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ABSTRACT
At the conceptual-stage, building performance simulation (BPS) based evaluations are being increas-
ingly used for tasks such as ranking of competing massing design proposals. However, such con-
ceptual stage evaluations suffer from information deficiency in building level design attributes. The
resulting uncertainty in performance evaluations raises questions regarding their usefulness for
decision-making. We used a risk-based decision evaluation metric calledexpected opportunity loss
to assess the reliability of a BPS-based ranking of conceptual stage massing schemes. We found day-
lighting assessments (spatial Daylight Autonomy) to be least reliable, with 22% chance of making an
incorrect decision at the conceptual stage, followed by annual heating (15%) and cooling demand
(8%). This work provides a structured framework for evaluating utility of conceptual stage BPS mod-
els and a purposeful basis for integration of BPS assessments in the design process, subject to level
of design development.
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1. Introduction and state of the art

The building performance simulation community (e.g.,
ASHRAE2018; CIBSE2015), the architectural design com-
munity (e.g., AIA2019) and city/state governments (e.g.,
BC Housing et al.2018; SIA2017) have all asserted the
need for building performance assessments at multiple
stages of the design process. The early design stage, i.e.
when the built form or the shape of the building enclo-
sures is being determined, is of particularly high interest
to all parties mentioned above, as design choices made at
this time can have a large effect on several comfort and
energy-use related performance criteria (Compagnon
2004; Okeil 2010; Sattrup and Strømann-Andersen2013).
Design proposals at this stage are often represented as
block models or massing-schemes: what we mean with
massing-scheme in this context is the volumetric bounds
of the built mass as per the design proposal made for a
given site, exemplified for instance in Figure1.

However, performance assessments require a large
number of inputs regarding the detailed building design
and indoor operational conditions, which typically remain
unknown or unresolved at the conceptual stage. For
example, Ratti, Baker, and Steemers (2005) used the
simplified Light and Thermal (LT) method (Baker and
Steemers 1996) to study the effect of urban form
on annual heating demand. This simplified, empirical

CONTACT Minu Agarwal minu.agarwal@cept.ac.in

method also requires 30 additional inputs regarding the
building level design characteristics such as window-to-
floor area ratio, shading device type and operational
assumptions like thermal setpoint and indoor illumina-
tion setpoint for artificial lighting operation. Performance
assessment of the schematic designs, at the concep-
tual design stage, thus requires constant values to be
assumed for unknown parameters and may also ignore
some building details that may be specified later (such as
fixed shading, balconies, etc.).

Many BPS tools, developed specifically for perfor-
mance evaluation at the early design stage, have acknow-
ledged the issue of design information deficiency and
have automated the process of converting simple neigh-
borhood massing geometry into BPS models. In many
instances this conversion is done by resorting to default
values for any unknown building attributes (e.g. ther-
mal and optical properties of envelope components, fen-
estration size and placement, internal zoning). This is,
for example, the case for tools like UrbanSolve proto-
type (Nault et al.2018), UMI (Reinhart et al.2013), Young
Cities (Huber and Nytsch-Geusen2011), SUNtool (Robin-
son et al.2007). Surveys of BPS users, assessment crite-
ria of early design BPS tools and simulation guides all
point to a general consensus in the simulation commu-
nity that simple BPS models targeting early stages are

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
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Figure 1.Common design decision problem where a design alternative needs to be chosen from multiple design proposals (i) shows
an example design problem … the site and its context (ii) shows potential conceptual design options from which one must be chosen for
the design process to proceed.

more conducive to the design process (Attia et al.2012;
Attia and Herde2011; Souza 2009).

At the same time, studies show that there can be
enough uncertainty in early design performance eval-
uations due to unknown design information to impact
design decisions (Tregenza2017) and that different
assumptions in early design BPS models can lead to differ-
ent results (Brembilla, Hopfe, and Mardaljevic2018; Xia,
Zhu, and Lin2008). Various studies (Attia et al.2012; Bas-
bagill, L. Flager, and Lepech2014; Hester, Gregory, and
Kirchain 2017; Jusselme, Rey, and Andersen2018) use
a combination of uncertainty and sensitivity analysis to
propose robust design paths for greater synergy between
early design and detailed design stage decisions. These
studies also show that the use of BPS in design is essen-
tially a problem of decision making under uncertainty
(DMUU).

Two main approaches exist for supporting decision
making under uncertainty: (1) decision support systems
and (2) artificial intelligence-based systems (Kochender-
fer 2015). Decision support systems provide methods for
evaluating the robustness of the decision being made,
while artificial intelligence systems can support a data-
driven, iterative exploration of the design solution space.
Both methods can support robust decision making, how-
ever, artificial intelligence systems are more suitable
where ‘unsupervised’ or ‘never seen before’ solutions are
acceptable. Decision support systems are more suited for
comparing the robustness of alternatives or options pro-
duced during the design process that need to simply be
ranked.

The meaning of robustness in decision support sys-
tems is not constant and changes depending on con-
text or nature of decision making. For example, robust-
ness could mean insensitivity to uncertainty, avoiding
regretful decisions or avoiding negative outcomes such

as failure to meet design requirements under uncertainty.
Robustness metrics may thus be further classified into
two types (Lempert2019):

(1) Metrics that assess robustness of each option inde-
pendently across a set of plausible future scenarios
(e.g. expected value metrics (Wald1950)).

(2) Metrics that assess robustness of each option based
on a reference point. These include Savage’s minimax
regret (Savage1951) where each option is compared
to the best possible one in each future scenario.

The use of both types of robustness metrics has been
explored in various kinds of building design decision-
making problems and their use demonstrated in rank-
ing design alternatives (e.g. De Wit and Augenbroe2002;
Hoes et al.2009; Hopfe, LM Augenbroe, and Hensen2013;
Kotireddy, Hoes, and Hensen2019; Rezaee et al.2019;
Rysanek and Choudhary2013).

However, despite these numerous explorations of
introducing robustness checks in design decisions, in
parallel to the existence of several simulation tools that
actively supporting quantification and exploration of
uncertainty (e.g. ‘JEPlus’2022; ‘Sefaira’2022), the use of
robustness-based decision-making methods remains low
in the building design practice (Clarke and Hensen2015;
Østergård, L Jensen, and Maagaard2017) and considera-
tion of uncertainty in decision making using BPS tools is
currently not regarded essential.

In this study, we estimate the risk of performance
loss if simplistic decision-making methods are used at
the conceptual design stage and uncertainty in perfor-
mance estimates is ignored. The risk is estimated in
the context of a typical decision-making task for which
BPS tools are used at the conceptual design stage,
namely, relative performance-based comparisons and/or
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ranking of massing-schemes, the objective often being
to choose one for detailed design development. The
question becomes:Would thedesignchoicemadebetween
competingmassingdesignproposals,andbasedonconcep-
tual stage BPS results, remain justifiable irrespective of the
facade design decisions made later on in the design process?

A methodology has been devised specifically to assess
the risk of incorrect decision being made when only
massing-related design information is available (problem
illustrated in Figure1) while performance assessments are
done using indoor-environment related metrics related
to visual and thermal comfort. More specifically, we will
focus our analyses on three such metrics, due to their
somewhat recurrent use in early-stage design decision
making at the neighborhood scale (e.g. Futcher, Kershaw,
and Mills2013; Nault et al.2018; Reinhart et al.2013):

€ spatial Daylight Autonomy (sDA), corresponding to
300 lux and 50% of occupancy time threshold (IESNA
2012)

€ annual heating demand, defined as total annual ideal
space heating load normalized over conditioned gross
floor area. Refer to Table A3 for details inputs.

€ annual cooling demand, defined as total annual ideal
space cooling load normalized over conditioned gross
floor area. Refer to Table A3 for details inputs.

The proposed methodology for risk assessment is
applied to a set of conceptual stage massing-schemes to
illustrate its potential in revealing the likelihood of mak-
ing incorrect choices at the very beginning of the design
process.

2. Methodology

In this paper, we examine the effectiveness of choos-
ing one massing-scheme over another, based on per-
formance metrics of interest pertaining to availability of
daylight and/or expected heating and cooling demands,
when no building-level design decisions have been
made.

The approach chosen is based on the notion ofrisk– of
making an incorrect choice – and the associated notion
of opportunity loss(also known as regret (Savage1951)).
Opportunity loss may be interpreted as ‘the difference
between the wrong choice you took and the best alter-
native available, i.e. the one you would have chosen if you
had the perfect information’ (Hubbard2014). The oppor-
tunity loss method was thus used for assessing the risk
of rejecting the best available alternative at the concep-
tual design stage if the impact of future design decisions
is ignored.

In the present paper, the scope of the risk assessment
methodology was limited to façade design details that
modulate the intake of solar radiations/gains and thus
could potentially disrupt performance ranks of massing
schemes. To limit the diversity of façade typologies and
keep the scope of the paper manageable, we limited our-
selves to residential buildings, that already offer a very
large variety of façade designs. Thus, in the context of
this study, we have interpreted opportunity loss as ‘the
performance loss from rejecting the massing-scheme,
that would be chosen, if the designer knew what kind
of façade would eventually be designed’ (Agarwal et al.
2019).

2.1. Work�ow overview

The methodology for assessing risk, proposed in this
paper, addresses the binary decision-making problem
of choosing one out of two massing scheme design
proposals based on daylight or heating/cooling-related
performance-based ranking. Using this methodology, we
assess the risk of potential disruption in ranks if the
rank assignments to design proposals had been done
later in the design process when more design details
had become available. The risk calculated here signifies
the performance loss from rejecting a conceptual design
option that appears to be unfavourable when evaluated
in the absence of detailed design information.

2.1.1. Formulation of BPS models at incremental
levels of detail (LOD)
In order to operationalize and demonstrate this risk
assessment methodology, a workflow was developed
to convert simple massing-scheme geometry into BPS
models at varying LOD of façade design. This work-
flow acknowledged that starting from a given mass-
ing scheme, several design paths, with different façade
designs, are still possible. Thus, multiple façade designs
(we refer to them here as ‘façade variants’) were gen-
erated to represent a growing field of design possibil-
ities that could potentially emerge as the façade level
of detail (fLOD) is increased. Key characteristics of the
façade variants (e.g. types of balconies, use of differ-
ent façade design for different orientation) and those
of the massing schemes (e.g. building depth, floor-floor
height) were derived from a survey of 30 recently built
residential projects in Switzerland. The incremental lev-
els of design details were determined in consultation with
local architects. Several façade details (e.g. sill height, win-
dow height) were kept constant in low as well as high
fLOD models as decisions regarding these details can be
taken independent of massing related choice and the
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Figure 2.Exploded view showing incremental levels of façade
detail at which 3D models are produced by the grasshopper work-
”ow.

decision maker’s choices regarding these details remain
open irrespective of the massing scheme that is chosen.

Each façade variant is represented at low and progres-
sively higher fLODs. Figure2 shows an example massing
scheme with various façade elements that are added to it
incrementally at each fLOD. Low fLOD (fLOD0) indicates
that no façade design information is available and the 3D
model only relies on assumed and minimal façade inputs
that are all subject to change later on. Higher fLODs (up
to fLOD3) addressed in this study include design deci-
sions related to more refined aspects of the façade, such
as window-to-wall ratio (WWR), window area distribu-
tion per orientation, and fixed or active shading devices
for instance. We provide further detail on the method of
generating façade variants in Section 2.2. As mentioned
above, three metrics were identified for this study for
their relevance to early design stage decisions and their
compatibility with the current status of use in BPS (well-
established, easily accessible existing workflows for their
calculation), namely: spatial Daylight Autonomy (sDA),
annual heating and annual cooling demand. Further
explanation regarding the choice of metrics and of the
modelling methods used for converting 3-D geometry at
various fLODS into BPS models is provided in Section 2.3.

2.1.2. Pairwise comparison of two given
massing-schemes
Next, we compare two massing-schemes that would
potentially be competing with one another in a

hypothetical decision-making process. While it is com-
mon to have more than two competing design proposals
at the early design stage, comparing options two-by-two
(pairwise comparison) is the simplest form of ranking
exercise and will be used in this paper. The two design
alternatives are thus ranked based on performance on a
given metric (e.g. sDA) and one of them is either iden-
tified as the preferred scheme or both are proclaimed
as equivalent because the difference in performance is
negligible.

2.1.3. Calculation and characterization of risk due to
unknown design decisions to be made at higher fLOD
The loss in performance due to any disagreement in
choice of massing scheme at low versus high fLOD is
then estimated. The risk of performance loss is calculated
using Opportunity Loss (Savage1951) described in fur-
ther detail in Section 2.4. We also propose a strategy for
identifying cases where the risk of loss is high enough for
remedial action to be considered essential (Section 2.5).

2.1.4. Estimation of prevalence of high risk in early
design performance evaluations
By repeating the process mentioned above with several
pairs of massing scheme proposals, we assess the general
level of caution that should be associated with making
massing-scheme-related design decisions based on the
performance values observed at low fLOD. This step is
further detailed in Section 3.

In summary, the proposed methodology allows one to:

€ assess the risk of performance loss when choosing
what appears to be a higher performance neighbor-
hood massing-scheme at low LOD.

€ identify ‘high’ risk cases to determine the suitability
of conceptual neighborhood massing models for BPS
assessments.

€ estimate the risk of performance loss due to a poor
choice of massing-scheme at the conceptual design
stage (low LOD).

2.2. Development of 3-D models at various fLODS

The conversion of 3-D massing models from fLOD0 to
fLOD3 was done using a script in the grasshopper plug-in
for Rhino 5.0. An asset of the grasshopper workflow is that
it maintains continuity of the design process and geomet-
rical hierarchies between building elements when gener-
ating higher fLOD variants. At fLOD0, window openings
are present but the area is assumed to be unknown to
the designer; therefore, a default value of 30% for the
window-to-wall ratio was used. As a first step forward
from fLOD0, the WWR is decided upon by the designer
which may be more than, less than or equal to the default
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value. This is followed by the window placement. Once
the window distribution is determined, the balconies, the
balconies are placed accordingly (facing glazed doors,
which are also considered as windows).

More explicitly, five steps are followed to arrive at
fLOD3 variants from fLOD0:

(1) At fLOD0 windows are input as simple punched win-
dows (30% WWR), uniformly distributed on all faces,
all with the same height and sill height (2 and 0.75 m
respectively). The number of windows per face is esti-
mated based on the number of apartments per floor.
Once this number is determined at fLOD0 for a partic-
ular massing-scheme, it is kept the same at all fLODs.

(2) In the second step, three variants are created, with
three possible values (20%, 30%, 40%) of WWR. Each
WWR is used to revise the total resulting glazed area,
which is then distributed uniformly again on all verti-
cal faces of the massing-scheme same as fLOD0. The
window height and sill height are kept unchanged.

(3) In step 3, active shading devices are added in the
form of shading schedules (on/off type) to be used
in annual daylight and dynamic thermal simulation
models.

(4) In the fourth step, we deviate from a uniform distri-
bution of glazing on all faces to reflect a designer’s
intent to identify primary and secondary façades. If
the secondary façade carries any glazing, the WWR is
at least 10%. The remaining glazed area is assigned
to the prominent façade. Four variants are mod-
elled at each WWR value, one where the prominent
façades are those with a high sky view factor (SVF),
second where prominent façades are those with a
low SVF, third where prominent façades face either
east or south, and fourth, where prominent façades
face either west or north. Active shading operation
schedules are updated (still in on/off mode) in step
4 to account for this new distribution of glazing. At
this fLOD, we will have generated 12 façade variants
(3 � 4).

(5) In the final step, we arrive at fLOD3. Four possible
balcony types are assigned here to the prominent
façade (identified in step 4). Active shading opera-
tion schedules are updated again to account for the
addition of balconies (fixed shading devices). Please
refer to Appendix A for more details about the active
blind modelling method used. At this final fLOD, we
end up with 48 façade variants per massing-scheme
(3 � 4 � 4)

A limited number of façade design variants (48) have
been considered here out of the seemingly infinite
plausible façade designs for a given massing scheme.

The number of variants was limited to a point where
satisfactory number of pairwise comparisons could be
done between façade variants of two competing massing
schemes and meaningful value of risk could be reported.
In other design contexts if a wider variety in façade design
solutions is expected and more design details consid-
ered relevant to the risk assessment, then the number of
variants will need to be re-evaluated.

2.3. Approach for performance evaluation at
various fLODS

The building performance metrics for this study were cho-
sen carefully such that they remain possible to calculate
irrespective of the level of design development. For exam-
ple, the Residential Daylight Score (RDS) (Dogan and Park
2017), while more appropriate for residential buildings,
was not considered at this time as it requires internal lay-
outs to be present for its calculation. An issue like this
could be addressed, for example, by applying a default
zoning type to conceptual stage models (Dogan, Rein-
hart, and Michalatos2016) which could potentially influ-
ence performance just like default assumptions regarding
WWR. However, any risk assessment problem requires a
reasonable scope or horizon to be defined and we here
assume that when making performance-based decisions
regarding massing-schemes at the conceptual design
stage, a decision maker’s primary interest is likely to be to
optimize the solar radiation received at (and conduction
gains transmitted through) the building surfaces. Thus,
the scope of uncertainty in design details was restricted
to building elements that interfere with the intake of
solar radiation and the main focus of this paper is kept
on developing and demonstrating the risk assessment
methodology.

The metrics were also chosen such that they exhibit
lower sensitivity (compared to other metrics) to design
details that would be well beyond the conceptual/early
design stage. For example, the Useful Daylight Illumi-
nance metric (UDI) (Nabil and Mardaljevic2005) has been
shown to be more sensitive to reflectance properties of
the interior surfaces compared to sDA (Brembilla, Hopfe,
and Mardaljevic2018). Thus, if the risk of sub-optimal
decision making were to be explored using the UDI met-
ric, then the uncertainty in reflectance properties of sur-
faces must also be included. Specific details and inputs
used in generating performance estimates in this paper
are provided in the Appendix.

2.4. Decision making and risk of performance loss

Decision-making under uncertainty is an unavoidable
aspect of any performance-based design process (Hopfe,
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Table 1.Possible values for decision criteria for various performance metrics.

Metric Minimum performance di�erentiation

sDA (daylight) 10% (sDA units) improvement in sDA is generally considered to be a minimum appreciable di�erence between design
alternatives (Iversen, Svendsen, and Nielsen2013)

Annual Heating Demand 2.8 kWh/m2-year (reduction in annual heating demand needed to upgrade from code compliant (SIA2017) to
MINERGIE-Prating (MINERGIE2022))

Annual Cooling Demand 3.8 kWh/m2-year (reduction in annual cooling demand needed for upgrading comfort Category III to Category II (ISO
2005))

LM Augenbroe, and Hensen2013). The notion of risk, in
this context, can thus be considered as a subset of uncer-
tainty that represents conditions of (performance) loss. It
is a common tool for decision-making under uncertainty
that ignores the ‘upside’ of uncertainty where favourable
performance gain may be achieved, and looks instead at
the probability and extent of loss if encountered. In this
study we assume that the decision maker is not interested
in reducing uncertainty: the decision maker just wants to
avoid being wrong.

2.4.1. Decision making at low fLOD
As introduced in Section 2.1, the objective of the pro-
posed process is to assess the suitability of massing-
schemes for evaluating performance at an early design
stage of design, i.e. at a low fLOD. The decision-making
process starts with a given pair of neighbourhood
massing-schemes, that we will refer to as schemes A and
B. At this point, the decision maker is expected to choose
one massing-scheme over another only if an apprecia-
ble performance difference is observed between them.
This appreciable difference is interpreted as a decision cri-
terion (dc) for a decision maker to rule in favour of one
design over the other.

For the purpose of the present paper, we chose to
establish thedc based on existing standards, and con-
sidered a difference to be significant if it was likely to
get the performance to a different score or level based
on the standard (applies to annual heating and cooling
demand), or, when lacking such a reference, was typically
understood to be a significant change on the said met-
ric (applies to sDA). Table1 shows the selected levels of
decision thresholds.

When a preferred scheme is identified at low fLOD,
we notify this event as (A�, B) where A is the preferred
massing-scheme. We assume that if a performance dif-
ference greater than or equal todc is not seen, the deci-
sion maker would be indifferent and could choose either
scheme, in which case (A�, B) and (A, B�) would be con-
sidered equally likely to occur.

2.4.2. Measurement of risk
Su and Tung (2012) extended the interpretation of oppor-
tunity loss for design and engineering problems using

pair-wise comparison of possible decision outcomes. This
measure is called Expected Opportunity Loss (EOL) (Su
and Tung 2012). Under this approach, only equivalent
façade variants of massing Scheme A would be compared
to those of Scheme B (Figure3). We shall refer to this as a
peer-to-peer comparison.

When the 48 high fLOD variants of the two massing-
schemes A and B are compared, 192 valid peer-to peer
comparisons are produced (48� 4 = 192), allowing
for cross-comparison between orientation-related vari-
ants. We thus derive the relative performance difference
between the two-given massing-schemes as a distribu-
tion with N = 192.

The Expected Opportunity Loss (EOL) is expressed as
in equation 1:

EOL(A� ,B) = Š
0
�

Š�
f �(A � ,B)d� ( Su and Tung 2012) (1)

where EOL (A�, B) is the Expected Opportunity Loss when
A is the preferred massing-scheme at low fLOD, and
f �(A � ,B)is a probability distribution function (PDF) of the
relative performance gain from design pairs formulated at
the highest fLOD.

Expected Opportunity Loss was further interpreted in
three different types of conditions:

€ Opportunity loss due to rank reversal
This is the type of opportunity loss that a deci-
sion maker is likely to be most averse to, where
the performance-based ranks assigned to massing-
scheme options (at low fLOD) carry a high risk of being
overturned or reversed at high fLOD. A pre-requisite
for this type of opportunity loss is that the decision
maker is able to establish clear ranks at fLOD0 with the
observed performance difference between the two
massing-schemes being greater thandc. In this case
the EOL is expressed in equation1.

€ Opportunity loss due to latent performance gain
Rank reversal is the most serious error in decision mak-
ing where, due to insufficient level of detail, the find-
ings at low fLOD are overturned at higher fLOD. How-
ever, other forms of loss are also worth considering.
If the decision maker decides to not assign ranks to
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Figure 3.Diagram showing multiple design variants emerging at each level of detail. Two fLOD3 variants of the massing schemes A and
B are considered comparable peers of each other if the designer would make similar design choices (indicated by branches with arrows)
to arrive at them (e.g. same WWR, same balcony type).

the design options at low fLOD due to insufficient dif-
ference in performance, loss may still be incurred if
the decision maker is failing to identify a better per-
forming design solution due to low fLOD. In case the
decision maker observes insufficient performance gain
between (A, B) at low fLOD, he/she considers both (A�,
B) and (B�, A) to be equivalent, and there is only a 50%
chance that he/she will choose the massing-scheme
that does yield higher performance later on. This form
of loss is analogous to the higher partial moment
where more than anticipated gains can be achieved
later but would remain hidden or latent unless the per-
formance comparison is done at higher fLOD. Oppor-
tunity loss in this case could be expressed as follows
(equation 2):

EOL(A,B) = Š
�

0.5X
� �

dc
f �(A � ,B)d�

+ 0.5X
� �

dc
f �(A, B� )d�

�
(2)

where EOL (A, B) is the EOL when A or B could
be chosen with equal probability at fLOD0 and
f �(A � ,B),f �(A, B� ),are the probability distribution
functions of the relative performance gain from design
pairs formulated at the highest fLOD.

€ Opportunity loss due to insufficient performance gain
This form of loss isnot associated with making a sub-
optimal design choice (choosing a lower performing
design alternative), but one where the anticipated
performance gain, on the basis of which a preferred
massing-scheme is identified (A�, B) at fLOD0, is not
realized later. This is also called the lower partial
moment and is used as risk measure when less than
desired performance is achieved (Bawa and Linden-
berg 1977):

EOL(dc,RPG,(A� ,B))

= Š
� �

dc
(dc Š rpg)f (rpg)d�( Su and Tung 2012)

(3)

where EOL(dc, RPG,) is the Expected Opportunity Loss
when dcis the minimum desired relative performance
differentiation, RPG is the distribution of the relative
performance gains when massing-scheme A is chosen
as the preferred scheme andf (rpg) is the probability
distribution function of RPG.

2.5. Characterizing risk as •high• or •low•

In the previous section, three different forms of oppor-
tunity loss are described that could occur and could be
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Figure 4.Diagrammatic representation of sequential decision making and strategy-based risk management. Black lines indicate pos-
sible paths of design development leading to no regret. Red lines indicate paths leading to regret. Each node in the tree represents an
additional design detail being speci“ed.

important to a BPS user. We present the sum of the total
risk from all possible forms of opportunity loss as a sin-
gle joint value, the Expected Relative Performance Loss
(ERPL). While the definition of EOL may be adapted to
address different types of losses (e.g. loss equation 1 ver-
sus loss equation 3), it is difficult to anticipate which type
of loss may be encountered in a given decision making
situation. ERPL is proposed for decision makers who are
interested in avoiding loss irrespective of its nature (loss
from rank reversal, latent performance gain or insufficient
performance gain). The ERPL value has the same units
as the metric value which is being used to compare the
design alternatives. The detailed calculation method of
ERPL is further illustrated in Section 3.2 with an example.

It should be noted here that risk is probabilistic in
nature and high values of risk do not imply that an
incorrect decision will be made. Similarly, low risk does
not guarantee a loss free decision. Consider a decision
maker (DM) about to make a choice. The DM, while decid-
ing between two design alternatives A and B, encoun-
ters some risk of sub-optimal decision making (µ0) (see
Figure4). In this case, the risk is emanating from regret
if the façade design evolves in a certain manner at fLOD3
(shown as ‘child’ designs of node ‘n’ in Figure4). However,
the DM does not know if he/she will end up on the node
‘n’ of this decision tree and then if the risk is applicable
to him/her. To resolve this, a simple rule/strategy is pro-
posed that sets a risk threshold value for the risk at the
beginning of the design process such that the possibil-
ity of going down on an extremely adverse future design
path can be averted: an adverse design path is called so if
more than 50% paths downstream from it lead to regret.
It is assumed that the DM is not interested in eliminating
loss completely (in that case, maximum acceptable risk
would be zero), but rather lower it to a safe limit.

Using the methodology described in Section 4.1–4.3,
we evaluated the effectiveness of selecting a massing
scheme based on simulations results at low fLOD. To do

so, we apply the risk assessment methodology to a num-
ber of massing-scheme pairs and estimated the incidence
rate or prevalence of high-risk cases.

3. Experimental estimation of risk: A case of
medium density Swiss neighbourhood design

In order to estimate the incidence of high risk in concep-
tual stage design decisions, a hypothetical design prob-
lem was used in which a residential neighbourhood is to
be developed at a density of 1.0 on a plot of 15,000 m2.
It was further assumed that the design team follows an
‘outside in’ approach where ‘the building form is devel-
oped and once a basic building form has been conceived,
different façade variants can be explored’ (Reinhart and
LoVerso2010) (i.e. the designer chooses the massing
scheme first and explores façade design later).

Different design development approaches (e.g. invit-
ing proposals for massing schemes via design compe-
titions or detailed design development under a master
plan) may result in different set of competing massing
scheme proposals. The competing massing scheme pro-
posals may share some important traits with each other
(e.g. same orientation of buildings, number of build-
ings) or they could also have contrasting characteristics
that offer complementary advantages. For example, one
scheme could be better aligned with the prevailing wind
direction and the competing proposal may offer better
views to occupants. In this study we considered two sce-
narios (1) different design teams develop the competing
design proposals and so the design proposals are not
bound to have any common design concept or traits (2)
there is one design team and it is working on a specific
design concept. Competing design proposals thus share
at least one important design trait.

To generate a large number of instances of decision
making under the two scenarios mentioned above, a set
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Figure 5.Example set of massing-schemes (total number of schemes= 40) for a given site. Five di�erent types of site arrangements
were attempted: regularly spaced buildings, regularly spaced buildings but varying heights, clustered buildings creating open spaces,
courtyard and horizontally staggered arrangement.

of massing-schemes (N= 40, shown in Figure5) was
developed manually, serving as a pool of potential design
proposals on the given site. All massing-schemes pro-
posals had the same volume and floor area (+/Š1%).
Geometrical properties (e.g. type of building arrange-
ment on site, number of buildings) of the massing scheme
proposals were systematically varied in the generation
of this set to create a wide range of design possibili-
ties. The built context around the site was modelled at
the same density as the design site (cf. Figure1) and
held constant across all design variants. Under the first
scenario (no single defined design concept), we repeat-
edly drew two schemes at a time from the entire pool of
40 massing schemes to generate comparisons and each
pair became an instance of decision making. Under the
first scenario we thus ended up with 780 (C40

2 = 780)
performance comparisons between potentially compet-
ing design options on the three metrics (sDA, heating
demand and cooling demand). As an example of the sec-
ond scenario, we assumed the design team chose to work
with only a specific type of arrangement of buildings on
site (e.g. courtyard arrangement, see Figure5). The team
in that case could be comparing, for example, scheme D
to scheme D1 or A to A1 (Figure5). Another type of com-
mon design trait could be that the building depth where
the depth of the floor plate is kept same across all design
variants, and thus, as examples, the team could have
schemes E1 and D1 or E1 and A1 (Figure5) as competing
design proposals.

We applied the methodology discussed in Section 2
to each comparison so as to calculate the risk of perfor-
mance loss, and then identified all high-risk cases. Out of
the numerous pairs of competing massing-schemes that
were generated, we chose two pairs of massing-schemes
from the first scenario to illustrate the workings of the
methodology for calculation of risk of an incorrect deci-
sion being made. The pairs shown are those where appre-
ciable opportunity loss was observed on at least one of
the metrics. They are indicated as massing-schemes A,
B, C and D in Figure5 (it may be noted that scenar-
ios A and B are consistent with those shown in Figure3
as well).

3.1. Example comparisons of massing-schemes at
early design stage

The raw performance values from simulations at fLOD0,
fLOD3 and the intermediate steps are shown for massing-
scheme pairs (A, B) and (C, D) in Figure6. The overall
shaded regions show the range of performance possibil-
ities at each fLOD. The sub-regions in darker shade show
performance values for the pair of schemes at a particular
WWR. While Figure6 does not clearly show all conditions
of loss, as those can only be observed when the peer-
to-peer or pairwise comparison between façade variants
is done, the figure indicates if there is a potential over-
lap in performance among peer fLOD3 variants or not.
On the sDA metric, in the comparison between schemes
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Figure 6.(Left Column) Evolution of performance of design options A, B shown in Figure5, on three metrics (1) sDA, shown on top (2)
Annual Heating Demand, middle (3) Annual Cooling Demand, bottom. The highlighted regions show evolution of performance values
when •low• WWR (20%) is decided upon by the designer at fLOD1. (Right Column) Evolution of performance of design options C, D shown
in Figure5 on three metrics in the same order as column on left. The highlighted regions show evolution of performance values when
•high• WWR (40%) is decided upon by the designer at fLOD1.

A and B, we see high chances of rank reversal at fLOD1
and after.

We can tentatively observe the latency effect in the
evolution of heating demand evaluation for schemes (C,

D) where the performance difference between C and D
is negligible at fLOD0 but becomes significantly larger
at fLOD3. On cooling demand, in both pairs of evalua-
tions, we see that the performance of both design options
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converge, and thus it is likely that an appreciable differ-
ence in performance will not be not observed at fLOD3.
Note that the observed performance difference at fLOD0
is diminished significantly after inclusion of active shad-
ing at fLOD1.

3.2. Example calculation of risk of performance loss

Out of the two pairs presented above, we further selected
pair (A, B) to illustrate the calculation of the expected risk
of relative performance loss (ERPL). Figure7 shows a sub-
set of the peer-to-peer comparison in the strictest sense at
fLOD3. To conserve space, all possible combinations (192)
are not shown. That is, in these pairs, the WWR, the ori-
entation of the prominent façade and the balcony type
are the same. Figure8 shows the probability density of
relative performance differences found at fLOD3.

On sDA, a difference of 13.94% is observed between
schemes A and B at fLOD0 (Figure6, top-left). If the deci-
sion maker’s decision criterion is a 10% difference, then
the DM would choose scheme B based on daylight perfor-
mance evaluation at fLOD0. However, Figure8(a) shows
that the negative half of the distribution (i.e. design possi-
bilities resulting in A performing better than B) is substan-
tial. The shaded part of the area under the curve (Figure
8(a)) represents the expected relative performance loss,
which in this case was found to be 4.4% (in absolute units
i.e. difference in sDA). This could be interpreted as a 44%
chance that the performance of scheme B will be 10%
worse (in sDA units) compared to A when considering
all possible façade design solutions at fLOD3. Based on
the method described in Section 2.5, the risk threshold
for the sDA metric was found to be 2.1% and as a result
we would assess this comparison between A, B on sDA at
fLOD0 as high risk. While the overall probability of 44%
is less than an even chance (50/50), this risk is not evenly
distributed on all future design paths. The low WWR sce-
nario, illustrated by the highlighted region in Figure6(a),
shows a high chance of rank reversal and this condition
is captured by the risk threshold-based decision-making
strategy.

3.3. Prevalence of high risk at fLOD0

The process described above was repeated for all pairs
of competing massing-schemes. For illustrative purposes,
Figure9 shows the probability density for an example set
of 30 comparisons on the sDA metric. The ERPL is calcu-
lated for each comparison and compared to the high-risk
threshold value for each metric. We record all high-risk
cases and the loss (if any) incurred from each pair of
massing-scheme comparisons. If we look at the first sce-
nario, where there was no specific and shared design

concept (or design traits) between the design proposals,
on sDA, we found 22% of the comparisons at fLOD0 to be
high risk (assumingdc = 10% for all comparisons).

Further under the first scenario, 1 out of 7 compar-
isons on heating demand (withdc = 2.8 kWh/m2-year)
and 1 out of 12 on cooling demand (with dc = 3.8
kWh/m2-year) were found to be high risk. Note that the
risk/expected loss value calculated here is an average
value given a wide range of façade design possibilities
and does not indicate a maximum possible loss due to
the incorrect choice. Also, these risk values result from
the exclusion of selected façade details from conceptual
stage models (cf. Section 2.3) and the effect of other
missing design details is currently ignored.

Table 2 shows results from two example situations
under the second scenario, where the competing design
proposals share a common concept. The design con-
cept or trait, whether selected by the design team or
imposed by the master plan, will imply that all competing
massing schemes share important similarities. Compar-
ing similar schemes did not appear to necessarily mitigate
risk of incorrect decision making. For example, compar-
ing only ‘courtyard’ type schemes (Scenario 2a, Table
2) where building facades are oriented in varied direc-
tions, appeared to reduce the risk of incorrect decision at
fLOD0. However, in scenario 2b (Table2) for example, if
the design team chose to only work with a building depth
of 10 m or less, then the evaluations were found to be
risker on daylight and cooling demand metrics. Higher
fLOD would be more suitable for making decisions under
such a situation.

Another characteristic of the risk, apart from incidence
rate, is the source of the risk. Figure10 shows the cumu-
lative ERPL by order of magnitude of the ERPL (x-axis)
for each metric from the 780 neighbourhood compar-
isons done in this study. The source of the performance
loss is indicated by colour. In decisions based on sDA and
annual cooling demand, all three types of losses were
found, while in heating demand-based decisions, in most
comparisons where any loss was found, it was due to
the latency effect. That is, loss in heating demand-based
decisions was mostly found to occur in cases when the
performance difference between two massing-schemes
appears to be negligible or insignificant at fLOD0. and
increasing the fLODs tended to amplify the performance
difference between two schemes.

4. Discussion

4.1. Interpretation of �ndings

Many recent studies have specifically addressed BPS users
while proposing various techniques for robust decision
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Figure 7.Relative performance comparison for massing-scheme A,B at fLOD3 shown when strict one-to-one pairing is done for the 48
design variants at FLOD3. The comparisons to the right of the vertical dotted line (if present) re”ect opportunity loss due to rank reversal.
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Figure 8.Probability density of relative performance values (A-B)
at high fLOD (fLOD3) when a cross comparison between patterns
of distribution of glazing on facades is permitted. Area under the
curve to the left of the solid vertical line is equal to the Expected
Opportunity Loss

making. Yet, their use in practice remains low. This study
generates evidence in support of using robust decision-
making practices especially when using BPS tools at the
conceptual design stage. High risk of incorrect decision
making was found in 22%, 15% and 8% of the 780 pair-
wise comparisons of massing schemes on sDA, annual
heating and cooling demand evaluations, respectively.
These findings suggest that the value of conceptual stage
design decisions is not the same across performance met-
rics. Thus, daylight potential, based on early design sDA
calculations (fLOD0 models), was found to be least reli-
able for decision making compared to heating and cool-
ing demand-based assessments.

Figure 9.Probability density of relative performance values (A-B)
at high fLOD (fLOD3) 30 neighbourhood comparisons. Area under
the curve to the left of the solid vertical line indicates possible
Expected Opportunity Loss.

Taking the example of the most critical metric here i.e.
sDA, with 22% erroneous cases (or 1 in 5 chance of erro-
neous decision) basically means that if a design firm typi-
cally produces two design alternatives at the conceptual
design stage and works on five or more neighbourhood
scale projects in a year, it can expect to make an erroneous
decision on one of these projects based on sDA values
obtained from fLOD0 models.

This study also proposes a new risk metric (ERPL) for
the sequential design process where the decision maker
makes choices based on relative performance of the
design alternatives at a given point in time (massing-
design). The risk estimation method for calculating ERPL
has been further extended to identify cases where the
risk is ‘high’ enough to trigger remedial actions by the
decision. Remedial actions imply additional design effort
or time, for example, additional time needed for delay-
ing the decision or gathering more design information

Table 2.Risk of erroneous decision making when performance is evaluated at low fLOD.

Number of high-risk cases in decision making when
comparing a pair of massing schemes (n, (% of high risk cases))

Decision making scenario
Number of pairs of
massing schemes

Daylight
access (sDA)

Heating
demand

Cooling
demand

Scenario 1: All types of schemes are considered comparable to
each other

780 172, (22%) 117, (15%) 65, (8.3%)

Scenario 2a: Design concept based the type of massing
schemes (e.g. courtyard schemes only, schemes like D and
D1 compared to each other in Figure5)

45 8, (17.7%) 2, (4.4%) 3, (6.6%)

Scenario 2b: Design concept where the building depth is kept
constant (e.g. Schemes such as A1 compared to schemes
like B1, C1, D1 or E1in Figure5)

36 10, (27.7%) 2, (5.5%) 22, (48.8%)
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to reduce uncertainty in performance estimates. This risk
assessment methodology tries to find balance between
design time and robustness. A given decision is called

Figure 10.Distribution of risk of performance loss at fLOD0 (ERPL
at fLOD0) observed in 780 comparisons. Source causes of perfor-
mance loss indicated by colour (a) sDA, top (b) Annual Heating
Demand, middle (c) Annual Cooling Demand, bottom.

‘high’ risk only when the regret/opportunity loss is unac-
ceptable to the decision maker (and not simply greater
than zero) and the likelihood of experiencing regret is also
unacceptable (e.g. more than 50% chance). The thresh-
olds of unacceptability can be altered in different con-
texts by different users.

4.2. Implications on use of BPS tools in building
design

While risk assessment is common practice in several dis-
ciplines related to building design (e.g. structural design),
it is virtually absent in use of BPS tools (Clarke and Hensen
2015; Østergård, L Jensen, and Maagaard2017). This
study reports risk in decision making, in terms of model
LOD (more specifically fLOD), a construct that many archi-
tects and designers are familiar with. The framework pre-
sented in this paper thus offers the potential to add
important qualifiers to reported performance values from
BPS tools, namely, the current fLOD of BPS model and the
resulting risk in decision making.

At the same time, the proposed risk assessment does
imply a greater computational burden on the concep-
tual stage decision maker. On projects where BPS is being
utilized mostly for compliance purposes, carrying out a
risk assessment involving multiple future design scenar-
ios maybe considered as excessive. When undertaking
large projects in which a number of design alternatives
are being considered (for example, multiple entries to a
neighbourhood scale design competition), the incremen-
tal cost of the risk assessment maybe justified, given the
larger effort (design time, cost) invested in generating
multiple alternatives.

Well-intentioned design constraints (e.g. narrow section
buildings) can deliver better performance on multiple
metrics but may not mitigate risk in decision making.
Increasing reliability in decision making and choosing
design attributes that support performance goals can
thus be seen as two different aspects of the performance-
driven design process.

The concepts of ‘performance-gap’ (Menezes et al.
2012) and ‘design-gap’ (Wright, Nikolaidou, and Hopfe
2016) have been created to bring accountability in the
use of BPS tools in the design process through the use of
better modelling practices and design space exploration
methods. This study shows that the quest for greater
accountability would be incomplete without a critical
examination of the decision-making practices.

4.3. Limitations and potential future extensions

Our findings regarding the prevalence of high-risk cases
at the early design stage are a unique aspect of this study.
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Several studies so far have been grounded in the gen-
eral assumption that early design decisions are impor-
tant and that the built form sets the course for the per-
formance potential that can eventually be met by the
project. This study shows that in order to capitalize on the
performance potential available at the conceptual design
stage, robust decision-making methods are needed. At
the same time, prevalence rates of incorrect decision
making that are reported here are closely related to the
context and scope of the study, especially the density
(1.0) and location (Geneva, Switzerland). Generalizations
to different contexts could require further investigations.

In addition, the reported prevalence of risk calculated
using ERPL is based on a number of assumptions regard-
ing constructs like ‘acceptable loss’ and ‘decision crite-
rion’ which have not been formally investigated among
BPS users. The structure of the ERPL metric also currently
assumes that all enumerated future courses of design
development at the detailed design stage are equally
plausible and then reports the risk. The relevance of the
ERPL metric to its users can be further enhanced by
assigning probabilities (for e.g. based on cost of construc-
tion) to future design development scenarios.

The LOD framework used in the study can also be
extended to include exterior elements on the site (e.g.
trees, hardscape elements) and interior details such as
interior partitions. Such extensions would allow for risk
assessment on more metrics and meaningful consider-
ation of more passive design strategies. For example,
natural ventilation, and night time ventilation are effec-
tive passive cooling strategies in residential buildings that
are tied to the massing and façade design. However, for
modelling airflow in and around building, interior wall
partitions are also needed which have been currently
excluded (also see Section 2.3) as the aim of this study was
to report risk from exclusion of façade details.

5. Conclusions

The main goal of this study was to assess the reliability of
BPS-based design decisions made at the conceptual stage
if uncertainty in future course of design development is
ignored. We addressed this problem at the neighbour-
hood scale in the context of a typical conceptual stage
decision making task – choosing one design out of two
given alternatives. A risk metric (ERPL) was developed to
report the likelihood and magnitude of performance loss
from sub optimal choice resulting from use of simple, low
fLOD geometry as the BPS model input. This risk metric
reports likelihood of loss due to three potential reasons:
performance-based ranking of design alternatives get-
ting disrupted at higher fLOD, loss of performance differ-
ence or ranks between design alternatives at higher fLOD

or ranks emerging between design alternatives when
there were none at low fLOD.

The results show that there is higher risk in relying on
performance evaluation on some metrics (sDA for day-
light access) than other metrics (e.g. ideal cooling, heating
loads). The risk was found in enough instances of deci-
sion making (e.g. 1 in 5 high risk cases found in 780
instances of conceptual stage choices between massing
schemes based on sDA) to reconsider modelling practices
or metrics used at the conceptual design stage.

Using a higher LOD for making critical design decision
indicates a more integrated design approach, but also
implies additional design/decision making effort. It may
not always be possible to align informational needs of
BPS models with the design development process. When
it is known that the BPS model suffers from information
deficiency, even then the presented methodology pro-
vides useful information to the decision maker, allowing
him/her to understand if a reliable design decision can be
made at the current LOD or not.

Typically, the choice of LOD of BPS models is based
simply on the amount of design information available
at hand. Findings indicate a need to qualify simulation
results with model LOD being used and the risk in relying
on performance estimates thus far. This paper provides
motivation for wider use of available methods for uncer-
tainty analysis by BPS users. Formal development of an
LOD framework that is specific to the informational needs
of BPS models could increase clarity and transparency.
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Appendix

BPS considerations

Modelling scripts in grasshopper have been developed to gen-
erate (N= 48) fLOD3 design variants on any given massing-
scheme, following the steps described in Appendix B. The con-
version of 3-D geometry (from Rhino 5.0) at various fLODS to
BPS models was done using grasshopper, ladybug and honey-
bee suite of plug-ins for Rhinoceros 5.0. Metric specific inputs,
modelling protocols and methods followed are described in the
Tables below.

In order to ensure that rank changes we observe with the
introduction of façade details to massing-schemes occur only
due to the intended detail types included in the fLODs, it has
been ensured that other design factors (number of window
openings, vertical placement and height) remain unchanged.
See Table A1 for changes with each fLOD.
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Table A1.Change in inputs for façade variants at each fLOD.

Façade property fLOD0 FLOD1(no blinds) FLOD1 with blinds FLOD2 fLOD3
Façade design attributes

WWR 30% 20%,30%,40% No change No change No change
Distribution of glazed area per facade Uniform, 30% No change No change Varies 60% to 10% No change
Active shading None None, No change Manual blind

operation
Manual blind operation

updated in response
to further façade
changes at this fLOD

Manual blind operation
updated in response to
further façade changes
at this fLOD

Fixed shading None None, No change None, No
change

None, No change Present, depth varies from
1.2 m-2.4 m

Window size and placement
Number of window units per facade 3 or higher No change No change No change Same as min … fLOD
Window height 2.0 m No change No change No change Same as min-fLOD
Window width 0.5 m or higher No change No change No change Same as min-fLOD model
Sill height 0.25 m No change No change No change No change except when

balconies are present
Glazing properties
visible light transmittance 0.6 No change No change No change No change
SHGC 0.58 No change No change No change No change
U-Value 1.0 No change No change No change No change

Table A2.Daylight simulation inputs.

Daylight Simulation inputs
Location Geneva, Switzerland
Weather File Geneva IWEC
Opaque surface reßectance properties
Internal surface of walls 0.5
Internal ”oor 0.3
Internal ceiling 0.7
Exterior wall surfaces 0.3
Exterior balcony elements 0.3
Ground surface 0.2
Glazing light transmittance
Glazing light transmittance 0.6
Active Shading Properties
Active blinds modelled as trans

material to represent closed
blinds with 10% light leak and
glazing

Trans material properties: 0.06
(glazing+ blinds closed) fully
di�used transmission

Schedule Hourly on/o� schedule based on (Van
Den Wymelenberg2012)

Simulation parameters
Simulation programme used DAYSIM 4.0 (C. F. Reinhart 2012)
Sensor array spacing 1 m x 1 m grid
Sensor array height from ”oor 0.76 m
Ambient bounces 6

Eight DAYSIM simulations were carried out per scenario per
fLOD to model blinds in open and closed position per building
facade. The eight files were then compiled into one compos-
ite illuminance file while applying the blind schedule specific
to each building facade, using Matlab. The sDA value was also
calculated using Matlab. Radiance simulation parameters input
are based on Illuminating Engineering Society (IES) LM-83-12
including indoor and exterior reflectance properties (See Table
A2). 5 ambient bounces were used in all simulation where blinds
are modelled in fully open position. 6 ambient bounces were
used in all simulation where the blinds are modelled in a closed
state (as trans material to represent combined transmittance of
the closed blinds and the glazing).

IES LM-83-12 standard was followed by and large except
for the procedure for modelling of blinds and the density
of the illuminance grid. BLINDSWITCH-A (Van Den Wymelen-
berg 2012) exterior shading manual operation model was
used. In this model primary triggers for blind operation are
(a) irradiation falling on the exterior surface of window and

Table A3.Yearly dynamic thermal simulation model inputs.

Thermal Simulation inputs
Location Geneva, Switzerland
Weather File Geneva IWEC

Envelope properties
Opaque wall U-value (W/m2 K) 0.36
Roof U-value (W/m2 K) 0.4
Glazing U-value 1
Glazing SHGC 0.58
Window-to-wall ratio (WWR) as per fLOD variant
Exterior re”ectance value 0.3
Internal Loads
Internal lighting (W/m2) 6.6
Lighting schedule O� during unoccupied hours
Miscellaneous equipment (W/m2) 3.0
People density (p/m2) 0.025
Hourly schedules As per SIA 2024…2015 (SIA

2017)
Occupant Controls
Blind controls Hourly on/o� schedule based

on (Nezamdoost and Van
Den Wymelenberg2017)

Fixed shading as per fLOD variant
HVAC system inputs
Heating setpoint with setback, setpoint (°C) 18, 20
Cooling setpoint with setback, setpoint (°C) 28,25
System Type Purchased heating and cooling
Ventilation rate 30 m3/h.person
Heat Recovery not included
Heating/Cooling system e�ciency 1
Simulation parameters
Programme used Energy plus ver 8.4 (Crawley

et al.2001)
Simulation time step 1 h
Shadow calculation frequency 7 days
Solar distribution calculation Full exterior with re”ections
Warm up days 7 days (default)

(b) depth of penetration of direct radiation. BLINDSWITCH-A
was considered more appropriate compared to blind oper-
ation models based only on incident irradiation thresholds
or only based on interior area of floor receiving direct illu-
mination [IESNA2012]. The sensor grid spacing was set to
1 m by 1 m. This grid size is larger than recommended, but
the metric used sDA has been shown to be stable at a grid
size of 1 m (Brembilla and Mardaljevic2019). At fLOD0, no
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blind operation has been included in line with concerns that
many BPS users have at the conceptual design stage regard-
ing simulation time and that too many aspects of the project
are unknown for user behavior modelling to be included
meaningfully.

All detailed thermal simulations were carried out in Ener-
gyPlus 8.3 (See Table A3 for major inputs). All simulations
were run using the solar radiation model ‘FullExteriorWith-
Reflections’ in EnergyPlus that accounts for shadow patterns

on exterior surfaces due to detached piece of shading such
as over hangs. Exterior reflections were also accounted. How-
ever interior distribution of radiation on interior surfaces was
not calculated explicitly. Due to the lumped zoning type,
more advanced models such ‘FulInteriorAndlExteriorWithRe-
flections’ were not considered necessary either. Monthly heat-
ing demand and cooling demand values were extracted. These
were converted into annual energy use intensity values using
Matlab.
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