
Greece and the investigations of Archimedes of Syracuse on buoyancy forces. After this pioneering
contribution, the recent development of this discipline has been characterised by a strong interaction
between theory and experiment which began near the end of the 15th century with Leonardo da
Vinci and his observations on the resistance of air to the movement of a solid object.

The laws of classical mechanics introduced by Isaac Newton and his studies on viscosity marked
the beginning of the theory of this discipline. Among other mathematicians, physicists and engi-
neers, Blaise Pascal, Louis de Lagrange and Leonhard Euler contributed to the advancement of
this theory which essentially relies on classical mechanics, that is on the assumptions of mass,
momentum and energy conservation but also on the continuum hypothesis. Despite the discrete
character of matter which seems to be composed by elementary particles, fluids are described from
a macroscopic point of view and are supposed to be a continuous media. In this framework, the
governing equations were established by Claude Navier and George Stokes.
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Beside the classical theory, fluid flows were also studied in the framework of the kinetic theory
whose bases were laid by Daniel Bernoulli. This statistical and mesoscopic description was further
developed by Rudolf Clausius and James Maxwell who formulated the velocity distribution function
expressing the proportion of particles having a certain velocity at a given position. This was the
first statistical law in physics and inspired the works of Ludwig Boltzmann which gave birth to
statistical mechanics. The study of fluid flows is also carried out in a relativistic framework since
the derivation by Taub [57] of the corresponding equations. This discipline is mostly dedicated to
cosmology problems [1].

Since the beginning of the 20th century, the studies of fluid flows spread over various domains.
For instance, aero- and hydrodynamics are concerned with studying the motion of air and water,
particularly when they interact with moving objects such as aircrafts, automobiles, high-speed
trains, boats or constructions such as bridges, buildings but also energetic systems such as engines,
pumps and turbines. At the scale of the Earth, the short- and mid-term prediction of air and water
flows in the atmosphere and the oceans concerns the meteorology whose link with fluid mechanics
began with the invention of the barometer by Evangelista Torricelli in the 17th century.

Rheology deals with the flow and deformation of more complex materials such as muds, sludges,
suspensions, polymers, many foods or molten metals. Complex fluids are also studied in the frame-
work of the bio-fluid mechanics whose blood flows in aneurysms or in stenoses and the design of
artificial heart valves are among classical problems. Plasma physics is another discipline which is
devoted to the study of partially or fully ionised gases whose common examples are the light-
ning, the polar auroras or the sun. The characteristics of such flows, and in particular their space-
and time-scales, stretch over several orders of magnitude from the artificial plasmas generated in
laboratories to the cosmic ones of inter-galactic nebulae.

1.2 Turbulence in fluid mechanics

Turbulence is often associated to the flight of an aircraft passing through different atmospheric
structures. When the size of these structures is small as compared to the distance travelled in a
given time-scale, which is the case in storms or convection cells, the passage from a structure to
the other gives rise to high frequency jerks which are referred to as “turbulences”.

In the various domains of fluid mechanics, the definition is slightly different, laminar flows are
the exception and turbulent flows are rather the rule. Turbulence is a flow regime characterised by
the strong coupling among flow structures which stretch over a broad range of space- and time-
scales. For instance, the range of scales in the flow of a river can stretch from the size of the
riverbed to extremely small flow structures whose interaction makes the flow behave in a chaotic
manner. This means that any perturbation of the system is exponentially amplified in time. A good
illustration is the casino game La roulette. The smallest disturbance in the initial conditions leads
to enormous differences in the results which are therefore unpredictable. The throw of a dice or
of a coin has also a chaotic behaviour. Even if these macroscopic systems are deterministic, the
only way of representing the results is the use of probabilities. This is often called the deterministic
chaos which is extremely well presented by Pierre Bergé et al. in [4].

Another example of turbulent flow is the atmosphere. It is turbulent since the largest scale has
the size of the Earth and it can be subdivided into smallest quasi-stable structures known as the
Hadley cells, Ferrel cells, Polar cells and jet-streams which redistribute the energy coming from the
Sun. This subdivision extends to structures which are of the characteristic size of a mountain, of a
tree or even of smaller size and which are more and more unstable and time-dependent. This results
in a chaotic behaviour which is well known in meteorology since weather is almost unpredictable
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after only three days. Consequently, deterministic predictions are gradually replaced by probabilistic
weather forecasts.

In the case of fluids whose viscosity can be assumed as constant, such as air or water, and which
are called Newtonian, Osborne Reynolds observed that turbulence occurs when the inertial stresses
are large compared to the viscous ones, and introduced the dimensionless Reynolds number to
measure this ratio. In the early 1940s, the theory of homogeneous and isotropic turbulence proposed
by Andrëı Kolmogorov allowed to demonstrate that the range of space-scales varies with respect
to the Reynolds number to the power three fourths [28–30]. This kind of turbulence, which can be
referred to as inertial turbulence since it is driven by inertial effects, has been the subject of an
enormous amount of experimental and theoretical studies.

The development of an elastic turbulence regime was also experimentally observed by Alex
Groisman and Victor Steinberg [23] in flows of highly viscous polymer solutions and in the limit of
strong elasticity, which is measured by the dimensionless Deborah number. The flows of such fluids
display characteristics typical of turbulent flows, even at low velocity and high viscosity, that is in
the limit of vanishing Reynolds number. Despite its growing practical interest, elastic turbulence
is only partially understood from a theoretical viewpoint and a few studies are available in this
field of research. Recent theoretical predictions rely on simplified versions of viscoelastic models,
or on the strong analogy with the turbulence of plasmas which has been recently demonstrated by
Gordon Ogilvie and Michael Proctor [42].

In technical applications, turbulence shall be sometimes promoted and sometimes avoided. For
instance, it can be used to enhance mixing processes but should be avoided to improve the efficiency
of an hydraulic turbine. As an other example, the development of viable nuclear fusion reactors
requires the production of long-life and stable plasma flows in such a way that nuclear reactions
can take place. In experimental devices such as tokamaks or stellerators, turbulence mainly arises
from the interaction of the magnetic field imposed for the confinement of the plasma and the mag-
netic field induced by the electrically charged and moving particles. Understanding and predicting
turbulence which controls the confinement properties of any magnetically confined plasma is a key
issue on the way towards the industrial use of this energy conversion method.

1.3 Numerical simulation

As shown by the example of fluid mechanics, physics is classically studied by means of theory and
experiment. However, the increasing performance of modern computers coupled with the improve-
ment of the numerical analysis algorithms enabled the numerical simulation to become the third
way of physics which is more and more used by physicists and engineers for fundamental or applied
studies.

The first issue involved in the numerical simulation of any physical system is the definition of a
physical model, and thereby of a level of approximation, in order to obtain the required information
about its behaviour with a given precision. For instance, the system can be described at the levels
of elementary particles, atoms and molecules, or at the meso- and macroscopic levels. A description
at a given scale can be interpreted as an averaging of the detailed descriptions obtained at the
lower levels and induces a loss of information. This succession of nested levels of description forms
a structure which could be compared to onion rings or Russian dolls. Being at a given level actually
prevents to see what is inside. The oral quote by Thibaut Vernay, “La température d’un gaz peut être
calculée en connaissant la trajectoire des ses particules. En revanche, en connaissant uniquement
la température, il est impossible de reconstruire la trajectoire des particules.”, perfectly illustrates
the loss of information induced by the choice of a given level of description.
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Moreover, once the level of description is defined, additional assumptions can be made in order
to simplify the resulting mathematical model which implies additional restrictions on the validity
domain and possibly deteriorates the accuracy. However, adequate assumptions can lead to drastic
simplifications without major accuracy drawbacks, but for a limited range of physical situations.

In a second step, the resulting equations must be solved using sufficiently accurate algorithms
in order to preserve the precision of the model. The execution of these algorithms requires their
implementation on computers which implies hard- and software issues but also places the numerical
simulation at the crossroads between physics, mathematics and computer science.

In the particular case of fluid mechanics, which is essentially the study of systems consisting
of a large number of interacting atoms and molecules, the choice of a level of approximation and
thus a level of averaging is fundamental. For instance, a description at the atomic level leads to
the definition of a discrete molecular dynamics system, the mesoscopic viewpoint leads to the
Boltzmann equations whereas the macroscopic one corresponding to a scale of representation much
larger than the mean free path of molecules leads to a system which is governed by the Navier–
Stokes equations. This last level is the one of the continuous media mechanics and is the most
common description adopted for numerical fluid mechanics.

As it relies on the continuum mechanics, the Navier–Stokes model is a system of coupled partial
differential equations. Its numerical solution requires the spatial discretization of the system in
order to retrieve a finite system of coupled ordinary differential equations which can be numerically
integrated in time. The resolution requires therefore to discretize the equations in both space and
time.

1.4 Turbulence modelling

The flow simulation at the macroscopic level requires to find the solution of the Navier–Stokes
equations. This implies the use of a space-time discretization which enables the direct numerical
simulation of all the space- and time-scales present in the flow dynamics. This constraint may turn
out to be of prohibitive computational cost when the solution of the problem contains a broad
range of scales, which is the case for turbulent flows.

In order to solve the macroscopic equations in a turbulent flow case, the computational cost
must be reduced by decreasing the number of computed space- and time-scales of the flow. This
can only be achieved by the introduction of a coarser level of approximation than the macroscopic
one represented by the Navier–Stokes model. Some scales shall be directly computed by numerical
simulation while the others are modelled. However, the non-linearity of the equations reflects the
dynamic coupling among all scales of the solution which implies that they can not be computed
independently. Therefore, an accurate representation of the resolved scales requires the modelling of
both unresolved scales and their interaction with resolved ones. Since this modelling represents the
action of a large number of scales with those that are resolved, it only reflects the global or average
action representing therefore a higher or coarser level of approximation. Several approaches have
been introduced in order to decrease the number of degrees of freedom of the simulation and the
choice among them also depends on the desired precision and required information on the system
dynamics.

In engineering applications, the mostly used approach, referred to as the Reynolds averaged nu-
merical simulation [52], consists in the calculation of the statistical average of the solution. In this
framework, the fluctuations are not represented by the numerical simulation and are only accounted
by a turbulence model. Assuming the ergodicity [15] of the system, the statistical averaging opera-
tion is often associated with a time-averaging to avoid the simulation of the temporal dynamics of
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the system.

An alternative approach is the large eddy simulation which relies on the computation of the
large flow structures directly and the modelling of the small ones, the scale separation being for-
mally performed by filtering the macroscopic equations. Large-scale structures are obtained by the
computed flow dynamics while the behaviour of subgrid scales and their interaction with large ed-
dies are modelled by the additional terms arising from the filtering of the equations. The expression
of the additional terms as functions of the resolved quantities is referred to as subgrid modelling.

1.5 Objectives and outline

Like for the model proposed by Joseph Smagorinsky [54] and its multiple subsequent variants,
subgrid modelling in large eddy simulation classically relies on a functional modelling strategy,
that is on the use of physical assumptions about the behaviour of the subgrid scales in order to
approximate their action on the resolved ones. Most of these models only address the energetic
aspects of the interaction thereby restricting the modelling to the balance of energy transfers
between both scale ranges. The closure of these models is usually based on the theories of isotropic
and homogeneous turbulence introduced by Andrëı Kolmogorov in the case of Newtonian fluids.

In the particular context of fluid mechanics, turbulence can occur in very simple flow geometries,
for fluids of simple rheology and without the need for additional flow conditions such as temperature
gradients or chemical reactions. In standard cases, intuitive assumptions on the physics of the
subgrid scales coupled with the classical theories of turbulence can be well suited for subgrid
modelling. However, the trend in fluid mechanics is to study complex flows of complex fluids which
reveals a substantial need for improvement in terms of subgrid modelling. For instance, in cases
such as elastic or plasmas turbulence, the physics of the subgrid scales is not clearly identified,
certainly not as intuitive and the corresponding theories are not available yet.

The question is how to proceed when the functional modelling, which imposes a known behaviour
to the subgrid scales of the flow, is not possible. For instance, this issue could be overcome by the
use of deconvolution-based models which aim at the partial recovery of the original quantities from
their filtered counterparts. In principle, functional modelling is avoided by attempting to invert the
filtering operator applied to the macroscopic equations. These models are purely algorithmic and
do not require to resort to any a priori assumption about the function of the subgrid scales. But
as noted by Julian Domaradzki and Nikolaus Adams [18], “Since the need for the physical ( i.e.
functional) models is removed, this approach seems to be more promising than the classical models.
However, this promise is not fulfilled if the effects of numerical discretization are not accounted for”.
Indeed, their advantage is completely lost since deconvolution models are usually supplemented by
classical approaches based on functional modelling in order to account for the effects of the scales
lost by numerical discretization on the resolved ones. This secondary modelling procedure actually
prevents their use in complex situations, that is when the physics of the subgrid scales is not clearly
identified.

The driving motivation of this work is to pave the way towards the suppression of the need for
functional modelling which would allow to extend the use of deconvolution-based models to the
large eddy simulation of more complex flows and fluids. But this way is certainly very long and
probably not as straight as the one presented hereafter. However let us assume, but not swear,
that we tell the truth and only the truth. . . Hence, considering the effects of the coarser numerical
discretization as the only effective filter applied to the macroscopic equations, an interpretation to
the use of deconvolution models as a way to approximate the effect of the scales lost by numerical
discretization on the resolved scales of the flow is demonstrated. Consequently, a new category
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of deconvolution-based subgrid models, the grid filter models, is defined and gives a theoretical
justification to the use of deconvolution models for the entire subgrid modelling. In this perspective,
a general method for the computation of the convolution filter which models the effect of the grid
filter on the computable scales of the solution is proposed, thereby addressing the key issue of the
numerical discretization in large eddy simulation.

The first step towards the validation of this subgrid modelling approach is the large eddy
simulation of an inertial turbulence problem. Among such classical problems, the focus is put on
the incompressible flow of a Newtonian fluid in a lid-driven cubical cavity. The direct numerical
simulation of the flow is due to Emmanuel Leriche and Spiros Gavrilakis and detailed in [36].
Subgrid modelling in the case of a flow with coexisting laminar, transitional and turbulent zones
such as the lid-driven cubical cavity flow represents a challenging problem, despite the simplicity
of the geometry. Moreover, as the flow is confined and recirculating, any under- or over-dissipative
character of the subgrid model can be clearly identified.

In order to extend the validity domain of the grid filter models, the large eddy simulation of
an elastic turbulence problem is envisaged. Numerical simulations of elastic turbulence are lim-
ited by numerical instabilities which are particularly stringent at high elasticity. Moreover, the
computational burden resulting from the required space-time resolutions is significantly increased
as compared to the Newtonian case. Consequently, available direct numerical simulations are re-
stricted to periodic and two-dimensional cases. Among these studies, the large eddy simulation of
the viscoelastic Kolmogorov flow, already investigated by direct numerical simulation by Stefano
Berti et al. in [5], is chosen as benchmark problem.

1.6 Software projects

As previously detailed, numerical simulation is multidisciplinary since it requires a knowledge in
physics to deal with the modelling issues, in mathematics to develop or properly choose the resolu-
tion algorithms as well as in computer science for their implementation and execution on computers.
The latter tasks are often completely neglected in the presentation of a work related to numerical
simulation although the resolution of a particular problem commonly requires many thousands of
hours for programming and computation. Moreover, modern computer architectures rely on dis-
tributed computing and memory units which are interconnected by a communication network. In
order to fully benefit from the computational power, the algorithms must be parallelized in an
efficient way which implies major additional issues.

The large eddy simulations of the lid-driven cavity flow reported hereafter are performed using
the open source code speculoos which stands for spectral unstructured elements object-oriented
system. The development of this code was initiated by Michel Deville, Vincent Van Kamenade and
Yves Dubois-Pèlerin [19]. It is an object-oriented toolbox written in C++ for the numerical solution
of partial differential equations by the spectral and mortar elements method. For instance, specific
modules for the simulation of Newtonian and viscoelastic fluid flows, multiphase flows and fluid-
structure interaction have been developed. It can be used in sequential and parallel versions with
the Linux environment.

The direct and large eddy simulations of the viscoelastic Kolmogorov flow are performed with
the open source code furka, which stands for fourier runge-kutta. This project was initiated
by Christoph Boeckle and Marc Habisreutinger in 2008 at the Ecole Polytechnique Fédérale de
Lausanne with the aim of implementing the Fourier pseudo-spectral method for the spatial dis-
cretization coupled with adaptive Runge-Kutta schemes for the integration of ordinary differential
equations. The first version of the code was written in Fortran 90 by Christoph Boeckle for the
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direct numerical simulations of viscoelastic fluid flows reported in [7]. The extension for large eddy
simulation and the parallel version of the code were subsequently written by Marc Habisreutinger
and also translated into the Octave/Matlab language. The code has been originally developed on
the Pleiades21 commodity cluster, then ported on the Cadmos Blue Gene/P2.

1http://pleiades.epfl.ch/
2http://bluegene.epfl.ch/
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Chapter 2

Governing equations

As suggested by the title of this chapter, avoiding the use of equations will be much more difficult.
Indeed, this chapter contains more that sixty equations which means, following Hawking’s law, that
the proportion of potential readers would be reduced to 2−60. If this law was true, writing this work
would not be very useful and even the author would not be sure to reach the end of the chapter. . . In
reality, the minimum amount of readers is seven and their names are actually available on the front
page of this document.

The first issue involved in the numerical simulation is the definition of a mathematical model
which allows to obtain the relevant information about the behaviour of the physical system. In
the framework of numerical fluid dynamics, the aim is usually to compute the evolution of the
macroscopic variables of the flow, such as the velocity, the temperature or the density. Therefore,
the description presented hereafter relies on the continuous media mechanics and the macroscopic
description which leads to a system of coupled partial differential equations, referred to as the
Navier–Stokes model.

The equations used for the large eddy simulation, also referred to as filtered equations and
describing the system at a coarser level, are derived in a general framework by filtering in space the
equations resulting from the macroscopic description. This allows to deal with any set of equations
and not only the particular Navier–Stokes model considered hereafter.

2.1 Modelling framework

As illustrated in figure 2.1, the laws of actual physics are able to describe a relatively wide range of
phenomena which stretches from the length scale of elementary particles to the one of the universe,
and from the slowest velocity scale to the one of particles travelling close to the speed of light c.
While the aim is to discover universal laws, its theories usually lie in specific sub-domains of validity,
sometimes for the sake of simplicity, some other times because of our incomplete understanding of
nature.

Fig. 2.1: Modern physics fields. Courtesy of wikipedia.org.
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Loosely speaking, the laws of classical mechanics accurately describe systems whose length
scales are much greater than the atomic one and whose motions are much slower than the speed of
light. The motion of a particle in a d-dimensional space is described by its position

x(t) = (x1, x2, . . . , xd) (2.1)

expressed as a function of time t which is supposed to be absolute, that is independent of the
reference frame. While the number of space dimensions of our universe seems to be fixed to three,
this quantity is introduced as a parameter since bi-dimensional fluid flows are also studied in this
work. In the context of classical mechanics, the velocity of a particle is defined as the ratio

ẋ(t) = lim
∆t→0

∆x

∆t
=
dx

dt
, (2.2)

where ∆x and ∆t respectively represent the variation of position and the corresponding time-
interval.

An accurate description of systems whose components have speeds approaching the speed of
light requires the use of relativistic mechanics, which basically replaces the notions of absolute time
and space with a coupled space-time. The motion of a particle is described as a succession of events
in a space-time of d+1 dimensions. The position of the particle is thus expressed by

s = (ct, x1, x2, . . . , xd). (2.3)

The description at the atomic and sub-atomic scales relies on the quantum mechanics which
introduces a probabilistic description of the particles and of their interactions, while the quan-
tum field theory aims at the unification of the quantum and relativistic mechanics, that is to the
unification of the most general laws known to date.

As detailed by this brief and schematic overview, the description of a system requires to define
a level of description, that is considering the phenomena at a given length scale, and to consider
additional assumptions such as the characteristic speed as compared to the speed of light.

Although recent and very promising techniques used for the simulation of fluid flows rely on
a mesoscopic description of the phenomena and the resolution of the Boltzmann equation, the
common framework is still the continuous media mechanics. Moreover, the focus is put on flows
whose local velocity is much smaller than the speed of sound and thereby negligible as compared
to the speed of light.

In this case, the aim is to compute the time-evolution of the state variables of the flow in a
given space domain, since space and time can be considered as decoupled. This can be done using a
material or Lagrangian description which means that the physical phenomenon is studied describing
each material particle of the flow, as introduced in (2.2) for the velocity. Conversely, the spatial or
Eulerian description relies on the observation of the events occurring at a fixed point of space. In
this case the velocity becomes

v(x, t) = (ẋ1(x, t), ẋ2(x, t), . . . , ẋd(x, t)), (2.4)

which expresses the velocity of the particle which is at the position x at time t. The other state
variables of the flow such as the temperature or the density are described in the same way.

2.2 Conservation principles

In the framework of classical mechanics and the continuous description, the governing equations
arise from the general conservation principles expressed in a continuous way in space and time.
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Focusing on isothermal flows with a local velocity much smaller than the speed of sound, the fluid
motion can be described by the principles of conservation of mass and momentum without the need
to introduce the conservation of energy.

2.2.1 Conservation of mass

In classical mechanics, the general principle of mass conservation simply states that mass can not
be created, destroyed or converted, it remains constant at all times. From a material point of view,
this can be expressed following the material domain Ω which deforms in time as

d

dt

∫

Ω(t)
ρ dV = 0, (2.5)

where ρ and dV are the density and a differential element of the domain. This relation states that
the mass contained in any time-deforming material volume is conserved. The material formulation
can be converted into a spatial description using the Reynolds transport theorem [9], which gives

∫

Ω

∂tρ dV +

∫

∂Ω
ρv · n dS = 0, (2.6)

with ∂t the partial derivative with respect to time and where n is the outward normal unit vector
to the elementary surface dS of the spatial domain. In other words, this equation expresses that
the mass variation inside any spatial domain is due to the mass flux through its boundaries. The
surface integral can be replaced by a volume integral using the divergence theorem, which leads to

∫

Ω

∂tρ+∇ · (ρv) dV = 0, (2.7)

where ∇ = (∂x1
, ∂x2

, . . . , ∂xd
) and which must be verified for any elementary volume in such a way

that

∂tρ+∇ · (ρv) = 0, in Ω, (2.8)

thereby expressing the local or differential form of the conservation of mass.

2.2.2 Conservation of linear momentum

The principle of momentum conservation, also known as the Newton’s second law, states that
the momentum rate of change is due to the sum of the applied forces. Applying this principle to a
time-dependent material domain and splitting the forces into the volume and surface contributions,
represented by the vectors g and t(n) respectively, reads

d

dt

∫

Ω(t)
ρv dV =

∫

Ω(t)
g dV +

∫

∂Ω(t)
t(n) dS. (2.9)

For instance, the volume force can be due to gravity or to an electromagnetic field if the fluid
contains charged particles, whereas the contact forces can arise from the contribution of the pressure
or the surface tension. Using the Reynolds transport theorem and the Cauchy’s theorem [9] for the
existence of a stress tensor σ, such that the contact forces can be expressed as t(n) = σ ·n, yields

∫

Ω

∂t(ρv) dV +

∫

∂Ω
ρvv · n dS =

∫

Ω

g dV +

∫

∂Ω
σ · n dS, (2.10)
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where (vv)ij = vivj represents a dyadic product. Finally, the application of the divergence theorem
gives ∫

Ω

∂t(ρv) +∇ · (ρvv) dV =

∫

Ω

g +∇ · σ dV, (2.11)

which in the local form reads

∂t(ρv) +∇ · (ρvv) = g +∇ · σ, in Ω. (2.12)

2.2.3 Conservation of angular momentum

This conservation principle states that the rate of change of the angular momentum of a deforming
material region is equal to the sum of applied torques. In other words, this principle reads

d

dt

∫

Ω(t)
ρx× v dV =

∫

Ω(t)
x× g dV +

∫

∂Ω(t)
x× (σ · n) dS. (2.13)

After some algebra, omitted for the sake of conciseness, it can be shown that this principle implies
the symmetry of the Cauchy stress tensor, that is

σ = σT, (2.14)

where the superscript T denotes the transpose operation.

2.3 Incompressible and isothermal Navier–Stokes equations

The relative density variations inside a fluid flow are proportional to the square of the Mach number
which is defined as the ratio of the local velocity and the local celerity of sound [51]. For sufficiently
low values, that is much smaller than the unit, the general Navier–Stokes model can be replaced
by its low Mach-number approximation.

In the sequel, the focus is put on the limit and ideal situation of vanishing Mach number, which
means that the local velocity is assumed to be infinitely smaller than the celerity of sound, and
which leads to the incompressibility assumption

ρ(x, t) = const. (2.15)

Moreover, focusing on isothermal flows, the general macroscopic model reduces to the so-called
incompressible and isothermal Navier–Stokes equations which are obtained by applying the in-
compressibility assumption (2.15) to the equations of mass and momentum conservation (2.8) and
(2.12)

∇ · v = 0, (2.16)

∂tv +∇ · (vv) = ρ−1(g +∇ · σ). (2.17)

This set of equations must only be augmented by a constitutive equation describing the rheology of
the fluid to express the Cauchy stress tensor as function of the flow variables and the macroscopic
properties of the fluid.

The Cauchy stress tensor is split into the spherical contribution due to the pressure p and the
contribution represented by the extra-stress tensor τ which characterises the fluid

σ = τ − pI. (2.18)
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In the case of compressible flows, the pressure is obtained through an equation of state such as the
ideal gas law whereas, under the incompressibility assumption, it can be determined solving the
conservation laws (2.16) and (2.17) directly.

In order to achieve the closure, the Newton’s law is introduced to describe the rheology of
Newtonian fluids while the Oldroyd-B constitutive model is considered in the case of polymer
solutions.

2.3.1 Newtonian fluids

In the case of Newtonian fluids, the extra-stresses reduce to a shear contribution which is pro-
portional to the velocity gradient, the proportionality constant being the dynamic viscosity of the
fluid µ. By definition, this kind of fluids, such as air or water, obeys Newton’s law which, using the
incompressibility assumption (2.15), reduces to

τn = 2µγ̇ = µ(∇v +∇vT), (2.19)

with γ̇ the rate-of-strain tensor which is implicitly defined by this relation. The symmetry of the
Cauchy stress tensor is trivially demonstrated since τn is symmetric and the pressure contribution
is diagonal. The splitting (2.18) and the substitution of the Newtonian rheological model (2.19)
into the expression of momentum conservation (2.17) allows to obtain the closed set of equations

∇ · v = 0, (2.20)

∂tv +∇ · (vv) = ν∇2v + ρ−1(g −∇p), (2.21)

where ν = µ/ρ is introduced as the kinematic viscosity since the density is assumed to be constant
in space and time. The velocity field must be solenoidal as imposed by equation (2.16) arising from
the principle of mass conservation.

2.3.2 Oldroyd-B fluids

In order to deal with the rheology of polymer solutions, the extra-stress tensor is first split as

τ = τn + τp, (2.22)

where τp represents the additional contributions due to the polymer molecules. The simplest models
for the description of such solutions are those of Oldroyd type. These models can be derived from
a molecular description considering a suspension of dumbbells, which represent a simplified model
of the polymer chains, in a Newtonian solvent.

As represented in figure 2.2, consider an isolated dumbbell, consisting of two beads of mass
mi and mj whose interaction is represented by the force F, and immersed in a Newtonian fluid
at positions xi and xj . The distance between the beads is denoted by δ = xj − xi. As detailed
in [45], Larson [34] and Bird et al. [6] relate the extra-stress tensor defined in (2.18) to the ensemble
average of the dyadic product δF which is defined as the conformation tensor

χ = 〈δF〉. (2.23)

The ensemble averaging enables the transition from the microscopic to the macroscopic description
and thereby induces the loss of the information on the state of each dumbbell. In other words,
the conformation tensor can be computed knowing the state of each dumbbell. However, knowing
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Fig. 2.2: The dumbbell model.

the conformation tensor does not allow to retrieve the state of the dumbbells since the ensemble-
averaging operation erases this information.

In particular, the focus is put on the Oldroyd-B model which was first derived in the early
1950s [43] from a macroscopic viewpoint. Considering a linear Hookean spring which links the
beads, the force is simply proportional to the gap from the equilibrium state, the proportionality
constant being the stiffness of the spring. In this case, the governing equations can be expressed in
terms of the conformation tensor by

∇ · v = 0, (2.24)

∂tv +∇ · (vv) = ν∇2v +
ην

λ
∇ · χ+ ρ−1(g −∇p), (2.25)

∂tχ+∇ · (vχ) = ∇vT · χ+ χ ·∇v − λ−1(χ− I), (2.26)

where λ is the stress-relaxation time, while the dimensionless parameter η represents the additional
contribution of the polymers to the viscosity of the solution

νt = (1 + η)ν. (2.27)

In this particular case, the extra-stress tensor is related to the conformation tensor by the linear
expression

τ = 2µγ̇ + λ−1(χ− I), (2.28)

where the first term is due to the Newtonian solvent, while the second one represents the additional
stresses due to the polymer.

Considering that an ideal Hookean spring links the beads, the dumbbell can be infinitely
stretched which induces an infinite linking force and unphysical predictions. Despite this major
drawback and the major numerical issues encountered using this model, it is chosen because of its
linearity with respect to the conformation tensor. This property allows to obtain analytical results
such as those reported in chapter 6 which are particularly useful in a validation process.

More physically consistent models can be obtained from the same theory but imposing a more
realistic interaction of the beads.

2.3.3 Dimensional analysis

The incompressible and isothermal Navier–Stokes equations derived in the Newtonian case (2.20)-
(2.21) and for Oldroyd-B fluids (2.24)-(2.26) form a dimensional set of partial differential equa-
tions. The introduction of the corresponding sets of dimensionless equations allows to get insight



15

into the relative importance of the physical phenomena involved in the flow. As indicated by the
Buckingham-Π theorem [40], the process of non-dimensionalization is not unique and depends on
the definition of the dimensionless variables.

For instance, considering as references the length L, the velocity V and the inertial time L/V,
the stresses are scaled by the dynamic pressure ρV2 and the volume force by V2/L. The introduction
of these dimensionless variables into the Navier–Stokes equations (2.20)-(2.21) yields

∇ · v = 0, (2.29)

∂tv +∇ · (vv) = Re−1
∇

2v + g −∇p, (2.30)

where the Reynolds number,

Re =
VL

ν
, (2.31)

is the ratio of inertia to viscous stresses which characterises a particular flow from a physical
viewpoint. Moreover, the Reynolds number also measures the non-linear character of the equations
since the convective term becomes dominant at large values.

Alternatively, considering as reference the diffusion-time L2/ν, the stresses are scaled by ρνV/L
and the equations (2.24)-(2.26) become

∇ · v = 0, (2.32)

∂tv +Re ∇ · (vv) = ∇
2v +

η

De
∇ · χ+Re g −∇p, (2.33)

∂tχ+∇ · (vχ) = ∇vT · χ+ χ ·∇v − 1

De
(χ− I), (2.34)

where the Deborah number,

De =
λV

L
, (2.35)

represents the ratio of the stress relaxation-time to the inertial time and thereby the importance
of memory effects in the flow, that is the elasticity of the fluid. In this case, the non-linearity of
the equations is proportional to both the Reynolds and Deborah numbers. Moreover, in order to
fully characterise such fluid flows, the relative contribution of the polymers to the viscosity of the
solution is required.

The Deborah number is a perfect illustration that everything flows, as quoted by Herakleitos
of Ephesus. For large Deborah values, the inertial time L/V becomes small as compared to the
stress relaxation-time. This means that the flow process stretches over a very long time period
which could be too long to observe within a given time-scale. Such is the case of the formation of
mountains or the movement of tectonic plates which are not observable in the time-scale of human
life since they behave almost like perfectly elastic solids, that is with a relaxation time which tends
to infinity.

2.4 Boundary and initial conditions

The mathematical models described above are not universal and are thus only valid to describe a
particular range of events. Therefore, from a physical viewpoint, boundary conditions must be added
to account for the interactions of this sub-domain of validity with the rest of the space-time. They
are also introduced in order to restrict the size of the problem to a given sub-domain if the solution
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is known on a given boundary. Boundary conditions are often associated to a constraint in space
which results from the asymmetric description of the space-time adopted in classical mechanics.

Physical processes at the microscopic level are believed to be either entirely or mostly time
symmetric, meaning that the theoretical statements that describe them remain true if the direction
of time is reversed. However, at the macroscopic level, it often appears that there is an obvious
direction of time. This implies that only initial conditions are imposed. From the relativistic view-
point, the initial conditions must satisfy the boundary conditions to build a coherent event in the
space-time.

For instance, consider the simplest case of a water flow in a pipe. Because of the assumptions
considered for their derivation, the Navier–Stokes equations are only valid in the fluid domain.
Boundary conditions are therefore required to describe the interaction between the fluid and the
walls. Moreover, the relevant part of the physics to be studied in this framework is enclosed inside
the pipe. Because of the fluid viscosity, the fluid sticks to the wall which allows to know the
solution to impose on the boundaries of the fluid domain. Moreover, the boundary conditions must
be supplemented by the initial state of the flow variables which is required to compute their time-
evolution.

Considering the same problem for an Oldroyd-B fluid also requires to impose appropriate bound-
ary conditions for the conformation tensor in order to obtain a well-posed problem, which still
remains an open question. The reader may be referred to [45] for a discussion on this particular
topic which extends beyond the limited scope of this work.

2.5 Large eddy simulation approximation

As compared to the macroscopic level, the coarser approximation introduced by the large eddy
simulation relies on the computation of the large flow structures directly and the modelling of
small ones. The basic idea is to consider that the large eddies are flow-dependent whereas the small
structures have a more universal behaviour which enables them to be more easily modelled.

The scale separation is formally performed by filtering the equations which describe the dynam-
ics at the macroscopic level. This operation requires the formal definition of the filtering operation
as well as the introduction of the commutation operators.

2.5.1 Definition of the filter

A common way to express the removal of the small scales in large eddy simulation is to represent the
filtering operation by a convolution product. The resolved part u(x, t) of the space-time dependent
field u(x, t) is formally defined by the relation

u(x, t) =

∫ +∞

−∞
u(x′, t′) K(x− x′, t− t′) dx′dt′, (2.36)

where the convolution kernel K characterises the filter. Although some attempts were made in the
field of the so-called temporal large eddy simulation, see for example Pruett et al. [48], the focus
is put on large eddy simulations solely based on spatial filtering. In other words, time-filtering is
assumed to be negligible which implies the use of a temporal discretization which captures all the
time-scales of the flow. In this case, the general definition of the filtering operation (2.36) reduces
to

u(x, t) =

∫ +∞

−∞
u(x′, t) K(x− x′) dx′, (2.37)
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which can also be written in the condensed form

u = K ⋆ u, (2.38)

where K⋆ is the operator describing the filtering operation (2.37), with the convolution kernel K.
The unresolved or subgrid part u′ is defined as the complement

u′ = (I − K) ⋆ u, (2.39)

with the identity convolution kernel I = δ(x− x′) and δ the Dirac distribution, which satisfies the
decomposition of the variable such that u = u+ u′.

2.5.2 Fundamental properties of the filter

In order to be able to work on the equations after the application of a filter such as (2.37), the
following properties are required.

Conservation of constants, ∫ +∞

−∞
K(x) dx = 1. (2.40)

Linearity,

u+ w = u+ w, cu = c u, c ∈ R. (2.41)

Commutation with differentiation,

∂siu = ∂siu, ∀i. (2.42)

The linearity property is automatically satisfied since the convolution product satisfies (2.41) inde-
pendently of the convolution kernel.

2.5.3 Projection operators

An application P is defined as a projector if P2 = P ◦ P = P which is idempotent since it satisfies
the general relation

Pn = P ◦ P ◦ . . . ◦ P = P, ∀n ∈ N+. (2.43)

Such operators are of crucial importance in the case of the grid filter models introduced in this
work.

However, the filters verifying the properties detailed in section 2.5.2 are not in general projective
operators. In other words, this implies that

u = K ⋆ ◦ K ⋆ u 6= K ⋆ u = u. (2.44)

When K⋆ is not projective, the filtering can be interpreted as a change of variable, can be inverted
and induces no loss of information. The kernel of the application is then reduced to the null element,
i.e. ker(K⋆) = {0}.
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2.5.4 Commutation operator

The derivation of the large eddy simulation equations in a general framework requires the use of
the commutator and its properties are useful for the derivation of the subgrid models. Let f , g and
h be three operators. The commutator of f and g applied to a given variable u is defined as

[f, g](u) = f ◦ g(u)− g ◦ f(u), (2.45)

and satisfies the properties of skew-symmetry, Leibniz and Jacobi which are respectively given by

[f, g] + [g, f ] = 0, (2.46)

[f ◦ g, h]− [f, h] ◦ g − f ◦ [g, h] = 0, (2.47)

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0. (2.48)

As an example, the Leibniz identity (2.47) is referred to as the multiplicative Germano identity in
large eddy simulation and is applied for the computation of the subgrid viscosity constant in the
dynamic version of the Smagorinsky model [20].

2.5.5 Filtered equations

A large class of governing equations, and for instance those considered for Newtonian fluids (2.20)-
(2.21) and for Oldroyd-B fluids (2.24)-(2.26), can be recast in the generic form

M ∂tu+A(u) = f , (2.49)

introducing M as a second-order mass tensor, identifying the unknown as u ≡ (p,v) in the New-
tonian case and as u ≡ (p,v,χ) for Oldroyd-B. The operator A represents the corresponding
differential operator in space and f the data which do not depend on the state of the system. As
an example, considering the Navier-Stokes equations in either the Newtonian or Oldroyd-B case,
the mass tensor can be illustrated by the block-matrix representation

M =

(
0 0

0 I

)
. (2.50)

The singularity of the mass tensor is due to the mass conservation equation which becomes a
constraint in the incompressible case. Consequently, the pressure is not given by an evolution
equation but is determined in order to constraint the velocity field to be solenoidal.

The large eddy simulation equations are obtained by applying the convolution filter K⋆ to the
generic governing equations (2.49), which formally reads

M ∂tu+A(u) = f , (2.51)

where the mass tensor is assumed to be constant in space. This equation may also be rewritten in
the form

M ∂tu+A(u) = f + [A,K⋆](u), (2.52)

introducing the subgrid commutator

[A,K⋆](u) = A(u)−A(u). (2.53)

The closure of the filtered equations (2.52) requires the subgrid commutator to be expressed in terms
of the filtered field which reflects the required modelling of the subgrid scales and the interaction
among all space-scales of the solution.
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An illustration of subgrid commutator is obtained by filtering the Navier–Stokes equations in
the Newtonian case

[A,K⋆](u) =
(

0
∇ · (v v − vv)

)
. (2.54)

The first term of the commutator vanishes by linearity of the equation of mass conservation (2.20),
whereas the second contribution arise from the non-linear and non-commuting term of (2.21). In
the case of the Oldroyd-B constitutive equation (2.26) which comprises three non-linear terms, the
filtering operation produces an additional six-term contribution

[A,K⋆](u) =




0
∇ · (v v − vv)

∇ · (v χ− vχ)− (∇vT · χ+ χ ·∇v) + (∇vT · χ+ χ ·∇v)


 . (2.55)

In section 1.2, a phenomenological characterisation of turbulence has been discussed. In the large
eddy simulation framework, a turbulent flow can be defined as having a non-vanishing subgrid part
which implies a non-vanishing subgrid commutator in the filtered equations. In other words, this
means that the coarser level of approximation induces a loss of information which shall be at least
partially retrieved in a modelling process.

2.6 Why turbulence?

From a physical viewpoint, incompressible and isothermal flows of Newtonian and Oldroyd-B fluids
are mainly characterised by the dimensionless numbers of Reynolds and Deborah. As detailed in
section 1.2, the onset of inertial and elastic turbulence occurs at high values of the Reynolds and
the Deborah numbers which corresponds, from a mathematical viewpoint, to a strong non-linear
character of the equations. Moreover, the commutator of the filtered equations arises from the
non-linear terms of the governing equations.

As a matter of fact, turbulence appears as a paradigm of non-linearity which translates the
reported quote by Werner Heisenberg about the origins of turbulence onto the origins of non-
linearity. This link can be illustrated by the following trivial example. Consider the one-dimensional
Burgers equation given by

∂tv = ν ∂2xv − v ∂xv. (2.56)

Assuming that the solution at a given time t reads

v = cos(kx), (2.57)

where k is the wave-number, the time-derivative of the solution becomes

∂tv = −νk2v + k

2
sin(2kx), (2.58)

where the non-linear contribution gives rise to the growth of a term with double spatial frequency.
This term will in turn generate higher frequency structures and thereby start an energy cascade
process referred to as the Richardson cascade in fluid mechanics. The balance between the produc-
tion of high frequencies and their dissipation only occurs at high wave-numbers depending on the
value of the viscosity, as suggested by equation (2.58). More detailed considerations on this topic
can be found in [33].

Despite its strong assimilation to fluid mechanics, the turbulence phenomenon is therefore ex-
pected to appear in any physical system which is governed by strongly non-linear equations.
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Chapter 3

Numerical approximation of partial

differential equations

After the definition of a model describing the dynamics of the system, the second issue involved
in numerical simulation is the solution of the corresponding equations with appropriate algorithms
and sufficient accuracy in order to preserve the level of precision required on the model. Since
they are based on the continuous media mechanics, the Navier–Stokes equations and their filtered
counterpart used for the large eddy simulation are systems of coupled partial differential equations.
Their numerical solution requires the spatial discretization in order to retrieve a finite system of
coupled differential and algebraic equations which can be numerically integrated in time.

The grid filter models which are briefly presented in the introduction and further detailed
in chapter 4 rely on the interpretation of the coarser spatial discretization used for large eddy
simulation as the only effective filter applied to the governing equations. As a consequence, subgrid
modelling explicitly depends on the spatial discretization method. For the sake of generality, the
aim is therefore to provide a general method for the computation of the grid filter associated with a
large range of discretization methods and for the modelling of its effect on the computable scales of
the solution. This requires the unified presentation of a large class of methods used for the spatial
discretization of partial differential equations. The presentation is restricted to general and useful
elements and the reader may be referred to [50] for more detailed aspects.

After this general presentation, the focus is put on the spectral/finite elements methods and the
Fourier collocation method which are respectively used for the simulation of the lid-driven cubical
cavity flow presented in chapter 5 and for the Kolmogorov flow in chapter 6. In both cases, suitable
filtering techniques required for subgrid modelling in the case of the grid filter models are presented.

In order to solve the ordinary differential equations arising from the spatial discretization, the
methods used in the simulations reported hereafter are only briefly presented since time-integration
algorithms do not play any role for subgrid modelling in the case of the grid filter models, as assumed
in equation (2.37).

3.1 General presentation

Classical methods used for the spatial discretization of partial differential equations, such as the
finite volumes, the finite/spectral elements and the Fourier methods, are either implicitly or explic-
itly based on the definition of a finite dimensional space of basis functions in order to approximate
the variables as a linear combination of the basis elements, often referred to as shape functions. The
difference among these methods essentially relies on the definition of the basis and the formulation
of the fundamental equations.
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3.1.1 Formulation

A large class of partial differential equations systems can be written in the following form which is
recalled from equation (2.49)

M ∂tu+A(u) = f , (3.1)

also referred to as the strong formulation and which expresses the conservation and constitutive laws
at the local scale. The methods based on this formulation are referred to as collocation methods.

The equations can also be expressed with an integral formulation which is obtained by the
introduction of a scalar product with a test function w and by the integration over the whole
domain, which yields

∫

Ω

[M ∂tu+A(u)] ·w dV =

∫

Ω

f ·w dV, ∀w. (3.2)

The methods relying on this formulation are referred to as weighted residual methods. Depending
on the functional space to whom the test functions belong, different approaches can be defined.
For instance, the Galerkin method is retrieved choosing the test functions in the same space as
the shape functions. Moreover, an integration by parts is performed on the integral formulation
in order to obtain the so-called weak formulation and thereby enlarge the functional space of the
solution.

Alternatively, the equations can be expressed in the conservative formulation which is derived
from the strong formulation by integration over the domain and using the divergence theorem in
order to replace the volume integral of the spatial operator by a surface integral

∫

Ω

M ∂tu dV +

∫

∂Ω
F (u) · n dS =

∫

Ω

f dV, (3.3)

where F (u) represents the fluxes of the variable through the boundary of the domain and which
implies A = ∇ · F . This formulation is mostly used for the finite volumes and the discontinuous
Galerkin methods. It can also be retrieved from the integral formulation (3.2) by imposing w = 1,
and be interpreted as a weak formulation since the maximum order of differentiation is lower as
compared to (3.1).

3.1.2 Approximation bases

In order to discretize in space the governing equations expressed in either the strong, integral, weak
or conservative formulations, usual methods rely on the definition of a space of basis functions

F = {φ1, φ2, . . . , φq, . . .} (3.4)

defined in the domain in such a way that any variable can be expressed as a linear combination
in this space. Considering a single spatial dimension for the sake of conciseness and without major
loss of generality, such an expansion can be written in the form

u(x, t) =
∞∑

j=1

uj(t)φj(x) =

q∑

j=1

uj(t)φj(x) + εx(x, t, q), (3.5)

where εx and uj represent the truncation error at order q and the modal coefficient of the expansion
associated with the basis function of order j. The difference among all the numerical methods is
related to the spatial dependence of the basis functions. For instance and as illustrated in figure 3.1,
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Fig. 3.1: Approximation bases associated to the Fourier methods (left), finite volumes (centre) and linear
finite/spectral elements (right).

the finite volumes method uses piecewise constant functions, the finite and spectral elements use La-
grange polynomials of variable degree, while Fourier methods use a hierarchical set of trigonometric
functions.

In the framework of a direct numerical simulation, the choice of the truncation parameter
is a crucial issue. From a purely mathematical viewpoint, the truncation order should tend to
infinity in order to obtain the exact solution of the governing equations. However, due to the
limited computational resources available, only a finite number of modes can be retained in order
to achieve the computation in a finite time. Moreover, if the relevant structures of the flow dynamics
extend to an infinitely small scale, the Navier–Stokes model which is based on the continuous media
mechanics is no more applicable.

Hence, the truncation parameter is chosen based on the following criteria. First, the relevant flow
structures must be represented. In the Newtonian case, this range extends from the large eddies
of the flow to the so-called Kolmogorov length-scale, that is to the structures which are mainly
responsible for the energy dissipation. Second, the truncation order must be chosen in order to
guarantee the numerical stability of the global solution algorithm. And third, the truncation error
(3.5) must remain negligible at all times as compared to the represented part of the variable. The
quality of a direct numerical simulation is certainly and closely related to the arbitrary definition
of this criteria.

In any case, assuming that these constraints are well-defined and satisfied allows to introduce
the approximation

u(x, t) ≃
q∑

j=1

uj(t)φj(x), (3.6)

where q can be a variable parameter depending on the state of the system when considering adaptive
spatial discretizations. Using the approximation (3.6) and defining a set of r interpolation points
distributed inside the computational domain

Xr = {xr1, xr2, . . . , xrr}, xri ∈ Ω, ∀i ∈ {1, . . . , r}, (3.7)

allows to express the value of the variable on each point as

ui(t) = u(xri , t) =

q∑

j=1

uj(t)φj(x
r
i), (3.8)

which are referred to as the nodal values. They can also be formulated using the following vector
expression

u = Φr
qu, (Φr

q)ij = φj(x
r
i), (3.9)

which represents the transformation operation of the variable between physical and modal spaces.
As suggested by equation (3.9), this transformation is bijective and can be inverted if the number
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of basis functions in the linear combination equals the number of interpolation points in physical
space in such a way that the transformation matrix be square. Moreover, the transformation matrix
must be regular which implies the linear independence of the basis functions. In this case, the modal
coefficients can be obtained from the nodal values by the inverse operation

u = (Φq
q)

−1u = Φq
qu, (3.10)

thereby implicitly introducing the shorthand notation

Φq
q = (Φq

q)
−1. (3.11)

3.1.3 Semi-discrete equations

The spatial discretization is performed by introducing the approximation (3.6) into equations (3.1),
(3.2) or (3.3). For any of these formulations, the resulting space-discretized equations can be written
in the generic vector form

M u̇+A u = M f . (3.12)

where the upper dot represents a time-derivative and which forms a finite set of differential and alge-
braic equations for the modal coefficients. The operator A represents in modal space the discretized
version of the differential operator A which depends on the discrete unknown u for non-linear equa-
tions, while M is the discrete and modal mass operator.

In a second step, the set of equations arising from the spatial discretization has to be integrated
in time to compute the evolution of the system. This operation is detailed in section 3.4. However,
if a steady-state solution is sought, equation (3.12) reduces to the following set of fully algebraic
equations

A u = M f , (3.13)

which may be non-linear and solved using appropriate algorithms.

3.2 Finite and spectral elements methods

According to the previous presentation, the definition of a particular discretization method essen-
tially relies on the choice of the shape and test functions and the use of a particular formulation of
the governing equations.

In this section, the aim is to give some useful details about the finite and spectral elements
methods which form a family of approximation schemes based on the Galerkin method, and usually
on the weak formulation of the problem. The reader is referred to specialised monographs such
as [17, 22] for further details.

3.2.1 Approximation basis

The basis is presented in its one-dimensional version, the extension to three dimensions being
straightforward by tensor product. It is built up on a reference parent element Ω̂ in such a way that

u(ξ, t) ≃
q∑

j=1

uj(t)ψj(ξ), ξ ∈ Ω̂ = [−1, 1], (3.14)
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and the basis functions are defined as Lagrange polynomials

ψj(ξ) =

q∏

i=1,i 6=j

ξ − ξqi
ξqj − ξqi

, (3.15)

which require the introduction of a set of q interpolation points X̂q = {ξqi } inside the parent element
for their definition.

In the case of the finite elements, the points are evenly distributed in the parent element, which
reads

X̂f
q = {ξqi } = {ξ | (1 + ξ)− 2 i−1

q−1 = 0}, ξ ∈ Ω̂. (3.16)

For the spectral elements, the set of points is chosen as the Gauss–Lobatto–Legendre nodes which
are given by the solutions of the equation

X̂s
q = {ξqi } = {ξ | (1− ξ2)∂ξLq−1(ξ) = 0}, ξ ∈ Ω̂, (3.17)

where ∂ξLq−1 is the first-order derivative of the Legendre polynomial of degree q−1. The difference
on the set of interpolation points engenders two different bases which can be qualitatively compared
in figure 3.2.
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Fig. 3.2: Lagrangian bases associated to the finite (left) and spectral (right) elements shown on the parent
element Ω̂ with the respective interpolation points and q = 6.

According to equation (3.15), the use of Lagrangian basis functions generally imposes the so-
called cardinality property

(Ψq
q)ij = ψj(ξ

q
i ) = δij , (3.18)
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which can also be observed in figure 3.2 and which means that the nodal and modal coefficients are
equal, that is

u = u. (3.19)

The Lagrange basis is therefore a nodal and not a modal basis. Consequently, the integration of
the system of differential and algebraic equations (3.12) provides the approximate solution of the
problem at the discretization points without the need to perform any transformation from modal
space. In other words, equation (3.12) is strictly equivalent to

Mu̇+Au = Mf . (3.20)

3.2.2 Semi-discrete equations

Introducing the discrete divergence and gradient operators respectively represented by D and DT,
the Navier–Stokes equations for Newtonian fluids (2.20)-(2.21) can be formally written in the form

(
M 0

0 0

)(
v̇

ṗ

)
+

(
A DT

D 0

)(
v

p

)
=

(
Mf

0

)
, (3.21)

which is not a set of ordinary differential equations but a set of differential and algebraic equations
since the mass operator is singular. This system can not be solved using standard time-integration
techniques which implies to decouple the computation of the velocity and the pressure. The de-
coupling is presented in a two-step procedure. First, applying the constraint arising from the mass
conservation to the equation of momentum conservation yields the decoupled algebraic system

(
M 0

D DM−1DT

)(
v̆

p

)
=

(
Av

Df

)
, (3.22)

where v̆ is an intermediate velocity field and which allows to compute the pressure in such a way
to maintain the velocity field solenoidal. In a second step, the time-integration of the system is
performed using

Mv̇ +DTp = M(f − v̆), (3.23)

which is of the required form (3.12) with an invertible mass operator. However, the Poisson-type
equation for the pressure in (3.22) is elliptic and requires the introduction of boundary conditions to
be solved. In order to overcome this issue, the usual algorithms, such as the Uzawa or the projection
methods [17], rely on the decoupling of the fully discretized equations following the same strategy
as the one presented here on the semi-discrete problem.

3.2.3 Filtering

As already discussed by Habisreutinger et al. in [25], filtering techniques suited to the finite and
spectral elements methods must be applicable at the element-level. Moreover, for mathematical
consistency reasons, the C0-continuity of the filtered variables across the elements is required.

For the finite and spectral elements methods, performing the filtering operations in the La-
grangian basis (3.15) would therefore seem a rather straightforward and natural choice. However,
this basis is nodal, i.e. not modal, and all the basis functions represent spatial structures of the
same size. Consequently, this choice would not allow to directly and independently act on a given
range of space-scales as required for a filtering operation.

In order to overcome this issue and satisfy the previous constraints, the filtering process re-
quires the use of an auxiliary polynomial basis whose elements form a hierarchical set of functions
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representing different length-scales. The filtering operations are therefore performed in a modal
polynomial basis which was proposed in the framework of the finite elements method and first used
by Boyd [12] as a filtering technique. The modal basis is built up on the reference parent element
Ω̂ as

φ1 =
1− ξ

2
, φ2 =

1 + ξ

2
,

φj = Lj−1(ξ)− Lj−3(ξ), 3 ≤ j ≤ q,

(3.24)

where Lj is the Legendre polynomial of degree j. As illustrated in figure 3.3 and unlike the La-
grangian nodal basis, this one forms a hierarchical set of polynomials allowing to define in an
explicit and straightforward manner a filtering operation. It is performed in the modal polynomial
space through a filtering matrix K, characterising a the convolution filter K⋆. The filtering process
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Fig. 3.3: The Legendre (left) and the modal polynomials (right) shown on the parent element Ω̂ with q = 6.

is presented in its one-dimensional version, the extension to three dimensions being straightforward
by tensor product, and reads

u = Ku = Φq
q K Φq

q u. (3.25)

The original variable is first sent from the nodal basis to the modal one, then filtered using the
modal filtering matrix and finally brought back to the nodal basis. It is worth noticing that the
transform matrix Φ

q
q depends on the distribution of interpolation points in the parent element X̂q.

This matrix is therefore not the same for the finite and spectral elements since the corresponding
interpolation points are respectively given by equations (3.16) and (3.17).

The C0-continuity of the filtered variables is preserved if and only if the filter does not affect the
values at the boundaries of the elements. As it can be noticed in figure 3.3, the only basis functions
having non-zero contributions at the boundaries are φ1 and φ2. As a consequence, in order to



28 Fourier collocation method

guarantee the C0-continuity across the elements, the filtering matrix must satisfy the property

Kij = δij , ∀i ≤ 2. (3.26)

3.3 Fourier collocation method

The Fourier collocation method relies on the strong formulation of the problem and the use of
complex trigonometric basis functions for the expression of the variables. Like in the case of the
finite and spectral elements, the presentation is restricted to the useful concepts and the reader is
referred to [14] for more details.

3.3.1 Approximation basis

The basis functions are defined in a global way over a fully periodic domain Ω = [0,L[d, where L
represents its size and d the number of spatial dimensions. Restricting the presentation to the one-
dimensional case, the generalisation to the multi-dimensional one being straightforward by tensor
product properties, the basis functions are given by

φj = cos(kjx) + i sin(kjx) = eikjx, (3.27)

with the imaginary number i =
√
−1 and the wave-number kj associated to the basis function j

defined as

kj =
2πj

L
, j ∈ Z, (3.28)

which is quantified in order to only retain the periodic functions over the length of the domain.
The variables are therefore expanded into discrete Fourier series, which reads

u(x, t) ≃
q/2−1∑

j=−q/2

uk(t)e
ikjx, (3.29)

where the shorthand notation uk ≡ uj is used considering the bijection between the wave-number
kj and the index j. The interpolation points in physical space are uniformly distributed and given
by

XF
q = {xqi } = {x | x

L − i−1
q = 0}, x ∈ Ω, i ∈ {1, . . . , q}. (3.30)

Real-valued functions in physical space such as those expected in this framework have to abide
to the symmetry property

uk = u∗−k, (3.31)

where the star denotes the complex conjugate value, in such a way that the imaginary parts of
the sum (3.29) cancel out two by two. This also shows that modes go in pairs of opposite signs to
represent the phase and thus the number of space-scales that are represented is actually divided by
two.

In this formalism, the derivative of a function reduces to the single multiplication by the corre-
sponding wave-number

∂xu(x, t) ≃
q/2−1∑

j=−q/2

ikjuk(t)e
ikjx, (3.32)

which means that the modal differentiation operatorDT is diagonal, thereby leading to considerable
simplifications. Indeed, for linear differential operators, the resulting semi-discrete equations are
decoupled in modal space, which once again showcases the close link of non-linearity and turbulence.
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3.3.2 Semi-discrete equations

Since the modal coefficients are decoupled for linear differential operators, the semi-discrete coun-
terpart of the Navier–Stokes equations (2.20)-(2.21) can be written for each modal coefficient as

v̇k + ik · vvk = −Re−1k2vk + g
k
− ikp

k
, (3.33)

ik · vk = 0, (3.34)

where k is a wave-vector. In this case, the modal coefficients are coupled by the non-linear con-
tribution in the momentum equations. This non-linear product is obtained by a pseudo-spectral
approach as detailed by Orszag in [44]. The multiplications are actually performed in physical space
and the product is transformed back to modal space, that is

vv = Φq
q(Φ

q
qv . Φ

q
qv). (3.35)

In order to avoid the aliasing errors associated with the straightforward use of this method, a
generalisation of the three-half rule presented in [14] is considered and expressed by the relation

vv = Gq
rΦ

r
r(Φ

r
qv . Φ

r
qv). (3.36)

The variables are first evaluated in physical space on r points from the modal space of size q. Then,
the product is transferred back to a modal space of size r and is finally projected through the
rectangular matrix Gq

r , of size (q, r), with

(Gq
r )ij = δij , (3.37)

onto the modal space of size q, thereby cutting off the additional high-frequency modes. The formal
definition of this operation is presented in chapter 4. In practice, the parameter r is chosen as

3q/2 ≤ r ≤ 2q, (3.38)

the standard three-half rule being recovered for the lowest value. Since multiplying two functions
with the same frequency generates a product of doubled frequency, as illustrated in equation (2.58),
it is useless to choose r > 2q, which motivates the choice of the upper limit.

Like the system (3.21), equations (3.33)-(3.34) form a set of differential and algebraic equations.
But applying the constraint arising from the mass conservation principle to the momentum equation
allows to obtain the following Poisson-type equation for the pressure

p
k
=

1

k2
ik · (ik · vvk − g

k
), (3.39)

which is equivalent to the pressure equation in (3.22). However, in this case, the periodic boundary
conditions allow for a straightforward solution of this equation and the elimination of the pressure
term in (3.33). Thus, the problem that remains is a system of ordinary differential equations which
can be solved using standard techniques.

The corresponding set of equations for the Oldroyd-B constitutive model is obtained using the
same strategy but starting from equations (2.32)-(2.34)

v̇k +Re ik · vvk = −k2vk +
η

De
ik · χ

k
+Re g

k
− ikp

k
, (3.40)

χ̇
k
+ ik · vχ

k
= γT · χ

k
+ χ · γ

k
− 1

De
(χ

k
− Ik), (3.41)

p
k
=

1

k2
ik · (ik · vvk − ik · χ

k
− Re g

k
), (3.42)

with the velocity gradient γ = ∇v also evaluated in the Fourier basis.



30 Time-integration

3.3.3 Filtering

In the case of the Fourier collocation method, the basis used to express the variables already
forms a hierarchical set of functions representing scales of different size. The filtering operations
are therefore directly performed in this basis without the need to resort to an auxiliary basis as
required for the finite and spectral elements. Thus, the filtering process formally reads

u = Ku = Φq
q K Φq

q u, (3.43)

where the modal filtering matrix K characterises the filter. This definition is formally equivalent to
(3.25) but the transformation matrices are built-up with the Fourier basis functions instead of the
modal polynomials. However, this is the occasion to explicitly express the link between the modal
and the nodal filters which is implicitly defined in the last equation

K = Φq
q K Φq

q, (3.44)

K = Φq
q K Φq

q. (3.45)

Despite its presentation in the framework of the filtering operation, the transformation rules between
the modal and the nodal forms are valid for any type of operator. Furthermore, they will be
generalised to the case of projective operators in chapter 4.

3.4 Time-integration

In order to compute the temporal evolution of the system, the semi-discrete equations (3.12) which
form a set of ordinary differential equations shall be solved numerically. Since the large eddy simu-
lations considered in this work only rely on spatial filtering, as assumed in equation (2.37), the grid
filter models do not depend on the temporal discretization but solely on the spatial discretization.
Therefore, the algorithms used in the simulations reported hereafter, that is the backward differ-
entiation formulae and the Runge–Kutta methods, are only briefly described without the need to
resort to a unified presentation. For instance, more detailed considerations can be found in [26,49].

3.4.1 Backward differentiation formulae

The large eddy simulations of the lid-driven cavity flow presented in chapter 5 are performed
using implicit backward differentiation formulae. Applying these algorithms on the semi-discrete
equations (3.12) gives the multi-step method

M(β0un+1 + β1un + . . .+ βsun+1−s) = ∆t(Mfn+1 −Aun+1). (3.46)

where s and n represent the order of the method and the time-level. More precisely,

un = u(tn) = u(t0 + n∆t), (3.47)

where t0 and ∆t are the initial time and the typical time-sampling interval. In this framework, the
choice of the order and the time-sampling directly defines the accuracy and the stability properties
of the method. The reader is referred to the monograph by Deville et al. [17] for more detailed
aspects on this topics.
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3.4.2 Runge–Kutta methods

The simulations of viscoelastic fluid flows reported in chapter 6 are performed using Runge–Kutta
methods with adaptive time-step.

Considering a general system of the form (3.12) which only includes differential equations, and
which has therefore an invertible mass operator, the system can be recast into the generic form

u̇ = h(u, t) = M−1(Mf −Au). (3.48)

Using this expression, the Runge–Kutta methods can be expressed by the general formulation

un+1 = un +∆t i(un, tn,∆t,h), (3.49)

where the increment function is given by

i =

s∑

i=1

biwi, (3.50)

wi = h(un +∆t
s∑

j=1

aijwj , tn + ci∆t). (3.51)

Hence, a given method is completely defined by the number of sub-steps s, and the coefficients aij ,
bi, ci which are usually summarised in the so-called Butcher table

ci aij
bi

≡

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
. . .

...
ck as1 as2 . . . ass

b1 b2 . . . bs

(3.52)

Three classes of Runge–Kutta methods can be distinguished. If the matrix of the coefficients aij is
upper-triangular and has null diagonal coefficients, eachwi can be explicitly computed as a function
of those already known. The method becomes diagonally implicit if the diagonal coefficients are
not null which implies the solution of s non-linear equations of the form

wi = h(un +∆t
i∑

j=1

aijwj , tn + ci∆t), (3.53)

while a non-linear system of dimension s has to be solved in the general and fully implicit case.
Since the Runge–Kutta schemes are single-step methods, the dynamic adaptation of the time-

step is straightforward if the local integration error can be efficiently estimated. Standard strategies
are based on the a posteriori estimation of the error using two Runge–Kutta schemes having the
same number of steps but a different order of accuracy. If both methods have the same coefficients
aij and ci, the wi are the same and no additional functional evaluations are required. Since only
the coefficients bi are different, the coupled method is represented by the augmented Butcher table

ci aij
bi
b̃i
ẽi

(3.54)
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with ẽi = bi − b̃i. The difference between both increment functions gives an estimate of the local
integration error which is given by

ǫt = ∆t
s∑

i=1

ẽiwi. (3.55)

Different strategies used to adapt the time-step as a function of the estimated integration error are
described in [26].

3.5 Velocity-pressure decoupling

Considering non-periodic domains, the pressure equation in (3.22) is difficult to solve since it
requires the introduction of boundary conditions. In order to overcome this issue, the velocity-
pressure decoupling is performed on the fully discretized equations. For instance, using the backward
differentiation formulae, the fully discrete system corresponding to (3.21) can be formally written
in the form (

H DT

D 0

)(
v

p

)

n+1

=

(
Mf

0

)

n+1

, (3.56)

where the source term on the right-hand side is redefined in order to include all known contributions
coming from the left-hand side of (3.46). In this particular case, the so-called Helmholtz operator
reads

H =
β0
∆t

M+A. (3.57)

In order to carry out the decoupling-error study, the previous formulation is generalised by the
introduction of an arbitrary operator Q which yields

(
H HQDT

D 0

)(
v

p

)

n+1

=

(
Mf

0

)

n+1

+

(
Mr

0

)

n+1

. (3.58)

The term r is a residual accounting for the difference between (3.56) and (3.58), and it will be
discarded in the sequel. Like for (3.22), the solution of the block decomposition of (3.58) is presented
in a two-step procedure

(
H 0

D DQDT

)(
v̆

p

)

n+1

=

(
Mf

0

)

n+1

, (3.59)

and (
I QDT

0 I

)(
v

p

)

n+1

=

(
Mv̆

p

)

n+1

. (3.60)

The intermediate velocity v̆ is not divergence-free. The second step (3.60) performs the projection to
obtain a divergence-free velocity. The system (3.59)–(3.60) covers a large class of so-called projection
techniques depending on the choice of Q. Choosing

Q = H−1, (3.61)

allows to recover the Uzawa algorithm and no decoupling error is introduced, because the two-step
projection is formally equivalent to the original system (3.56).
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However, the Uzawa algorithm is known to converge slowly at large computational expense.
Therefore, it is usual to resort to a decoupling algorithm. In this perspective, the choice of Q

directly defines the accuracy and stability properties of the algorithm. For instance, choosing

Q =
∆t

β0
M−1, (3.62)

the so-called fractional-step method of first-order time-accuracy is obtained. This method can be
very efficient if the mass operator is diagonal. This is the case for many numerical methods such
as the finite differences, the finite volumes and the spectral elements if the numerical quadrature
required for the evaluation of the weak formulation (3.2) is performed using the same Gauss–
Lobatto–Legendre points as the one used for the definition of the basis functions (3.17).

Using this method, the decoupling error does not vanish when the problem reaches a steady-
state solution. This may be detrimental, because converged solutions might depend on the time-step
and change with it. To escape from this dismal performance and remove the decoupling error for
steady problems, the fractional-step method can be modified introducing a pressure correction

(
H HQDT

D 0

)(
vn+1

pn+1 − pn

)
=

(
Mfn+1 +DTpn

0

)
+

(
Mrn+1

0

)
. (3.63)

The block decomposition of (3.63) with the operator Q given by (3.62) leads to a second order
scheme whose decoupling error vanishes for a steady solution. More details on this topic can be
found in [16, 17, 46].
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Chapter 4

Subgrid modelling

The Navier–Stokes model introduced in chapter 2 describes the fluid dynamics at the macroscopic
level whereas the filtered equations, which are used for large eddy simulation, introduce a coarser
level of approximation. Large-scale structures are obtained by the computed flow dynamics while
the behaviour of the subgrid scales and their interaction with the large eddies are modelled by the
additional terms arising from the filtering operation. The expression of these terms as functions of
the resolved quantities is referred to as subgrid modelling.

Usual approaches used for subgrid modelling, such as the subgrid viscosity models detailed
in [52], usually rely on simplified theories of turbulence which are applicable for relatively simple
flows and only available for the simplest case of the Newtonian fluids. The recent extension of
numerical fluid dynamics to the study of biological systems, plasma physics or geophysics reveals
a substantial need for improvement in terms of subgrid modelling for complex flows and complex
fluids. For such cases, the physics of the subgrid scales is not clearly understood which prevents
the use of functional models, that is to impose a known physical behaviour to the subgrid scales in
order to model their action on the resolved ones.

This issue could be overcome by the deconvolution-based subgrid models which aim at a partial
recovery of the original quantities from their filtered counterpart. In principle, functional mod-
elling is avoided by attempting to invert the filtering operator applied to the governing equations.
However, this apparent advantage is completely lost since these models are usually coupled with
auxiliary approaches, based on functional models, in order to account for the interactions with the
unrepresentable scales of the solution, i.e. not representable on the coarser spatial discretization
used for the large eddy simulation.

By interpreting the spatial discretization of the equations as the only effective filter applied in
the framework of a large eddy simulation, the grid filter models first introduced by Habisreutinger
in [24] and further detailed hereafter allow to totally suppress the need for functional modelling.
Indeed, when no explicit filter is applied but only the implicit grid filter is considered, deconvolution
models can actively contribute to subgrid modelling but in a very different way than the one
associated with large eddy simulations relying on explicit filtering. The grid filter models enable
the interpretation of deconvolution models when used with implicit filtering as a way to approximate
the effect of the grid filter on the resolved scales of the solution. This approach gives therefore a
theoretical justification to the use of deconvolution models without explicit filtering of the solution
and explains how these models can be effective in this context.

4.1 General statement of the deconvolution problem

As detailed by Domaradzki and Adams in [18], subgrid modelling in the framework of deconvolution-
based models is classically decomposed into the soft and the hard deconvolution problems which
correspond to the primary modelling performed by the deconvolution procedure and the auxiliary
modelling performed using functional approaches.
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4.1.1 Soft deconvolution problem

The deconvolution procedure is usually restricted to the reconstruction of the scales that are com-
putable with the coarser spatial discretization used for the large eddy simulation, which is referred
to as the soft deconvolution problem. In (2.52), the filtered equations were formally written in the
strong form

M ∂tu+A(u) = f + [A,K⋆](u). (4.1)

In the case of the Navier–Stokes equations for Newtonian fluids, the subgrid commutator on the
right-hand side is given by equation (2.54) while (2.55) represents this quantity for Oldroyd-B fluids.
The exact subgrid contribution appears as a function of the non-filtered field, which is not computed
when performing a large eddy simulation. This field being unknown, the idea is to approximate it
using a deconvolution procedure such as

u ≃ K′ ⋆ u = K′ ⋆ ◦ K ⋆ u, (4.2)

where K′⋆ represents an exact or approximate inverse of the filter K⋆ such that

K′ ⋆ ◦ K⋆ ≃ I⋆, (4.3)

I⋆ being the identity filtering operator. The subgrid term is then approximated as

[A,K⋆](u) ≃ [A,K⋆](K′ ⋆ u). (4.4)

Several types of deconvolution procedures have been considered in the past, such as discrete-kernel
and polynomial regularisation by Shah and Ferziger [53], Geurts [21] and Kuerten et al. [31].
Stolz and Adams [55] also introduced approximate deconvolution models based on the van Cittert
method.

4.1.2 Hard deconvolution problem

However, reconstructing the computable scales is not sufficient for subgrid modelling because the
interactions with the non-computable ones are not taken into account. To solve this issue, the
deconvolution is usually supplemented with a secondary procedure, which is referred to as the hard
deconvolution and which is achieved by the use of functional models. This procedure is formally
performed introducing an additional term to (4.4)

[A,K⋆](u) ≃ [A,K⋆](K′ ⋆ u) + a(u). (4.5)

For instance, Stolz et al. [56] introduced a relaxation term in order to account for energy transfers
with the scales which are not recovered by the deconvolution procedure. Deconvolution models
were also coupled with the Smagorinsky model by Winckelmans et al. [61] and with the dynamic
mixed-scale model by Habisreutinger et al. [25].

4.2 Grid filter models

The motivations for the introduction of the grid filter models as a particular class of subgrid models
arise from the following issues involved in the use of deconvolution-based models.

First, the soft deconvolution problem only relies on the definition of the convolution filter
without the need to resort to any functional modelling. The definition of the filter is therefore the



4.2.1 Definition 37

first central issue involved in the use of such models. The question is then, how to properly define
this convolution filter?

Second, the apparent advantage of deconvolution models over classical approaches is to avoid
the need for functional modelling. However, since functional models are required for the hard
deconvolution problem, this advantage vanishes. The question is then, would it be possible to use
the deconvolution approach for both the soft and the hard deconvolution problems?

As further detailed hereafter, the answer to both questions is given by the introduction of
the grid filter models and is based on taking explicitly into account the major role played by the
spatial discretization in large eddy simulation, which is not explicitly done in the previous formal
developments.

4.2.1 Definition

The central idea relies on the interpretation of the effect of the spatial discretization as an implicit
filter which is applied to the governing equations. In this case, the filter K⋆ to consider in practical
simulations is a composition of an explicit filter L⋆ and the projective grid filter G⋆ associated to
the spatial discretization, which reads

K⋆ = L ⋆ ◦ G ⋆ . (4.6)

Hence, considering the grid filter in equation (4.1) leads to

M ∂tu+A(u) = f + [A,L ⋆ ◦ G⋆](u). (4.7)

In the sequel, the focus is put on the particular case where no explicit filter L⋆ is applied, that is
on large eddy simulations solely based on implicit filtering, which allows to obtain

M ∂tû+A(û) = f̂ + [A,G⋆](u), (4.8)

where û = G ⋆u is the grid-filtered unknown, or in other words the part of the unknown field that
can be resolved by the spatial discretization used to perform the large eddy simulation. In this
framework, subgrid modelling based on deconvolution models would require the subgrid commuta-
tor of the previous equation to be expressed solely in terms of the known grid-filtered fields, which
formally reads

[A,G⋆](u) ≃ [A,G⋆](G′ ⋆ û), (4.9)

where the reconstruction operator G′⋆ is the approximate inverse of the grid filtering operation
to be devised. The problem with equation (4.9) is that the reconstructed field G′ ⋆ û is not rep-
resentable with the spatial discretization used for the large eddy simulation. Therefore, a direct
reconstruction model based on the approximate inversion of the grid filter would require the use
of the full spatial discretization to evaluate the subgrid commutator. This issue explains why the
deconvolution procedure is usually restricted to the computable scales.

In order to solve this issue, the idea introduced by Habisreutinger [24] and Bouffanais [10] is
to replace the grid filter by an invertible modelling filter G̃⋆ which reproduces its effect on the
computed modes of the solution. This is formally expressed by

[A,G⋆](u) ≃ [A, G̃⋆](G̃−1 ⋆ û) = [A, G̃⋆](ũ). (4.10)

Compared to (4.4), this relation gives a formal definition in order to design the convolution filter
which has to approximate the effect of the grid filter on the computable modes. Moreover, and
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compared to (4.9), the deconvoluted field ũ shall be representable on the spatial discretization used
for the large eddy simulation. Since the modelling filter has to be invertible, it can be interpreted as a
change of variable whose physical meaning is detailed in sections 4.2.4 and 4.2.5. The approximation
(4.10) being the only required modelling, the subgrid models arising from this new approach are
referred to as grid filter models.

This new interpretation builds a theoretical basis which enables the use of deconvolution-based
subgrid models without any explicit filtering. The grid filter models use therefore the deconvolution
approach originally meant to solve the soft deconvolution problem, that is the inversion of the
explicit filter, to solve the hard deconvolution one which corresponds to model the effect of the
scales lost by spatial discretization on the resolved ones. Consequently, the classical distinction
between the soft and hard deconvolution problems becomes useless.

The governing equations to be solved in the framework of the grid filter models are obtained
by combining the equation (4.8) with the approximation (4.10), and read

M ∂tû+A(û) = f̂ + [A, G̃⋆](ũ), (4.11)

thereby achieving the general definition of this particular class of deconvolution models for large
eddy simulation.

4.2.2 Grid filter

Before any attempt to model the grid filter, it should be first formally defined. Considering the
expansion (3.6) of the unknown into a linear combination of basis functions, which is a common
framework among a broad range of spatial discretization methods, the splitting between resolved
and subgrid fields is expressed in physical space by

u(x, t) = û+ û′ =

p∑

j=1

uj(t)φj(x) +

q∑

j=p+1

uj(t)φj(x). (4.12)

In other words, the coarser level of approximation and the reduction of the computational costs are
respectively introduced and achieved by only computing the evolution of the first p modes of the
unknown instead of the q ones required to express all the space-scales of the solution.

Modal formulation

In modal space, the application of the grid filter G⋆ is represented by the following linear and
projective transformation

û = G u, (4.13)

where the vector û contains the p computable modes while u contains all the modes of the solution,
that is the q ≥ p ones. The rectangular projection matrix G associated to the grid filter is of size
(p, q) and is given by

Gij = δij , (4.14)

representing therefore a top-hat filter in modal space which cuts off the high-frequency modes of
the solution, as illustrated in figure 4.1. Perhaps more explicitly, the grid filter matrix is composed
by an identity matrix of size p on the left-hand side and by null entries on the right-hand side,
which can be illustrated by the block representation

G = (I | 0). (4.15)

Consequently, the p modes of the grid-filtered signal are equal to the first p ones of the original
field. However, as noticed in figure 4.1, the nodal values are different in physical space.
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Fig. 4.1: In the Fourier basis (3.27) of size q = 16, the original field (solid line) is defined as u = − sin(4πx)+
.5 sin(12πx). The corresponding filtered signal (dash-dotted line), projected onto a basis of size p = 8,
becomes û = − sin(4πx) which represents the loss of the high-frequency contribution associated with the
grid-filtering operation.

Nodal formulation

In other words, the grid filter conserves the modes but alters the nodal values of the signal. This
statement can be better understood considering the grid filter matrix in physical space. Hence,
using a generalisation of the transformation rule (3.44), the nodal representation of the grid filter
is given by

G = Φp
p G Φq

q, (4.16)

and represented in figure 4.2 for the Fourier basis and in the case of the finite and spectral elements.
In all cases, the simple modal formulation (4.15) becomes a basis-dependent and full matrix whose
interpretation is not straightforward. Moreover, it is worth noticing that the boundary values are
not affected by the grid filtering in the case of the finite and spectral elements. This comment does
not apply in the case of the Fourier basis since only periodic functions are representable.
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Fig. 4.2: Nodal grid filter for p = 8 and q = 16 in the case of the Fourier basis (left). For the finite elements
(centre) and the spectral elements (right) q = 15.

At this stage, it is of crucial importance to note that the effect of the grid filter only depends
on the couple (p, q) and on the numerical method, i.e. the approximation basis, that is on the
under-resolution generated by the coarser spatial discretization.

4.2.3 Sampling filter

As detailed in section 4.2.4, modelling the effect of the grid filter on the resolved scales requires the
definition of the sampling filter. And as mentioned in section 3.1.2, the original field approximated
with a q-dimensional set of basis functions is bijectively associated with q interpolation points. By
definition, the sampling filter S⋆ performs the interpolation of the original field on a subset of p
points, which is illustrated in figure 4.3.
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Fig. 4.3: Using the Fourier basis (3.27), the original field u = sin(12πx) based on q = 16 points (solid line) is
sampled with p = 8 points. The resulting under-sampled signal (dash-dotted line) becomes ũ = − sin(4πx)
which represents the aliasing phenomenon associated with the sampling operation.

Modal formulation

In modal space, the application of the sampling filter is expressed by the following linear and
projective transformation

ũ = S u, (4.17)

where the vector ũ contains the p modes associated to the under-sampled field. Consequently, the
rectangular sampling matrix S associated to the sampling filter is of size (p, q). Using equations
(3.9) and (3.11), the sampling matrix is easily determined according to the definition of the sampling
operation

ũ = Φp
pΦ

p
qu. (4.18)

In other words, the original field is first evaluated from the q-dimensional modal basis onto p points
in physical space, then brought back into the corresponding modal space of size p. Hence, comparing
equations (4.17) and (4.18) implies

S = Φp
pΦ

q
p. (4.19)

In order to illustrate the dependence on the discretization method, the sampling matrix is
illustrated in figure 4.4 for the Fourier basis and in the cases of the finite and the spectral elements.
For all cases, the matrices are composed by the identity on the left-hand part. This simply means

i

j

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8
−1

−0.5

0

0.5

1

i

j

 

 

1 2 3 4 5 6 7 8 9 10111213141516

1

2

3

4

5

6

7

8
−1

−0.5

0

0.5

1

i

j

 

 

1 2 3 4 5 6 7 8 9 10111213141516

1

2

3

4

5

6

7

8
−1

−0.5

0

0.5

1

Fig. 4.4: Modal sampling filter for p = 8 and q = 16 in the case of the Fourier basis (left), the finite elements
(centre) and the spectral elements (right).

that the first p modes of the original signal are preserved during the sampling process since they are
bijectively associated with p interpolation points. Using again the block representation introduced
for the grid filter, the sampling matrix can be schematically represented by

S = (I | F), (4.20)

where the right-hand part of the matrix, which is strongly basis-dependent, expresses the alias-
ing phenomenon, that is the folding of the high-order modes onto the low-order ones, which was
illustrated in figure 4.3.
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Fig. 4.5: Nodal sampling filter for p = 8 and q = 16 in the case of the Fourier basis (left). For the finite
elements (centre) and the spectral elements (right) q = 15.

For the Fourier basis, the aliasing part of the matrix is the identity which shows that any mode
i ≤ p is only aliased by the modes i+np with n ∈ N+. In the case of the Lagrange bases, the coupling
between the modes is very different and much stronger in the case of the finite elements. The formal
demonstration of these comments seems quite involved since the definition of the sampling operation
relies on the inversion of a full matrix, see equation (4.19). The reader, and the author, are thus
already left with an open question which is however very interesting to investigate.

Nodal formulation

Because of the folding phenomenon, the p modes of the sampled signal are not equal to the first p
ones of the original field. However, as noticed in figure 4.3, the nodal values are conserved during
the sampling operation. The behaviour is therefore opposite compared to the grid filter, since the
nodal values are conserved and the modes are altered.

This statement is further explained considering the nodal expression of the sampling filter which
is formulated by

S = Φp
p S Φq

q = Φq
pΦ

q
q, (4.21)

and represented in figure 4.5. In the case of the Fourier basis and for the finite elements, the p points
associated with the sampled signal also belong to the original set of q points. Consequently, the
nodal sampling matrix has only Boolean entries. In other words, the information is exactly conserved
for the remaining points while it is erased for the discarded ones. For the spectral elements, the
p interpolation points are not present in the original set which leads to a nodal sampling matrix
whose interpretation is not as straightforward.

4.2.4 Modelling filter

At this point, the effect of the grid filter is exactly determined through the definition of the grid
filter matrix introduced in equation (4.13). However, when performing a large eddy simulation, the
filtering operation has to be restricted to the computable modes because the original field composed
of q modes can not be represented by the spatial discretization.

For this purpose, let the matrix S′ of size (q, p) denote an approximate inverse of the sampling
operation such that

u ≃ S′ũ, (4.22)

where ũ is the under-sampled field of equation (4.17). Using the approximate inverse of the sampling
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filter, the grid-filtering operation can be approximated as

û = Gu ≃ GS′ũ = G̃ũ, (4.23)

where the square matrix G̃ of size (p, p) represents the modelling filter G̃⋆ introduced in equation
(4.10). Hence, the approximate inversion of the sampling filter bears the entire subgrid modelling
in the particular framework of the grid filter models.

Equation (4.23) reveals the approximate character of the grid filter models and defines the mod-
elling filter. This filter actually models the effect of the grid filter on the resolved modes using the
sampled field which is representable on the spatial discretization used for the large eddy simulation.
The application of the modelling filter can therefore be interpreted as the approximate and bijective
change of variable between the sampled and grid-filtered quantities, both being representable on
the coarse spatial discretization which only retains the first p modes.

4.2.5 Physical interpretation

In order to better understand the idea of the grid filter models, it is of crucial importance to
understand the physical meaning of the change of variable associated with the modelling filter. For
this purpose, recall from sections 4.2.2 and 4.2.3 that the grid filter conserves the modal values and
the sampling filter conserves the nodal ones.

Considering the Navier–Stokes operator in the Newtonian case, the governing equations of the
grid filter models (4.11), written in the semi-discrete form and using the Fourier basis, read

˙̂vk + ik · ̂̃vṽk = −Re−1k2v̂k + ĝ
k
− ikp̂

k
, (4.24)

ik · v̂k = 0, (4.25)

which are similar to (3.33)-(3.34). In this framework, the goal of the large eddy simulation is to
correctly compute the time-evolution of the first p modes of the solution which would be decoupled
in linear cases. But the non-linear contribution couples the modes and would require the use of
the original quantities to be evaluated. As noticed in equation (4.24), the original quantities are
replaced by the sampled ones to evaluate the non-linear terms. In other words, in order to correctly
compute the evolution of the first p modes, the non-linear terms have to be computed based on the
right nodal values.

Hence, the goal of the modelling filter, is to retrieve the right nodal values from the right modes.
However, as suggested in equation (4.23), this change of variable is only approximate. Therefore,
the accuracy of this approximation directly governs the quality of subgrid modelling for the grid
filter models.

In consequence, the grid filter models can be interpreted as a deconvolution approach since the
sampled original quantities are sought from their grid-filtered counterpart.

4.3 Approximate inverses of projective operators

As mentioned in section 4.2.4, following up on the idea of the grid filter models requires to face the
difficult problem of approximating the inverse of the sampling filter, which is a projective operator.
This results from the loss of information due to the coarser spatial discretization used for the large
eddy simulation.

In order to deal with this major issue, the so-called consistency constraint and the accuracy of
the approximate inverse have to be introduced. Furthermore, a general method of approximation
is proposed.
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4.3.1 Consistency

For the definition of the consistency constraint in a general framework, let the rectangular matrix P

of size (p, q), similar to the grid and sampling filters, characterise the general projective operation

u = Pu. (4.26)

As illustrated in figure 4.6 with a trivial two-dimensional example, and because of its projective
nature, this operation has an infinite number of possible inverses which lie on the dash-dotted line
parallel to the direction of projection, referred to as the admissible subspace.

Fig. 4.6: Two-dimensional example of a projective operation using P = ( 1 0 ), its associated approximate
inverse and the subspace of possible inverses represented by the dash-dotted line.

Introducing the matrix P′ of size (q, p) as an approximate inverse of P, an approximation u′ of
the original quantity is expressed by the relation

u ≃ u′ = P′u, (4.27)

and has to belong to the admissible subspace represented by the dash-dotted line in figure 4.6. In
order to guarantee this constraint, the projected quantity must be retrieved by re-projecting the
approximation, which can also be expressed in the form

u = Pu′ = PP′u. (4.28)

The approximate inverse operator has therefore to abide to the consistency constraint which arises
from the previous equation

PP′ = I. (4.29)

In other words, and for any variable, re-projecting the approximation must remain the identity
operation. This constraint allows to a priori satisfy the three first properties of the Moore–Penrose
pseudo-inverse

PP′P = P, (4.30)

P′PP′ = P′, (4.31)

(PP′)∗ = PP′, (4.32)

(P′P)∗ 6= P′P, (4.33)

where the star denotes the conjugate transpose operation, but the fourth is not guarantied. While
the four properties uniquely define the approximate inverse as the particular Moore–Penrose pseudo-
inverse, not satisfying the last constraint leaves a degree of freedom for subgrid modelling. Indeed,
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this purely mathematically defined inverse is not necessarily the best to use for the approximation
of physical phenomena. It is worth stressing that this point is of crucial importance to understand
the concepts presented in the sequel. In other words, subgrid modelling will not be performed using
Moore–Penrose pseudo-inverses.

4.3.2 Accuracy

In the perspective of an approximate inversion, the other crucial issue is expressed in terms of
accuracy, which can be quantified introducing the inversion error

e = u− u′ = (I−P′P)u. (4.34)

Consequently, defining the square matrix Q = P′P, of size q and that characterises the approxi-
mation, the aim is to obtain

E = I−Q ≃ 0, (4.35)

where the matrix E represents the error associated with the approximate inversion.
However, this property can not be exactly satisfied which is explained by acknowledging the

irrecoverable loss of information induced by the projective operation associated with the application
of the matrix P. Indeed, the approximation matrix can not be invertible, and consequently not be
equal to the identity. The reader may be convinced of this statement by considering the relation

Q2 = P′PP′P = P′P = Q, (4.36)

which is obtained using the consistency constraint (4.29). In consequence, Q is a projector since it
verifies the general property presented in equation (2.43), that is

Qn = Q, ∀n ∈ N+. (4.37)

4.3.3 Approximation methods

As previously mentioned, a projective operator has an infinite number of possible inverses and
can not be exactly inverted. However, in order to approximate its inverse, the strategy which is
introduced herein is to build a basis of the admissible subspace and to express the approximation
of the original quantity as a linear combination of the basis elements. In order to understand this

Fig. 4.7: Two-dimensional example of a projective operation using P = ( 1 0 ). Approximation of the original
quantity as a linear combination in the basis of the admissible subspace.

idea, the intuitive two-dimensional example introduced in figure 4.6 is reproduced in figure 4.7. In
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this case, any approximation of the original quantity can be expressed as a linear combination of
two other elements, u′′

1 and u′′
2, which build a basis of the subspace.

Following up on this idea, and according to equation (4.27), any admissible approximation of
the original quantity is given by the expression

u′′
j = P′′

ju, (4.38)

where the index j denotes one of the possible approximations and where any basis matrix P′′
j must

satisfy the consistency constraint (4.29), that is PP′′
j = I. Hence, a particular approximation of the

original quantity is expressed as a linear combination of the form

u′ =

n∑

j=1

ωju
′′
j =

n∑

j=1

ωjP
′′
j u. (4.39)

By comparing equations (4.27) and (4.39), the approximate inverse of the projective operator is
identified as

P′ =
n∑

j=1

ωjP
′′
j . (4.40)

The direct improvement in terms of accuracy related to this method may not be obvious. However,
building a complete basis of the admissible subspace allows to express every possible inverse of the
projector. Finally, applying the consistency constraint to equation (4.40) implies to satisfy

n∑

j=1

ωj = 1. (4.41)

This method therefore translates the inversion problem onto the definition of an approximation
basis and an appropriate set of coefficients for the linear combination. Considering the large variety
of possible projectors, already illustrated by the grid and sampling filters, it seems that this problem
shall be handled case by case, using purely algorithmic approaches or assumptions related to the
physics of the particular problem which is studied.

In any case, the basis and the coefficients have to be defined solely using the projected signal,
which is the only available information. In order to clarify this idea, the dependence of the approx-
imate inverse on the projected quantities shall be explicitly written. Hence, in the most general
case, equation (4.40) reads

P′(u) =
n∑

j=1

ωj(u)P
′′
j (u), (4.42)

where both the basis and the coefficients depend on the projected quantities, and which is referred
to as the dynamic-basis approximation. On the other hand, the dependence can be restricted to
the coefficients, which yields

P′(u) =

n∑

j=1

ωj(u)P
′′
j , (4.43)

and which is referred to as the static-basis approximation. This case is similar to the so-called nu-
merical approximation introduced for the spatial discretization in equation (3.6) and the underlying
idea is really similar. However, the space which has to be approximated here is of finite dimension.
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4.4 Approximate inverse of the sampling filter

As mentioned in section 4.2.4, subgrid modelling in the framework of the grid filter models exclu-
sively relies on the approximate inversion of the sampling filter which folds the lost modes onto the
computable ones.

Up to now, the grid filter models have been presented as a straightforward and one-way approach
of subgrid modelling. But, from now on, the presentation relies on modelling assumptions which
could be enhanced or modified. Consequently, this point is marked as a possible start for further
research and a bifurcation of many modelling ways. In other words, the stage is just set, and it is
only the opening of the show. . .

4.4.1 Approximation basis

Because of the aliasing phenomenon associated to the sampling operation, the p modes of the
sampled signal are polluted and completely loose their physical meaning, the spectral information
being destroyed. Therefore, the approximation basis proposed herein relies on a purely algorithmic
and intuitive approach to unfold the modes.

A rough estimate of the unfolding operation is given by the transpose of the modal sampling
matrix. Indeed, applying this matrix to the sampled signal only reconstructs the modes which could
have been present in the original signal, however with the wrong magnitude and not necessarily
satisfying the consistency constraint. In order to overcome these issues, a given basis matrix is
expressed by pre- and post-multiplying the transpose of the sampling matrix

S′′
j = WjS

TCj , (4.44)

where Wj is a square matrix of size q which weights the modes after the unfolding, while Cj is a
square matrix of size p which allows to ensure the consistency of the approximation. Hence, using
the consistency property (4.29) yields

S S′′
j = SWjS

TCj = I, (4.45)

and allows to find the relation between the weight and consistency matrices formulated by

Cj = (SWjS
T)−1, (4.46)

which finally leads to the expression

S′′
j = WjS

T(SWjS
T)−1. (4.47)

A given basis matrix is therefore exclusively defined by the corresponding weight matrix. If they
were available, an intuitive strategy would be to weight the unfolding operation by the original
quantities, that is using the diagonal matrix

Wj = U, Uik = δikuk. (4.48)

With this choice, a posteriori numerical experiments show that the first p modes are perfectly
recovered for any of the bases considered, i.e. for the Fourier basis and for the finite and spectral
elements. In other words, choosing the weight matrix according to (4.48) implies

ui = (S′′
j )ikũk, 1 ≤ i ≤ p. (4.49)
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Moreover, and quite surprisingly, the subgrid modes are also perfectly recovered for the Fourier
basis. But this is not the case for the other discretization methods and the error strongly depends
on the original signal.

Despite many attempts, the formal demonstration of these observations could not be achieved,
which leads to a second unanswered question. However, in order to give some clues of the proof, it
might be interesting to note that the relation

E U ST = 0 (4.50)

is verified by this particular inverse, but this property is not equivalent to (4.35) since ST is not
invertible. In order to shed some light onto the possible mathematical meaning of this relation,
consider the definition of the matrix of the sampled elementary signals

Ũ = S U, (4.51)

and the approximate inverse operation
S′′
j Ũ ≃ U. (4.52)

The explicit formulation of an approximate inverse of the sampling filter can be obtained multiplying
this relation by a regularisation matrix H′′

j of size (q, p) in such a way that the product ŨH′′
j be

invertible
S′′
j ŨH′′

j = UH′′
j . (4.53)

Among the possibilities for such a regularisation, relying on the straightforward choice H′′
j = ST

yields
S′′
j = U ST(S U ST)−1, (4.54)

which corresponds to the formulation (4.47) with the weight matrix given by (4.48). Hence, the
intuitive approach meant to unfold and weight the modes simply represents the regularisation of
equation (4.52) with the transpose of the sampling matrix.

In this framework, the definition of a particular approximate inverse corresponds to the choice of
a particular regularisation of equation (4.52). Similarly, equation (4.50) represents the regularisation
of (4.35) by the product U ST.

4.4.2 Closure of the approximation

Considering the satisfying accuracy of the approximation obtained with the single basis matrix
defined by (4.47) and using (4.48), the approximate inverse of the sampling filter which will be
used in the test cases presented hereafter is chosen as

S′ = U ST(S U ST)−1, (4.55)

which corresponds to the dynamic-basis approximation (4.42) with n = 1. In this case, the single
coefficient of the linear combination is trivially given by (4.41).

However, this approximation requires the use of the original signal which is not known when
performing a large eddy simulation. Therefore, using this particular approximate inverse of the
sampling filter implies the additional approximation of the original variable from its grid-filtered
counterpart, that is

Uij = uiδij ≃ G′
ikûkδij , (4.56)

where the reconstruction matrix G′ represents in modal space the reconstruction operator, that is
the inverse of the grid filter appearing in equation (4.9). This relation shows that the approximate
inverse of the sampling filter is a non-linear operator which depends on the grid-filtered field, and
on the approximate inverse of the grid filter.
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4.5 Approximate inverse of the grid filter

Considering the approximate inverse of the sampling filter proposed in section 4.4, the modelling
issues are reported into the approximate inversion of the grid filter, which seems rather logical in
this framework since the only available information on the system are the grid-filtered quantities.

The grid filter is a cutting-projector which induces the sharp loss of the high-frequency infor-
mation. In this case, the approximate inverse can not be expressed in terms of the transpose grid
filter matrix, as done for the sampling filter, since it does not bear any information on the coupling
between the modes.

However, the remaining modes are not polluted by any aliasing contribution. This clean infor-
mation on the low-order modes can therefore be used to approximate the inverse using physical
considerations on the coupling between the modes. In consequence, here is the point where physics
comes back into the play. . .

4.5.1 Approximation basis

Like for the sampling filter, the first aim is to provide a general method in order to generate a basis
of possible inverses. For this purpose, assume that any elementary increment of the original field
can be approximated from the increment of its grid-filtered counterpart, which reads

du ≃ G′′
jdû. (4.57)

In other words, an approximation of the q existing increments du is sought only knowing the first
p computed ones dû. In order to comply with the consistency constraint (4.29), the approximate
inverse of the grid filter has to take the general form

G′′
j =

(
I

R′′
j

)
, (4.58)

where the block matrix R′′
j is responsible for the approximate reconstruction of the subgrid modes

based on the computed ones. Let

Q = {1, . . . , i, . . . , q} (4.59)

be the space of the indexes corresponding to the existing modes of the solution. Assuming that each
increment dui can be retrieved from all the others implies the existence of the matrix of coupling
functions κij such that

dui ≃ κij({uk, duk}). ∀i, k ∈ Q, (4.60)

In this case, any approximated increment of the mode ui becomes

dui ≃
∑

k∈Qi

∂ui
∂uk

duk =
∑

k∈Qi

Jik duk, (4.61)

with Qi = Q\{i} and Jik the Jacobian component which expresses the link between the increments
of the modes i and k. Then, considering the first p increments duk to be known, that is

dûi =

q∑

k=1

Gik duk =

q∑

k=1

δik duk = dui, 1 ≤ i ≤ p, (4.62)
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equation (4.61) is reduced and split as follows

dui ≃
p∑

k=1

Jik dûk +

q∑

l=p+1,l 6=i

Jil dul, p < i ≤ q, (4.63)

where the increment dul in the second term of the right-hand side is rewritten in terms of the basis
matrix using equation (4.57)

dui ≃
1

2
(

p∑

k=1

Jik dûk +

q∑

l=p+1

Jil

p∑

k=1

G′′
lk dûk), p < i ≤ q, (4.64)

since Jii = 1 and where the subscript j is temporarily omitted to simplify notations. Reorganising
the last equation gives

dui ≃
p∑

k=1

1

2
(Jik +

q∑

l=p+1

JilG
′′
lk) dûk, p < i ≤ q, (4.65)

from which the entries of the basis matrix are identified with respect to equations (4.57) and (4.62)
as

G′′
ik =





δik, 1 ≤ i ≤ p,

1

2
(Jik +

q∑

l=p+1

JilG
′′
lk), p < i ≤ q, (4.66)

which is of the required form defined in equation (4.58). For a given Jacobian matrix, equation (4.66)
expresses how the entries of the basis matrix must be constructed to approximate the unknown
increments from the p computed ones.

Since the expression of the components takes into account the existence of both the lower and
the higher order modes, as suggested by the sum over q in equation (4.66), it should be noted that
the resulting process is implicit. Introducing the matrices X of size (q, q) and Y of size (q, p) whose
components are respectively given by

Xik =

{
0, 1 ≤ i ∨ k ≤ p,
Jik, p < i ∧ k ≤ q,

Yik =

{
2δik, 1 ≤ i ≤ p,
Jik, p < i ≤ q,

(4.67)

where the symbols ∨ and ∧ mean or and and respectively, a given basis matrix G′′
j is implicitly

expressed by

2G′′
j = XG′′

j +Y, (4.68)

and computed by solving this linear system, which achieves the description of the method. However,
the central issue still remains on the definition of the coupling function (4.60), or alternatively of
the Jacobian in (4.61), in order to obtain a given basis matrix.

In the sequel, three intuitive and physical interpretations of these quantities are given but this
does not represent an exhaustive presentation of all the possible solutions.
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No-coupling

In the general case, the Jacobian matrix depends on the signal itself which leads to the definition
of a dynamic basis matrix. In the sequel, the focus is put on static cases, that is considering a
constant Jacobian, which allows to simplify equation (4.61) as

ui ≃
∑

k∈Qi

Jik uk, (4.69)

and which leads to a linear reconstruction operation of the form

u ≃ G′′
j û, (4.70)

obtained from equation (4.57). The first trivial possibility is to consider that the modes are com-
pletely decoupled, which reads

J = 0. (4.71)

In this case, solving equation (4.68) gives

G′′
1,ik = δik. (4.72)

Perhaps more explicitly, using the block representation introduced for the grid and sampling filters
in (4.15) and (4.20) yields

G′′
1 = GT =

(
I

0

)
, (4.73)

which means that all the estimated subgrid modes are null. It is worth noticing that this inverse
satisfies the Moore–Penrose property (4.33)

(G′′
1G)∗ = G′′

1G =

(
I 0

0 0

)
, (4.74)

and is therefore the pseudo-inverse of the grid filter. As mentioned, this particular inverse is not
the best to use for subgrid modelling. However, the physical meaning corresponds to the prediction
of a fully resolved flow which can be instrumental for the large eddy simulation of transitional, or
locally turbulent flows.

Probabilistic coupling

In order to generate an other basis matrix, a statistical approximation of the unknown high-
frequency field which is based on a reciprocal probabilistic coupling between every pair of modes
in the spectrum is introduced.

Integrating equation (4.61) and assuming that an elementary increment on any mode uk has
the probability P (i | k) to induce an increment on ui implies

ui ≃
∑

k ∈ Qi

P (i | k) uk, (4.75)

which once again leads to a linear reconstruction of the form (4.70). The interpretation of this
relation is that every existing mode uk gives a probability of existence to the mode ui, i 6= k. For
P (i | k) to be considered as a probability, it must satisfy the properties

P (i | k) ∈ [0, 1] , ∀i, k ∈ Q, (4.76a)

P (i) = P (i | i) =
∑

k ∈ Qi

P (i | k) = 1, ∀i ∈ Q. (4.76b)
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The condition (4.76b) expresses that every mode ui does in fact exist. The discrete conditional
probability P (i | k) can be mapped by some probability density function f

P (i | k) = f(i, k), (4.77)

which needs to be defined in order to obtain a given basis matrix. The probability density function
must necessarily feature a number of properties to be mathematically and physically consistent.

1. f returns values comprised between 0 and 1 to comply with condition (4.76a)

f : R× R → [0, 1] . (4.78)

2. Referring to (4.76b) and writing this condition in terms of the probability density function
gives ∑

k ∈ Qi

f(i, k) = 1. (4.79)

3. The probability for a mode ui to exist, if mode uk does, vanishes as the spectral distance
between the modes tends to infinity, which reads

lim
|i−k|→∞

f(i, k) = 0. (4.80)

4. The probability for the mode ui to exist if it actually does is maximal, which implies

f(i, i) = 1, ∂kf(i, k)|k=i = 0, ∂kkf(i, k)|k=i < 0. (4.81)

5. The probability for a mode ui to exist if mode uk monotonly decreases as the spectral distance
between the modes increases, that is

∂kf(i, k)|k<i > 0, ∂kf(i, k)|k>i < 0, (4.82)

which is consistent with properties (3) and (4).

The mapping function could be determined analytically using simplified theories of turbulence, or
empirically using reference data obtained by direct numerical simulation and experimental mea-
surements, but also heuristically having some intuitions on the physics of the problem and satisfying
the previous constraints.

However, for the sake of generality, this definition is temporarily left as a degree of freedom of
the model and as a possible subject of further researches.

Linear-correlation coupling

Alternatively and starting again from equation (4.61), another approximation of the unknown high-
frequency field can be obtained considering the Jacobian as a matrix of linear correlation coefficients
between the modes

Cik =
〈uiuk〉 − 〈ui〉〈uk〉

[(〈u2i 〉 − 〈ui〉2)(〈u2k〉 − 〈uk〉2)]1/2
, (4.83)

where the brackets denote an ensemble average which is equivalent to a time-average for ergodic sys-
tems. In other words, assuming that an elementary increment on any mode uk is linearly correlated
to the increment of ui with Cik as correlation coefficient allows to write (4.61) as

ui =
∑

k ∈ Qi

Cikuk, (4.84)
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which leads to a linear reconstruction like (4.70). The correlation coefficient Cik can be mapped by
some appropriate function g

Cik = g(i, k), (4.85)

which must satisfy the following properties for mathematical and physical consistency reasons.

1. g returns values comprised between -1 and 1 to comply with the definition of the correlation
coefficient (4.83)

g : R× R → [−1, 1] . (4.86)

2. The correlation coefficient between the modes ui and uk vanishes as the spectral distance
between the modes tends to infinity, which reads

lim
|i−k|→∞

g(i, k) = 0. (4.87)

3. The correlation of any mode ui with itself is maximal, which implies

g(i, i) = 1, ∂kg(i, k)|k=i = 0, ∂kkg(i, k)|k=i < 0. (4.88)

As mentioned in the case of the probabilistic coupling, the possible ways to define the mapping
function are multiple. The choice among the possibilities is again delayed to preserve the generality
of the approach within this theoretical presentation.

4.5.2 Closure of the approximation

Considering either the dynamic-basis (4.42) or the static-basis approximation (4.43), the use of
multiple matrices to build an approximation of the admissible subspace requires to find an appro-
priate set of coefficients for the linear combination. Since the grid-filtered variables are the only
available information about the state of the system, their determination can only rely on these
quantities.

In the mono-element case n = 1, the single coefficient of the linear combination is trivially given
by (4.41). Hence, the focus is put on the determination of the coefficients for n ≥ 2.

Two-element basis

In the case of a two-element basis, the determination of the coefficients can be achieved introducing
an additional filter, referred to as the test filter and represented by the matrix T in such a way
that the explicitly test-filtered variable reads

u = T û = T G u, (4.89)

where the test-filter matrix is of size (r, p), with r ≤ p, and given by

Tij = δij , (4.90)

which represents therefore the equivalent of the grid filter at a coarser level. Assuming the scale
similarity hypothesis which was first introduced in the framework of large eddy simulation by
Bardina et al. [3], the same set of coefficients ωi can be used for the approximate inversion of the
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test and the grid filters. Considering that the matrix T′ represents the approximate inverse of the
test filter, the error associated to the approximate inversion reads

ê = û−T′u, (4.91)

where
T′ = ω1T

′′
1 + ω2T

′′
2 = (1− θ)T′′

1 + θT′′
2, (4.92)

with θ ∈ R the weight parameter. In order to determine this parameter, as proposed by Lilly [37]
in the framework of the dynamic Smagorinsky model [20], a least-squares minimisation of the form

∂θ(ê · ê) = 0 (4.93)

is introduced. After some algebra, omitted for the sake of conciseness, the least-squares minimisation
of the error (4.91) leads to

θ =
(û− ŭ) ·∆ u

∆ u ·∆ u
, (4.94)

where the following definitions have been used

∆ = T′′
2 −T′′

1, (4.95)

ŭ = T′′
1u. (4.96)

Following up on the idea of the scale similarity hypothesis, a possibility to define the test filter
parameter is to conserve the ratio r/p = p/q, which trivially leads to

r =
p2

q
. (4.97)

General case

Comparing the cases of the mono- and two-elements basis, the exponential growth of complexity
for the determination of the coefficients is obvious. The generalisation to the n-dimensional basis
is therefore quite involved.

However, one possibility is to obtain an adequate system of algebraic equations considering the
partial derivatives of the inversion error (4.93) with respect to each coefficient, that is

∂ωj
(ê · ê) = 0, j ∈ {1, . . . , n− 1}, (4.98)

which is currently the subject of further investigations. It is also possible to think that such an
approach could require the use of n−1 nested test-filtering levels. In any case, this extension seems
mandatory for the improvement of the grid filter models.

4.6 Sampling filter models

This chapter is concluded by extending the view to another modelling strategy which is the dual
version of the grid filter models. However, in a first lecture of this work, this last section could be
considered as an appendix and be skipped to avoid confusions since it is not applied for subgrid
modelling in the test cases presented hereafter.

In this perspective, recall from section 4.2.1, and more precisely from equation (4.8) that the
evolution of the grid-filtered variables is sought in the framework of the grid filter models. Hence,
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the dual approach would be to consider the evolution of the sampled variables. For this purpose, the
sampled equations must be derived from the macroscopic equations (2.49) and are simply obtained
by formally replacing the grid filter by the sampling filter in equation (4.8)

M ∂tũ+A(ũ) = f̃ + [A,S⋆](u). (4.99)

Recalling from sections 4.2.2 and 4.2.3 that the grid filter conserves the modal values and the
sampling filter conserves the nodal ones, the right nodal values are sought instead of the right
modes.

Following the approach introduced in equation (4.10), an approximation of the subgrid com-
mutator can be obtained by introducing the approximate sampling filter S̃⋆, dual of the modelling
filter G̃⋆, which yields

[A,S⋆](u) ≃ [A, S̃⋆](S̃−1 ⋆ û) = [A, S̃⋆](û). (4.100)

Using an approximation of the original quantities obtained from their grid-filtered counterpart

u ≃ G′û, (4.101)

an approximation of the sampling filter is given by

ũ = Su ≃ SG′û = S̃û, (4.102)

which formally represents the inverse change of variable compared to equation (4.23). However, in
order to be strictly equivalent, the following properties have to be satisfied

S̃G̃ = SG′GS′ ≃ I, (4.103)

G̃S̃ = GS′SG′ ≃ I, (4.104)

which is not exactly achievable considering equations (4.29) and (4.35). Hence, the grid filter models
and the sampling filter models can not and do not lead to the same modelling.

This last section raises a fundamental and open question about the information which is sought
in the framework of a large eddy simulation. Is the aim to obtain the right modes, or alternatively
the right nodal values? Answering this key question defines the filter which shall be applied to the
macroscopic equations and thereby the modelling approach which is required.

However and as mentioned above, the modelling strategy which is retained in the sequel relies
on the grid filter models exclusively. The dual approach represented by the sampling filter models
is thus left as a subject of further investigations.



Chapter 5

Large eddy simulation of inertial turbulence

The validation of subgrid models and their underlying hypotheses requires the use of reference data
which shall be an exact solution of the macroscopic equations. These data can be obtained by direct
numerical simulation or by experimental measurements and be used in two different ways, i.e. a
priori or a posteriori. In the sequel the focus is put on the a posteriori validation method which is
briefly discussed in the particular case of the grid filter models. For a more general description, the
reader is referred to [52].

In the framework of the a posteriori validation, the results of the large eddy simulation are
directly compared to the grid-filtered exact solution arising from a direct numerical simulation
or experimental data. In contrast with the a priori method, this procedure takes into account the
effect of the modelling errors on the evolution of the system to be described. As detailed by Piomelli
et al. [47], models yielding poor a priori results can be satisfactory a posteriori and inversely. It
is therefore more pertinent to validate the models a posteriori since this corresponds to their final
use.

As a first step towards the validation of the grid filter models and the corresponding modelling
approach described in chapter 4, the direct numerical simulation of a classical problem of inertial
turbulence is considered. Moreover, applying the grid filter models for such a classical problem
allows to compare their efficiency with the modelling methods partially or fully based on functional
modelling, which are specifically meant for the modelling of inertial turbulence.

Among all benchmark problems which could be chosen, the focus is put on the lid-driven cavity
flow considering a Newtonian fluid and that the flow is isothermal and incompressible in such a way
that the particular Navier–Stokes model (2.20)-(2.21) is applicable. Although the geometry is very
simple, the flow presents complex physical phenomena, no direction of homogeneity and a large
variety of flow conditions, which represents a challenging problem in terms of subgrid modelling.

5.1 Lid-driven cubical cavity flow

The large eddy simulation presented hereafter refer to the flow in the lid-driven cubical cavity
performed at Reynolds number of 12’000. This particular choice is motivated by the availability of
large eddy simulation results obtained with other subgrid models, which enables a better assessment
of the relative performance of the grid filter models. Hence, it clearly appears that this case only
represents a first validation step of the approach presented herein.

The direct numerical simulation was performed by Leriche and Gavrilakis and was reported
in [35,36]. The flow domain consists in a cubical cavity Ω = [−L,L]3, the axis origin being assigned
at the centre of the domain represented in figure 5.1.

The flow is driven by imposing a non-zero velocity parallel to the x-axis on the “top” wall. On
the other walls, no-slip conditions are imposed. The moving wall will be referred to as the lid while
the faces normal to the z-axis will be referred to as side walls. The upstream and downstream walls
are normal to the x-axis and characterised by their relative position with respect to the lid motion.
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Fig. 5.1: Lid-driven cubical cavity. Geometry and definitions.

The opposite face to the lid is called the bottom wall. As far as the velocity imposed on the lid is
concerned, the unit velocity induces severe discontinuities along the top edges. In order to avoid
these defects, the imposed velocity on the lid is given by the regularised polynomial expression

vx(x,L, z) = V(1− (x/L)r)2(1− (z/L)r)2, (5.1)

vy(x,L, z) = 0, (5.2)

vz(x,L, z) = 0, (5.3)

with V the reference velocity and the regularisation parameter chosen as r = 18 for the sake of
consistency with the direct numerical simulation [35]. According to equation (2.31), the Reynolds
number is defined as

Re =
2LV

ν
= 12′000. (5.4)

For such Reynolds numbers, the flow over most of the domain is laminar and turbulence develops
near the cavity walls. Its main feature is a large scale recirculation which spans the cavity in the
z-direction. Aside this large flow structure, the relatively high momentum fluid near the lid is
deviated by the downstream wall into a down flowing nonparallel wall jet which separates ahead of
the bottom wall. A region of high pressure and dissipation located at the top of the downstream
wall results from this deviation. The energy resulting from the impingement of the separated layer
against the bottom wall is lost to turbulence and partly recovered by an emerging wall jet near the
upstream wall where the flow slows down and relaminarizes during the fluid rise. The flow is also
characterised by multiple counter-rotating and recirculating regions at the corners and edges of the
cavity.

The large eddy simulation is started from an instantaneous velocity field obtained from the
reference data in the statistically-steady range. This field is projected onto the spatial discretization
used for the large eddy simulation. The projective grid filter representing this operation induces
the unrecoverable loss of the subgrid scales.

5.2 Numerical method

As detailed throughout this work, subgrid modelling in the case of the grid filter models is closely
linked to the numerical method and more precisely to the spatial discretizations of the direct and
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the large eddy simulations which define the grid filter itself. Therefore, the brief description given
hereafter is mandatory in the perspective of the required grid filter modelling.

5.2.1 Direct numerical simulation

As reported in table 5.1, the reference data were obtained with a mono-domain Chebyshev collo-
cation method on a grid composed of 129 collocation points in each spatial direction, which means
that the size of the functional space (3.4) is qi = 129.

(Ex,Ey,Ez) (qx, qy, qz) (px, py, pz) ∆t

SEM (8, 8, 8) (17, 17, 17) (9, 9, 9) 2.0 10−3

CCM (1, 1, 1) (129, 129, 129) − 2.5 10−3

Table 5.1: Numerical parameters of the direct numerical simulation (qi) and large eddy simulation (pi) for
the Chebyshev collocation method (CCM) and the spectral elements method (SEM).

The reference data are re-interpolated from the Chebyshev grid onto a spectral elements grid
composed of 8 elements with 17 interpolation points in each direction, leading to a global num-
ber interpolation points of 1293. The loss of information due to this re-interpolation is negligible
compared to the effect of the grid filter associated with the large eddy simulation, the number of
interpolation points being conserved.

5.2.2 Large eddy simulation

For the large eddy simulation, the spatial discretization has 8 elements with 9 interpolation points
in each direction, that is 653 grid points in total, which is equivalent the discretization used for the
large eddy simulation reported by Zang et al. [62] for a slightly lower Reynolds number. This grid
has therefore twice less points per spatial direction than the direct numerical simulation grid. As
shown in figure 5.2, the spectral elements are unevenly distributed in order to resolve the boundary
layers along the lid and the downstream wall.

Fig. 5.2: Spectral elements grid in any z-normal plane.

The interpolation points and numerical quadratures rules are based on the Gauss–Lobatto–
Legendre distribution with pi points for the velocity and on the Gauss–Legendre rule with pi − 2
points for the pressure. This spectral elements method avoids the presence of spurious pressure
modes as proved by Maday and Patera [38, 39].
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Standard time-integrators used with the spectral elements method handle the viscous linear
term and the pressure implicitly by a backward differentiation formula of order two in order to
avoid stability restrictions such that ν∆t ≤ C/p4i , while all non-linear contributions, including the
discretized subgrid commutator, are computed explicitly by a second-order extrapolation method
which has to abide to the Courant–Friedrichs–Lewy restrictions of the form

max(||v||)∆t ≤ C/p2i . (5.5)

For these reasons, the time-step chosen for the large-eddy simulation is smaller than the one of
the direct numerical simulation, see table 5.2. Moreover, this allows to ensure that the filtering
associated to the temporal discretization is negligible, as assumed in equation (2.37) and required
for the grid filter models.

The implicit part is solved by a generalised block decomposition with the pressure correction
algorithm described in section 3.5 and the splitting operator given in (3.62). The overall accuracy-
order in time of the method is two.

5.3 Grid filter modelling

According to the approach described in chapter 4, grid filter modelling exclusively relies on the
approximate inversion of the sampling filter which allows to compute the modelling filter defined
in equation (4.23).

However, using the particular sampling filter inverse proposed in section 4.4 also requires to find
an approximate inverse of the grid filter for the approximation of the weight matrix in equation
(4.56). Hence, the approximate inverse of the grid and sampling filters used for the large eddy
simulation of the lid-driven cavity flow are presented hereafter.

5.3.1 Approximate inverse of the sampling filter

Since the initial condition of the large eddy simulation is a velocity field taken from the statistically-
steady-state range of the direct numerical simulation, it is reasonable to also assume that the large
eddy simulation will reach a statistically-steady state very quickly, but only if subgrid modelling is
efficient which was already discussed by Bouffanais in [11].

In this case, time-averaging can be considered as equivalent to an ensemble-averaging. Hence,
introducing the Reynolds statistical decomposition for the approximate inverse of the sampling
filter reads

S′ = 〈S′〉+ S′◦. (5.6)

Neglecting the fluctuating part of the operator and approximating the averaged counterpart using
the initial conditions of the large eddy simulation allows to write

S′ ≃ 〈S′〉 ≃ U0S
T(S U0S

T)−1, (5.7)

which is obtained using equation (4.55) and where the subscript 0 denotes the initial time-level,
that is the initial conditions. According to equation (4.56), the initial weight matrix is given by

U0,ij ≃ G′
ikû0,kδij . (5.8)

The approximations in (5.7) allow to obtain a linearised inverse of the sampling filter which does
not require to be re-evaluated as the state of the system changes, thereby diminishing the overall
computational costs of the large eddy simulation.
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It is worth noticing that this approach will be used for the large eddy simulation reported
hereafter but would not be applicable for transitional flows, that is for flows which are not in a
statistically-steady state.

5.3.2 Approximate inverse of the grid filter

In order to evaluate the weight matrix with equation (5.8), the approximate inverse of the grid
filter must also be defined. As a first validation step, the straightforward case of the single element
and static-basis approximation (4.43) is considered.

This modelling choice prevents the use of the Moore–Penrose pseudo-inverse obtained by the
no-coupling approach described in section 4.5.1 since a null subgrid field would always be predicted.
Instead, the focus could be put either on the probabilistic or the linear-correlation coupling between
the modes which requires the definition of the mapping function appearing in equation (4.77) or
(4.85).

The coupling approach based on the linear correlation between the modes is discarded since
an appropriate mapping function could not be heuristically defined based on the three required
properties (4.86)-(4.88). This modelling strategy therefore requires more advanced theoretical in-
vestigations based on theories of turbulence or on the analysis of direct numerical simulation data.

In the probabilistic case, the mapping function has to abide to the five constraints (4.78)-
(4.82) which enables a straightforward and heuristic definition. Moreover, and according to the
central limit theorem, which states that the sum of a large number of independent and identically-
distributed random variables are approximated by a normal distribution, the probability density
function can be chosen as

f(i, j) = exp

[
−1

2

(
j−i
σi

)2
]
, (5.9)

which matches the required constraints and where the parameters σi are determined according to
property (4.79). This definition allows to obtain the approximate inverse of the grid and sampling
filters which are shown in figure 5.3. As it can be noticed on this figure, the subgrid field predicted
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Fig. 5.3: Approximate inverse of the grid (left) and sampling (right) filters used for the large eddy simulation
of the lid-driven cavity flow.

with this approximate inverse of the grid filter mainly depends on the high-frequency part of the
computed modes. In consequence, the subgrid model vanishes in the regions where the flow is
fully resolved, which is mandatory since the lid-driven cavity flow is only locally turbulent for the
moderate Reynolds number chosen in this study.
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5.3.3 Modelling filter

Using the approximate inverse of the sampling filter represented in figure 5.3 allows to compute the
modelling filter according to equation (4.23)

G̃ = G S′. (5.10)

The modelling filter obtained by this procedure is represented in figure 5.4 for the finite and the
spectral elements methods in order to illustrate the major dependency of the modelling on the
spatial discretization method. Moreover, the filters arising from this approach are compared with
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Fig. 5.4: Modelling filter obtained for the finite elements (left) and for the spectral elements (centre) compared
to the empirical filter (right).

the empirical filter used by Habisreutinger et al. in [25] for an approximate deconvolution model
and for the identical large eddy simulation. This filter is defined by the diagonal matrix

Kij =
δij

1 +
(
ηmax(0,i−2)

pi

)γ , η, γ ∈ R+, (5.11)

where the filtering rate η = 1.25 and the filtering exponent γ = 2.0 are empirically chosen. The
first important observation on these figures is that the continuity constraint (3.26) is satisfied in
all cases.

The correspondence between the empirical filter and the modelling filter obtained in the case of
the spectral elements is quite impressive, especially considering that the modelling filter depends on
the spatial discretizations of both the direct and large eddy simulations but also on the approximate
inverse of the sampling filter and the statistically-steady state of the flow. While the empirical filter
is by definition diagonal, this property seems quite involved to demonstrate for the modelling filter
since the definition of the sampling operation relies on the inversion of a full matrix, see equation
(4.19).

Since the modelling and the empirical filters are diagonal, they can be quantitatively compared
in figure 5.5 which represents their diagonal coefficients. As one can notice, the coefficients are
relatively close, the maximum relative difference being of the order of 17%. The grid filter model
approximately corresponds to the empirical filter with a filtering rate of 1.05 and an exponent of
2.5. This strong result already indicates that the grid filter models are consistent since the results
obtained by Habisreutinger et al. in [25] are satisfying in terms of accuracy.

5.4 A posteriori validation

In this section, the results of the large eddy simulation obtained using the grid filter model described
above are compared with the grid-filtered reference results by analysing the first- and the second-
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Fig. 5.5: Diagonal coefficients of the modelling filter obtained using the grid filter model (solid line) compared
to the empirical filter (dash-dotted line). The relative difference between the grid filter model and the
empirical filter is represented with a dotted line.

order statistics of the flow. The measurements reported by Leriche and Gavrilakis [36] were taken
in the mid-plane z/L = 0, which is the statistical symmetry plane of the flow domain.

The statistics for the large eddy simulation are based on a sampling approximately 10 times
smaller than the one of the reference data. More precisely 400 samples are collected over 80 adi-
mensional time units, while the reference statistics were obtained using 4’000 samples extracted
over an integration range of 1’000 adimensional time units. Therefore, the large eddy simulation
statistics are not expected to be identical to the reference ones, especially the second-order ones.

5.4.1 Comparison of the first-order statistics

In order to verify that the spatial discretization used for the large eddy simulation is coarse enough
and does not resolve all scales of the flow, an implicit large eddy simulation of the lid-driven cubical
cavity flow was performed with exactly the same physical and numerical parameters as the ones
reported in table 5.1. In this particular context, the implicit large eddy simulation corresponds to
the resolution of

M ∂tû+A(û) = f̂ (5.12)

instead of (4.11), that is performing a large eddy simulation without model. The reader is referred
to [52] for more details about the possible interpretations of the implicit large eddy simulation in
a more general framework. The resolution of (5.12) can also be interpreted as an under-resolved
direct numerical simulation.

The comparisons with the reference results are performed by plotting identical series of contour
levels of the average velocity. As it can be observed on figure 5.6, the implicit large eddy simulation
is totally inoperative in the particular context of this simulation. Even first-order statistics are far
from being well predicted, not to mention second-order ones. These results allow to confirm the
sufficient under-resolution of the flow using the same spatial discretization that Zang et al. [62]
used for a lower Reynolds number.

Figure 5.6 also displays the average values of the velocity field obtained with the grid filter
model in the mid-plane of the cavity. A rapid overview of these figures indicates that this approach
provides results very close to the reference, which is even highlighted by the huge difference with
the implicit large eddy simulation. Secondary corner eddies located above the bottom wall and
below the lid next to the upstream wall are correctly predicted in the mean flow.
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Fig. 5.6: Contours of 〈v̂x〉 from −.2 to 1 by increments of .01 (top), contours of 〈v̂y〉 from −.7 to .1 by incre-
ments of .01 (bottom). Implicit large eddy simulation (left), large eddy simulation with the grid filter model
(centre), direct numerical simulation (right). Colour scale from blue to red. Dashed contours correspond to
negative levels.

5.4.2 Comparison of the second-order statistics

In order to assess the relative performance of the grid filter models, the comparison with clas-
sical modelling approaches is presented for the second-order statistics. A classical approximate
deconvolution model coupled with the dynamic mixed-scale model [25] for the hard-deconvolution
problem is considered. Moreover, in order to perform comparisons with fully functional modelling
approaches, the results obtained with the dynamic mixed-scale model [52] are also reported.

In an attempt to provide a comprehensive assessment of the performances of the considered
subgrid models, the determination of the Reynolds stress tensor components has been envisaged as
a challenge in the framework of the lid-driven cubical cavity flow.

In particular, figure 5.7 displays the very low-amplitude cross-term 〈v̂◦xv̂◦y〉1/2 in the symmetry
plane of the cavity. The analysis of these results showcases the improvement achieved in terms of
subgrid modelling by both deconvolution-based approaches as compared to the purely functional
modelling, which was already observed in [25]. Indeed, the deconvolution-based models reproduce
quite accurately the intense-fluctuations zones in the mid-plane z/h = 0, and more specifically in
the vicinity of the downstream corner eddy.

Moreover, comparing the deconvolution-based approaches between themselves shows that the
grid filter models provide a better modelling in the high-intensity region located near the bottom-
right edge of the cavity. The same tendencies are observed for all the other components of the
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Fig. 5.7: Contours of 〈v̂◦xv̂◦y〉 from −.0007 to .0065 by increments of .0002. Approximate deconvolution model
coupled with the dynamic mixed-scale model (top-left), dynamic mixed-scale model (top-right), grid filter
model (bottom-left), direct numerical simulation (bottom-right). Colour scale from blue to red. Dashed
contours correspond to negative levels.

Reynolds-stress tensor.

In consequence, gradually removing functional modelling seems to provide subgrid modelling of
increasing quality. However, it is worth stressing that this comment only applies to this particular
case and is certainly not a general statement.

5.5 Further decreasing the spatial resolution

In order to provide a clearer picture of the modelling performance related to the grid filter models,
the Reynolds number could be increased or the spatial discretization could be further coarsened.
Due to the availability of the direct numerical simulation data, the second option is considered
hereafter.

However, coarsening of the spatial discretization in the particular case of the lid-driven cavity
flow raises a fundamental question. Figure 5.8 displays the error on the representation of the
regularised velocity profile

ê(x, z) = v̂x(x,L, z)− vx(x,L, z), (5.13)

which is imposed on the lid for different values of pi. While the boundary conditions are almost
exactly represented in the reference case pi = 9, an error on the definition of the problem is clearly
introduced for lower polynomial degrees. In this case, how to justify the a posteriori comparison



64 Further decreasing the spatial resolution

0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

x/L

e(
x,

0)

Fig. 5.8: Error on the representation of the regularised velocity profile for different values of pi and in the
mid-plane of the cavity. The reference case pi = 9 is represented with a solid line, pi = 6 with a dashed line
and pi = 3 with a dash-dotted line.

of the results if the definition of the problem, i.e. the boundary conditions, is not the same for the
direct and the large eddy simulation. Moreover, since turbulent flows display a chaotic behaviour,
the slightest disturbance in the initial or boundary conditions can lead to enormous differences in
the evolution of the system. In order to overcome this issue and efficiently compare the results, one
possibility would be to perform a direct numerical simulation with a lower regularisation parameter
in such a way that the velocity profile would be correctly represented even at low resolution.

For instance, the first-order statistics obtained in the case pi = 6 are presented in figure 5.9,
which corresponds to a 413 spatial discretization, thereby retaining approximately 3% of the nodes
present in the direct numerical simulation grid. The corresponding implicit large eddy simulation
can not be presented since the 80 adimensional time units could not be computed due to numerical
instabilities arising from the too important under-resolution of the flow. While the subgrid modelling
performed by the grid filter models allows to maintain the stability of the simulation, the first-order
statistics are not accurately predicted. Focusing on the wiggles of 〈v̂y〉 located near the top-right
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Fig. 5.9: Contours of 〈v̂x〉 from −.2 to 1 by increments of .01 (left), contours of 〈v̂y〉 from −.7 to .1 by
increments of .01 (right) for pi = 6. Colour scale from blue to red. Dashed contours correspond to negative
levels.

edge of the cavity, the influence of the boundary conditions appears clearly. Hence, the low accuracy
of the first-order statistics is assumed to be partly induced by the incorrect representation of the
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boundary conditions and by the dismal performance of the subgrid model. However, this analysis
still provides a clear illustration of the remaining challenges in terms of improvement of the grid
filter modelling.
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Chapter 6

Simulation of elastic turbulence

The results reported in chapter 5 allow to validate the grid filter models for the large eddy simulation
of a complex flow, however only considering a Newtonian fluid. As a next step, the aim is to extend
the approach to other fluids and analyse its ability for the modelling of subgrid scales which do not
behave like in a Newtonian fluid flow.

Among the earliest observations of turbulence occurring in flows of more complex fluids, Toms
[59] experimentally discovered that the addition of a small amount of polymer into a Newtonian
solvent can reduce the frictional drag. This is known as the drag reduction phenomenon which
occurs in the high-Reynolds regime and for small Deborah numbers, namely for weakly elastic
fluids. Hence, the physics involved in such cases only represents a slight modification as compared
to the one of the purely inertial turbulence.

More recently, Groisman and Steinberg [23] observed the development of an elastic turbulence
regime in flows of highly viscous polymer solutions and in the limit of strong elasticity, that is at
very low Reynolds and high Deborah numbers. In this case, the development of turbulence is not
governed by inertial effects but by the elastic stresses of the flow. Since this phenomenon relies on
a physics which is radically different from the one of the inertial turbulence, it represents a very
challenging problem in terms of subgrid modelling, which has never been addressed to the author’s
knowledge and which is well suited to extend the validity domain of the grid filter models.

The first issues to face in the simulation of elastic turbulence are the numerical instabilities
which are particularly important at large Deborah numbers. This chapter is thus presented in
close connection with this topic which is known as the high-Deborah or high-Weissenberg number
problem.

6.1 Direct numerical simulation in periodic domains

The difficulty to compute numerically viscoelastic fluid flows is expressed in terms of the dimension-
less Deborah number (2.35) which is a measure of the elasticity of the fluid. As reported by Owens
and Phillips [45], the choice of different rheological models only changes the breakdown process,
not necessarily eliminates it altogether.

The high Deborah-number problem may arise from the difficult problem of enforcing appropri-
ate boundary conditions in order to obtain a mathematically well-posed problem. Instabilities of
Hadamard type [45] can also lead to the blow-up of the simulations. They are associated to the
unphysical loss of positiveness of the conformation tensor which is induced by the accumulation of
numerical errors during the computation of the flow dynamics.

Considering only fully periodic domains, like in the available numerical investigations of elastic
turbulence [5,58], the issue that remains to avoid the loss of positiveness of the conformation tensor
is to efficiently control the discretization errors in space and in time, which is addressed in the next
section.
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6.1.1 Numerical method

Spatial discretization

The error associated to the spatial discretization is directly linked to the truncation error introduced
in equation (3.5). Therefore, an estimation of this quantity is required in order to correctly adapt
the truncation parameter q as a function of the state of the system.

Since only periodic domains are considered, the spatial discretization relies on the Fourier
collocation method presented in section 3.3, which seems a rather natural and straightforward
choice. For sufficiently regular functions such as those expected in the framework of incompressible
fluid mechanics, the modal coefficients decay exponentially as a function of the wave-number. A
good indicator of the truncation error is therefore given by the estimation of the high-frequency
part of the computed spectrum.

For instance, the difference between the aliased and de-aliased products of the unknown, see
(3.35) and (3.36), reads

e = (Φq
qu . Φ

q
qu)−Gq

r (Φ
r
qu . Φ

r
qu), (6.1)

and is directly proportional to the magnitude of the modes comprised between q/2 and q. Hence,
choosing q in such a way that the aliasing error satisfies the criterion

|e · e| ≤ τ, (6.2)

where τ ∈ R represents the error tolerance, and assuming the exponential decay of the modal
coefficients implies that the truncation error (3.5) is bounded by

|εx · εx| ≤ Cτ, (6.3)

with C ∈ R a given constant. Consequently, adapting q to satisfy (6.2) enables the indirect control
of the error associated with the spatial discretization.

Time-integration

For time-integration, an explicit Runge-Kutta scheme of order 8 based on the method of Dormand
and Prince is used. It is described by Hairer et al. in [26] and available at the author’s website1

as a fortran 77 subroutine. It features embedded error estimators of order 5 and 3 which enables
the adaptation of the time-step in such a way that the local integration error (3.55) satisfies the
constraint

||ǫt||∞ ≤ τ, ∀t. (6.4)

Combined with the control of the spatial error, this algorithm allows to control the overall error
associated with the numerical approximation which can lead to the loss of positiveness of the
conformation tensor.

6.1.2 Viscoelastic Taylor–Green vortex

Given the order of accuracy of both the spatial and temporal discretization methods, it would
be conceivable to solve the governing equations (2.32)-(2.34) to machine precision. However, in
practice, the computational costs for reaching such a precision become prohibitive. Hence, the
error tolerance is raised up to τ = 10−12, the time-step and the number of modes being adapted
accordingly.

1http://www.unige.ch/∼hairer/software.html
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Initial conditions

In order to validate this numerical approximation framework for the simulation of high-Deborah
number flows, a modified version of the three dimensional Taylor–Green vortex as presented by
Brachet et al. [13] is considered. The initial condition for the velocity field is given by

v0 =
2V√
3




(α+ 2π
3 ) sin(kx) cos(ky) cos(kz)

(α− 2π
3 ) cos(kx) sin(ky) sin(kz)

sin(α) cos(kx) cos(ky) sin(kz)


 , (6.5)

with V the reference velocity, the free parameter chosen as α = π/2 and the wave-number

k =
2πn

L
, n ∈ N, (6.6)

L representing the size of the three-dimensional periodic domain Ω = [0,L[3. This must be extended
to the viscoelastic case by the initial condition of the conformation tensor which is arbitrarily chosen
as

χ0 = I. (6.7)

Using expression (2.28) to retrieve the extra-stress tensor yields

τ0 = 2µγ̇0, (6.8)

which reduces to the single contribution of the Newtonian solvent. The viscoelastic stresses are thus
null at the initial time, which means that the polymers are initially at the equilibrium state. The
dimensionless numbers which characterise the flow are defined as

De = λVk, Re =
V

(1 + η)νk
, (6.9)

where the 2π scaling coefficient is omitted. In the sequel, the Reynolds number is fixed to Re = 1,
the polymer viscosity coefficient to its typical value η = 10/13, while the Deborah number is
considered as a parameter.

Evolution of the energy

In the case of an Oldroyd-B fluid which is composed of a suspension of Hookean dumbbells in a
Newtonian solvent, the total energy of the flow E is the sum of the kinetic energy K and the elastic
one stored by the deformation of the dumbbells H, that is

E(t) = K(t) +H(t) =
1

2
〈v · v + tr τp〉. (6.10)

In order to get some insight about the physics involved in the flow, the conversion of energy
between the kinetic and elastic forms is considered. As shown in figure 6.1, the elastic energy is
null at initial time, which is in accordance with equation (6.8), and increases at first passing a peak
which is less marked and occurs later with increasing the Deborah number. In order to understand
this mechanism, consider the time-derivative of the polymer contribution to the extra-stress tensor
at the initial time

∂tτp(t = 0) =
2η

De
γ̇0. (6.11)
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Fig. 6.1: Three-dimensional Taylor-Green vortex. Time-evolution of the total elastic energy for different
values of the Deborah number.

Thus, the initial energy transfer from the velocity field to the elastic stresses is lower at high-
Deborah number, which explains the behaviour reported in figure 6.1. Since less energy is stored
in the dumbbells, the decay on the kinetic energy presented in figure 6.2 is slower at high-Deborah
number. Moreover, local minimas of kinetic energy occur at relatively low energy levels. When the
kinetic energy re-increases, elastic energy is transferred back under kinetic form. The total energy
of the flow represented in figure 6.3 is monotonically decaying since no energy is injected into the
system through boundary conditions, and volume or surface forces.

Perhaps most interestingly, no problem was encountered while increasing the Deborah number,
retaining numerical stability and physical consistency all along. As already mentioned, this was
achieved enforcing the tolerance on the spatial and temporal errors to τ = 10−12.

Despite the high-Deborah numbers considered for the Taylor–Green vortex, the development of
a wide range of space and time scales and the transition to a turbulent state is not observed since no
energy is injected into the flow. Indeed, all the reported cases were resolved satisfying the accuracy
constraints using only qi = 64 Fourier modes in each spatial direction. Hence, the Taylor-Green
vortex is not an appropriate test case for the investigation of elastic turbulence.

6.2 Large eddy simulation in periodic domains

For direct numerical simulations, and focusing on periodic domains, the key issue to avoid the loss
of positiveness of the conformation tensor is the control of the error related to the spatial and
temporal discretizations. In the case of large eddy simulations, by definition, the flow is under-
resolved in space which was also identified by Kupfermann [32] and Hulsen et al. [27] as a cause for
the loss of positiveness of the conformation tensor.

Hence, the first challenge for subgrid modelling is to compensate the under-resolution of the flow
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Fig. 6.2: Three-dimensional Taylor-Green vortex. Time-evolution of the total kinetic energy for different
values of the Deborah number.
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Fig. 6.3: Three-dimensional Taylor-Green vortex. Time-evolution of the total energy for different values of
the Deborah number.
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in order to maintain the positiveness of the conformation tensor, which is already a complicated
task. Moreover, the subgrid model must perform a correct modelling of the subgrid scales whose
physical behaviour is not clearly understood. However, if the positiveness of the conformation tensor
is conserved, a correct subgrid modelling can be expected.

6.2.1 Viscoelastic Kolmogorov flow

The simplest configuration which enables the study of elastic turbulence in periodic domains is
referred to as the Kolmogorov flow [2], which is considered in two spatial dimensions. Defining a
forcing term of the form

g =

(
Ccos(ky)

0

)
, k =

2πn

L
, n ∈ N, (6.12)

with C ∈ R, the system of equations (2.32)-(2.34) admits a fixed point, that is a laminar and steady
state solution given by

v0 =

(
V cos(ky)

0

)
, χ0 =

(
2 De2 sin(ky)2 + 1 −De sin(ky)
−De sin(ky) 1

)
, (6.13)

where the Deborah number is defined as in (6.9) and the reference velocity implicitly given by

C = ν(1 + η)k2V. (6.14)

The complete stability diagram of the Kolmogorov fixed point in the (Re−De) plane was given
by Boffetta et al. in [8]. In the Newtonian limit, inertial instabilities occur above the critical value
Rec =

√
2 [41]. On the other hand, for very low and vanishing Reynolds numbers, the Kolmogorov

flow displays purely elastic instabilities for sufficiently high Deborah numbers.

The goal of the large eddy simulation presented hereafter is to reproduce the transition from
the laminar fixed point to turbulence in the regime of elastically-driven instabilities, with the aim
of reaching a statistically-steady state and avoiding the loss of positiveness of the conformation
tensor induced by the coarse spatial discretization.

6.2.2 Grid filter modelling

According to the approach described in chapter 4, grid filter modelling exclusively relies on the
approximate inversion of the sampling filter which allows to compute the modelling filter defined
in equation (4.23).

However, using the particular sampling filter inverse proposed in section 4.4 also requires to find
an approximate inverse of the grid filter for the approximation of the weight matrix in equation
(4.56). Hence, the approximate inverse of the grid and sampling filters used for the large eddy
simulation of the Kolmogorov flow are presented hereafter.

The direct numerical simulations reported herein are performed with qi = 512 modes per space
direction, while pi = 256 modes are used for the corresponding large eddy simulations. The number
of modes is actually divided by two which is equivalent to the under-resolution used for the large
eddy simulation of the lid-driven cavity flow presented in chapter 5.



6.2.2 Grid filter modelling 73

Approximate inverse of the sampling filter

Since the evolution of the Kolmogorov flow is considered from the laminar fixed point to a turbulent
state, the linearised approach presented in section 5.3.1 can not be applied in this context. Hence,
the approximate inverse of the sampling filter is re-evaluated as the state of the system changes
using the general non-linear formulation (4.55), that is

S′ = U ST(S U ST)−1, (6.15)

where the weight matrix is given by equation (4.56)

Uij = uiδij ≃ G′
ikûkδij , (6.16)

which requires therefore the additional definition of an approximate inverse of the grid filter.

Approximate inverse of the grid filter

In contrast with the modelling used for the lid-driven cavity flow, the case of the two-element and
static-basis approximation (4.43) is considered to express the approximate inverse of the grid filter.
The first approximate inverse is the Moore–Penrose pseudo-inverse obtained with the no-coupling
approach presented in section 4.5.1 and given by

G′′
1 =

(
I

0

)
, (6.17)

which is recalled from equation (4.73). The second basis matrix relies on the probabilistic coupling
and the use of the Gaussian mapping function (5.9), leading to a matrix of the form

G′′
2 =

(
I

R′′
2

)
, (6.18)

which does not predict a null subgrid field. According to the definition of the weight parameter
(4.92), the approximate inverse of the grid filter becomes

G′ = (1− θ)G′′
1 + θG′′

2. (6.19)

In this case, the dynamic weight parameter can be interpreted as an indicator of the importance of
the subgrid field and computed according to (4.94).

Modelling filter

Using the approximate inverse of the sampling filter given in equation (6.15) allows to compute the
modelling filter according to equation (4.23)

G̃ = G S′. (6.20)

Like for the spectral elements method, the modelling filter obtained by this procedure is diagonal
in the case of the Fourier basis, which seems quite involved to demonstrate since the definition of
the sampling operation relies on the inversion of a full matrix, see equation (4.19).

As illustrated in figure 6.4, when the weight parameter vanishes, the modelling filter is the
identity matrix since no subgrid field is predicted by the approximate inverse of the grid filter. In
other words, the model vanishes since the flow is predicted as fully resolved. For increasing values
of the weight parameter, the modelling filter becomes more and more effective.
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Fig. 6.4: Diagonal coefficients of the modelling filter obtained with different values of the weight parameter,
for qi = 512 and pi = 256.

6.2.3 Evolution of the flow resistance

In order to analyse the transition from the laminar fixed point to a statistically-steady turbulent
state, the evolution of the flow resistance to the external forcing is considered. Normalising this
quantity with respect to the laminar fixed point yields

R(t) =
〈v · g〉
〈v0 · g〉

=
2〈v · g〉

ν(1 + η)(kV)2
. (6.21)

This quantity is presented as a function of time in figure 6.5. While no numerical instability is en-
countered for the direct numerical simulation, the large eddy simulation is affected by an Hadamard
instability after 11 adimensional time units. Hence, the aim of reaching the statistically-steady state
of the Kolmogorov flow by large eddy simulation could not be achieved.
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Fig. 6.5: Evolution of the flow resistance for qi = 512 and pi = 256 with De = 16. Large eddy simulation in
red-solid line, direct numerical simulation in black-dash-dotted line.

A possibility to overcome this issue would be to mathematically enforce the positiveness of the
conformation tensor. Several methods have been proposed in this scope, such as the continuous
eigendecomposition and the Cholesky decomposition presented by Vaithianathan et al. in [60], but
also the log-matrix formulation introduced by Hulsen et al. in [27]. While such methods could allow
to obtain numerically stable simulations, they would only cure the consequences and not the cause,
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that is the dismal modelling performance performed by the grid filter model presented in section
6.2.2.

Despite many attempts, a better subgrid modelling which enables to avoid the loss of positive-
ness of the conformation tensor could not be achieved, thereby always leading to the same type of
unphysical instabilities. This illustrates the improvements which are required in terms of grid filter
modelling for the large eddy simulation of elastic turbulence.
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Chapter 7

Conclusions and perspectives

A possible way towards the suppression of functional modelling for deconvolution-based subgrid
models has been paved, which was defined as the driving motivation of this work. This achievement
potentially allows to extend the use of such models to the large eddy simulation of flows which can
not be modelled using the functional strategy.

However, this proposal only represents a possibility among others and several bifurcations have
been highlighted throughout the presentation. In this concluding chapter, a review of the achieve-
ments and the perspectives is presented in order to highlight the possible starting points for further
researches.

7.1 Achievements

The key idea of the method is to consider the effects of the coarse spatial discretization used for large
eddy simulation as the only effective filter applied to the macroscopic equations. In this context,
the grid filter models are defined as a particular class of deconvolution-based subgrid models which
allows to approximate the effect of the scales lost by spatial discretization on the resolved scales of
the flow. Moreover, this gives a theoretical justification to the use of deconvolution models for the
entire subgrid modelling and the classical distinction between the hard and the soft deconvolution
problems appears useless.

In this framework, a general method for the computation of the convolution filter which models
the effect of the grid filter on the computable scales of the solution is proposed, thereby providing a
first answer to the key issue of the numerical discretization in large eddy simulation. More precisely,
the definition of the convolution filter relies on the use of an approximate inverse of the sampling
filter, which opens a wide range of modelling strategies.

In order to overcome this major issue, a general method for the approximate inversion of pro-
jective operators is proposed. Building a basis of the space of the possible inverses, a particular
approximate inverse is expressed as a linear combination in this basis. Based on this general method,
a purely algorithmic and intuitive strategy for the approximate inversion of the sampling filter is
introduced and requires the use of the original quantities. Since these are unknown when performing
a large eddy simulation, an approximate inverse of the grid filter is also needed and relies on the
physical modelling of the coupling between the modes in modal space.

The large eddy simulation of the lid-driven cavity flow enabled a first validation of the grid filter
models and the corresponding grid filter modelling presented in section 5.3. In this particular case,
gradually removing functional modelling seems to provide subgrid modelling of increasing quality.
However, when further decreasing the spatial resolution, the quality of subgrid modelling obtained
by this approach becomes to low, even for the correct prediction of the first-order statistics, which
already appears as a measure of the improvements required in terms of grid filter modelling.

The large eddy simulation of the viscoelastic Kolmogorov flow is considered in order to extend
the validity domain of the grid filter models. In this framework, compensating the errors related
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to the coarser spatial discretization in order to avoid the unphysical loss of positiveness of the
conformation tensor has been envisaged as a challenge. While the aim of the large eddy simulation
is to reach a statistically-steady and turbulent state from the Kolmogorov fixed point, the dismal
performance of the grid filter modelling presented in section 6.2.2 did not allow to avoid the onset
of Hadamard instabilities in the transitional phase.

7.2 Further developments

As mentioned in the introduction of this work, this modelling approach was presented as a straight
path but improvements and other solutions could and have to be envisaged in order to increase the
performance of the grid filter modelling. Such improvements would enable the large eddy simula-
tion of more complex flows, with more complex fluids and the coarsening of the required spatial
resolutions in order to further decrease the computational costs.

The first central issue is related to the approximate inversion of the sampling filter which bears
the entire subgrid modelling in the particular framework of the grid filter models. The proposal
presented in this work is based on the ansatz (4.44) and corresponds to the intuitive strategy of
unfolding the modes in modal space. This approximation method could certainly be replaced by
others and the approximate inversion could also be performed in physical space.

For the approximate inversion of the grid filter, other basis matrices could be considered by
defining other interpretations of the Jacobian appearing in equation (4.61). Three intuitive inter-
pretations of this quantity, which describes the coupling of the modes in modal space, were given
but these do not represent an exhaustive presentation. Moreover, the mapping functions appearing
in equations (4.77) and (4.85) could perhaps be determined by analytical approaches based on
simplified theories of turbulence.

As detailed in section 4.5.2, another important issue is to generalise the method for the deter-
mination of the coefficients in (4.42) and (4.43) which would allow to use a general n-dimensional
basis of the admissible subspace, thereby potentially improving the accuracy of the approximate
inversion of projective operators.

Another aspect which has been introduced but completely neglected is the dual approach of
the grid filter models, that is the sampling filter models. Their definition raises a fundamental
question about the nature of the implicit filter associated with the spatial discretization which
shall be considered in large eddy simulation, thereby hopefully opening one more subject for the
disputatio.
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flows, Master’s thesis, École Polytechnique Fédérale de Lausanne, Section de Physique, 2009.

[8] G. Boffetta, A. Celani, A. Mazzino, A. Puliafito, and M. Vergassola, The viscoelastic Kol-
mogorov flow: eddy viscosity and linear stability, J. Fluid Mech. 523 (2005), 161–170.
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turbulence, Ph.D. thesis, no. 3837, École Polytechnique Fédérale de Lausanne, 2007.

[11] R. Bouffanais, M. O. Deville, and E. Leriche, Large-eddy simulation of the flow in a lid-driven
cubical cavity, Phys. Fluids 19 (2007), Art. 055108.

[12] J. P. Boyd, Two comments on filtering (artificial viscosity) for Chebyshev and Legendre spectral
and spectral element methods: Preserving boundary conditions and interpretation of the filter
as a diffusion, J. Comput. Phys. 143 (1998), 283–288.

[13] M. E. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel, R. H. Morf, and U. Frisch, Small-scale
structure of the Taylor–Green vortex, J. Fluid Mech. 130 (1983), 411–452.

[14] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods – Fundamentals
in Single Domains, Springer Verlag, 2006.
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Special award of the Collège Calvin, Geneva. Co-author of a reference
lecture book in mathematics.

2000

Invited presentations

00000-00000
Laboratory of Fluid Mechanics and Instabilities seminars. Prof.
François Gallaire. Ecole Polytechnique Fédérale de Lausanne, Switzerland.

07.2010

Annual Meeting of the Leonhard Euler Center. European Research Com-
munity on Flow Turbulence and Combustion. Lausanne, Switzerland.

11.2006

Conference presentations

00000-00000
International Conference On High-Order And Spectral Methods.
Trondheim, Norway.

06.2009

International Conference on Turbulence and Interactions. Martinique,
France.

06.2009

International Congress on Rheology. Monterey (CA), USA. 08.2008
French Congress on Mechanics. Grenoble, France. 08.2007
International Congress on Industrial and Applied Mathematics.
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