





Abstract

Let k be an algebraically closed field of characteristic p 0, let G be a simple simply
connected linear algebraic group of rank * 1 over k and let V be a rational irreducible
tensor-indecomposable finite-dimensional kG-module. For g 2 G, let Vy4( ) denote the
eigenspace corresponding to the eigenvalue 2 k of g on V. We set

c(V) =minfdim(V) dim(Vyq( ))jg2GnZ(G); 2kag:

In this thesis we will find all pairs (G;V) with the property that g(V) Iodim(V). This
problem is an extension of tE)e classification result obtained by Guralnick and Saxl for the
dim(V)

condition (V) max 2;—;

. Moreover, for all the candidate pairs (G;V) we had

to consider in our classification, we will determine the value of (V).
Key words: Representation theory, algebraic groups, semisimple elements, unipotent elements.

Résume

Soit k un corps algébriqguement clos de caractéristique p 0, soit G un groupe linéaire
algébrique simple simplement connexe de rang © 1 sur k et soit V un kG-module rationnel,
irreductible, tenseur-indécomposable de dimension finie. Pour g 2 G, on désigne par V4( )
I’espace propre correspondant a la valeur propre 2 k de g sur V. Nous définissons

s(V) = minfdim(V) dim(Vg( ))jg2GnzZ(@G);, 2k g:

B’:ms cette these, nous trouverons toutes les paires (G;V) ayant la propriété que g(V)
dim(V). Ce probléme est une extension du résultat de classification obtenu par Guralnick
dim(V)

2

et Saxl pour la condition g(V) max 2; De plus, pour toutes les paires

candidats (G; V) que nous avons d( considérer dans notre classification, nous allons déterminer
la valeur de (V).

Mots clés : Théorie des représentations, groupes algébriques, éléments semisimples, éléments
unipotents.
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Chapter

Introduction

The term algebraic group is believed to have first appeared in the late 1800s in the work of
Emile Picard on the Galois theory of linear di [erkntial equations, where the Galois groups he
was studying were in fact complex algebraic groups. The Galois theory of linear di Lerkntial
equations was also the starting point for the work of Ellis Kolchin on algebraic groups in
[Kol48a] and [Kol48b]. Those results were taken and built upon by Armand Borel in his
fundamental paper Groupes lineaires algebriques of 1956, [Bor56], where he explores the
analogy between linear algebraic groups and Lie groups. This paper played an essential
role in Claude Chevalley’s classification of semisimple linear algebraic groups, which was
announced during the Séminaire sur la classification des groupes de Lie algébriques, 1956-
1958. This classification is one of the most crucial and important results in the theory
of algebraic groups, as it allowed for a lot of progress to be made on topics such as the
subgroup structure, conjugacy classes and representation theory of linear algebraic groups.
In this thesis we consider such a question in the representation theory of linear algebraic
groups.

Let k be an algebraically closed field of characteristicp 0, let V be a finite-dimensional
k-vector space and let H be a group acting linearly, irreducibly and primitively on V. For
h 2 H denote by V,( ) the eigenspace corresponding to the eigenvalue 2 k of hon V.
Set {(V) = minfdim(V) dim(Va( ))jh 2 HnZ(H)and 2 k g. In 1991, Gordeev,
[Gor91], set out to classify groups H acting linearly, irreducibly and primitively on a vector
space V (over a field of characteristic zero) that contain an element h for which (V)
is small when compared to dim(V). The following year, Hall, Liebeck and Seitz, [HLS92,
Theorems 4 and 5], expanded on Gordeev’s result by working over algebraically closed fields
of arbitrary characteristic. In [HLS92, Theorem 5] they proved that, in the case of linear
algebraic groups, if H is classical, we have (V) G +1)’ where “ is the rank of H and V is
a faithful ratlorg_,al irreducible kH-module of dimension n; while, if H is not of classical type,
then 4 (V) > —. Now, with the lower-bounds for (V) known, the following natural step
was to start the classmcatlon of pairs (H; V) with bounded (V) from above, in particular
the pairs (H;V) with (V) =1or 4(V) = 2 have been of great interest, see for example
[KW82], [KM97] and [Ver99]. In 2001, Guralnick and Saxl classified irreducible subgroups
H of GL(V), where V is a finite-dimensional k-vector space of dlmen5|on n > 1, which act
primitively and tensor-indecomposably on V and 4 (V) maxf2, 5 —'g, see [GS03, Theorem
7.1 and 8.3].



In this thesis we classify simple simply connected linear algebraic groups G and rational
irreducible tensor-indecomposable finite-dimensional kG-modules V for which

s(V) < pdim(V):

We also determine the value of (V) for all the aforementioned pairs (G; V).

1.1 Statement of results

We begin this section by setting up the notation needed to state the main results of this
thesis, see Theorems 1.1.1 and 1.1.3. The theory will be expanded upon in Chapter 2. With
this, let k be an algebraically closed field of characteristicp 0 and let G be a simple, simply
connected linear algebraic group of rank © 1. Let T be a maximal torus in G and let X(T)
be its rational character group. Let V be a nontrivial rational finite-dimensional kG-module
and, forg 2 G, let Vq( ):=fv2V jg v = vg be the eigenspace corresponding to the
eigenvalue 2k of g on V. We define

s(V) ;= minfdim(V) dim(Vy( ))jg2GnZ@G); 2k g:

In Theorem 1.1.1 we classify pairs (G;V), where V is a nontrivial ratiepal irreducible
tensor-indecomposable finite-dimensional kG-module, for which (V) dim(V). The
result follows from Theorem 1.1.3, in which the value of g(V) for all candidate pairs (G; V)
is given.

Theorem 1.1.1. Let k be an algebraically closed field of characteristic p 0 and let G be
a simple simply connected linear algebraic group of rank * 1. Let T be a maximal torus
in G and let X(T) be its rational character group. Let 2 X(T) be a nonzero p-restricted
dominant weight and let V = Lg( ). Then

ov) Pdimw)
if and only if G, “, and p are featured in the following list:
1) G=A,° 1, 2fl;;l.gandp O;
22 G=B°“ 2, =Y andp 0
R)G=C,* 2, =landp O
4 G=D-° 4, =1lyandp O;
B)G=A,° 3, 2f21;;2l.gandp & 2;
6) G=A, “=3;4, 2fl,;l. ;gandp O;
(7) G=A;, 2f31;;4,gand p & 2;3;
@) G=C,, =lLandp O



9) G=Dy4, 2fl3l,gandp O;
(10) G=B+, “=3;4, =landp O
(11) G=C-, “*=3;4, =1l-andp=2;
(12) G=Ds, 2fltsgandp O
(13 G=G,, =landp O
(14) G=G,;, =l,andp=3.

We compare our result with the result of Guralnick and Saxl, Theorem 8:3 of [GSO03], for
the case of simple simply connected linear algebraic groups and their respective irreducible
tensor-indecomposable modules.

Theorem 1.1.2. Let k be an algebraically closed field of characteristic p 0 and let G be
a simple, simply connected linear algebraic group of rank * 1. Let T be a maximal torus
in G and let X(T) be its rational character group. Let 2 X(T) be a nonzero p-restricted
dominant weight and let V = Lg( ). Then

b
maxfz;w“ ) Pdim)

if and only if G, “, and p are featured in the following list:
1)) G=A;, 2f121;;21.gand p € 2;
2 G=A, “=3;4, 2fl,;'. jgandp O;
B)G=C,, =l,andp O0;
4 G=By,, =!'andp O;
B) G=C4, =l-andp=2;
(6) G=Ds, 2fl ;¥sgandp O.

In Section 2.7 we determine the list of nontrivial rational irreducible tensor-indecomposable
kG-modules V which are candidates for the classification of Theorem 1.1.1. For classical
groups, we will group these modules into two classes: one class will contain the families of
kG-modules, while the other will consist of the particular kG-modules.



Theorem 1.1.3. Let k be an algebraically closed field of characteristicp 0 and let G, T
and Lg( ) be as in Theorem 1.1.1. Then, the value of g(Lg( )) is given in the tables below:

@]
Group Characteristic | Rank | g(Lc( )) 'vdlm(LG( ))
LY p O c 1 1 q_ "1
21,, 21 P62 | ‘ ((]‘+1)2(‘+2)
A I, 1.4 p O £ 3 <1 . ‘(‘;1)
p_‘+1 ' 2 2‘ ) ‘%)+ 2‘
'l+! . ‘ :2 3 T 7
py +1 ‘ ‘ P—.
3 2 253 1
L p 0 © 2 1 o 2
C- 2!1 p&Z : 2 2¢ p2s2+‘
|2 p 0 ‘ =2 ‘1 P : 5‘ p:2
e 2 2 ng 1 p;*
! p O f2 1 T2+ 1 p;2
B- 21, p6&?2 2 2° ) 2‘2;‘_)'_3‘ pi2-+1
p O £ — 2 1 p5 02
I p &2 . 3 2¢ o 22 4 ¢
p=2 2 2 2°2 +rr‘)_1 5
5y p 0 ‘4 2 o :
D. 21, pE&?2 4 4 4 P 1 .
12 p 0 4 46 |27 7 ,,gcd(Z)

Table 1.1.1: The value of g(Lg( )) for simple classical groups and their respective families
of modules.



D
Group Characteristic | s(Le( )) | dim(Ls())
Ay m!;,3 m 8|p=0,orp>m| m 2 “m+1
A3 !1+ !2 p:3 6 a 4
As; As; A7 1, 1., p 0 Lz(l) p(‘ 1)(;(‘+1)
L+ p O 8 25 A6 4 s
21, p &2 4 ' 1.6— 05
C, 3h p&23 10 p20
2!1"‘ !2 p:3 9 r15
Cs i Cq 1. p:2 2" 2 ;2
Cs I3 peE2 4 ,n14
I+ 15 p=2 20 L 48
c, I p 0 14 s | #8 8y
1, p6&2 14 0:3 42 0:3
C5 !3 p:2 26 rl_o
B, 215 p6E?2 14 p 35
I+ 1, p O 20 2,7 4&1_8 07
Bs;:::;Bsg 1. p O o 2 1;2
!31 !4 p 0 2 g
I+ 1y
Ds L+, p 0 2 2., P58,
L+
Ds 15 p=2 40 10
Ds; 115 Dg ., L p 0 2" 3 o1

Table 1.1.2: The value of g(Lg( )) for simple classical groups and their respective particular
modules.

@)
Group Characteristic c(La( ) "g{m(LG( ))
Gz !1 p 0 2 p.v7 p;2
I, p O 6 4,3 -4 7 ops
E L] p 0 6 p 28 o3
‘ I p 0 16 10 o | 52, 26 po
e 1,1 p 0 6 o 27
6 1, p O 22 T T8 s
E; 1, p 0 12 " 56

Table 1.1.3: The value of g(Lg( )) for simple exceptional groups and their respective
modules.



1.2 The structure of the thesis

This introductory chapter will end with Section 1.3, in which we fix the notation and
terminology we will use throughout the thesis. In Chapter 2, we set the theoretical groundwork
we require to prove Theorems 1.1.1 and 1.1.3. The main goal of this chapter is to determine
the kG-modules V, where G is a simple simply connected linear algebraic group, that are
candidates for the classification in Theorem 1.1.1. Chapters 3 through 6 contain the proof
of Theorem 1.1.1 in the case of the classical linear algebraic groups. In view of Proposition
2.2.3, the first part of each chapter will investigate eigenspace dimensions corresponding to
semisimple elements, while the second will focus on eigenspace dimensions of unipotent
elements. The final section of each of these chapters contains the proof of the results
presented in Tables 1.1.1 and 1.1.2 for the respective group. Lastly, Chapter 7 completes
the proof of Theorem 1.1.1, as it deals with the exceptional linear algebraic groups and their
respective modules. The structure of the chapter is similar to the previous ones: in the fist
part we study eigenspace dimensions corresponding to semisimple elements, in the second
we study eigenspace dimensions of unipotent elements while in the last section we establish
Table 1.1.3.

1.3 Notation and terminology

Throughout the thesis, unless otherwise mentioned, k is an algebraically closed field of
characteristic p 0 with additive group G, and multiplicative group G,. Note that
when we write p & po, for some prime po, we allow p = 0. We let G be a simple linear
algebraic group of rank * 1. We fix T a maximal torus in G and let X(T) := Hom(T; G,)
be its group of rational characters. Let Ng(T) be the normalizer of T in G and set W =
Ng(T)=T. The group W is called the Weyl group of G corresponding to T. Now, let be the

root system of G correspondingto T andlet =T*F ;:::; -gbeasetof simple rootsin
where we use the standard Bourbaki labeling as given in [Hum72, 11.4, p.58]. All roots 2
X
can be written as = a; i with coe [ciehts a; 2 Z all nonnegative, or all nonpositive.
i=1
X - - -
The subset * := ai ijag Oforalll i “ of s the set of positive roots of G.
i=1
Following [Car89, Section 2.1], we fix a total order on : for ; 2 we have if
X
andonly if = | or = a jwithl r “a2Z,1 i r,anda,>0.

Now, for each 2 thereI e;ists a morphism x : G5 ¥ G of linear algebraic groups,
which induces an isomorphism x : G, ¥ im(x ) with the property that tx (c)t ! =
X ((t))forallt2T and all c 2 G,. Such a morphism is unique up to multiplication by
ascalarink . Set U :=im(x ) = fx (c) j ¢ 2 kg and call this one-dimensional subgroup
the root subgroup of G, relative to T, associated to the root 2 . An important property
of root subgroups is that they generate the group G, i.e. we have that G=hU |J] 2 1.
Lastly, we fix B to be the positive Borel subgroup of G, i.e. B=hT;U j 2 ™i.

Set Y(T) := Hom(Gn,; T) to be the group of rational cocharacters of T. For any 2




X(T) and any 2 Y(T) there exists a unique integer h ; 1 such that the composition
map :Gm ¥ G isgiven by c ¥ ¢"' ' where ¢c 2 G,,. The pairingh ; i on
X(T) Y(T) induces an isomorphism X(T) = Hom(Y(T);Z). Forany 2 , there exists a
homomorphism  : SL,(k) ¥ G given by:

1 ¢ _ 10 _

01 =x (c) and c1 X (c)
for all ¢ 2 k . We define the elements n (c) ;= x (¢)x ( ¢ )x (c) = g 1 8 2
Ng(T) and h (¢) :=n (¢)n ( 1) = 8 Col 2T, forall c 2 k. Clearly, we have

h 2 Y(T) and we call h the coroot, or dual root, corresponding to . Theset —=*fh |
2 g is called the dual root system of
The elements of X(T) are called the weights of G. The subset X(T)* :=F 2 X(T)jh ;h ;i

Oforalll i1 ‘g of X(T) is called the set of dominant weights of G and an element
2 X(T)* is called a dominant weight. Moreover, we call a weight 2 X(T)* p-restricted
if 0 h ;h i p 1, forall 1 I ‘. We adopt the usual convention that when

char(k) = 0, all weights are p-restricted. As G is simple, we have that is a basis of
X(T)R:=X(T) zQ. Consequently, fh ,j ;2 gis a basis of Y(T)? :=Y(T) Q and
so there exist 1 . 2 X(T)? with h! ;h ;= g5, forall 5 ;2 . Wecall ¥y =1 the
fundamental dominant weight of G corresponding to the simple root ,1 i1

Set X(T)R := X(T) 2 R. Recall that , the set of roots of G with respect to T, is
the set of nonzero weights of T in the action of G on its Lie algebra. These roots form an
abstract root system, in the sense of [Hum72, Chapter 3], in an appropriate euclidean space
X(T)R. Let E be a fixed euclidean space. We call a root system in E indecomposable if
its base  cannot be partitioned into two proper mutually orthogonal subsets. Now, if is
an indecomposable root system, then, up to isomorphism, is of one of the following types:

A (C 1, C (" 2),B-(* 3) D-(" 4) Ee Es; Eg; Fsy Go:

The algebraic groups with root systems of types A, C-, B-, or D- are called classical, while
the ones with root systems of type Eg, E7, Eg, F4, or G, are called exceptional. A surjective

homomorphism of algebraic groups : G ¥ G with finite kernel is called an isogeny and the

two groups G and G are called isogenous. The various types of simple algebraic groups with
the same root system are called the isogeny types of . We remark that simple algebraic
groups have indecomposable root systems and each indecomposable root system corresponds
to an isogeny class of simple algebraic groups. We say that G is of adjoint type if X(T) = Z
and we say that G is of simply connected type if Y(T) = Z -. Table 9:2 of [MT11] lists the
various isogeny types of simple algebraic groups.

Suppose that G is simply connected. Then, in particular, !; 2 X(T), forall 1 i *,
and, in thiscase, f1;J1 1 “gis a base of X(T). Consequently, we can write each weight

X
2X(T)as = di!; with d; 2 Z. We have that 2 X(T)* ifand only if d; 0, for all
i=1
1 1 . Moreover, if char(k) = p >0, then is p-restricted ifand only if 0 d; p 1,
foralll 1 “.




For 2 ,lets 2 W be the reflection corresponding to ,i.e. s : X(T)R ¥ X(T)R
isgivenbys ()= h;hi for 2 X(T)R. Now, W is a finite group and is generated
by fs ,;:::;s .g. The element wy 2 W with the property that wo( ) = is called the
longest element of W with respect to . Note that wo = idx(ry when the root system
is of type A, B-, C-, D- with * even, E7, Eg, F4 and G,.

Let V be a finite-dimensional k-vector space. A morphism :G ¥ GL(V) of algebraic
groups is called a rational representation of G. Similarly, we call the kG-module V rational if
its corresponding representation is rational. From this point onward, all representations and
all modules of a linear algebraic group are assumed to be rational. For a nontrivial kG-module
V we will use the notationV =W; jW,j ] W, to express that V has a composition series

V=V, V, Vim  Vm+1 = 0 with composition factors W; = Vi=Vj+1, 1 1 m.
Another notation we will use is V™ for the direct sum V V,inwhichV occursm 2
times.

We summarize the presentation of the notation used in this thesis in the following list.
A more complete list can be found on page 270.

e G is a simple linear algebraic group of rank “* 1 over the algebraically closed field k.
e T is a maximal torus of G and X(T) is its group of rational characters.

e is the root system of G given by T and, for 2 , U is the root subgroup of G
corresponding to the root

e B is a Borel subgroup of G containing the maximal torus T, =f ;00 gis

the set of simple roots in  determined by B and ™ is the set of positive roots in

with respect to . We usually choose B to be the positive Borel subgroup, i.e.
B=hT;U j 2 ™I

e W = Ng(T)=T is the Weyl group of G with respect to T and s 2 W is the reflection
corresponding to 2 . Moreover, wo 2 W is the longest element.

e Y(T) is the set of rational cocharacters of T and —=*fh j 2 g is the dual root
system of

e X(T)* X(T) is the set of dominant weights.

e 1;;:::; 1.2 X(T)R are the fundamental dominant weights of G with respect to  and
we label them with the standard Bourbaki labeling, as given in [Hum72, p.58].

e For 2 X(T)*, wedenote by Lg( ), respectively by Vg ( ), the irreducible, respectively
the Weyl, kG-module with highest weight . Moreover, we let rad Vg( ) be the unique
maximal submodule of Vg( ).



Chapter 2

Theoretical background and preliminary
results

The main goal of this introductory chapter is to establish for a simple simply connected linear
algebraic group the list of irreducible tensor-indecomposable modules that are candidates
for the classification in Theorem 1.1.1. Along the way we establish some preliminary
results required in the proofs of Theorems 1.1.1 and 1.1.3, respectively. We begin with
a discussion on nondegenerate bilinear forms and we present the way linear algebraic groups
of classical type arise as algebraic groups of automorphisms of a vector space, [Bor56]. Now,
to understand linear algebraic groups, it is only natural to start their study at the level
of individual elements. In Section 2.2, we do just this, with emphasis on the classes of
semisimple and unipotent elements. Afterwards, in Section 2.3, we discuss the representation
theory of linear algebraic groups. Here we recall that, up to isomorphism, irreducible tensor-
indecomposable modules of an algebraic group are parametrized by the p-restricted dominant
weights of that group. In Section 2.4, we outline two algorithms, one for semisimple elements
and one for unipotent elements, which will be used to calculate eigenspace dimensions.
This is followed by a brief presentation of Gurlanick and Saxl’s generation results for linear
algebraic groups, [GS03]. These generation results will be used to establish a dimensional
criteria, Section 2.6, which, in turn, will be used to determine the complete list of candidate
modules, see Section 2.7. The chapter ends with a section on unipotent elements, in which
we present, using various methods, the classification of unipotent conjugacy classes in the
classical linear algebraic groups.

2.1 Bilinear forms and isometry groups

Throughout this section k is an algebraically closed field of characteristicp 0and V is an
n-dimensional k-vector space, for some n 1. Following [Gro02], we will present the simple
classical algebraic groups as algebraic groups of automorphisms of a vector space, [Bor56],
and show how they arise as closed subgroups of GL(V).



2.1.1 The special linear group

The general linear group of V, denoted GL(V ), is the group of all invertible linear transforma-
tions on V. Fixing a basis in V establishes a group isomorphism GL(V) = GL,(k),
where GL,(K) is the group of invertible n  n matrices with coe [ciehts in k. Now, the
determinant det : GL(V) ¥ k is a group homomorphism with ker(det) = SL(V), the
special linear group. Therefore, by definition, we have:

SL(V):=Ff 2GL(V)j det( ) = 1g:

We remark that Z(SL(V)) =fc idyjc 2k ; ¢c" =1g. Let PGL(V) = GL(V)=Z(GL(V)),
where Z(GL(V)) is the subgroup of GL(V) consisting of all scalar transformations of V.
Now, PGL(V) is isomorphic to the simple adjoint linear algebraic group of type A, 1, see
[Car89, Theorem 11.3.2], while SL(V) is isomorphic to the simple simply connected linear
algebraic group of type A, 1, see [Car89, p.184].

2.1.2 Bilinear forms

A bilinear formon V is a functionb:V V ¥ k which satisfies:
b(vy + Vo; u) = b(vy; u) + b(vy; u) and b(cv; u) = ch(v; u)

b(v; u; + uy) = b(v;uy) + b(v; uy) and b(v;cu) = ch(v; u)

1 i;J n,iscalled the representing matrix of b relative to fvy;:::;vnQ.

We say that the bilinear form b on V is symmetric if b(vy; vo) = b(v,; vq), forall vy, v, 2 V.
We remark that b is symmetric if and only if its representing matrix B is symmetric, i.e.
BY = B. We say that b is alternating if b(v;v) = 0, for all v 2 V. Hence, if b is an alternating
form, then b(vy;v2) =  b(vo;vy), for all vi;v, 2 V. We note that when char(k) = 2, an
alternating form is, in particular, symmetric.

Let vi;v, 2 V. We say that v, is orthogonal to v, and write v; ? v, if b(vy;vo) = 0. We
call b reflexive if orthogonality is a reflexive relation on V, i.e. vi ? v, ) v, ? v;. Note
that a bilinear form is reflexive if and only if it is either symmetric or alternating, [Gro02,
Proposition 2.7]. From this point onward, all the forms we consider will be reflexive.

For a subspace W of V, the set W7 =fv 2V jb(v;u) =0 for all u 2 Wg is called the
orthogonal complement of W in V. We define the radical of W as Rad(W) =W \W?7. In
particular, for W =V, the set Rad(V) :=V? =fv2Vjb(v;u) =0 forall u2Vgis called
the radical of V. with respect to b. We call the bilinear form b nondegenerate if Rad(V) = 0.
Now, if Rad(W) = 0, then we call W a nondegenerate subspace relative to b and we note
that Rad(W) = 0 if and only if the restriction of b to W, b jw w, iS @ nondegenerate form
on W.

The dual space of V is defined to be the k-vector space V. := Hom(V; k). Now, as V is
a finite-dimensional k-vector space, it follows that V is also finite-dimensional, where the
set fvy;:::;v,g Vo with the property that v; (v;) = 5, forall 1 i;j n, is a basis of
V . This basis is called the dual basis. We note that the bilineat form b is nondegenerate if
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for all f 2V , there exist vi;v, 2 V such that f(u) = b(vy;u) = b(u;vy) for all u 2 V, see
[Gro02, Corollary 2.2].

Let Vy, V, be two k-vector spaces equipped with bilinear forms b; and by, respectively. A
k-isomorphism :V; ¥ V, is an isometry with respect to b; and b if

bo( (V1); (V2)) = by(vy;vy); for all vy vy 2 Vi

If an isometry exists, then the two forms are called equivalent.

Alternating bilinear forms: We assume that b is an alternating bilinear form on the
k-vector space V. If v;u 2 V are such that b(v;u) & 0, then the set fv;ug is linearly
independent. We call the pair (v;u) 2V V a hyperbolic pair if b(v;u) = 1 and we call the

subspace hv; ui a hyperbolic plane. We note that b j,.,;i has representing matrix 1 (1)
relative to the basis fv;ug . ') 1
0 1
For © 1, set K- to be the ©* “ matrix given by K- := 8 X
1 0

Theorem 2.1.1. [Gro02, Theorem 2:10] Let V be a finite-dimensional k-vector space equipped

M
V = hvi; uil  Rad(V)

i=1

is an orthogonal direct gym. In particularq with respect to this basis, the representing matrix
K.

of b has the form B = @ Op o A,
K.

Assume that the alternating form b on V is nondegenerate. Then, in particular, we
have that dim(V) = n = 2° is even, where * 1. An ordered basis fvy;:::;V-; U 01 U0
of V, where fvj; u;g is a hyperbolic pair for all 1 i, as in Theorem 2.1.1, is called a
symplectic basis for V and V is called a symplectic space. An invertible linear transformation

of V is called symplectic if b( (v1); (v2)) = b(vi; Vo), for all vi;v, 2 V. We define
the symplectic group on V, denoted by Sp(V), as the subgroup of GL(V) consisting of all
symplectic transformations on V.

Remark 2.1.2. [Gro02, Corollary 2:12] The symplectic group Sp(V) does not depend in a
significant way on the choice of b, as any nondegenerate alternating bilinear form leads to
the same group, up to conjugacy, in GL(V).

We finish this paragraph by making a few remarks. Note that Sp(V) SL(V), [Gro02,
Corollary 3:5]. Moreover, if dim(V) = 2, then Sp(V) = SL(V), [Gro02, Proposition 3:1]. We

11



fix a basis in V and we let CSy(V ) be the conformal symplectic group, i.e.

_ v 0 K _ 0 K- :
CSp(V)=*F 2GL(V)]jT K. 0 T =c¢ K. 0 ; for somec 2Kk g;
where T is the matrix representing with respect to the basis we fixed in V. Moreover, let
PCSp(V) := CSp(V)=2Z(CSp(V)). Now, by [Car89, Theorem 11.3.2], PCS, (V) is isomorphic
to the simple adjoint linear algebraic group of type C-, while Sp(V) is isomorphic to the
simple simply connected linear algebraic group of type C-, see [Car89, p.184].

Symmetric and quadratic forms in characteristic & 2: For the moment, we assume
that char(k) 6 2. We let V be a finite-dimensional k-vector space equipped with a symmetric
bilinear form b. We define the associated quadratic form to be the map Q : V ¥ k given
by Q(v) = b(v;v), for v 2 V. We note that b is completely determined by its associated
quadratic form Q as:

Hiiv2) =5 QUa+v) QM) Q) forallviv 2V:

Theorem 2.1.3. [Gro02, Theorem 4.2] Let V be a finite-dimensional vector space over the
algebraically closed field k with char(k) & 2. Let dim(V) = n and assume that V is equipped

with a symmetric bilinear form b. Then V admits an orthogonal basibfvl; Ve Vi1 D Vg
by O 0
0

with the property that the representing matrix of b has the form B = b 0
0 0

where b &0 forall1 i rand fvi.q;:::;vag is a basis of Rad(V).

A nonzero vector v 2 V is called isotropic if b(v;v) = 0 and anisotropic if b(v;v) & 0. If
V contains an isotropic vector, then b (respectively Q) and V are called isotropic. Le W be
a subspace of V. If b(w;w) = 0 for all w 2 W, then W s a totally isotropic subspace of V.
Similarly, if b(v;v) = 0 for all v 2 V, then we call V totally isotropic. Lastly, we call the
pair of isotropic vectors (v;u) 2V V a hyperbolic pair if b(v;u) = 1. The subspace hv; ui
is called a hyperbolic plane and the restriction of b to hv; ui, b j.ui, has representing matrix
01
10
Corollary 2.1.4. Let V be a finite-dimensional vector space over the algebraically closed field
k with char(k) & 2. Let dim(V) = n and assume that V is equipped with a nondegenerate
symmetric bilinear form b. Let Q be the associated quadratic form. Then one of the following
holds:

with respect to the basis fv;ug.

(1) We have n = 2° and V admits a basis fvq;:::;v-;u-;:::;u.g, where (vj;u;) is a
hyperbolic pair, for all 1 1, with the property that
M
V = hvi; ujli

i=1

12



is an orthogonal direct sum of hyperholic plangs. Moreowgr, the representing matrix of

0 1
b has the form B = K. K- , Where K. = 5 g
1 0
(2) We have n =2 + 1 and V admits a basis fvq;:::;v;w;u-;:::;u;g, where w is such
that Q(w) =1 and (vj; u;) is a hyperbolic pair, for all 1 i “, with the property that
M
V = hvi; uiji  hwi

i=1
is angprthogonal girect sum. Moreover, the representing matrix of b has the form

B=0@ 1 A

K.

Proof. Let fwy;:::;wnhg be the orthogonal gpsis of V giyen in Theorem 2.1.3. Then, the
by 0

representing matrix of b has the form B = 8 % where by & O forall 1 i n.
0 bn

We first consider the case when n = 2°. Forevery1l i * setvj:=wj+cwnhs; 2V and

bi

i -. In what follows we show
n+1 i

ui ;= Zibi(wi CWn+1 i) 2V, where ¢ 2 Kk is such that ¢? =
that (vj; u;) is a hyperbolic pair.

Forall 1 i ¢ we see that Q(v;) = QW; + CWn+1 i) = Q(W;) + c?Q(Wp+1 ) =
bi + ¢®bnvs i = 0 and Q(Ui) = QG (Wi CWnva 1)) = 7z[QWi) + c?Q(Wnva )] = 0, as
b(Wi; Wn+1 i) = 0. Secondly, we have b((Wi+CWn+1 i); 5= (Wi  CWns1 1)) = 55 [0i Cbnaa i] =
1,as C%bn+1 j=bj, foralll i “ Thereby, (vi;u;) is a hyperbolic pair forall1 i ¢

M
Therefore, we have V = hvi; uji. Moreover, as fwy;:::;w,g are orthogonal, it follows

i=1
from the definition of v; and u; that b(vi;v;) = b(uj;u;) = 0forall 1  i;j  “ and that
b(vi;u;) =0forall1 i;j “withi& j. Thus, any two hyperbolic planes hv;; u;i and
hvj;uji, 1 1, ¢, are mutually orthogonal. Lastly, we note that the representing matrix

of b has the form B = K. K , with respect to the basis fvq;:::;v<;u<;:::;uig of V.

The case of n = 2° + 1 is similar to that of n = 2“; we set w = pbl=w‘+1 and, for all

1
1 1 “,wesetv;:=w;+CWye1 j and u; := 2_bi(Wi CWn+1 i). Now (vj; uj) is a hyperbolic
pair and the hyperbolic planes hv;; uji are mutually orthogonal. Moreover, we have that
Q(w) = Q(pbl=w‘+1) = 52-Q(W-41) = L and b(w;v;) = b(w;u;) =0 foralll i * as
“41 +
M

b(w-ri;wij) =0foralll 1 n,i6& “+1 Therefore, V = hvi; uii  hwi is an orthogonal

i=1
direcgpum of mutyally orthogonal subspaces and the reprelsenting matrix of b has the form

B=@ 1 A, with respect to the basis fvy;::::;vew;u<:::;ug of V. O
K.
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A vector space V equipped with a nondegenerate symmetric bilinear form b is called
a quadratic space. An isometry of V is called an orthogonal linear transformation and we
define O(V) to be the group of isometries of V, i.e.

O(V)=T1 2GL(V)jb( (v1); (v2)) =b(vy;vp) for all vi;v, 2Vg  GL(V):

We note that 2 O(V) if and only if Q( (v)) = Q(v) forallv2 V.

We fix a basis in V as in Corollary 2.1.4 and let 2 GL(V). Then 2 O(V) if and only
if T'"BT = B, where B is given in Corollary 2.1.4 and T is the matrix representing with
respect to the given basis. Assume that 2 O(V). Then, det(T ) = 1. We define the
special orthogonal group SO(V) to be the subgroup of O(V) given by

SO(V):=F 20(V)jdet(T ) = 1g:

Let 0 & v 2 V be an anisotropic vector and define the linear transformation , called
the reflection along v through the hyperplane v?, by:

b(u; V)
Q(v)

Note that a quadratic space admits anisotropic vectors, [Gro02, Proposition 4.1]. One checks
that , 2 O(V) and that , 2 SO(V) for all v 2 V. Now, assume that the vector space
V is such that dim(V) = 2. Then, by [Gro02, Proposition 6:1], we have that SO(V) = k
and O(V) =SO(V)o < > for any reflection , 2 O(V). Therefore, we will assume that
dm(V) =n 3. Let (V) = OO(V) denote the derived group of O(V). The following
results exhibits some of the properties of the group (V). Proofs for these can be found in
[Gro02, Section 6].

vuy=u 2 v; forallu2V:

Proposition 2.1.5. Let V be a finite-dimensional k-vector space of dimension n 3
equipped with a nondegenerate symmetric bilinear form. Then:

(@ (V)=0(V)=S0().
(b) If dim(V) 5, then "(V)= (V).
(c) Z(O(V)) =T idygand idy 2SO(V) if and only if n is even.

(d) (Dickson-Dieudonné Theorem) Assume that dim(V) 5. Then, the projective group
P (V)= (V)=( (V)\T idyg) is simple.

Lastly, if n = 2° + 1, then P (V) is the simple adjoint linear algebraic group of type
B and if n = 2°, then P (V) is the simple adjoint linear algebraic group of type D-, see
[Car89, Theorem 11.3.2].
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Symmetric and quadratic forms in characteristic 2: Assume that k is an algebraically
closed field of characteristic 2 and let V be a finite-dimensional k-vector space. A quadratic form
QonVisamap Q:V ¥ ksuch that

Q(cv) =c?Q(v); forallc2k andallv2V;
andthemapb:V V ¥ kgiven by
b(v1;V2) = Q(v1 + V2) + Q(v1) + Q(v2); for all vi;v, 2V
is a bilinear form. Note that the bilinear form b is uniquely determined by Q and that
b(v;v) =0forallv 2V,

i.e the bilinear form b is alternating and, therefore, symmetric, since char(k) = 2.
Let dim(V) = n. Since the bilinear form b is alternating, by Theorem 2.1.1, it follows

that V admits an ordered basis fvq;:::;Ve;Wq; il Wy o< U< 0 ug, where © 0, fvi; uig
is a b-hyperbolic pair for all 1 1, and fwy;:::;w, g is a basis of Rad(V ), with the
property that
M
vV = hvi; uil  Rad(V)

i=1
is an orthogonal direct sum. Let B be the representing matrix of b with ggspect to the bagis

fvy) i Ve Wil Wy 26 Ui urg. Then, by Theorem 2.1.1, B = @ On 2 A,
K.
thereby rank(B) = 2° and dim(Rad(V)) =n 2-.

We call V defective if Rad(V) & 0 and nondefective if Rad(V) = 0. We note that all
vectors 0 & v 2 V are isotropic, since b(v;v) = 0, however this does not generally imply that
Q(v) =0. We call 0 & v 2 V singular if Q(v) = 0 and, similarly, we call a subspace W V
singular if W contains a singular vector. Moreover, we call W totally singular if all vectors
in W are singular and we note that if W is a totally singular subspace, then W is totally
isotropic with respect to b, as:

b(w; w') = Q(w +w') + Q(w) + Q(w') = 0 for all w;w' 2 W:

We call the quadratic form Q nondegenerate if for all nonzero v 2 Rad(V ) we have Q(v) & 0.
Moreover, if Q is nondegenerate, then dim(Rad(V)) = 0 or 1, see [Gro02, p.114].

We define a quadratic space to be a k-vector space V equipped with a nondegenerate
quadratic form Q. Note that this definition allows the possibility for V to be defective.

Theorem 2.1.6. [Gro02, Theorem 12:9] Let (V; Q) be a quadratic space over the algebraically
closed field k of characteristic 2. Then V has an ordered basis fvy;:::;vnag, Where n =
dim(V), with respect to which Q has one of the following forms:

X
(@) Q(  CiVi) = C1Cpqq + CoCp- + + CCeqp + C?+1, ifn=2“+1.
i=1
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X
(b) Q(  CjVvi) =C1Cp + CoCp 1+  +CeCeyy, If N =25
i=1

We call the ordered pair of singular vectors (v;u) 2V V a hyperbolic pair relative to Q
if b(v; u) = 1 and we call the subspace hv; ui a hyperbolic plane. By Theorem 2.1.6, it follows
that V is an orthogonal direct sum of one of these types:

Typel: V =H; H- hwi; where Q(w) =1landn=2“+1

and
Type 2: V =H; H-; where n = 2°

and each H; is a hyperbolic plane. Therefore, if dim(V) is odd, then dim(Rad(V)) = 1 and
so V is a defective space, while, if dim(V) is even, then V is nondefective space.

Let (V; Q) and (V"; Q") be two quadratic spaces and define an isometry from V to V' to
be an isomorphism :V ¥ V' with the property that Q'( (v)) = Q(v) forall v 2 V. The
orthogonal group O(V) is defined to be the group of all isometries of V. We note that:

O(vV) SL(V),
therefore det( ) =1, forall 2 O(V).

Theorem 2.1.7. [Gro02, Theorem 14:2] Let (V; Q) be a quadratic space over the algebraically
closed field k of characteristic 2. Let dim(V) = 2+ 1, for some * 1. Then O(V) =
Sp(2°; k) as abstract groups.

We now focus on the case when V is even-dimensional. We define the special orthogonal
group, SO(V), to be ker( ), where : O(V) ¥ F, is the Dickson pseudodeterminant, see
[Gor002, Theorem 13:13 and Corollary 14:4]. We note that [O(V) : SO(V)] = 2. Let (V) =
O (V) denote the derived group of O(V ). The following result exhibits some of the properties
of the group (V). Proofs for these can be found in [Gro02, Section 14].

Proposition 2.1.8. Let (V; Q) be a quadratic space over the algebraically closed field k of
characteristic 2. Let dim(V) =2, for some * 2. Then

@ (V)=0(V)=S0(V).
(b) (V)= (V).
(¢) (V) is simple, unless dim(V) =4 and V has Witt index 2.

Lastly, [Car89, Theorem 11.3.2] identifies (V) with the simple adjoint linear algebraic
group of type D-.
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2.2 Elements of linear algebraic groups

A first natural step towards understanding linear algebraic groups is to understand properties
of individual elements. This section presents some basic structural properties of elements of
a linear algebraic group G. In the first subsection we discuss the Jordan decomposition of
elements in G with the goal of proving that to determine g(V), where V is an irreducible
kG-module, it su Lced to calculate maxfdim(Vs( )) j s 2 GnZ(G) semisimple, 2 kg
and maxfdim(Vy(1)) j u 2 G n flg unipotentg, see Proposition 2.2.3. In Subsection 2.2.2
we reintroduce the elements h (c), ¢ 2 k , and x (%), ¢’ 2 k, of G, where is an element
in the root system  of G. We givg-a presentation of semisimple, respectively unipotent,
elements of G as ordered products h (c ), wherec 2k and is a set of simple roots
Y 2
in , respectively x (c"), where ¢® 2k and ~ is the set of positive roots in
o +

2.2.1 The Jordan decomposition

Let k be an algebraically closed field of characteristicp 0 and let V be a finite-dimensional
k-vector space. An endomorphism s 2 End(V) is called semisimple if s is diagonalizable
over k. An endomorphism n 2 End(V) is called nilpotent if 0 is the sole eigenvalue of n
on V. We note that if x 2 End(V) is both semisimple and nilpotent, then x = 0. Now,
any x 2 End(V) admits a so called additive Jordan decomposition, i.e. there exist unique
commuting endomorphisms Xg; X, 2 End(V) with the property that Xxs is semisimple, X, is
nilpotent and X = X5 + X, = X, + X5, [Hum75, Lemma A of Section 15.1]. An invertible
endomorphism u 2 GL(V) is called unipotent if u idy is nilpotent, or equivalently, if 1 is
its sole eigenvalue on V. We also note that if x 2 GL(V) is both semisimple and unipotent,
then x = idy .

We now consider the case when x 2 GL(V ). Then its eigenvalues are nonzero, therefore
Xs 2 GL(V). We set x,, := 1+ X, 1x, and note that x, 2 GL(V) is unipotent. Moreover, we
see that X = XXy = XyXs With x5 2 GL(V) semisimple and x, 2 GL(V) unipotent. We call
this decomposition of x 2 GL(V ) the multiplicative Jordan decomposition. The uniqueness
of X5 and X, in the additive Jordan decomposition of x 2 GL(V) gives the uniqueness of
Xs and X, in the multiplicative Jordan decomposition of x, i.e. for any x 2 GL(V), there
exists a unique semisimple endomorphism xs 2 GL(V ), called the semisimple part of x, and
a unique unipotent endomorphism x, 2 GL(V), called the unipotent part of x, with the
property that X = XsXy = XyXs.

Remark 2.2.1. Semisimple elements behave almost the same in both characteristic 0 and
positive characteristic. However, this is not the case for unipotent elements. If char(k) =0,
then a unipotent element u & 1 has infinite order. On the other hand, if char(k) = p > 0,
then u is unipotent if and only if its order is a power of p.

We now state the Jordan decomposition theorem for arbitrary linear algebraic groups, as
it is given in [MT11, Theorem 2.5].

Theorem 2.2.2. [Jordan decomposition] Let G be a linear algebraic group.

17



(@) For any embedding of G into some GL,(k) and for any g 2 G, there exist unique
0s; 9u 2 G such that g = gsgu = guQs, Where (gs) is semisimple and (gy) is unipotent.

(b) The decomposition g = gsgy = gu0s IS independent of the chosen embedding.

(c) Let :G; ¥ G, be a morphism of algebraic groups. Then, for g 2 G; with g = gs0u,
as in (a), we have (gs) = (9)s and (gu) = (Q)u, i.e.

@)= (9) ()= (@)s (Qu
is the Jordan decomposition of (g) in G,.

Let G be a simple linear algebraic group and let g 2 G. The decomposition g = gsgy =
guQs of Theorem 2.2.2 is called the multiplicative Jordan decomposition of g 2 G. We call
g 2 G semisimple if g = gs and, similarly, we call g 2 G unipotent if g = g,. Now, let
Gs be the set of semisimple elements of G and let G, be the set of unipotent elements of
G. Theorem 2.2.2 shows that Gs and G, are well-defined and that, forany :G ¥ G
morphism of algebraic groups, we have (Gs) = (G)s and (Gy) = (G),.

Let V be an irreducible kG-module. Recall from Section 1.1 that c(V) = minfdim(V)
dim(Vg( ))jg2GnZ(G); 2k g. Weremark that to determine (V) it is enough to
determine

My = maxfdim(Vyg( ))jg2GnZ(G); 2k g:

In what follows, we investigate the invariant M,,. Before we begin, we remind the reader
that the center of G, Z(G), consists of semisimple elements, i.e. the only unipotent element
in Z(G) is the identity. Now, let : G ¥ GL(V) be the associated representation of G into
GL(V) and let g 2 Gn Z(G). We write down the Jordan decomposition of g:

0 = 0sOu = 9uls;

where gs 2 Gs and gy, 2 G,. Theorem 2.2.2 gives us the Jordan decomposition of (g) in
GL(V):
@ = () ()= ©@s (@)u:

We choose a basis of V with the property that (g) is written in its Jordan normal form.
Then, with respect to this basis, (g)s is the diagonal matrix whose entries are just the
diagonal entries of (g), while (g). is the unipotent matrix obtained from the Jordan normal
form of (g) by dividing all entries of each Jordan block by the diagonal element. We
distinguish the following two cases:

Case 1: Assume that g5 2 Z(G). First, we remark that g, & 1, as g 2 Z(G). Secondly,
as gs 2 Z(G), it follows that (g)s = diag(c;c;:::;c) for some ¢ 2 k . Thereby, c is the sole
eigenvalue of (g) on V and we have:

dim(Vq(c)) = dim(Vg, (1)) max dim(Vy(1)): (2.1)
u2Gynflg
Case 2: Assume that gs 2 Z(G). Then, since (g)s is a diagonal matrix with entries the

diagonal entries of (g), we determine that (g) and (g)s have the same eigenvalues on V
and, for any eigenvalue c 2 k of (g) on V, we have:

dim(Vg(c)) dim(Vg(c)) max )fdim(Vs( D 2kg: (2.2)

s2GsnZ(G
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Therefore, for any g 2 G n Z(G) and any eigenvalue c 2 k of (g) onV, by (2.1) and (2.2),
it follows that

dim(Vy4(c)) maxfuzrg%lgdlm(vu(l));Sz(r;r:nag(e)fdlm(vs( )] 2k gg:

We fix a maximal torus T in G. Let s 2 G5 be semisimple. Now, as any semisimple element
of G lies in a maximal torus, [MT11, Corollary 4.5], and, as maximal tori are conjugate in
G, [MT11, Theorem 4.4], there exists s' 2 T such that s and s’ are G-conjugate. It follows
that

max Ffdim(Vs( ))j 2k g= max fdim(Ve( 9)j "2k g:

s2GsnZ(G) s'2Tnz(G)

We summarize the above discussion in the following result:

Proposition 2.2.3. Let G be a simple linear algebraic group and let V be an irreducible
kG-module. We define

M := sernn%)((G)fd'm(VS( )i 2kgand M, = uzré‘fn)élgd'm(\/“(l»:

Then My = maxfMg; Mg and g(V) =dim(V) maxfMs; Myg.

Remark 2.2.4. Proposition 2:2:3 is one of the essential results of this thesis, as it gives a

strategy on how to calculate (V). It explains the structure of Chapters 3 through 7, where

the first part of each chapter is dedicated to the calculation of 2rTne?(%)fdim(Vs( Di 2kag,
S n

while the second part is concerned with max dim(V,(1)).
u2Gynflg

2.2.2 The presentation of semisimple and unipotent elements of a
linear algebraic group

As in the previous subsection, let k be an algebraically closed field of characteristicp 0.
Let G be a simple simply connected algebraic group of rank * 1, let T be a maximal
torus in G and let X(T) be its group of rational characters. Moreover, let  be the root
system of G determined by T. Recall that G,, respectively G, is the additive, respectively
multiplicative, group of k. Now, for each 2 , we have seen that there exists a unique, up
to scalar multiplication, morphism x : G, ¥ G of linear algebraic groups, which induces an
isomorphism x : G, ¥ im(x ) with the property that tx (c)t ' =x ( (t)c) forall t2 T
and all ¢ 2 G, see Subsection 1.3. Moreover, foreach 2 ,U =im(x ) =1fx (c)jc 2 kg
is the root subgroup of G, relative to T, associated to the root

Let B be the positive Borel subgroup of G whigh contains T and let =¥ ;:::; g

be the corresponding base in . Then B =T U , where the product respects the
2 +
total order on fixed in Section 1.3. Let u 2 G be a unipotent element. Now, we can
assume, without loss of generality, that u 2 B, see [MT11, Corollary 6.11]. There exist
¢ 2 k such that u = x (¢ ), where the product respects . To u we associate the
2 +
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Y

subset S, * with the property that u = x (¢ ), where the product respects and
2Sy
¢ 2k forall \2 Sy. Note that S, is well-defined, as with the order  fixed on , the
expression u = X (c ) is unique.
2 +

Having dealt with the unipotent elements of G, we now focus on the semisimple elements.
Let 2 andc 2 k and recall the elements n (c) ;= x (¢)x ( ¢ )x (c) 2 Ng(T),
respectively h (¢) :=n (¢c)n ( 1) 2T, of G. Asfth ,j 2 g is a basis of Y(T), the
group of cocharacters of T, we determine tha{(T =him(h ;)] 2 1. Therefore, for any
semisimple element s 2 G, we will write s = h .(c,), wherec, 2k .

i2

2.3 Representation theory of linear algebraic groups

In this section some well-known results of the representation theory of algebraic groups will
be presented. As these classical results can be found in most books covering this subject,
we will not include their proofs, only references for further reading. We will be following
[MT11], but other sources are [Jan07] and [Hum75]. The goal is to understand the irreducible
tensor-indecomposable modules of a simple linear algebraic group G. We present the classical
results of Chevalley, Theorem 2.3.3, and Steinberg, Theorem 2.3.8, which tell us that, up
to isomorphism, irreducible tensor-indecomposable kG-modules are parametrized by the p-
restricted dominant weights of G. Lastly, we discuss isogenous groups and the connection
between their respective irreducible modules.

2.3.1 Irreducible kG-modules

To begin, recall from Section 1.3 that k is an algebraically closed field of characteristicp 0;
G is a simple simply-connected linear algebraic group of rank “; B is a Borel subgroup in
G which contains T, a fixed maximal torus of G; X(T) is the rational character group of T;

=T 1;:::; <gis the set of simple roots determined by B in ; and is the root system
of G associated to T.

Let :G ¥ GL(V) be a representation of G. As T consists of commuting semisimple
elements, by Theorem 2.2.2, we have that (T) is a subgroup of commuting semisimple
elements in GL(V), hence (T) is diagonalizable. Consequently, the vector space V can be
decomposed into a direct sum:

M
V = V; whereV =fv2Vjjtv= (tvforallt2Tg:

2X(T)

The elements 2 X(T) for which V & f0g are called the weights of V with respect to the
maximal torus T. We will denote by (V) the set of weights of a kG-module V. The spaces
V ,where 2 (V), are called T-weight spaces of V, and, for a weight 2 (V) we define
the multiplicity of as dim(V ).

We will now describe how certain subgroups of G act on the weight spaces V of the
kG-module V. First, recall that W is the Weyl group of G associated to T. Now, by [MT11,

20



Section 8:1], the action of W on X(T) is given by
w H)O= (v 'tw);

wheret 2 T, 2 X(T) and w 2 Ng(T) is an arbitrary preimage of w 2 W. Therefore,
weights in the same W-orbit have the same multiplicity, see [MT11, Lemma 15:3]. For every

2 X(T) there exists a unique dominant weight ' 2 X(T) such that 2 W . Moreover,
if 2 X(T) is dominant, then for all w 2 W we have w , see [MT11, Proposition 15:8
and Lemma B.4]. We now focus our attention on the root subgroups U of G, where 2
and their action on the weight spaces V of V.

Lemma 2.3.1. [MT11, Lemma 15:4] Let 2 (V) and let V be its corresponding weight
space. Moreover, let 2 . Then, for all v2V , we have:

x
U v v+ Vo4

J2Z>0

We call a vector v* 2 V a maximal vector with respect to B if B hv*™i = hv™i. Note that,
by the classical Lie-Kolchin theorem, [MT11, Theorem 4:1], maximal vectors always exist.
We call a kG-module V a highest weight module if V is generated by a maximal vector
vt 2V, with respect to B. Let V be a highest weight kG-module with maximal vector
v* 2 V. Since, in particular, hv™i is stabilized by T, there exists a dominant weight 2 (V)
such that v 2V , see [MT11, Proposition 15:9]. The dominant weight 2 X(T) with the
property that v 2 V s called the highest weight of V. Now, if V is irreducible, then,
by [MT11, Corollary 15:10], all maximal vectors in V havesthe same weight . Moreover,
dim(V ) = 1 and all weights in (V) are of the form c, jwithc, k6 2 N ( for all

i2

i 2

Proposition 2.3.2. [Jan07, 11.2:13] Let Vg( ) be the Weyl kG-module. Then Vg( ) is a
highest weight kG-module and any highest weight kG-module of highest weight 2 X(T) is
a homomorphic image of Vg( ).

Theorem 2.3.3 (Chevalley). [MT11, Theorem 15.17] Let G be a simple linear algebraic
group.

() There exists an irreducible kG-module, denoted by Lg( ), of highest weight for all
dominant weights 2 X(T).

(b) The two irreducible kG-modules Lg( 1) and Lg( ») of respective highest weights
and , are isomorphic if and only if ;= ».

In particular, the set fLg( ) j 2 X(T) dominantg is a set of representatives for the
isomorphism classes of irreducible kG-modules.

We end this subsection with two results, courtesy of [Jan07, 11.2:14] and [Pre88, Theorem
1], respectively, which give the relationship between the irreducible kG-module Lg( ) and
the Weyl kG-module Vg ( ) and their respective set of weights (Lg( )) and (Vg( )). They
will be used extensively in the proofs of the results in Chapters 3 through 7.
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Proposition 2.3.4. [Jan07, 11.2:14] Let 2 X(T) be a dominant weight. Then:

Ve( )=Rad(Ve( )) = La( ):

Sete( )=1,if isof type A, D, Eg, E; or Eg; e( ) =2 if is of type B, C- or
X
Fs; and e( ) = 3 if  is of type G,. Now, recall that a weight 2 X(T), = dit, is
i=1
p-restricted if 0 di p 1lforalll i °.

Remark 2.3.5. [MT11, Section 16, p.137] For a fixed simple simply connected linear algebraic
group G and a fixed prime p, there exist only finitely many p-restricted weights.

Theorem 2.3.6. [Pre88, Theorem 1] Let k be an algebraically closed field of characteristic
p >0, let G be a simple linear algebraic group and let T be a fixed maximal torus in G. Let
2 X(T) be a p-restricted dominant weight. If p >e( ), then

(Le( )= (Ve()):

2.3.2 Steinberg’s Tensor Product Theorem

Let k be an algebraically closed field of characteristic p > 0. Let F, : kK ¥ Kk be the
Frobenius automorphism, i.e. Fy(c) = cP for ¢ 2 k. By [MT11, Proposition 16.5], we know
that F, induces an endomorphism of algebraic groups F : G ¥ G given by

F(x (c)) =x (cP); forall 2 andallc2k:

Now, let V be a kG-module and let the action of G on V be given by g v, where g 2 G and
v2V. Now, forall i 1, we can define a new action of G on V in the following way:

g ®v:=Fi@g) v; forallg2Gandallv2V:

We denote this new kG-module by V ®",

Proposition 2.3.7. [MT11, Proposition 16.6] Let k be an algebraically closed field of character-
istic p > 0 and let G be a simple linear algebraic group. Let T be a maximal torus in G and let
2 X(T) be a dominant weight. Then, we have the following isomorphism of kG-modules:

Le( )® =Ls(p ):
Let 2 X(T) be a dominant weight. We can express uniquely as
= o*p a1t +p (2.3)

where r 2 Z g and ; 2 X(T) is a p-restricted dominant weight for all 0 i1 r. The
following result, due to Steinberg, shows that there exists a decomposition of the associated
irreducible kG-module Lg( ) analogous to (2.3).
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Theorem 2.3.8 (Steinberg). Let G be a simple simply connected linear algebraic group over
the algebraically closed field k of characteristic p > 0. We fix a maximal torus T in G and we

let 2 X(T) be a dominant weight. We write = o+p ;+ +p" ,, wherer2Z , and
i 2 X(T) is a p-restricted dominant weight for all 0 i r. Then we have the following
isomorphism of kG-modules:
Le( ) =Lo( o) Lo( )@ Le( )®:

Remark 2.3.9. For p-restricted dominant weights, the associated irreducible kG-modules
are called p-restricted. Theorem 2:3:8 allows us to restrict many questions in the study of all
rational irreducible KG-modules to the finitely many p-restricted ones.

2.3.3 Group isogenies and irreducible modules

Let k be an algebraically closed field of characteristic p 0 and assume that the simple
algebraic group G is not simply connected. Let G be the simple simply connected linear
algebraic group of the same type as G. Fix a central isogeny :G ¥ G withker( ) Z(G)
and d & 0. Let T be a maximal torus in G with the property that (T) = T and,
similarly, let B be the Borel subgroup of G given by (B) = B. Note that T B. By
[Jan07, 11.2.10], we know that each simple kG-module is also a simple kG-module. With
this in mind, we consider the simple kG-module Lg( ), where 2 X(T) is a dominant
weight. Since X(T) X(T), we will denote by ~ the weight when viewing it as an
element of X(T). Moreover, by [Jan07, 11.2.10], as 2 X(T) is dominant, it follows that
~ 2 X(T) is also dominant. Now, since Lg( ) is a simple kG-module, it follows that there
exists ~ 2 X(T) dominant such that Ls( ) = Lg(~) as kG-modules. We now use [Jan07,
11.2.10] to determine that ~ = 7, i.e. Lg( ) = Lg(7) as kG-modules. In what follows
we show that M'—G(N) = maxfdim((Lg(™))s(~)) 8 2 GnZ(G);~ 2 kgand M () :=
maxfdim((Lc( )q¢( ))j92GnZ(G); 2Kk g are equal.

Let g 2 GnZ(G) and let ~ 2 k be an eigenvalue of ¢ on Ls(7). Let g = (&) and note
that g 2 Gn Z(G). Since Lg( ) = Lg(7) as kG-modules, we have that:

dim((Ls(7))e(~)) = dim((La( )g( ));

where 2 k is the eigenvalue of ¢ on Lg( ) corresponding to ~ under the kG-module
isomorphism Lg( ) = Lg(7). Moreover, as dim((Lc( ))g( )) = dim((Lc( )) @( ), it
follows that

dim((L(7))g(~)) = dim((La( )) @( ) =dim((La( ))g( )):

Now, since the map :G ¥ G is surjective, it follows that:

dim((Le(e(-)  max_fdim((Le( Dg( N 2k g=M)i  (24)
for all g 2 GnZ(G). Lastly, let (g; ) 2 GnZ(G) k be such that dim((Lc( ))¢( )) =

H yy; O .
gozn(;r?Z)EG)fdlm((LG( Ne ))J "2k g. Then:

dim((L(M)s(-)) =  max Tdim((Le( ) MNi '2kg;

ma
2GnZ(
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where g is an arbitrary preimage of g in G and ~ 2 k is the eigenvalue of g on Ls(7)
corresponding to  under the isomorphism Lg( ) = Lg(7). This shows that there exist
pairs (§; ~) 2 GnZ(G) k for which the bound in (2.4) is attained and thus, we have shown
that MLG(~) = MLG( )-

Lastly, we set Mg := max fdim((Lg(7))s(~)) ] ~ 2 k g. Arguing as above, see
s2TnZ(G)

Inequality (2.4), we establish that:

_ : g o
Ms = 502rpr?z)§e)fdlm((l‘e( Ne( )] "2k g=Ms:

Similarly, we set M, := max dim((Ls(7))«(1)), where G, is the set of unipotent elements
u2Gyunflg

in G. Then, arguing as for Inequality (2.4), one shows that:

My = max dim((Lc( ))w(1)) =My
9

u'2Gynfi

We recall that, by Proposition 2.2.3, we have g(V) = dim(V) My, where My =
maxfMs; Mg, for any irreducible kG-module V, respectively (V) =dim(V) M,, where
M, = maxfMs; Mg, for any irreducible kG-module V. We summarize the discussion above
in the following lemma:

Lemma 2.3.10. Let k be an algebraically closed field of arbitrary characteristic, let G be
a simple algebraic group and let G be the simple simply connected algebraic group of the
same type as G. Let V be an irreducible kG-module and let V denote V when viewing
it as an irreducible kG-module. Set Mg = max fdim(Vs(~)) j ~ 2 k g, respectively

s2TnZ(G)
Ms = max fdim(Vs( )) ] 2 kg, and My, = max dim(Vy(1)), where G, is the set
s2TnZ(G) u2Gynflg
of unipotent elements in G, respectively M, = 2r(731a>§1 dim(V,(1)), where G, is the set of
u2Gynflg

unipotent elements in G. Then
M = Mg and M, = M,:
In particular, we have My = M, and s(V) = s(V).

We end this subsection with the following remark, which justifies why we will treat
algebraic groups of type B-, and their respective modules, only over fields of characteristic
di Lerent than 2.

Remark 2.3.11. Let k be an algebraically closed field of characteristic 2. For C, a simple
simply connected linear algebraic group of type C-, and B, a simple simply connected linear
algebraic group of type B-, there exists an exceptional isogeny : C ¥ B between the two
groups, see [Stel6, Theorem 28]. A consequence of this fact is that we can induce irreducible
kC-modules from irreducible kB-modules by twisting with the isogeny . More specifically,

X
for any 2-restricted dominant weight = di '3, where the 'B’s are the fundamental

i=1
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dominant weights of B, we have that:

> b
Le()=Le@ diIf +dI9)=Lo( &I1)® Lo@19);

i=1 i=1
in view of Theorem 2.3.8, where the 1&’s are the fundamental dominant weights of C.

Thus, for any 2-restricted dominant weight = di!2 of B, we have g(Lg()) =
i=1

>

c(Lc@ ) = c(Lc()P) = c(Lc()), where = d;'C. Similarly, for the weight
i=1

1B we have g(Lg(!B)) = c(Lc(1°)). Lastly, in the case of the weights of the form

X
= d;! iB, where there exists 1 1 1 such that d; =1 and d- = 1, we will calculate

i=1

>
c(Le( di’S)?  Lce(1Y)) to determine g(Lg( ).
i=1

2.4 Parabolic subgroups

In this section we introduce a family of subgroups of the simple linear algebraic group G
called parabolic subgroups. They will play an important role in this thesis, as their structure
as a semidirect product of a reductive subgroup and a unipotent normal subgroup allows us
to use inductive algorithms to prove certain parts of Theorem 1.1.1, see Subsections 2.4.3
and 2.4.4, respectively.

A subgroup P of G which contains a Borel subgroup is called parabolic. In what
follows, we will describe these subgroups and present their consfguction. Fix a proper subset
I fl;:::;'gandset ,:=f ;2 ji2lgand ;:= \ Z . The subgroup P, :=

i2
hT;U j 2 *[ ,iisaparabolicsubgroupin G, called the standard parabolic subgroup of
G corresponding to . Let Q, := Ry(P,) be the unipotent radical of P,. We have that
Q=hU j 2 *n i,andthatL,:=hT;U j 2 ,iisacomplementof Q, in P, see
[MT11, Subsection 12.2]. Now, P, admits a decomposition

Pi=QioLy;

called the Levi decomposition, where the subgroup L,, called the standard Levi complement
of Py, is reductive and has | as root system, [MT11, Proposition 12.6]. Therefore, by
[MT11, Corollary 8.22], we have that L, = Z(L,) [L,; L], where Z(L,) is a torus and, since
G is simply connected, the derived subgroup [L,;L,] is also of simply connected type and is
of rank strictly smaller than rank(G), [MT11, Proposition 12.14].

We now turn our attention to a specific family of parabolic subgroups, called maximal para-
bolic subgroups. These are the standard parabolic subgroups which correspond to ; =

nf g, 1 i “. Therefore, for each 1 i ‘, set P; to be the maximal parabolic
subgroup of G corresponding to ; = F 1:::; i 1; iw1;iii; 9. Set Ly = hT;U 5o
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U , ;U ..U i tobea Levi subgroup of P;. We have seen earlier that L; has root
system ;= \(Z .+ +7Z i 1+2Z i1+ +Z <), in which\ i I1s a set of simple
roots. Now, we have that L; = Z(L;) [Li; L;], where Z(L;) = ker( j) is a one-

j&i
dimensional subtorus of G and [L;; L;] is a simply connected linear algebraic group of rank
1. Lastly, we have that T' = T \[L;; L] is a maximal torus in [L;; L;], contained in the

of G corresponding to . We will abuse notation and denote the fundamental dominant
weights of L; corresponding to by Yq;:::; 8 1 Visqy oo 1es

2.4.1 Restriction to Levi subgroups

Let W be the Weyl group of G corrsponding to T. Let 2 X(T) be a dominant weight and

X
write = dili, whered; Oforalll i *“. Let Lg( ) be the associated irreducible

i=1
kG-moduIel.
Definition 2.4.1>Eix somel i ‘. Wesay that a weight in Lg( ) has j-levelj 0

if = J i Cr r, Where ¢, 2 Z o. The maximum j-level of weights in Lg( ) will
réi

be denoted by e;j( ).

Remark 2.4.2. By definition, e;j( ) is equal to the ;-level of the lowest weight in Lg( ),
which, by [Jan07, Il, Proposition 2.4(b)], is wo( ), where wp 2 W is the longest word.

LetV =Lg( ). Fix1l i “andletL;bea Levisubgroup of P;, the maximal parabolic
subgroup of G corresponding to ; =F 1;:::; N i+L s <0, see Subsection 2.4. For
each 0 ] ei( ), define the subspace VI := V j, of V and note that VJ is

2N
invariant under L;. Then, as a K[L;; Lj]-module, V admits the following decomposition:

W
Vv JiLiLa= Vi
j=0

M

We note that, by [Jan07, 11.2.11], V° = vV is the irreducible K[L;; Lj]-module of
2N

highest weight  jro, where T® = T \ [L;; L] is a maximal torus in [L;; L;].

Lemma 2.4.3. [Duality Lemma] Let k be an algebraically closed field of characteristicp 0
and let G be a simple simply connected linear algebraic group. Let T be a maximal torus in G
and let V. = Lg( ), where 2 X(T) is dominant. Assume that V is a self-dual kG-module.

Fix 1 i “and let Lj be a Levi subgroy& of the maximal parabolic subgrou_;i Pi pf G.
Moreover, for all 0 j ei( ), let VI = V j, . Then, forall0 j # , We
2N
have the following isomorphism of k[L;; Lj]-modules:

vel) i = (Vj) :
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Proof. We note that, as V is self-dual, we have that wo( ) = and V is equipped with
a nondegenerate bilinear form, which will be denoted by ( ; ). Let ; ‘2 (V) be such

0

that '& . Wewill showthat Vo V7. For this, letv2V and V' 2V s. We have that:
VY= (t vit V)=( (t)v; ‘@OV)=( + YOW:V): forall t2T:
Therefore (v;v') =0, as ' & . Moreover, we note that if 2 (V), thenV =V7?,

contradicting the fact that ( ; ) is nondegenerate. Therefore 2 (V)forall 2 (V).
Secondly, let 2 (V) be aweight of -level j, where0 j ej( ). We will show that
has j-level ej( ) j. On one hand, we know that e;j( ) is equal to the j-level of wp( ),

see Remark 2.4.2, therefore we have:

>
wo( )= = &() ar r;
ré&i

X
where a, 2 Z . On the other hand, since = J i Cr r, forc, 272 o, we have:

réi
_ > _ >
= +] i+ ¢ = e() J)i br

réi réi

where by 2 Z  for all r & i. Therefore, has i-Ieve|\99uaI toei( ) J. In particular, as
Vo (V)?forall "6& it follows that (V)7 V'
réei( ) j
L% N
Lastly, as V j;:.L,1= V7 is self-dual, it follows that V ji ;.= (V1) . Furthermore,

j=0 j=0
as V is equipped with a nondegggerate bilinear form, we have that (V1) = V=(vJ)?, for all
0 j &) As(VH7? V', it follows that dim((V}) ) dim(ve&() 1), By the

réei( ) J
same argument, this time applied to V %¢) J, we determiggsthat dim((V () 1) )  dim(V1).
Therefore, dim((VJ1) ) = dim(V &) 1), thus (V1)? = V', and we conclude that
réei( ) j

(Vj) —yei() i

2.4.2 Maximum j-levels of weights in Lg( )

In this subsection, we exhibit formulas for the maximum j-levels of weights in Lg( ), for

x
all 1 i *and all types of simple classical linear algebraic groups. Now, as = di1;,

i=1
whered; Oforalll i *, we will use [Hum72, Table 1, p.69], which allows us to write
the fundamental dominant weights 1; in terms of the simple roots ;. Before we begin, we
recall that wo( ) is the lowest weight in Lg( ), where wy 2 W denotes the longest word in
the Weyl group W of G.
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X<
Lemma 2.4.4. Let G be of type A, * landlet 2 X(T), = d; 1, be a dominant
i=1
weight. Then, for all 1 i 5 , the maximum ;-level and the maximum - ;.;-level of
weights in Lg( ) are equal. Moreover, one of the following holds:

> Pl ‘
(1) for “ even, we have gi( ) =e: i+1( )= j(dj+de jor)+i dj, forall1 i 3
j<i j=i
8 .
% “+1 x.
e%( ) = Td% +  jldj+de ),
(2) for “ odd, we have =1 s
> Kl 1
_ei( ):e‘ i+l( ): _](dj+d j+1)+i dj; forall 1 i > :
j<i j=i

Proof. In order to determine ej( ), 1 i1  “, we have to calculate the j-level of wo( ).
Using [Hum72, Table 1, p.69], we write the 1;’s, 1 i, in terms of the simple roots
1 J ¢ and we see that:

J

X X

Wo( ) = ( Wo( )) = dr(r  wo(1y)) = dr(tr+ 1 )
r=1 r=1
Letl r 5 . Then:
> el X< )
L+l = Jj+r it “+1 J);:
i=1 j=r =" r+2
We now assume that “ is even. Then:
x
wo( ) = @dr+do r)(r+ 1 1)
r=1
= > > >< _
= (dr+d‘ r+1) Jitr it (‘+l J)j
r=1 j=1 i=r j= r+2

= (di+d)( 1+ + <) (da+d )(1+2 2+2 3+ +2 1+ )

(d%+d%+1) 1+ + 2 1 %1+§ §+§ %+1+ 2 1 %+1+ +
X X< =
= Jdj+de ju)+r (dj+de jar) (e + o oren)
r=1 j<r Jj=r
X X >
= Jj(dj+d- ju) +r dj ( r+ - ren)
r=1 j<r j=r
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Therefore, we have proven that, for all 1 i 5 we have ej( ) = e« j+1( ), where

> e s
ei( )= Jdj +d- jap) +i d;:

J<i j=i

We can now assume that “ is odd. Then:

o1 1 ‘+1 “ 1
b =3 1+2 0+  + it 5 1 5 SRV
This gives:
f 1
x
WO(): (dr+d‘ r+1)(!r+!‘ r+1) d%l !%4'!%
r=1
= > 1 >< _
= (dr"'d‘ r+1) _lj"'r j+ (‘+1 J)j
r=1 j=1 i=r j=" r+2
Xl ‘+1 X )
d-pa g 5 t ¢ J+1)
=1 =3+
X X =
= Jdj+d- jur) +r (dj +d- j+1)+rd% (r+ < r+1)
r=1 j<r Jj=r
<1
‘41 x.
p Gt G +d )
j=1
X X >
= J(dj+d‘ j+l)+r dj (r+ < re1)
r=1 j<r Jj=r
c 1
‘41 x.
d%'l' j(dj+d j+1) %1
j=1
<1
“+1 = o
We conclude that e%( ) = d% +  j(dj+d- j+1)and, foralll i —=, we have
i=1
< s
ei( )=e iw1( )= J(dj+d- jog)+i dj. =
j<i j=i

X
Lemma 2.4.5. Let G be of type C-, ©* 2, and let 2 X(T), = di!;, be a dominant

i=1
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weight. Then the maximum ;-level of weights in Lg( ) is:

2 jdj+i dj ; forl i 1,
j=1 i=i

%x <
=

Proof. Note that, as G is a group of type C-, © 2, we have wog = 1, hence wp( ) =

We write the I;’s, 1 i, in terms of the simple roots ;,1 j *, and we see that:
>
Wo( )= = 2 = 2d+ +d), 2 di+2 dj o
j=2
2 de + | dj i JdJ
j=1 Jj=i =1
We remark that the coe Lcieht of each ;, 1 i *, in the above, is a nonnegative integer
and the result follows. O

X<
Lemma 2.4.6. Let G be of type B-, * 3, and let 2 X(T), = di!;, be a dominant
i=1
weight. Then the maximum ;-level of weights in Lg( ) is:
> > 1
ei( )=2 jdj +i dj+§d- ; foralll 1 “:
j=1 i=i

Proof. Note that, as G is a group of type B-, * 3, we have thatwy = 1, hencewy( ) =

We write the fundamental dominant weights 1;, 1 1 *, in terms of the simple roots j,
1 j ¢, and we determine that:

X B > 1
i=1 j:]. j:i
Therefore
X X > 1
Wo()= = 2= 2 jdj+i di+od
i=1 j=1 j=i
4 >
andsoei( )=2  jdj+i dj+>d- ,foralll i - 0
j=1 j=i
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X

Lemma 2.4.7. Let G be of type D-, ©* 4, andlet 2 X(T), = di1i, be a dominant
i=1
weight. Then, forall 1 i ° 2, the maximum j-level of weights in Lg( ) is:
> > 1
ei( )=2 jdj +i dj+§i(d‘1+d‘):
j=1 j=i

Moreover, if © is even, then:

> 1
e-1( )= Id; "'z ‘de 1+ (¢ 2)d- and e( )=
j=1 j=1

= 1
jg+5 ¢ 2d i+ d

while, if “ is odd, then:
> 1
e- 1()=e()= de+§(‘ (- 1 +d-):

=1

Proof. We first assume that “ is even. Then wog = 1 and we have:

>
Wo( ): = 2 = 2 djlj 2d- ¢v. ¢ 2d.1.;
j=1
therefore
> x> X 1 > 1 >
dj!j= _]dj"'l" dj r+§ _]dj ‘1+§ _]dj
j=1 r=1 j=1 j=r j=1 j=1
and

1 x 1, ‘ 1, ‘
d‘l!‘1+d‘!‘:§(d‘l+d‘) J j+4_1 de 1+ (° 2)d ‘1"‘2( 2)d- ; + “d-

j=1
This gives
>xX > 1 > 1
Wo( ) = 2 jdj+r dy+or(d- 1 +d) jdj +(d- 1+ (5 2)d) <4
r=1  j=1 i=r 2 i=1 2
x 1
jdj + E((‘ 2)d- 1 + “d-)
j=1
o4 > 1 >
thusei( ) =2 jd; +i dj+§i(d‘ 1+d) ,foralll i ° 2e 4()= jd; +
j=1 j=i i=1
1 > S
5 ‘d 1+ (* 2)d- ande( )= Jjd; +§ (‘ 2)d. {+°“d- .

j=1
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We now assume that “ is odd. We note that wy(!;) = I;, forall1 ] ‘2,

Wo(!- 1) = T-andwp(!-)= T. ;. It follows that:
>
wo( ) = djt; d- 1o dl. = +d. (¥ ;+d-¥. d. 1. d-l.o
j=1

= 2 +(d-y d)bte g +(@d dog)te

X

= 2 dil; (d p+d)(I g+ L)

=1

Now, we determine that

> > X_ P-4 1 X_ 1 X_
dj!j: _]dj"'l" dj r+§ _]dj ‘1+§ _]dJ
j=1 r=1 j=1 j=r j=1 j=1
and that
> <1 <1
(d- ¢ +d)(re ;+1)y=(d ;+d) jj + > (d‘ 1+d‘) c g+ 5 (d‘ 1+d‘) o
j=1
Therefore, we have:
xX X > 1 > 1
Wo( ) = 2 Jdi+r di+ordoa+d) jdi+5C D@ a+d) (-aF )
r=1 j=1 j=r i=1
DL > 1
and thus gj( ) =2 jd; +1i d; +§i(d‘ 1+d) ,foralll 1 ¢ 2 ande- ()=
j=1 j=i
> 1
e()=  Jgi+5( D@ 1+d). =

=1

2.4.3 The algorithm for semisimple elements

Recall that k is an algebraically closed field of characteristic p  0; G is a simple simply
connected linear algebraic group of rank * 1; T is a fixed maximal torus in G with
rational character group X(T); is the root system of G determined by T; is a set
of simple roots in ; and B is the positive Borel subgroup of G. Let 2 X(T) be a
nonzero p-restricted dominant weight and let V = Lg( ) be the corresponding irreducible
kG-module. Fix1 i “ and let P;j be the maximal parabolic subgroup of G given by

i=7TF 1000 i1 w1ttt <0. Let Lj be a Levi subgroup of Pj. In this subsection, we
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outline an inductive algorithm which calculates max fdim(Vs( ))j 2 k g. For this, we

s2Tnz(G)
consider the restriction:
_ M
Viww= V5
J=0
where N’I) is the maximum j-level of weights in V and, forall0 j  ei( ), we have
vi= V. j, . Now,lets2TnZ(G). Then, in particular, s 2 Lj and sos =z h,

2N
wherez 2 Z(L;) and h 2 [Lj; L;]. Asz 2 Z(L;) and Z(L;) is a one-dimensional torus, there

Y
existsc2k andk, 22,1 r “suchthatz=  h (c*). Moreover, we have ;(z) =1

r=1 Y
foralll j *, j &1. On the other hand, as h 2 [L;; L;], we have h = h  (ar), where
lrt‘;i ‘
X
ar2k foralll r “, r&i Wewrite as = di'i, where0 d; p 1 forall
) i=1
1 1 ‘. Now,zactsoneachV!, 0 j ej( ), asscalar multiplication by

si=( ji )D=C Ji ) h,(N=C jd h, ()

r=1 r=1
Y Y
— Ckrh Do I Jkeh g ri (2.5)
r=1 r=1
— Ckrdr I Jjkeh i ol
r=1 r=1

where we used the fact that (z) =1,as 2N jand j(z)=1forall ;2 ;. Now, let
1o 4, 4 1, be the distinct eigenvalues of hon VJ, 0 j  ei( ), and let nj;:::;n,

Lemma 2.4.8. Let s 2 T nZ(G) and write s =z h with z 2 Z(L;) and h 2 [L;;Li]. Let
1o 4, 4 1, be the distinct eigenvalues of hon VI, 0 j  ei( ), and let nj;:::;nf,
be their respective multiplicities. Then:

(1) z acts on each VI, 0 j ei( ), as scalar multiplication by s!, where s! is given in
(2.5);
(2) the distinct eigenvalues of s on Vi, 0 j e() aresl J::::sh 1 with respective

multiplicities ni;:::;ny;

(3) the eigenv_alues of_s onV ares! oo ;s) {J 0 J ei( ), with respective multiplicities
at least ni;:::;ny.
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2.4.4 The algorithm for unipotent elements

In this subsection, we shift the focus to the unipotent elements of G and outline an inductive

algorithm to calculate max dim(Vy(1)). We will denote by k[u] the group algebra of hui
Gunflg

over k. The rest of the notatlon is the same as in Subsection 2.4.3. We begin with a lemma
which will be used extensively in the chapters that follow.

Lemma 2.4.9. Let u 2 G be a unipotent element and let V be a finite-dimensional kG-
module. Let V = M; M 1 M, Mo = 0, where t 1, be a filtration of
k[u]-submodules of V. Then:

- X -
dim(Vu(1)) dim((M;=M; 1)4(1)):
i=1
Moreover, suppose that for each i, we have a u-invariant decomposition M; = M; ; M} |
with M! | = M;=M; ; as k[u]-modules. Then
- X -
dim(Vo(1)) = dim((Mi=M; 1)u(1)):

i=1
Proof. We start by noting that
V(1) =fv2V ju v=vg=1fv2V ju v v=0g

2.6
=fv2Vj(u idy) v=0g=ker(u idy): (2:6)

Now, foreach1 i t, we fix a basis in M; with the property that the matrix (U)m,=m; ,
associated to the action of u on M;=M; 1 is upper-triangular. Then, the matrix (u)y of the
action of u on V is the block upper-triangular matrix:

1
(LI)M1 ? ?
0 (u)M2:M1 ?
uy =B 0 0 (U)Ms=M,
0 0 0 (U)Mt Mt 1
Using (u)y, we calculate the matrix of the action of u idy on V:
O : 1
(u  idmy)wm, ? ? ?
0 (U iszle)Mzle ? ?
(u idy)y = 0 0 ? ;
0 0 0 (U ith=Mt 1)Mt=Mt 1
where (U idm;=m; ;)mi=m; , 1S the matrix of the action of u  idp;=m; , ONMi=M; 1,1 1,
with respect to the basis of M; we have previously fixed. It follows that:
X
rank(u  idy) rank((U  idmam; w5

i=1
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and, consequently, we have

X
dim(ker(u idy)) dim(ker((u  idv) jmem, 2)):

i=1

Using (2.6), we determine that:

X
dim(V4(1)) dim((Mi=M; 1)u(1)):

i=1

Lastly, for all 1 i t, assume that there exists a k[u]-submodule, M! ;, of M; such
that Mi=M,; ; MIO 1+ Then V jk[u]: MCO) Mto 1= M, M>=M, M=M; 1,
and so there exists a basis of V with the property that:

. 1
OW  iduw, 0 0 0
0 (U idM2=M1)M2=M1 0 0
(U Id\/ )V = 0 0 . 0 ;
0 0 0 (U idl\/|t=|\/|t 1)Mt=Mt 1

thereby rank(u idy) = rank((u  idm,=m; ,)m=m; ,)- Arguing as above, we establish

i=1
that I

- X -
dim(Vy(1) =  dim((Mi=M; 1)u(1)):
i=1
0
We have set P; to be the maximal parabolic subgroup of G associatedto i =F 1;:::; i 1;
i+1;..:; <0. We write the Levi decomposition of P;:

Pi=L; Q=hT;U j 2 i hUj 2 *n ;i

Y
where = \(Z 1+ +Z +Z jn,+ +Z ). Letu2G,u= X (c ), where
2 +
the product respects the total order on , see Section 1.3, and ¢ 2 k. Now, asu 2 B
and B Pj, it follows that u admits a decomposition:

Y Y
u= x () x (c);
2 2 *n
Y
where each of the products respects and c’ 2k, forall 2 *. Wesetu,, = x (")
2 j

Y
and ug, = x ("), and we note that u,, 2 Ljand ug, 2 Q;.

2+ni
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Let V be an irreducible kG-module of highest weight 2 X(T). We consider the
restriction:

_ ™M
\ JiLiwn= v
j=0
) M
where ej( ) is the maximum ;-level of weights in V, and V! = vV, , forall
2N
0 J () Let 2 (V), with corresponding weight space V ,and let 2 . As
M
uv Voir
r22 0
see Lemma 2.3.1, we determine that
_ _ M M
u, V4 VI3 ug VI VT©and (ug, 1)V! Vi forall0 j e():
r=0 r=0
Therefore, V. admits a filtration V. = Mg,( ) Mei(y 1 M; Mo 0 of k[u]-
M o
submodules, where M; = Viforall0O j e( ). We see that u acts on each MI=MJ 1,
r=0

1 J ei(),asuy and so, by Lemma 2.4.9, we determine that:

p oY _

dim(Vy(1)) dim(VL}Li (1)) = dim(Vy,_ (1)): 2.7)
j=0

Lastly, we remark that if u =uy,, i.e. ug, =1, thenu V3 VI forall0 j (), and
thus, by Lemma 2.4.9, it follows that:

dim(Vy (1)) = dim(Vy,, (1)): (2.8)

The algorithm: The first step is to identify all unipotent conjugacy classes in G. For
simple linear algebraic groups of classical type this is done by Theorem 2.9.2, or Theorem
2.9.11, depending on whether p & 2 or p = 2, while, for exceptional groups, we use [Sim13,
Tables 3.1-3.9]. We choose a representative u’ for each unipotent conjugacy class in G. Since,
in particular, u’ 2 P;, we write u’ = u,, Ug,, where u_, 2 L; and ug, 2 Q;. Now, as a
K[Lji; Lj]-module, V admits the following decomposition:

7
Vikwa= VY
j=0
) X
where VI = V i, forall0 Jj ei( ). The nextstep of the algorithm is to identify
2N

the kL;-composition factors of each VI, 0 j ei( ). Afterwards, we use Lemma 2.4.9 and
already proven results to determine an upper-bound for each dim(Vu‘0 @),0 3 el).
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L _
Now, assuming that u?_i &1, as dim(VuoL_ ) = dim(Vl:0 (1)), we established an upper-
j=0 '
bound for dim(V (1)) hence for dim(V (1)), as dim(V,, o(l)) dim(V g (1)) by Inequality
(2.7). Lastly, we take u 2 G to be a non-identity unlpotent element. Then u is conjugate
to exactly one non-identity unipotent class representative u’. Therefore, since dim(V,(1)) =
dim(V, (1)), we have determined an upper-bound for dim(V,(1)). To end, we note that if we
choose 1 i  “ such that L; has the property that each non-identity unipotent conjugacy
class of G admits a representative u’ with u°Li & 1, then the upper-bound for dim(Vy(1)),
where u 2 G is a nontrivial unipotent element, given by the algorithm is strictly smaller
than dim(V).

2.5 Generation of linear algebraic groups

In this section we present the generation results for linear algebraic groups established by
Guralnick and Saxl in [GS03, Section 8]. For this, let F be an algebraically closed field of
characteristicp 0 and let G be a simple linear algebraic group. It is said that a subset S of
G topologically generates G, in the Zariski topology, if the closure of the subgroup generated

by S is the whole of G, i.e. hSi = G. When it is understood from the context, we will delete
topological and just say that G is generated.

Remark 2.5.1. If the field F is algebraic over a finite field, then G will be a locally finite
group. Thereby, we assume, for now, that F is an algebraically closed field of characteristic
p 0 which is not algebraic over a finite field.

Definition 2.5.2. For g 2 Gn Z(G), let (g) be the minimal number of G-conjugates of g
necessary to (topologically) generate G. We define:

(G) :=maxf (9)jg2GnzZ(G)g:

Theorem 2.5.3. [GS03, Theorem 8:1] Let F be an algebraically closed field of characteristic
p 0 which is not algebraic over a finite field. Let G be a simple classical linear algebraic
group with natural module of dimension n. Then (G) = n, unless one of the following
holds:

(@) G is of type Ay, in which case (G) = 3;
(b) Gis of type C- and p = 2, in which case (G) =2* +1;
(c) G is of type C,, in which case (G) =5.

Theorem 2.5.4. [GS03, Theorem 8:2] Let F be an algebraically closed field of characteristic
p 0 which is not algebraic over a finite field. Let G be a simple exceptional linear algebraic
group of rank “. Then (G) = *“+ 3, unless G is of type F4, in which case (G) = 8.
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2.6 The dimensional criteria

Let F be an algebraically closed field of characteristic p 0 which is not algebraic over a
finite field and let G be a simple simply connected linear algebraic group. Following [GS03],
we will establish a dimensional criteria for irreducible tensor-indecomposable FG-modules
to satisfy in order to be candidates for the classification of Theorem 1.1.1. With that, let V
be an irreducible tensor-indecomposable F G-module and recall that (V) = minfdim(V)
dim(Vg( ))j92GnZ(G); 2F g. Letg 2 GnZ(G) have the property that it realizes
c(V), i.e. g alonds an eigenvalue 2 F on V such that (V) =dim(V) dim(Vy( )).
Let (g) =n, where n 2 Z ,, and note that n (G). Let gy;:::;0n 2 G be G-conjugates
of g which generate G. Note that each g; alorids as an eigenvalue on V, since g does, and

we set V; := Vg ( ), foreachl i n. Moreover, we have dim(V;) =dim(Vg( )),1 i n.
X AN
Now, V; +  Vj is a subspace of V, hence dim(V, + V;) dim(V). This gives
i=2 i=2
X AN AN
dim(Vy + Vj) =dim(Vy) +dim( V;) dim( V;) dim(V): (2.9)
i=2 i=2 i=1
AN AN
Assume V; & f0g and fix 0 & v 2 Vi. Set =fx 2 G jx v 2 hvig and note
i=1 i=1
that is an open subset of G. Since hgy;:::;gni = G, every nonempty open subset of
G intersects hgy;:::;gnl nontrivially. We deduce that = ;, therefore hvi is a G-stable

X
subspace of V, contradicting the fact that V is irreducible. Thus, we have V; = f0g and

i=1
X
so dim( V;) =0. We come back to Inequality (2.9) and see that

i=1

X
dim(v,) +dim( V;) dim(V): (2.10)

=2

x X X
Now, dim( Vi) = dim(V,)+dim( Vi) dim(Vo+ Vi), dim(V) = dim(V1) and dim(V, +

i=2 i=3 i=3
AN
Vi) dim(V), therefore, by Inequality (2.10), we have:
i=3
AN
2dim(Vy) +dim( V)  2dim(V):
i=3
Since, forall 3 j n, we have dim(V;) = dim(V,), while, forall 3 j n 1, we have
X AN X
dim(  V;) = dim(V;) + dim( Vi) dim(V; + Vi) and dim(V; + Vi) dim(V),
i=j i=j+1 i=j+1 i=j+1
recursively, we deduce that:
n dimVy) (n 1) dim(V):
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As dim(Vy) = dim(Vg( )) and dim(Vq4( )) =dim(V)  &(V), the above gives:
dm(VV) n g(V) (G) &(V): (2.11)

Lastly, as we are interest(ig in identifying the irreducible tensor-indecomposable F G-
modules V for which (V) dim(V), Inequality (2.11) establishes the following dimensio-
nal criteria:

dim(V) (G)*% (2.12)

To end this section, we will show that the representation theoretic results for algebraic
groups over k = F,, the algebraic closure of F,, follow from the results over F, where F is our
fixed algebraically closed field which is not algebraic over F,. We may assume that k' F
and we let : k' ¥ F denote this injective homomorphism. Let Vi be a finite-dimensional
k’-vector space with dim(Vis) = r and let Vg := Vo «F be the vector space over F obtained
from Vo by extension of the ground field via . Let G be agroupandlet :G ¥ GL(Vw)
be a representation of G. Then :G ¥ GL(Vg)givenbyg ¥ (g) 1, whereg 2 G,
is a representation of G into GL(Vg). If we identify Vi« with (k')", then Vg is canonically
identified with F", i.e. Vg is a finite-dimensional F-vector space with dimg (Vi) = dimw (Vo).
We also remark that for g 2 G, the coe Lciehts of the matrix (g) are obtained by applying

to the coe [ciehts of (g). Hence, if 2 (k%) is an eigenvalue of g 2 G on Vi, then () is
an eigenvalue of g on Vg and, moreover, we have dimyo((Vio)g( )) = dimg ((Ve)g( ( )))-

We write Gy for G, when G is a simply connected linear algebraic group over k°, and we
let G denote the simply connected linear algebraic group G over F. We want to establish
a dimensional criteria similar to (2.12) for irreducible tensor-indecomposable k'Gy-modules.
For this, we will require the following result:

Theorem 2.6.1. [Jan07, 11, Corollary 2.9] Let Vi be an irreducible tensor-indecomposable
k"Gye-module. Then, the FGg-module Vio o F is irreducible and tensor-indecomposable.

In view of the above theorem, Ietryko be an irreducible tensor-indecomposable k'Gyq-
module and assume that ¢, (Vi) dim(Vie). Then, Ve = Ve 0 F is an irreducible
tensor-indecomposable F Gg-module. Since dimg (Vi) = dimye(Vie) and dimg ((Ve)g( ( ))) =
dimko((Vko)gF() )) for all g 2 Gy, it follows that . (Ve) Gw(Vie). In particular, we have

ce (Vi) dimg (VE) and, consequently, dim(Vg) (Gg)?, hence dim(Vy) (Gr)2.

In conclusion, we have shown that if G is a simply connected linear algebraic 5Pup over
k! =F, and V is an irreducible tensor-indecomposable k'G-module with (V) dim(V),
then V has to satisfy the following dimensional criteria:

dim(v)  (Gr)%

where Gg is the simply connected linear algebraic group G over F, an algebraically closed
field which is not algebraic over F,.

From this point onward, unless stated explicitly, the ground field k will be an arbitrary
algebraically closed field of arbitrary characteristic.
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2.7 The list of modules

In this section we will identify the nontrivial irreducible tensor-indecomposable kG-modules
V which satisfy the dimensional criteria (2.12). Now, by Chevalley’s classical result, Theorem
2.3.3, Proposition 2.3.7 and by Steinberg’s tensor product theorem, Theorem 2.3.8, we may
assume that V. = Lg( ), where 2 X(T) is a nonzero p-restricted dominant weight.

2.7.1 GoftypeA, * 1

First,let “=1and letV = Lg(m!;), where m2 Z ;. AsV is p-restricted, we have p = 0,
or p > m. Now, by Theorem 2.5.3, we have (G) = 3 and, by substituting in the dimensional
criteria (2.12), we deduce that

m+1=dm(V) 9 (2.13)

Therefore, V = Lg(m!;) with1 m 8.

We can now assume that © 2. Let V = Lg( ) for some nonzero p-restricted dominant
weight 2 X(T). By Theorem 2.5.3 we have (G) = “ + 1 and, substituting in the
dimensional criteria (2.12), gives

dim(V) (“+1)>% (2.14)

We define FA* to be the set of all nonzero p-restricted dominant weights 2 X(T), up
to duality of the associated irreducible module, with the property that Lg( ) satisfies the
dimensional criteria (2.13) for ©* = 1 and (2.14) for all * 2. Using [LuOla, Theorems 5.1
and 4.4], we determine that FA* := f1,;1,;21,: 1, + L.g. Moreover, for * 8 we see that
the only kG-modules V that satisfy (2.14) are the ones corresponding to highest weights

2 FA. Lastly, for 2 ¢ 7 there exist additional kG-modules which satisfy (2.14) and
we list their corresponding highest weights in Table 2.7.1.

Rank p dim(Lg( ))
‘= L+, p= 3 16
‘= I3 all 20
‘= L all 35
‘= L all 56

Table 2.7.1: The particular highest weight modules for groups of type A- that satisfy (2.14).

2.7.2 GoftypeC * 2

First, let * =2 and V = Lg( ), where 2 X(T) is nonzero p-restricted and dominant. By
Theorem 2.5.3, we have (G) =5 and, substituting in the dimensional criteria (2.12), gives:

dim(v) 25 (2.15)

We now use [LU01a, Theorem 4.4] to determine the kG-modules Lg( ) which satisfy (2.15)
and we list their corresponding highest weights in Table 2.7.2.
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p dim(La( ))
L9 all 4
I, all 5 p;2
21, | p&2 10
L+, all 16 4 p:5
21, | p&2 | 14 s
3 p623 20
L+21, | p=7 24
31, | p=7 25
21,41, | p=3 25

Table 2.7.2: The particular highest weight modules for groups of type C, that satisfy (2.15).

We can now assume that * 3. By Theorem 2.5.3, we have (G) = 2, if p & 2,
respectively (G) = 2° + 1, if p = 2. Substituting in the dimensional criteria (2.12), we
deduce that:

4%, if p & 2;

(2 +1)? ifp=2:
We define F© to be the set of all nonzero p-restricted dominant weights 2 X(T) with
the property that the associated irreducible module Lg( ) satisfies the dimensional criteria
(2.15), for © = 2, and the dimensional criteria (2.16), for all 3. Once more, using
[LUO1a, Theorems 5.1 and 4.4], we determine that F¢ := f1,;1,;21,9. We note that for
‘9, the only kG-modules Lg( ) that satisfy (2.16) are the ones corresponding to highest
weights 2 F©. Lastly, for 3 ¢ 8 the additional kG-modules which satisfy (2.16) have
corresponding highest weights listed in Table 2.7.3.

dim(V) (2.16)

Rank p dim(Lg( ))
I3 p=2 8
c—3 I, p&2 14
L+1, p:2 48
2L, + 13| p=2 48
1, p=3 1
‘=4 L p&2;3 42
I, p&3 48
‘— 5 I p=2 32
L p=2 100
‘=6;7;8 l. p=2 2

Table 2.7.3: The particular highest weight modules for groups of type C- that satisfy (2.16).

Remark 2.7.1. We see that in Table 2.7.3, for the group Cs, we listed the weight 21, + I,
We added this module to the list, as we made the choice to not treat groups of type B- in
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characteristic 2, and, in view of Remark 2.3.11, this is the only module for groups of type
B- which satisfies the dimensional criteria (2.17) and which, when viewed as a module for
the group of type C-, is not isomorphic to (a twist of) a module already listed.

2.7.3 GoftypeB: “ 3

Recall that for groups of type B- we are assuming that the characteristic of k is di[erent
than 2. LetV = Lg( ), where 2 X(T) is nonzero p-restricted and dominant. By Theorem
2.5.3, we have (G) = 2° + 1 and substituting in the dimensional criteria (2.12) gives

dim(V) (2°+ )% (2.17)

We define FB to be the set of all nonzero p-restricted dominant weights 2 X(T) with
the property that the associated irreducible module Lg( ) satisfies the dimensional criteria
(2.17), for all * 3. Using [LU01a, Theorems 5.1 and 4.4], we determine that FB :=
f1,;1,;21,9. Furthermore, for * 9 we see that the only kG-modules V that satisfy (2.17)
are the ones corresponding to highest weights 2 FB:. Lastly, for3 ¢ 8, the additional
kG-modules which satisfy (2.17) correspond to highest weights given in Table 2.7.4.

Rank p dim(Lg( ))
1, p6E2 8
(—3 21, p6&2 35
L+l p=7 40
“=4;5,6;7;8 . pE2 2

Table 2.7.4: The particular highest weight modules for groups of type B- that satisfy (2.17).

274 GoftypeD:, “ 4

Let V = Lg( ), where 2 X(T) is nonzero p-restricted and dominant. By Theorem 2.5.3,
we have (G) = 2° and substituting in the dimensional criteria (2.12) gives

dim(v) 4% (2.18)

We define FP- to be the set of all nonzero p-restricted dominant weights 2 X(T) with the
property that the associated irreducible module Lg( ) satisfies the dimensional criteria (2.18)
for all © 4. Using [LU01a, Theorems 5.1 and 4.4], we determine that FP: := f1,;1,;21,q.
Moreover, for * 10 we see that the only kG-modules V that satisfy (2.18) are the ones
corresponding to highest weights 2 FP-. Lastly, for4 * 9, the additional kG-modules
which satisfy (2.18) have highest weights given in Table 2.7.5.
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Rank p dim(Lg( ))
.. 1, all 8
e 2!3,2!4 p&Z 35
L+, L+, L+, p:2 48
L+, L, +1, L +1, p&Z 56
‘=5 !4, !5 all 16
1, p=2 100
“=6;7;8,9 ., L all 21

Table 2.7.5: The particular highest weight modules for groups of type D- that satisfy (2.18).

Remark 2.7.2. (1) Assume that * = 4. Let be the triality automorphism of

givenby ;¥ 5 L, 8 , 30 ,and 4 1. Now, using [Hum72, Table 1,

p.69], we see that (r';) =rlzand (rl3) =r!,, where r = 1;2. Therefore, we have

La(r?s) =La( (r'y)) and Lg(rts) = Le( 2(r!y)), where r = 1; 2, thus the result for
Ls(r!3) and Lg(r!,) will follows from that for Lg(r!,), where r = 1; 2.

Similarly, we see that Lg(!l + !3) = I—G( 2(!3 + !4)) and I—G(!l + !4) = Lg( (!3 +
1,)), therefore, the result for Lg(¥; + ¥3) and Lg(!; + 14) will follow from that for

Lo(¥s+ 14).
(2) Consider the case when ¢ 5. Let °: | be the automorphism of  given by
i ¥ 4, forall i * 2, ;@ .<and - ¥ . ;. Once more, using [Hum72,

Table 1, p.69], we see that Lg(!:) = Lg( (Y- 1)). Therefore, the result for Lg(!-)
will follow from the result for Lg(?- 1).

2.8 Identifying irreducible modules as composition factors
of certain tensor products

Recall that if the simple simply connected linear algebraic group G is of type B-, we assume
that p & 2, where p is the characteristic of the algebraically closed field k. The following
lemmas will enable us to identify the irreducible kG-modules Lg( ) corresponding to p-
restricted dominant weights 2 F© as composition factors of either W W orW W ,
where W is the natural module of G, i.e. W = Lg(!;). Before, we state these results, we
remind the reader that we use the notation V. =W; jW, ]  jWn,, m 2, to express that
V has a composition seriesV =V; V, Vin  Vm+1 = T0g with composition factors
W; = V=V, 1 i m.

Lemma 2.8.1. [McN98, Propositions 4:2:2 and 4:6:10] Let k be an algebraically closed field
of characteristic p 0 and let W be an “ + 1-dimensional k-vector space, where * 1. Set
G = SL(W). Then as kG-modules, we have S?(W) = Lg(211) (if p & 2), M2(W) = Lg(1,)
(if “>1) and

_(LG(!1+!‘) Ls(0); ifp-*+1;
"~ Le(0)jLe(li+ 1) jLa(0); ifpjc+1:
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Lemma 2.8.2. [McN98, Proposition 4:2:2 and Lemma 4:8:2] Let k be an algebraically closed
field of characteristic p 0 and let W be a 2°-dimensional k-vector space, where © 2,
equipped with a nondegenerate alternating bilinear form. Set G = Sp(W). Then, as kG-
modules, we have C
Lo(12) Lo(0); ifp-©;
Ls(0) j Le(12) j La(0); ifpj“

Moreover, if p & 2, then S2(W) = Lg(2!1).

~2(W) =

Remark 2.8.3. In the setting of Lemma 2.8.2, first, consider the case when p - . Then,
since M2(W) = Lg(1,) Lg(0) and since both Lg(!,) and L (0) are self-dual kG-modules,
see [MT11, Proposition 16.1], we deduce that ~?(W) is a self-dual kG-module. Now, in the
case of pj ¢, we use [Korl7, Lemma 4.2 and Table 1], to determine that ~?(W) is a self-dual
kG-module.

Lemma 2.8.4. [McN98, Propositions 4:2:2 and 4:7:3] Let k be an algebraically closed field
of characteristic p & 2 and let W be a finite-dimensional k-vector space equipped with a
nondegenerate symmetric bilinear form. Set G = SO(W). Then as kG-modules, we have
"~2(W) = Lg(!2) and

(LG(2!1) Lc(0); if p-dim(W);
Lc(0) j La(211) j Le(0); if p jdim(W):

Lemma 2.8.5. Let k be an algebraically closed field of characteristic p =2 and let W be a
2°-dimensional k-vector space, where © 4, equipped with a nondegenerate quadratic form
Q. Set G = SO(W; Q). Then, one of the following holds:

(@) “isodd and M?(W) = Lg('2) Lg(0) as kG-modules.

SA(W) =

(b) “ is even and, as a kG-module, ~?(W) has three composition factors: one isomorphic
to Lg(!,) and two isomorphic to Lg(0).

Proof. By [Sei87, 1.15], we know that, as a kG-module, ~?(W) admits a unique nontrivial
composition factor with corresponding highest weight 1,. Since dim(Lg(!1,)) = 2% °

ged(2; ©), see [LUI01a, Table 2], we determine that, if ¢ is odd, then ~?(W) has two composition
factors: one isomorphic to Lg(!,) and one isomorphic to Lg(0), while, if * is even, then
~2(W) has three composition factors: one isomorphic to Lg(!,) and two isomorphic to
Lc(0). Lastly, we focus on the case of * odd. Let a be the nondegenerate alternating bilinear
form on W given by a(w;w;) = Q(wy) + Q(w,) + Q(wy + wy), for all wy;w, 2 W, Set
H = Sp(W; a) and note that G < H. Now, as ~?(W) is a self-dual kH-module, see Remark
2.8.4, by [Sch19, Lemma 1.4.1], we have that, in particular, ~%(W) is a self-dual kG-module
and so, we apply [Sch19, Lemma 1.4.3], to conclude that ~?(W) = Lg(Y,) Lg(0). ]

2.9 Unipotent elements

This section is devoted to the study of unipotent elements of simple classical linear algebraic
groups. In the first two subsections, we will present basic facts concerning unipotent conjugacy
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classes. In Subsection 2.9.1 we discuss the Jordan normal form of a unipotent element and
show that over fields of good characteristic, i.e. p & 2 for groups of type B-; C- and D-,
with a few exceptions in groups of type D-, this form completely determines unipotent
conjugacy classes. However, when p = 2, this is no longer the case and we will use
a dilerent tool to realize this classification. In Subsections 2.9.3 and 2.9.4, respectively,
we introduce the Hesselink normal form, respectively the distinguished normal form, of a
unipotent element. We will show that each of these forms gives a complete characterization
of unipotent conjugacy classes over fields of characteristic 2 and moreover, we will give a
method to translate between the two.

2.9.1 The Jordan normal form

We begin this subsection with the following basic lemma, whose proof quickly follows from
[Car93, Proposition 5.1.1].

Lemma 2.9.1. [Korl8, Lemma 2.1.2] Let : G; ¥ G, be an isogeny between two simple
algebraic groups G; and G,. Then the map restricts to a bijection between the unipotent
varieties of G; and G, and induces a bijection between the unipotent conjugacy classes of
G, and G,.

In light of Lemma 2.9.1, it is enough to describe unipotent conjugacy classes in simple
algebraic groups for some fixed isogeny type. In what follows, we will give this description
for the classical groups SL(V), Sp(V) and SO(V).

We let k be an algebraically closed field of characteristicp 0 and G be a simple classical
linear algebraic group. Recall that, when G is of type B-, we assume that p & 2. Let T,

, B, and 1y;:::; 1. be as usual. Let u be a unipotent element of G and let k[u] be the
group algebra of hui over k. For each i 0, we will denote by V; the indecomposable k[u]-
module with dim(V;) =i and on which u acts as the full Jordan block J; of size i. We note
that fV; j1  0Og is a set of representatives of the isomorphisms classes of indecomposable
k[u]-modules.

Let W be the natural module for G, i.e. W = Lg(!1), as p & 2 when G is of type
B-. Moreover, let dim(W) = n. Then, in particular, W is a k[u]-module and so admits a

decomposition W jypy= V! Vam, wherem 1, n; > >n, 1, r; 1forall
X
1 i mand nir; = n. As u acts as J; on each V;, we determine that the action of u
i=1
M M
on W is given by Jni. We call Jni the Jordan normal form of u on W. We will see

in Theorem 2.9.2 that the Jordan normal form of a unipotent element plays an essential role
in determining unipotent conjugacy classes in G.

Theorem 2.9.2. [LS12, Theorem 3:1, Corollary 3:6, Lemma 3:11] Let k be an algebraically
closed field of characteristicp 0 and let G = SL(k), Sp,(k), or On(k). Assume that p & 2
when G is symplectic or orthogonal. Moreover, let W be the natural module for G and let
dim(W) = n.
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(1) Two unipotent elements of G are G-conjugate if and only if they are GL,(k)-conjugate,
hence if and only if they have the same Jordan form on W.

M
(2) Let u 2 GL,(K) be a unipotent element with Jordan form Jii. Then
i=1

(2.1) u 2 Sp, (k) if and only if r; is even for each odd n;;
(2.2) u 2 On(Kk) if and only if r; is even for each even n;.

(3) The class u®® splits into two SO, (k)-classes if and only if n; isevenforalll i m.
In view of Theorem 2.9.2, we make a few remarks.

Remark 2.9.3. (1) When G is a simple group of type A-, the Jordan normal form of a
unipotent element on W completely determines its conjugacy class in G.

(2) When p & 2 and G is a simple group of type C-, the Jordan normal form of a unipotent
element on W completely determines its conjugacy class in G. However, when p =
2, this is no longer the case. For example, in G = Sp,(k) there are two unipotent
conjugacy classes whose Jordan form on W is JZ, however elements in one class act
on Lg(Y2) as J2, while elements of the other class act on Lg(1,) as J, J2, see the
proof of Proposition 4:3:10. Therefore, we will require a di[erknt tool to distinguish
between unipotent conjugacy classes in G, see Subsection 2:9:3.

(3) As we only consider algebraic groups of type B- over fields k with char(k) & 2, Theorem
2:9:2 gives a complete characterization of unipotent conjugacy classes in simple groups
of type B-.

(4) When G is a simple group of type D- and p & 2, we see that there exist two unipotent
(\Vg
conjugacy classes whose Jordan form on W is Jni, where nj is even for all 1 i

i=1
m. We will refer to these classes as split. Furthermore, as in the case of groups of type
C- when p = 2, the Jordan normal form no longer su [cesl to characterize conjugacy
classes.

We end this subsection with two results which we will use extensively in the chapters to
come. We have seen in Section 2.8 that the families of kG-modules of a simple simply
connected classical linear algebraic group G can be identified with certain composition
factors of various tensor products. Therefore, it will prove extremely useful to know how the
unipotent elements of G act on tensor products and on their composition factors. Luckily,
the following result due to Liebeck and Seitz, see [LS12, Lemma 3:4], gives us an almost
complete answer:

Lemma 2.9.4. [LS12, Lemma 3:4] Let V;, V; be vector spaces of dimensions i, j over K
and let u;, u; denote unipotent elements acting as a single Jordan block in GL(V;), GL(V;),
respectively.

(@ Then dim((Vi Vj)y y; (1)) = minfi; jg.

46



(b) Suppose p & 2. Then:

(b.1) dim(("*(Vi))u (D) = 3 ;
(b.2) dim((S*(Vi))u (W) =i 3 .

The only case we need, which is not covered by Lemma 2.9.4, is the case of ~2(V;) in
characteristic p = 2. We treat it in the result below:

Lemma 2.9.5. Let k be a field of characteristic p = 2 and let V be a vector space of
dimension i 1 over k. Let u be a unipotent element acting as a single Jordan block in
GL(V). Then
. i
dim(("*(V))u(D) = 5
Proof. We will prove the result by induction on i 1. First, we note that both cases i =1
and i = 2 follow directly from the structure of ~?(V). Hence, we assume thati 3 and that
the result holds for all 1 r <1.

Let m be the unique nonnegative integer for which 2™ ' <i 2™ and set g = 2™. Now,

dim(Vj) = J and u acts on V; as the full Jordan block of size j. Therefore, as k[u]-modules,
we have V = V;. We now use [GL06, Theorem 2], by which, the following isomorphism of

k[u]-modules holds:

NV =NV ) G g DYy Vs i

This gives

dim((M?(Vi))u(1)) = dim((M* (Vg 1))u(2)) + (i

N

1) dim((Vg)u(1)) +dim((Vsg i)u(1)):
(2.19)

As 31 i<gqand as u acts as a single Jordan block on V, and Vag i, respectively, it follows

that dim((Vq)u(1)) =1 and dim((ng i)u(1)) = 1. Furthermore, we note that, as § < i, we

have ¢ i < i and, by applying induction, it follows that dim(("?(V 1))u(1)) = % .
Substituting in (2.19) we obtain:
. i i
dim(2 V@) = T +i 1 1+1= o
This concludes the proof of the lemma. ]

2.9.2 Paired modules

We have noted in Remark 2.9.3, that when G is of type C- or D- and the field k has
characteristic p = 2, the Jordan normal form no longer su [ced to distinguish between
unipotent conjugacy classes in G. Therefore, when p = 2, we require new methods of
realizing the classification of unipotent classes. To begin, we give a brief overview, following
[Kor20, Section 5], on bilinear kG-modules. We require this theoretic part to introduce
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the Hesselink, respectively, the distinguished, normal form of a unipotent element in the
subsections that follow.

For the remainder of this subsection, we assume that the algebraically closed field k has
characteristic p = 2. Let V be a finite-dimensional k-vector space and letb:V VvV ¥ k
be a nondegenerate bilinear form on V. We recall, from Subsection 2.1.2, that we call a
nondegenerate bilinear form symmetric if b(vy; vo) = b(v,; vy) for all vy;v, 2 V, respectively
alternating if b(v;v) =0 for all v 2 V.. We also recall that over fields of characteristic 2 any
alternating bilinear form is, in particular, symmetric.

Let H be a group and assume that V is a finite-dimensional kH-module equipped with
a bilinear form b. We say that b is H-invariant if b(h vy;h vy) = b(vy;Vv,) for all vi;v, 2V
and all h 2 H. A bilinear kH-module (V;b) is a kH-module V equipped with a H-invariant
bilinear form b. Two bilinear kH-modules (V;b) and (V";b") are isomorphic if there exists an
isomorphism of kH-modules :V ¥ V' with the property that b’'( (v1); (V2)) = b(vi; V)
for all vi; v, 2 V. We call the bilinear kH-module (V;b) nondegenerate if b is nondegenerate
and, assuming that b is nondegenerate, we call the bilinear kH-module (V;b) symmetric,
respectively, alternating, if b is symmetric, respectively alternating.

Let (V;b) and (V';b') be two bilinear kH-modules. We define the orthogonal direct sum
of (V;b) and (V';b') to be the bilinear kH-module (Vv V';b ? b'), where (b ? b')(vy+Vy; v, +
Vy) = b(vi; Vo) + b'(vi;vy) for all vi;v, 2V and all vi;v, 2 V°. We denote (V. V';b 2 b")
by (V:b) ? (V';b'). A nonzero bilinear kH-module (V;b) is orthogonally indecomposable if
whenever V. =V, ? V,, where V,; and V, are kH-submodules of V, we have V; = 0, or V, = 0.
Lastly, any bilinear kH-module decomposes into an orthogonal direct sum of orthogonally
indecomposable bilinear kH-modules. However, in this setting, we do not have an analog of
the Krull-Schmidt Theorem, see [Murl6, Example 2:1] .

Definition 2.9.6. Let V be a kH-module. The paired module associated to V is the bilinear
kH-module (V V ;a), where

a(vy + v, + 1) = Fi(vp) + Fo(vy); forallvy;v, 2V and all f;F, 2V

In [Murl6, Section 3:2], Murray showed that for any kH-module V, the associated paired
module (V V ;a) is always an alternating bilinear kH-module. The following result tells us
when the converse is true. Before we state it, we recall from Subsection 2.1.2 that over fields
of characteristic 2, we call a subspace W? of (W;b), where b is a nondegenerate alternating
bilinear form, totally isotropic if b(w;w") = 0 for all w;w’ 2 W. Now, we say that W admits
a totally isotropic decomposition W = W" W whenever W' and WY are two proper totally
isotropic subspaces of W.

Lemma 2.9.7. [Kor20, Lemma 5:12] Let (V;a) be a nondegenerate alternating bilinear
kH-module. Then (V;a) is a paired module if and only if there exists a totally isotropic
decomposition V. =W  W°, where W and W' are kH-submodules of V. In this case (V;a)
is the paired module associated to W.

We finish this summary on bilinear kH-modules with the following two lemmas, which
will be required in the sequel.
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Lemma 2.9.8. [PM18, Section 2:3] Let V be an indecomposable kH-module. Then the paired
module (V  V ;a) associated to V is indecomposable.

Lemma 2.9.9. [Kor20, Lemma 5:15] Let (V;b) be a bilinear kH-module and let (V V ;a)
be the paired module associated to V. Then, as bilinear kH-modules, we have:

V;b) 2 (V;b) 2 (V;b)=(V;b) 2 (V V ;a):

2.9.3 The Hesselink normal form

Let k be an algebraically closed field of characteristic p =2 and let V be a finite-dimensional
k-vector space equipped with a quadratic form Q. Let b be the nondegenerate alternating
bilinear form on V given by b(vi; Vo) = Q(vy + Vvy) + Q(vy) + Q(v,) for all vi;v, 2 V. Set
G =Sp(V;b) =g 2 GL(V) jb(g vi;9 V2) =b(vs;Vy); for all vi;v, 2 Vg. Now, over fields
of characteristic 2, we always have O(V;Q) < G. The following theorem shows that if we
classify the unipotent conjugacy classes in G, we also classify the ones in O(V; Q):

Theorem 2.9.10. [Dye79, Theorems 4 and 5]

(a) Each conjugacy class of G contains one conjugacy class of O(V; Q).

(b) Two elements g; g’ 2 O(V; Q) are conjugate in O(V; Q) if and only if they are conjugate

in G.
Let u be a unipotent element in G. As char(k) = 2, the order of u is q = 2%, for some
t 0. Recall that we have denoted by V,;:::;V, the g nonisomorphic indecomposable

k[u]-modules, where dim(V;) =i and on which u acts as the full Jordan block of size i. In
[Hes79, Section 2:1], Hesselink proves that there exists a one-to-one correspondence between
unipotent conjugacy classes in G and decompositions of V ji into orthogonal direct sums
of orthogonally indecomposable k[u]-modules. Furthermore, he identifies the two unique
families of orthogonally indecomposable summands that can occur and he denotes them by
V (d), where d 2 is even, and W(d), where d 1, see [Hes79, Proposition 3:5]. In what
follows we give the definitions of V (d) and W (d), as they appear in [Kor20, Definitions 6:1
and 6:2], and afterwards we describe the Hesselink normal form of a unipotent element of G.

Letd 2 be an even integer, d = 2f for some f 1, and consider the indecomposable

U €; = ey,
(2.20) U e=e+e 1+ +ep forall2 1 f+1;
U e=e+e ¢ foral F+2 i d

We define V (d) to be the bilinear k[u]-module (Vg;bg), where bq(ei;e5) =1, ifi+j=d+1,
and 0, otherwise. We remark that dim(V (d)) = d and that u acts on V (d) as a single Jordan
block of size d. Furthermore, V (d) is orthogonally indecomposable, as Vq is indecomposable
as a k[u]-module.

Now, let d 1 and define W(d) to be the paired module (V4 V,;a) associated to Vg.
We remark that dim(W (d)) = 2d and that u acts on W (d) as J2. Moreover, since Vq is
an indecomposable k[u]-module, it follows that W (d) is orthogonally indecomposable, see
Lemma 2.9.8.
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Theorem 2.9.11. [Kor20, Theorem 6:4] Let k be an algebraically closed field of characteristic
2, let V be a finite-dimensional k-vector space equipped with a nondegenerate alternating
bilinear form b and let G = Sp(V;b). Let u 2 G be a unipotent element and let V jy =

Vil Vom, wherem 1,n>  >n, landr 1.
There exists a unique sequence Wy;:::; Wy, of nondegenerate alternating bilinear k[u]-
modules such that V jyu = Wy ? ? Wy, and the following hold forall 1 1 m:

(a) if n; is odd, then r; is even and W; = W(ni)%;
(b) if n; is even, then either r; is even and W; = W(ni)%, or Wi =V (nm)".

The decomposition V jip = W1 ? ? W,, of Theorem 2.9.11 is called the Hesselink nor-
mal form of u on V. In [Hes79, Section 3:7], Hesselink proved that this form completely
determines the unipotent conjugacy class of u in G.

Remark 2.9.12. The number of distinct Jordan block sizes occurring in the Jordan decomposi-
tion of u on V is equal to the number of nondegenerate alternating bilinear k[u]-modules W;
that occur in the Hesselink normal form of u on V. Thus, for distinct odd block sizes d, with
respective multiplicities rq, occurring in the Jordan form of u on V, there exists a unique
1 i msuchthat W; = W(d)?. Similarly, for distinct even block sizes d, with respective
multiplicities rq, occurring in the Jordan form of u on V, there exists a unique 1 i m
such that ei'gher W; = W(d)%d, or W;j = V(d)™, i.e. there do not exist i & j such that

Wi = W(d)# and W; = V (d)'e with ri; r) > 0.
We define "y : Z 1 ¥ 10; 19 by:

C
0; ifb((u 1) v;v)=0forallv2V suchthat (u 1) v=0;

"on(d) =
vio(d) 1; otherwise:

Lemma 2.9.13. [Kor20, Lemmas 6.9 and 6.10] Let u 2 Sp(V;b) be a unipotent element and
let V jiw = Vo Vom, wherem 1,n;>  >n, landr; 1.

(a) If n; is odd, then "y.,(n;) = 0.
(b) The following statements are equivalent:
(0.1) "vu(ny) = 1.

(b.2) n; is even and V (n;) occurs as an orthogonal direct summand of V.

(b.3) n; is even and V (n;) is isomorphic to an orthogonal direct summand of any
decomposition of V into a direct sum of orthogonally indecomposable k[u]-submo-
dules.

In what follows we will see that the Hesselink normal form of u on V, hence its conjugacy
class in Sp(V;h), is completely determined by the Jordan form of u on V and the values of
"v:p on the Jordan block sizes of u.
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Remark 2.9.14. Let u 2 Sp(V;b) be a unipotent element and let V jypy = V! Vo,

where m 1, ny > >nym landr; 1. Furthermore, let V jyy = Wy ? ? Wh
be the Hesselink normal form of u on V, as glven in Theorem 2:9:11. First, assume that
there exists 1 1 m such that W; W(n.) 2. If nj is odd, then by Lemma 2:9:13 (a),

we have that "y.,(n;) = 0. Similarly, if n; is even, then by Lemma 2:9:13 (b), it follows that
"v:p(ni) = 0, since, otherwise, there would exist 1 ~ jJ m, j & 1, such that W; =V (n;)",
contradicting Remark 2.9.12. Conversely, if "y;,(n;) = 0 for some 1 i  m, then, by
Lemma 2:9:13 and Theorem 2:9:11, it follows that W; = W(ni)%. We have just proven that
"vip(ni) = 0 if and only if W; = W(n; ) 2. Similarly, one shows that "y.,(n;) = 1 if and only
if Wi =V (n)".

Theorem 2.9.15. [Remark 2:9:14 and [Kor20, Theorem 6.7]] Let u 2 Sp(V; b) be a unipotent
element and set " = "y;;. Let V jiu = Vp! Vo, wherem 1, n; > >n, 1and

ri 1, i.e. uhas Jordan normal form on V given by Jni. Moreover, let V jy = Wy ?

? W, be the Hesselink normal form ofuonV, as glven in Theorem 2:9:11. Then for
alll i m, we have W; = W(n)z if and only |f "(n;) =0 and W; =V (n;)"" if and only
if "(n) = 1.

In particular, the Hesselink normal form of u on V is uniquely determined by the tuple
(n}: gy n{m(nm)).

Let u 2 G be a unipotent element. From this point onward, we will abuse notation and
call the tuple

(ni;:: "nto,n{flll; onngn
the Hesselink normal formof uonV, wherem 1,t 0n; > >ne 1, Ngyq > >
Nm landr; 1foralll i m.

We end this subsection by returning to the example in item (2) of Remark 2.9.3, where
we noted that, over fields of characteristic 2, there exist two unipotent conjugacy classes in
Sp, (k) whose Jordan form on W is J2. Now, using Theorem 2.9.15, we can actually identify
these two classes by their Hesselink normal form. Let u and u’ be representatives of each
of these classes. Then the Hesselink normal form of u is (23), i.e. W jx= W (2), and the
Hesselink normal form of u’ is (22), i.e. W jkuy=V (2) V (2).

2.9.4 The distinguished normal form

Let k be an algebraically closed field of characteristic 2, let V be a finite-dimensional k-
vector space equipped with a nondegenerate quadratic form Q. Let b be the nondegenerate
alternating bilinear form on V given by b(vy;v,) = Q(vi + vp) + Q(vy) + Q(vy), for all
vi;Vo 2 V. Set G = Sp(V;b). In the previous subsection, we saw that the Hesselink normal
form completely determines unipotent conjugacy classes in G. Moreover, by Theorem 2.9.10,
we know that each conjugacy class of G contains one conjugacy class of O(V; Q) and that
two elements of O(V; Q) are conjugate in O(V; Q) if and only if they are conjugate in G. We
now consider the subgroup H = SO(V; Q) of G. In this subsection, we will give a criteria,
in terms of the Hesselink normal form, to determine when unipotent conjugacy classes of
G intersect H. Moreover, we will also determine when unipotent conjugacy classes in G
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split into distinct unipotent classes in H. In order to achieve this, we will exhibit another
normal form which can be used to characterize unipotent conjugacy classes in G, called the
distinguished normal form. Lastly, we will present methods of translation between the two,
see Lemma 2.9.18 and Remark 2.9.19, respectively, and, using [LS12, Proposition 6:22], we
state the classification of unipotent conjugacy classes in SO(V; Q), see Proposition 2.9.20.

Let u be a unipotent element in G. According to [LS12, Table 4:1], viewed as a k[u]-
module, V decomposes into an orthogonal direct sum of orthogonally indecomposable bilinear
k[u]-modules of the form Vp(m), where m 2 is even, and Wp(m), where m 1, that we
define below.

Let m 2 be an even integer, m = 2n for some n 1. In [LS12, Section 6:1], the
orthogonally indecomposable k[u]-module Vp(m) is defined to be the m-dimensional k-vector

that b(xi;x;) = 1, if i+ j =m+ 1, and 0, otherwise; Q(x;) = 1, if i = n, and 0, otherwise;
and on which u acts as:

8
SU X3 = Xy,
(2.22) U Xi=Xj+X; ;0 for2 1 n;
> -
U Xn+i =Xn+i ¥ Xn+i 1+ Xy forl o 0on

We note that the bilinear form b is nondegenerate and alternating and that u fixes both b
and Q. Therefore Vp(m) is a nondegenerate alternating bilinear k[u]-module on which u
acts as a single Jordan block of size m, see [LS12, Table 4:1].

Now let m 1. In [LS12, Section 6:1], the orthogonally indecomposable k[u]-module
Wp(m) is defined to be the 2m-dimensional vector space equipped with a bilinear form b

in which we fix a basis fXm 1;Xm 3,15 X m 1:Ym 1;Ym 3105y m 1)0 With the property
that b(xj;y i) =1,forall (m 1) i m 1, and all other inner products between basis
vectors are 0; Q(Xi) = Q(y;) =0,forall (m 1) i m 1;and on which u acts as:

8
%U Xm 1= Xm 1,
u

Xi = Xj+ Xjso; for (m 1) i m 3
§U Ym 1=Ym 1,
U Yi=VitViee+ H+ynm g for (m 1) i o m 3

We note that the bilinear form b is nondegenerate and alternating and that u fixes both b
and Q. Therefore, Wp(m) is a nondegenerate alternating bilinear k[u]-module on which u
acts as J2,, see [LS12, Table 4:1].

The following proposition shows that the decomposition of V into an orthogonal direct
sum of orthogonally indecomposable bilinear k[u]-modules of the form Vp(m) and Wp(m)
completely determines the unipotent conjugacy class of u in G:

Proposition 2.9.16. [LS12, Lemma 6:2 and Proposition 6:22]. Let u 2 G be a unipotent
element. Then, there exists an orthogonal decomposition
S m
Viqu= 72 Wo ()" ? 72 Vo(ny)"; (2.22)
i=1

j=s+1
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wherem 1and0 s m are such that the n;’s are distinctand r; 1,foralll 1 s,
the n;’s are even and distinct and r; 2, forall s+1 j m. Moreover, the following
hold:

(@) The summands in (2.22) are unique and they completely determine the unipotent
conjugacy class of u in G.

XX
(b) We have that u 2 SO(V; Q) if and only if rj is even.

j=s+1

(c) If u2S0O(V;Q), then the conjugacy class of u in G splits into two SO(V; Q) classes if
andonlyifs=mandnjisevenforalll i m.

Remark 2.9.17. We will refer to the two unipotent conjugacy classes of SO(V; Q) from item
(c) of Proposition 2.9.16 as split.

The decomposition in (2.22) is called the distinguished normal form of u on V. As this
form is di Lerkent from the Hesselink normal form, for our purpose, it is useful to have a method
of translating between the two. For this, we first have to prove the following isomorphisms
of bilinear k[u]-modules:

(Wp(d);b) = (W(d);a); foralld 1

and
(Vo (d);b) = (V (d); by); foralld 2 even:

Recall that for 1 i1 ord(u) we have denoted by V; the indecomposable i-dimensional
k[u]-module on which u acts as the full Jordan block of size i. Let d 1 and let N,

respectively by fyq 1;¥a 3:::5Y @ 19. Asb(Xi;X;j) = 0and b(y;;y;) =0, forall (d 1)
i;j d 1, it follows that Wpo(d) =N N’ is a totally isotropic decomposition of Wp (d).
Hence, by Lemma 2.9.7, we have that W (d) is the paired module associated to N. Moreover,
as dim(N) = d and as u acts as a single Jordan block of size d on N, it follows that N is
indecomposable as a k[u]-module and therefore N and Vy4 are isomorphic k[u]-modules. We
conclude that Wp(d) is the paired module associated to V.

Now, recall that in Subsection 2.9.3, W (d) has been defined as the paired module (Vg4
V, ;a) associated to V4. We apply Lemma 2.9.7 and deduce that W(d) =Vy V, is a totally

isotropic decomposition with respect to a. Let fvy 1;vg 3;:::;V @ 1y be a basis in V4 and
let fvy 15vq 550115V ¢ 4y0 be the dual basis of Vg, ie. ,forall (d 1) i d 1, wehave
v;(vj) =1,ifi= J, and 0, otherwise. Then fvq 1;Vq 3;::5;V @ 1))Vg 1:Vg 31-:53V @ 1Y
is a basis in W (d) with the property that, forall (d 1) i d 1, wehavea(vi;v;) =1,
if j = i, and 0, otherwise. Now, the action of u on fvg 1;vg 3;:::;V @ 1)0 IS given by:
C
U Vg 1=Vg 1,
U Vi=Vj+Vj, forall (d 1) 1 d 3
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+vy g, forall (d 1) 1 d 1, and, using this, determines that the action of u on
fvg itV g y9 is given by:
C
U: Vg 4 =Vy 1
uv,=v;+v,,+ +vy;, forall (d 1) i d 3
One checks that the map : W(d) ¥ Wp(d) defined by (vi) = x; and (v;) = y;, for
all (d 1) i d 1,isa k[u]-module isomorphism and, furthermore, as a(w;w’) =
b( (w); (W), for all w;w' 2 fvg 1;vq 3;111;V @ Vg 1:Vg 3005V g 19, We conclude

that (W (d);a) and (Wp(d);b) are isomorphic bilinear k[u]-modules.
Let d 2 be an even integer with d = 2f, for some f 1. Recall that, in Subsection

ifi+j =d+1, and 0, otherwise, and we have defined V (d) to be the bilinear k[u]-module
(Vg; bg). Moreover, recall that we have described the action of u on B, in (2.20). Set A to be

. . f
the block matrix % g 2 My(k), where B = (bi;j)i;j 2 M¢(K) is such that b;;; = f JI ,
forall i f,and bj;j = 0, for all i > j; and C = (Ci;j)ij 2 Mgs(K) is such that
Ci;j = bf+1 jir+1 i, foralli j  F,andcy; =0, for all i > j. We see that A has the
following form:
O1 bro D1 bpgs 1 00 0 0 0 0 1
0 1 |Dbys bg s 1 00 0 0 0 0
0 0 O bf ¢ 2 1 0 O 0 0 0 0
0O 0 O 1 100 0 0 0 0
A= 0 0 O 0 100 0 0 0 0 )
“BO 0 O 0 011 1 1 1 1 '
0 0 O 0 0 0 1 bfoor1 brara o 1 byf 1
0 0 O 0 00O 1 be 3¢ 2 bot 2 Dif 2
0 0 00O 0 0 1 b1
0 0 00O 0 0 0 1

Let By = X1; Xp; 1 :: Xqg be the basis of V (d) with the property that A is the change of basis
matrix from B, to By, i.e. we have

X XK
Xf+j = Ci;jef+i = bf+1 jiF+1 iCf+is for 1 J f:
i=1 i=1

8 :
X

ng = bije; forl jOF;
i=1

=

We will first show that the matrix A is symplectic, i.e. it preserves the form by. As

_ BJ|oO o _ 0 | B"K¢C _ 0 | Kf
A= %W we have that AYS4A = (BYK,C)Y ‘ 0 , Where Sy = Ke | 0
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and (Kg)i;j = j.f+1 i- Therefore, to show that A is symplectic, we only need to show that
BYKsC =Ks. Let1 i;j f. Then:

X xOX
(BtrKfC)i;j = (BtrKf)i;r Crij = (Btr)i;q(Kf)q;r bf+1 JF+1 r

r=1 r=1 g=1
XX X

= Doii qf+1 r Df+1 jofer r = Dfr1 ri Dre1 jifer r
r=1 q=1 r=1
XK XK

= bgii Pea1 jig = bgii DF+1 jigs
q=1 g=1

as bgi =0, forall g >i. Now, if f +1 j >, then (B"K¢C);; =0. If f+1 j =i, then

f f
(B"K¢C)i:f+1 bg;i Dig = bisi bi; f f 1

as bij =0, fori>j, and b;;; = I J' ,fori j. We thus assume that f +1 j <i. Then

X

(B"KfC)ij = : ? :c !
qg=Ff+1 j
_ G oy X 1
(F D ;G D@+ 1)
_ G 1! X j+j f o1
F DG+i T D i g
— (j 1)| 2i+j f 1
F Di+j f 1)

=0:

We conclude that BYK¢C = K¢ and, consequently, A¥S4A = Sy. Therefore the matrix A
is symplectic.

We will now show that the action of u on fxy;:::;Xggisasin (2.21). Let1 j T and,
using relations (2.20), we have that

uxj=u ( bije)= b & =X+ bijer = xj + bi;j er
i=1 i=1 r=1 i=2 r=1 r=1 i=r+1
M X g
= XJ + - er
r=1i=r+1 ]
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1 n
Now, for all 0 < m < n, we have that 1 + = m Thus, forall1 r

j 1, one can show that

fr f r 1 f r 1 f r 1 f r 2 f r 2
. = . + . = ) + . + .
f j+1 f f j+1 f j f ] f j+1
_ XoofF g N f r 3 f r 3
i=r+1 f ] f ] f 1+ 1
X F
i=r+1 f J
(2.23)
It follows that ) )
u Xj=xj+ . er =Xj + rj 1€r
r=1 f J +1 r=1
and so
U Xj=Xj+Xjq; foralll j f: (2.24)
Similarly, for1 j f, we compute
X X
U Xf+j =U ( beea jif+1 i€f+i) = Dbfer jir (B2 +  +epr1) ¥ Drar jorer i(Bf+i F €745 1)
i=1 i=2

K
=Xg+j T hee1 jor (B2 +  Fep)+  Drer a1 i€Fei 1l
i=2

We remark that bg+q ¢ =1,foralll j f,and,ashif=1,foralll 1 f, wededuce
that X¢ = bfs+1 jir (61 + + e¢). Therefore, we have:
XK
U Xf+j = Xfaj ¥ X + Df+1 jif+1 iBF+i 1l

i=2

On the other hand:

D XK
Xfe1+  +Xfaj 1= bf+1 i-f+1 r€f+r ( We interchange the order of the sums)

i=1 r=1

= Df+1 if+1 rBfer = Df+1 if+1 r Cfar
r=1 i=r r=1 i=r
] D& 1

= Efr.

ro1

r=1 i=r
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j 1 _ f (f j+1)

Forl1 r j 1 remark th
0 ] , we remark that £ O(F r+e1)+1

i1 X of g

and so, by (2.23), it

follows that . = 1 We make the variable change i =f +1 q, i.e.
G=f+2 ]
g=f+1 i Hencewehavef g=i land forq=Ff+2 j,wegeti=]j 1, while,
. j1 >
forq=f+1 r,wegeti=r. Thus, ; = Fo1 and so
i=r
> i1 24
Xf+1 F FXfrj 1= r Ef+r = bf+1 jif rEf+r
r=1 r=1
X

= Df+1 jfF+1 iCF+i 10
i=2

We have shown that
U Xf+j = Xfaj +Xfej 1+ +Xg foralll j  F: (2.25)

Equations (2.24) and (2.25) show that the action of u on By is as in (2.21).

Using the fact that A is a symplectic matrix with respect to by, one is able to show that
themap :V(d) ¥ Vp(d)givenby (e))=x;foralll i disanisomorphism of bilinear
k[u]-modules.

Lemma 2.9.18. Let k be an algebraically closed field of characteristic 2 and let G = Sp(V; b).
Let u be a unipotent element of G whose Hesselink normal form on V is

..... M+1.....p,:MMm)-
(N inngsngdt i nmm);

wherem landt O. Forallt+1 1 m,writer;j=Xx;+2y;,wherel X 2and
yi 0. Then the distinguished normal form of u on V is:

V ik = ?W(n)z ? ’? W (n;)* ? ’? V(i)

—t+1 i= t+l

t -
where 7 W(ni)% Is empty if t =0.

i=1
Proof. To begin, following Theorem 2.9.15, we write down the decomposition of V as an
orthogonal direct sum of indecomposable k[u]-modules:

V i = ’PW(n)z ? ’?V(n)f-
i= t+l
Ifri 2forallt+1 i m,wesetx;=r;jandy;=0. Then:

V ok = ’)W(n)z ? ’)V(n)x'

i= t+l
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is the distinguished normal form of u on V.
We can thus assume that there exists some t+1 j  msuch that r; 3. Then
i =3¢ +p!, whereq! 1and0 p! 2. By Lemma 2.9.9, it follows that

V(ny)" =W ()% 2V ()

If ol +p! 2, set x; = ¢ +pl and y; —ql We note that 1 x; 2,asql 1, and
that r; = x; + 2y;. On the other hand, if ¢} +p} 3, we write ¢} + p} = 3¢} + p}, where
g land0 p) 2. Once more, by Lemma 2.9.9, it follows that:

V(njh = W(ﬂj)qu ?V (nj)qjiﬂ”i = W(nj)q{+q‘é 2V (nj)q£+p£:

If o} + p) 2, set x; = qg + p‘2 and_ yj =) +qb. Wenote that 1 x; 2, asq 1,
and that rj = 3q] +p! = 2g} + 3¢ + p} = x; + 2y;. On the other hand, if ¢ +p} 3, we
repeat the above procedure. Now, as rj is finite, it follows that there exists s 1 with the
property that ¢! +pl 2, whereq! 1and0 p. 2aregivenbyq! ,+p! , =3q +pl
Then, by Lemma 2.9.9, we have that

V()T = W(n)H* YR 12V (ny)® 1P = W(np)®t T 2 v (ny) R

Set xJ =gl +plandy; = qi +¢l. We note that 1 xJ 2, as qJ 1. Lastly, as
r = 3ql +p!, we have that p! +¢! = I 23 and, as pl +ql = 3 + P}, we deduce that
ph+ ) =1j 2(ql + q2) Recursively, we show that p! + qI =T 2(q1 + ¢), for all
1 1 sandthus, fori =s, we obtain X; =r; 2y;.

In conclusion, the distinguished normal form of u on V is:
t ‘- m m
Vi = 22Wm)7 ? 2 wWn)? P V(i)
i=1 i=t+1 i=t+1
where, forallt+1 i m,theintegersl x; 2andy; O0aresuchthatr; =x;+2y;. [

Remark 2.9.19. Let k be an algebraically closed field of characteristic 2 and let G =
Sp(V;b). Let u be a unipotent element of G.

(a) If the distinguished normal form of u on V is

m
V k= ? vV (m;)*;

=1

where m 1, the m;’s are even and distinct and b; 2, forall1 j m, then the
Hesselink normal form of u on V is (m '::"mbm)

(b) If the distinguished normal form of u on V is
m
V jku= ?W(ni)ai;
i=1

where m 1, the n;’s are distinct and a; 1, forall1 i m, then the Hesselink
normal form of uon V is (nfg‘l; i nzam)
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(c) Let the distinguished normal form of u on V be

V k= ’?W(n ) ? ’? V (m;)";

J_s+l
wherem 2,1 s m 1,then;’saredistinctanda; 1,foralll 1 s, and
the m;’s are even and distinctand b; 2 ,foralls+1 j m.

LetO d s bethe number of ni’s, 1 i s, with the property that n; & m; for all
s+1 J m. Ifd=0, then we relabel the m;’s, s+1 j m, such that nj = mg.;
forall1 1 s. We rewrite the distinguished normal form of u on V as:

Vjk[u] ’> W(n )a. ?V (ms+ )bﬁI ? ’? \ (mj)bJ

j—2$+l
and, keeping in mind that n; = mg.; for all 1 i s, we apply Lemma 2:9:9 to
determine that:

VJk[u] ’) v (n )2a.+b5+. ? ’) v (mj)bj

j —25+1

Hence, by Theorem 2:9:15, the Hesselink normal form of u on V is

2ay+bs+1. .. .. 2as+bog. ab2s+1 ... bm -
Ny, NG ST My men)

If d = s, then the Hesselink normal form of u on V is

2a1. .. . . 2a Ps+1..... b .
(N3t inings, My i mn):

Lastly, if 1 d s 1, werelabel the niy’s, 1 i s, andthe m;’s,s+1 j m,
in the following way:

8
=n;;:::,Ng are such that n; & m; foralls+1 j m;

Nd+152555Ns and Mgy :::; My 4 are such that ngor =mgy, foralll r s d;
- sz d+1, ..., My, are such that mj & n; foralll i1 s:

Moreover, we rewrite the distinguished normal form of u on V in the following way:

m

V i = ’PW(n )a-'>’? W (Ngar)® 2V (Mgy)=r 2 72V ()7

i=1 r=1 j=2s d+1

Now, by Lemma 2:9:9 and keeping in mind that ng.r = mg, foralll r s d, we
have:
W(nd+")ad+r ?V (ms+r)bs+r =V (ﬂd+r)2ad+r+bs+r

It follows that the Hesselink normal form of u on V is

281 ... Zad 2ag+1+bs+1. ... . 2as+bog - P25 d+1 ... .. bm \ .
(N3g"s s Ngy™s Nyt v Mgy » Mg d+1y )



We recall that we have fixed k to be an algebraically closed field of characteristic 2, V

to be a finite-dimensional k-vector space equipped with a nondegenerate quadratic form Q,

b to be the nondegenerate alternating bilinear form on V given by b(vy;vy) = Q(vy + vp) +

Q(v1) + Q(vy) for all vi;v, 2V, G = Sp(V;b) and H = SO(V; Q). Let u 2 G be a unipotent
I't+l

element and let (n};:::;ngs NS nin) be its Hesselink normal form on V. Then, by
Lemma 2.9.18, it follows that the distinguished normal form of u on V is:

Vi = ’DW(n)z ? ’? W (ni)% ? ’? vV (ni);

i= t+1 i= t+1
where, forallt+1 1 m,theintegersl Xx; 2andy; 0 aresuch that rj = Xx; + 2y;.
XX
Now, by Proposition 2.9.16 (b), it follows that u 2 H if and only if the sum Xj IS
i=t+1
even. Hence, we deduce that u 2 H if and only if r; is even, as X; and r; have the same

i=t+1
parity, forallt+1 i m.
Lastly, let u 2 H be a unipotent element. Then, in particular, u 2 G. By Proposition
2.9.16 (c), it follows that the conjugacy class of u in G splits into two H-classes if and only
if the distinguished normal form of u on V is

m
Vi = ? W (n)";
iz1

where m 1 and the n;’s are even and distinct forall1 i m. We now use Remark 2.9.19
(b) to deduce that the Hesselink normal form of u on V is (nigl; b nzrm) Therefore, the
conjugacy class of u in G splits into two H-classes if and only if n; is even and "y.,(n;) =0,
forall1 i m. We have proven the following result:

Proposition 2.9.20. Let k be an algebraically closed field of characteristic 2, let V be a
finite-dimensional k-vector space equipped with a nondegenerate quadratic form Q and let
b be the nondegenerate alternating bilinear form on V given by b(vy;vy) = Q(vy + vp) +
Q(v1) + Q(vy), for all vi;v, 2 V. Set G = Sp(V;h) and H = SO(V;Q). Letu 2 G be a

unipotent element and let (nzt;:::;ng; n[ffl; :11;npm) be its Hesselink normal form on V.
The following statements hold
- - X -
(@) u2H if and only if ri is even;
i=t+1

(b) for u 2 H, the conjugacy class of u in G splits into two H-classes if and only if, for all
1 i m, wehave that nj iseven and t=m, i.e. ifand only if, forall1 1 m,
n; is even and "y.p(n;) = 0.
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Chapter 3
Groups of type A-

In this chapter we prove Theorems 1.1.1 and 1.1.3 for the simple simply connected linear
algebraic groups of type A-, * 1. The structure of the chapter is as follows: in the
first section we construct such a group and exhibit some properties of its semisimple and
unipotent elements. In Section 3.2 we determine 52rTnna;>(<G)fdim(Vs( )] 2kg, whereV

runs through the list of kG-modules we identified in Subsection 2.7.1. Similarly, in Section

3.3, we determine 2r(r31a>1gl dim(Vy (1)), where G, denotes the set of unipotent elements of G,
u2Gynflg

for the same kG-modules V. Lastly, Section 3.4 records all the results of this chapter.

We now give some notation that will be used throughout the chapter. We fix k to be an
algebraically closed field of characteristicp 0 and G to be a simple simply connected linear
algebraic group of type A<, © 1. We will use the notation T, ,B, =f 4;:::; gand

positive Borel subgroup of G, the set of simple roots in  given by B, and the fundamental
dominant weights of G correspondingto ,1 i °.

3.1 Construction of linear algebraic groups of type A-

Let W be an “ + 1-dimensional k-vector space, for some 1, and fix an ordered basis By
in W. Set G = SL(W) and note that G is a simple simply connected linear algebraic group
of type A<, © 1, see Subsection 2.1.1. Let T be the set of diagonal matrices in G, and note
that T is a maximal torus in G. Further, let B be the set of upper-triangular matrices in G,
and note that B is a Borel subgroup of G with the property that T B.

\PI

Let s 2 T, s = diag(a;;ay;:::;a-+1) with a; 2 k and ai = 1. Letm 1 and let

1, 2.1 m denote the distinct a;’s. Foralll i m, Ieizilni denote the multiplicity of
each ;ins. We have that > n; = “+1 and we can assume, without loss of generality, that
ng n Nm 1. Ii::ulrthermore, by conjugating s by an element of Ng(T), we can

\PI
assume that s =diag( 1 In;; 2 Inyiiiis m Iny). Lastly, we remark that, since a; =1,
i=1
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i
we have " = 1. Moreover, if s 2 Z(G), then m 2.

i=1
We ncl)w turn our attention to the unipotent elements of G. By Theorem 2.9.2, we know
that two unipotent elements of G are G-conjugate if and only if they are GL(W )-conjugate,
M
i.e. if and only if they have the same Jordan form on W. We write Jp: for the Jordan form

i=1
of a unipotent element of G on W, wheren; landr; 1,foralll i m, see Section
2.9.1. We can assume, without loss of generality, that *+1 n; > n, > >n, 1
Moreover, if u & 1, thenn; 2.

3.2 Eigenspace dimensions for semisimple elements

Before we state the main results of this section, we recall that FA* = f1,;1,:21,; 1, + 1.g,
see Subsection 2.7.1.

Theorem 3.2.1. Let k be an algebraically closed field of characteristicp 0 and let G be a
simple simply connected linear algebraic group of type A, * 1. Let T be a fixed maximal
torusin G. If “* =1, letV = Lg(m!;), where 1l m 8, and assume that p = 0 or
p>m. If* 2, letV =Lg( ), where 2 FA or appears in Table 2:7:1. Then there
exist s2TnZ(G) and 2Kk, an eigenvalue of s on V, such that

dim(Vs( )) dim(V) pdim—(\/);
if and only if “, and p appear in the following list:
@1 < 1, =landp O
) ¢ 3, =2land p€& 2
@R 3, =Landp O
@4 =1, 21f31;;41,9and p & 2;3.

Theorem 3.2.2. Let k be an algebraically closed field of characteristicp 0 and let G be

a simple simply connected linear algebraic group of type A<, ©* 1. Let T and V be as in

Theorem 3:2:1. Then the value of 2rpe?ée)fdim(vs( ))J 2k gisgiven in the table below:
S n
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Vv Char. Rank szrpn%)((e)fdlm(VS( )] 2kg
Ls(!1) p 0 1 ‘
La(21y) P62 © 1 it
’ ‘=3 4
‘La(12) p 0 4 T D

2

(T +1) p-+1 [ 2 -
- =2 4

ol + 1) pit+l g 7
Le(m14),3 m 8|p=0,orp>m| ‘=1 1+ 2
YLg(1; + 1) p=3 =3 10
"La(!3) p 0 ‘=5 12
"La(!3) p 0 ‘=6 20
yLG(!g) p 0 =7 35

Table 3.2.1: The value of 52rTnnaZ>(<G)fd|m(Vs( ) 2kag.

In particular, for each V of Table 3.2.]F5abeled as follows: YV ; ?V with ©*  4; and 2V with
m  5; we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues
2k ofsonV.

We will give the proof of Theorems 3.2.1 and 3.2.2 in a series of results, each treating
one of the candidate-modules. In Subsection 3.2.1, we focus on the irreducible kG-modules
Le( ) corresponding to p-restricted dominant weights 2 FA*. As these modules need to
be considered for all ©* 1, we will refer to them as families of modules. In Subsection 3.2.2,
we will treat the irreducible kG-modules Lg(m?!;), where 3 m 8, of the simple simply
connected linear algebraic group G of type A1, as well as the irreducible kG-modules Lg( ),
where G is a simple simply connected linear algebraic group of type A- of rank ©* 2 and
the p-restricted dominant weight is featured in Table 2.7.1.

3.2.1 The families of modules

For the rest of this chapter, we fix the following hypothesis on semisimple elements in G:

(PHs) :any s2T nZ(G) issuch that s=diag( 1 In;; 2 Iniiiis m Ing);
wherem 2; ;& jforalll i<j m;* ng n nn 1and
'
h= 1

i=1
Lemma 3.2.3. Let V = Lg(';). Then for all s2 T nZ(G) and all eigenvalues 2 k of s
on V we have

dim(Vs( ))
where equality holds if and only if, up to conjugation, s = diag( 1; 1;:::; 1; 5 ) With
Stel,and = 4.
In particular, there egdst s 2 T n Z(G) that alord an eigenvalue 2 k on V for which
dim(Vs( )) dim(V) dim(V).
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Proof. We first note that V = W as kG-modules, thus dim(V) = “+ 1. Ass 2 Z(G),
it follows that dim(Vs( )) dim(V) 1 = “. Now equality holds if and only if, up to
conjugation, s = diag( 1;:::; 1; 2), where ;& ,. Lastly,as ; p=1and ,6& , we
have ,= ; and ‘&1
To conclude, we have shown that dim(Vs( )) “forall s 2 T nZ(G) and all eigenvalues
2 k of sonV and that there exig pairs (s; ) 2 TnZ(G) k for which the IQM IS

attained. Now, as the inequality 1 “+ 1lholdsforall © 1,itfollowsthat “+1 = “+1
“ holds for all ©* 1 and thus we have shown that there exjst s 2 T n Z(G) that aland an
eigenvalue 2 k onV for which dim(Vs( )) dim(V) dim(V). O

Proposition 3.2.4. LetV = Lg(2!;). Then for all s 2 T nZ(G) and all eigenvalues 2 k
of son V we have
. e e
dim(Vs( )) T;
where equality holds if and only if, up to conjugation, s = diag( 1;:::; 1, ; ), with ;"' =
1,and = 2.

In particular, for © 3, there exisbs 2 T nZ(G) that alord an eigenvalue 2 k on
V for which dim(Vs( )),~ dim(V) dim(V). On the other hand, for * 4, we have
dim(Vs( )) <dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues 2k ofsonV.

Proof. Let s 2 T nZ(G) be as in hypothesis (YHs). By Lemma 2.8.1, since p & 2, we have
that V = S3(W) and so dim(V ) = &2 Moreover, we deduce that the eigenvalues of s
on V, not necessarily distinct, are:

C
3.1) 2,1 i m,with multiplicity at least ™D,
i j»1 1<]j m,with multiplicity at least n;n;:
Fixsomel i mand consider the eigenvalue 2 of sonV. Since the ,’s are distinct,

it follows that 2 & ; j, for all i & j. Hence, by (3.1), we find at least ni( +1 n;)
eigenvalues of s on V not equal to 2. It follows that:

¢+ +2)
2

dim(Vs( ) ni(*+1 ) (3.2)

: ) R
If dim(Vs( §)) — then

¢ ni(‘ +1 ni) 0;
and so
¢ n)@ ny) O (3.3
Since * ni 1, it follows that (* n;))(1 n;) 0 and so (3.3) holds if and only if
o : : e e
n; 2 f1;°g. In both cases, substituting in (3.2) yields dim(Vs( 2)) % Now, by

(3.1), equality holds ifand only if #= Zforallj&i. If 7= £forallj & i, itfollows that
m = 2, as the ,’s are distinct. Therefore, up to conjugation, s =diag( 1;:::; 1, »2), where
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16 3, ;2=1and 2= 3 Then ,= , ,hence 2= % andso ;6 , . Itfollows
that, up to conjugation, s = diag( 1;:::; 1; ; ) with ;"= 1, asin the statement of the
result. Conversely, let s = diag( 1;:::; 1; ;) 2T with ;"' = 1. Thens 2 Z(G) and
dim(Vs( 1)) = =52, by 3.1).

Fix some 1 i<j m and consider the eigenvalue ; j of son V. Since the ,’s are

distinct, we remark that:

8

Eij& izand ij&jz;

>ij& i nfori<r mandré&j,and ; ;& , j,forl r<i;
T ij& (g, forl r<jandr&i,and ; ;& j ,forj<r m:

i(ni + 1)+nj(nj + 1)

n
By (3.1), all of the above account for at least +(ni+n))(“+1 n; n;)
eigenvalues of s on V which are dilerent than ; ;. Hence, we have:

(+DCE+2) ni(ni+1) nj(n +1)
2 2 2

dim(Vs( i ;) (ni+np)CC+1 ni ny):

. T
Assume dim(Vs( i j)) ——=——. It follows that:

ni(n; +1) + nj(nj +1)

MmN+ niony) 5 0:
We rewrite the above as:
¢Comony@ non) nini +1)+ni(n; +1) (3.4)

2

ni(ni + 1) + nj(nj + 1)

and note that 5

2,asn; n; 1. Therefore, by (3.4), we have:
¢ n n)@ n n;) 2 O (3.5

Ifni+n;  “ then(* ni n)@ n; n;) 0and Inequality (3.5) does not hold. If
ni+n;="+1thenm=2n,="+1 n;and substituting in Inequality (3.4) gives:

n(ny+1)+(C¢+1 n)(*+2 ny)

‘ 0
2
and thus
2nZ +2n;° “?+2n; ¢ 2 O (3.6)
But, 2nZ2+2n;‘ “2+2n; ° 2= [(* ny)?+(n; 1)>+“+1] <0 and so Inequality

_ 2442 .
(3.6) does not hold. Therefore, dim(Vs( i j)) < — foralll i<j m.
In conclusion, for all s 2 T n Z(G) and all eigenvalues 2 k of s on V, we have
shown that dim(Vs( )) % where equality holds if and only if, up to conjugation,
s =diag( 1;:::; 1; ;) with ;" = 1, and = 2 In particular, as the inequality
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r— =
‘2+3‘+2 ‘2+3‘+2 ‘2+‘+2

2 3 2 0holds for all © 3, it follows that 5 5
forall ©* 3. This shows that there exist s 2 TnZ(G) which aland an eigenvalue 2k onV,

for example s = diag( 1;:::; 1; ;) with ;"= Zland = 2%, such that dim(Vs( ))
. p— ‘2+‘+2 ‘2+3‘+2
dim(V) dim(V). On the other hand, for * 4 we have 5 < 5
r— =
2+3°+2 . . P—
and therefore dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV. ]

Proposition 3.2.5. Let ©* 3 and let V = Lg(',). Then for all s 2 T nZ(G) and all
eigenvalues 2 k of s on V one of the following holds:

(1) © = 3 and dim(Vs( )) 4, where equality holds if and only if, up to conjugation,
s=diag( 1; 1; % .D,with 26 1,and = 1.

D

) 4 and dim(Vs( )) 5

following holds:

, Where we have equality if and only if one of the

(2:1) * = 4 and, up to conjugation, s = diag( 1; 1; 1; 2; 2), with ; & , and
3= L2 and = ; ,.

‘41

2:2) - 4 and, up to conjugation, s = diag( 1;:::; 1; ; ), with ;"' & 1, and
2

1

In particular, for * = 3 there existrg 2 T nZ(G) that alor an eigenvalue 2 k on
V for which dim(Vs( )). dim(V) dim(V). On the other hand, for * 4, we have
dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues 2k ofsonV.

Proof. Let s 2 T nZ(G) be as in hypothesis (YHs). By Lemma 2.8.1, since © 3, we have
that V = ~?(W) and so we deduce that dim(V) = % and that the eigenvalues of son V,
not necessarily distinct, are:

C

2,1 i m,with multiplicity at least T2,

(3.7) .. i _
i j»1 1<]j m,with multiplicity at least n;n;:

We note that if n; = 1, then 2 does not occur as an eigenvalue of s on V. We thus
suppose that there exists some 1 i m such that n; 2 and consider the eigenvalue ?
of s on V. Now, since the ,’s are distinct, it follows that ? & ; j for all i & j, hence:

‘(‘ + 1)
2
Let ¢ = 3, and assume dim(Vs( 2)) 4. Then:

dim(Vs( §)) “+1 nni

2 (4 n)ni=(; 2> 2 0
and so n; 4, contradicting n;  “.
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)

5 It follows that:

We now let © 4 and assume dim(Vs( 2)) €

“ (C+1 n)n; O

By the arguments following Inequality (3.3) and keeping in mind that n; 2, it follows
that the above holds if and only if n; = “. Hence, m=2,n; =“ n,=1and,as &

and ; , =1, wehave , = , and ;"' & 1. Moreover, we note that in this case we
have dim(Vs( 3)) = G2, Thus, for © 4 we showed that dim(Vs( 2)) G2 for all
s2TnZzZG)andalll i m and that equality holds if and only if i = 1 and, up to
conjugation, s = diag( 1;:::; 1; ; ), with *' &1, asin (2:2).

Fix some 1 i<j m and consider the eigenvalue ; j of son V. Since the ,’s are
distinct, we remark that:
8
Eij& izandij&jz;
>ij& i nfori<r mandré&j,and ; ;& , jforl r<i
T ij€& rj,forl r<jandré&i,and ; ;& ; ,forj<r m:

nin; 1) nj(n; 1
By (3.7), all of the above account for at least 1N )+ i 1)
eigenvalues of s on V dilerknt than ; ;. Hence, we have:

+(i+n)(*+1 ni )

‘C+D onim 1) nj(m 1)

dim(Vs( i j)) 5 5 5

(ni +nj)(‘ +1 n; nj):

Let ©* = 3. Then, since 3  n; n; 1 and n; + n;j 4, we deduce that (n;;n;) 2
1(3;1);(2;2);(2;1); (1;1)g. Assume that dim(Vs( i j)) 4. It follows that:

ni(ni 1) nj (nj 1)

2
2 2

(ni+n)@ ni n;) O (3.8)

Substituting all possible values for (n;; n;) in (3.8), we see that the inequality holds if and
only if n = n; = 2. Assume that nj =n; =2. Thenm=2,n;, =n,=2and, as § 5=1,
we have , = ;% Now, if , = ! then, up to conjugation, s = diag( 1; 1; % ;%)
with 2 & 1,as ; & ,. Conversely, for s = diag( 1; 1; ;% ;') with ? & 1, we have
s 2 TnZ(G) and dim(Vs(1)) = 4, by (3.7). Similarly, if , = !, then, up to conjugation,
s=diag( 1; 1; % (D) with 26& 1. Conversely, for s = diag( 1; 1; % %)
with 26 1, we have s 2 T nZ(G) and dim(Vs( 1)) =4, by (3.7).

In conclusion, for * = 3, we have shown that dim(Vs( )) 4 for all s 2 T nZ(G)
and all eigenvalues 2 k of s on V, and that there exist elements s 2 T n Z(G) which
alodd an eigenvalue 2 k on V for which the bound is achieved, for example s =

ag( 1; 1 5 (Y, with 261, and = 1. Lastly, we note that, since 4 > dim(V)
dim(V), there exist sp2 T n Z(G) that aland an eigenvalue 2 k on V for which
dim(Vs( )) dim(V) dim(V).

We now let © 4 and assume dim(Vs( i j)) 2. Then

ni(ni 1) nj(nj 1)
2 2

(ni+n)(*+1 ni n;) O
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We rewrite the above as:

ni(ni l) nj (nj 1)

¢ m np@ nm ny) 5 5 0: 3.9
. ini 1 iy 1
Since nj n; 1, we have n.(n,2 ) + nj (n,2 ) Oand1 n; n; <O, therefore, by
Inequality (3.9), we have
‘ N; n;j 0:

Assume that nj+n; = “. Then, for Inequality (3.9) to hold, we need ni(niz 1)+nj (1) =

2
0, hence n; = n; = 1, contradicting * 4. We can thus assume that n; +n; = “ + 1, hence
m = 2. By (3.9) we have:

ni(ny 1) +nx(ny 1)

n+n, 1 5

0;

which we rewrite as:
ni3 ny) (n (n, 2) O (3.10)

Now, Inequality (3.10) holds if and only if n; 3 and n, 2, hence if and only if n; = 3
andn, =2,as“ 4. Inthiscase, “=4andsos=diag( 1; 1; 1; 2; 2)with ;& ,and
3= ,2 Therefore, dim(Vs( i j)) G2 foralls2TnzG)andalll i<j m,
where equality holds if and only if * =4, m =2, ; ; = 1 2 and, up to conjugation,
s=diag( 1; 1; 1; 2, ) Wwith ;& jand $= ,2
In conclusion, for ©* 4, we have shown that dim(Vs( )) % forall s 2 T nZ(G)
and all eigenvalues 2 k of s on V, and that there exist pairs (s; ) 2 Tnz(G) k for

which the bound is achieved.d{\ particular, as the inequality 0 < > * holds for alllo‘ 4, it
follows that 1 < “U D forall © 4, and so dim(Vs( )) < dim(V) dim(V)
forall s2 T nZ(G) and all eigenvalues 2k of sonV. O

Proposition 3.2.6. Let * 2andletV'=W W . Then for all s 2 T nZ(G) and all
eigenvalues 2k of son V' we have

dim(Vg( ) 2+1;

where equality holds if and only if = 1 and, up to conjugation, s = diag( 1;:::; 1; 1)
with ;" & 1.

Proof. Let s 2 T nZ(G) be as in hypothesis (Hs). Since V=W W , we deduce that
dim(V") = (* + 1)? and that the eigenvalues of s on V', not necessarily distinct, are:
S >
1 with multiplicity at least nZ;
i=1
j»wherel i<j m,each with multiplicity at least n;n;:

(3.10)
- 1
i

1
i

and
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We first consider the eigenvalue 1 of s on V'. Since the i’s are distinct, it follows that
16 ; ;'and16& ;* jforalll i<j m. Therefore:

i
0 X > > <
dim(Ve(1))= nf=(C m?* 2 nn=(C+1)7° 2 nn

i=1 i=1 i<j i<j

Assume dim(V (1)) “2+1. Then:

>
‘ nin;j 0
i<j
>
and, since © = n; 1, we have that:
i=1
XX >
@ ny)(nh, 1+ n;(1 nj) O: (3.12)
i=3 j=1
X >
But n;(1 nj) Oand (1 ny)(np 1) O,sincen; 1foralll i m,andso
i=3 i=1
(3.12) holds if and only if m =2, n, =1 and ny = “. Then s =diag( 1;:::; 1; 2), with
16 ,and ; , =1, and dim(V, (1)) = ‘2+ 1. We deduce that dim(V, (1)) “2+1 for all
s 2 TnZ(G) and that equality holds if and only if, up to conjugation, s = diag( 1;:::; 1; 1)

with ;"' & 1, as in the statement of the proposition.
We now fix some 1 i < ] m and consider the eigenvalue ; jl of son V' If
i ;76 ;' then:

>
dim(Ve( i ;1) (+1*  nZ dimVe( ;) (3.13)
r=1
> X
Sincen, 1foralll r m, we have that nﬁ n, = “+ 1. Furthermore, since

r=1 r=1
V' is a self-dual kG-module, we have dim(VS( ; ;1) = dim(V( ; * j)) and so Inequality
(3.13) becomes:
(‘+1) (+1)_(+1),

. 0 1
dim(Vs( i ;7)) 5 5 (3.14)
Since 0 < 2 “+2 forall 2, we have dim(VSO( i jl)) < “2 + 1 for all eigenvalues
i ;& 1. Wecanthusassumethat ; ;= ;' jandsop&2and ; ;'= 1. Since

the ’s are distinct, we remark that:

1 16& Lfori<r myré&j,and 16 ,*;,forl r<ihence 16 '

i r i

fori<r mr&j,and 16 , ;' forl r<i

2 16 rjl,forl r<j,r&i,and 16 jlr,forj<r m, hence 16& ! j,

forl r<j,r&i,and 16 ; L forj<r m.
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It follows that:
) >
dim(Vo( 1)) (“ +1)? n2 2(mi+n))(C+1 n n): (3.15)
r=1
Assume that dim(V,( 1)) 2+ 1. Then:
XX

2¢ nZ 2(ni+n)(“+1 n; n;) 0O
r=1
which we rewrite as
X
2 mi n@ ni ) nZ 0 (3.16)
r=1

X
Since nZ > 0, for Inequality (3.16) to hold, we must have (* n; n)@ ni n;)=>0.

r=1
But then,asn; n; 1, itfollowsthat® n; nj<Oandsom=2andn;+n,="*+1.
Substituting in Inequality (3.16) gives:

2+2n;+2n, nf n3 O

which we rewrite as
(nn 12 (n, 12 0

and deduce that n; = n, = 1, contradicting ¢ 2. We conclude that dim(V( 1)) <2 +1
for all s 2 T nZ(G). This completes the proof of the proposition. m

Corollary 3.2.7. Let * 2,p-“+landletV =Lg(¥;+ ). Thenforall s2 T nZ(G)
and all eigenvalues 2 k of s onV we have

dim(Vs( ))  “%
Moreover, we have equality if and only if one of the following holds:
(1) p&2, =2, = 1and, up to conjugation, s =diag( 1; 1; 1) with $= 1.
(2) © 2, =1and, up to conjugation, s = diag( 1;:::; 1; ; ) with ;"1 & 1.

In particular, we have dim(Vs( )) < dim(V) Iodim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Let s 2 T nZ(G) be as in hypothesis ('{Hs). Let V' =W W . Then, by Lemma
2.8.1, since p - “+1, we have V' =V Lg(0). It follows that dim(V) = “2+2*, dim(Vs(1)) =
dim(V.(1)) 1 and dim(Vs( )) = dim(V,( )) for all eigenvalues & 1 of son V.

For the eigenvalue 1 and any eigenvalue , & 1, of s onV, Proposition 3.2.6 and
Inequality (3.14) give the result. Now assume p & 2 and let = 1. By (3.15), we have:
X
dim(Vs( 1)) (+1)?  nZ 2ni+nm)(+1 n o np):
r=1
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Assume dim(Vs( 1))  “2. It follows that:

X
2°+1 n2 2(m+n)(“+1 ni n;) O

r=1

We proceed as for VSO( 1), see (3.16), and arrive at

2 ni n@ ni n)+1 nz O (3.17)

>
We have that 1 nZ<0,asm 2andn, 1foralll r m. Thus, for Inequality

r=1
(3.17) to hold, we must have (* n; n;)( ni nj)>0andsom=2andn;+n, = “+1.
Substituting in (3.17) gives:

1+2n;+2n, n? n3 O
which we rewrite as:
(n, 1?+n;(2 ng) O (3.18)

Ifn, 2,thenn; 2,asn; ny andwe have (N, 1)2+ny(2 ny) < 0. It follows
that n, =1, n; = “, where © 2, and, by (3.18), we deduce that n, =2 and * = 2. Then,
we also have that 2 ,=1and ; , = 1, hence, , = ,;?and $= 1. Therefore, we
have shown that dim(Vs( 1)) 2 for all s 2 T nZ(G) and that equality holds if and only
if © =2 and, up to conjugation, s = diag( 1; 1, ;%) with 3= 1, asin (1).

We conclude that dim(Vs( )) “2 for all s 2 T nZ(G) and all eigenvalues 2 k
of son V. IanarticuIar, since the inequality 0 < 3“2 2 holds for all 2, 2, we have
‘2 < 240" ‘242 forall © 2, and therefore dim(Vs( )) < dim(V) dim(V) for all
s 2T nZ(G) and all eigenvalues 2k of sonV. ]

Corollary 3.2.8. Let* 2,pj“+1landletV =Lg(!;+ 1:). Then forall s2T nZ(G)
and all eigenvalues 2 k of s on V one of the following holds

(1) “=2and dim(Vs( )) 4 with equality if and only if = 1 and, up to conjugation,
s=diag( 1, 1;1).

(2) © 3anddim(Vs( )) “? 1 withequality if and only if =1 and, up to conjugation,

In particular, we have dim(Vs( )) < dim(V) IDdim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Lets 2 TnZ(G) be as in hypothesis ('Hs). LetV' =W W . Then, by Lemma 2.8.1,
sincepj “+1,wehaveV' = Lg(0)jV jLg(0). Therefore, dim(V) = “2+2° 1, dim(Vs( )) =
dim(V.( )), for all eigenvalues & 1 of s on V, and dim(Vs(1)) = dim(V, (1)) 2.
For the eigenvalue 1 and any eigenvalue with & ! of sonV, Proposition 3.2.6 and
Inequality (3.14) give the result. So, we now assume that p & 2 and consider the eigenvalue
= 1lofsonV.
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If © = 2, the proof of Corollary 3.2.8 gives the result, see (3.17) and (3.18). We can thus
assume © 4,aspj“+1andp6& 2, and, by (3.15), we have:

X
dim(Vs( 1)) (° +1)? n2 2mi+n)(C+1 n n):
r=1
Assume dim(Vs( 1)) “? 1. Then
X
2°+2 nzZ 2(ni+n)(“+1 nm n;) O

r=1
We proceed as for VSO( 1), see (3.16), and arrive at
2 ni n)@ ni nj)+2 nz O (3.19)
XX
Now, 2 nZ 0,asm 2andn, 1foralll r m. Thus, for Inequality (3.19) to

=1
hold we mrust have:
(‘ n; nj)(l n;j nj) 0: (320)

Butl n; n; <0andso, by (3.20), we have * n; n; 0. Ifnj+n; =" thenm =3,
n=21land 2(* ni nj)I n n;)+2 nZ < 0. Similarly, if n; + n; = “+1, then

r=1

m = 2 and, by Inequality (3.19), it follows that:
N2 ny)+ny(2 ny) O: (3.21)

Since ¢ 4 and n, n,, we have n; 3, therefore ny(2 n;) < 0. Hence, by (3.21),
n,(2 ny) >0 and so n, = 1. Substituting in (3.21) gives:

(nn 1)?+2 O

contradicting n; 3. We deduce that dim(Vs( 1)) <2 1foralls2T nZ(

In conclusion, for * = 2, we have shown that dim(Vs( )) 4 <dim(V) dim(V) for
all s 2 TnZz(G) and all eigenvalues 2 k of son V. Similarly, for * 3, we have shown
that dim(Vs( )) “? 1foralls2 T nZ(G) and all eigenvalues 2k ofs on k_/) Since the

inequality 0 < 32 2“+1holdsforall © 3, it followsthat 2 1< “?+2° 2+2¢ 1
for all © 3, and therefore dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2 k of s on V. This completes the proof of the corollary. H

To conclude this subsection, we remark that Lemma 3.2.3, Propositions 3.2.4 and 3.2.5,
and Corollaries 3.2.7 and 3.2.8 give the proof of Theorems 3.2.1 and 3.2.2 for the families of
kG-modules corresponding to p-restricted dominant weights 2 FA-.
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3.2.2 The particular modules

First, for * = 1, we will inspect the irreducible highest weight kG-module V. = Lg(m!,),
where 3 m 8, and deter'gline whether there exist pairs (s; ) 2 T nZzZ(G) k for
which dim(Vs( )) dim(V) dim(V). Afterwards, we will assume that * 2 and we will
focus on the irreducible kG-modules Lg( ) corresponding to p-restricted dominant weights
appearing in Table 2.7.1 and answer the same question. Lastly, although we do not mention
the result explicitly, we make great use of the data in [LU01b], when discussing weights and
weight multiplicities in this subsection.

Proposition 3.2.9. Let k be an algebraically closed field of characteristic p =0 or p > m.
Assume “ =1 and letV = Lg(m!;), where 3 m 8. Then for all s2 T nZ(G) and all
eigenvalues 2k of sonV we have
J K
dim(Vs( )) 1+ g ;
where there exist (s; )2 T nZ(G) k for which the bound is attained.
Moreover, for m = 3 and m = 4 theregxist s 2 T nZ(G) that a[ard an eigenvalue 2 k
on V for which dim(Vs(F;) dim(V) dim(V). On the other hand, for m 5 we have

dim(Vs( )) <dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues 2k ofsonV.

Proof. First, we note that, asV = Lg(m?!,), we have dim(V) = m+1. Now, the eigenvalues

of s=diag( 1; ;') with ;& 1, o0nV, not necessarily distinct, are T; T 2;:::; ™2
.M. Since 261, wehavethat |1 & !2?forall m+2 i m.

We first assume that m is even. We remark that, in this case, 1 occurs as an eigenvalue

of s on V, with multiplicity at least 1. Now, let be an eigenvalue of sonV. If & 1,

then dim(Vs( )) = dim(Vs( 1)) and we have

dim(V) dim(Vs(1)) m,

dim(Vs( )) 5 5

We can now assume that the eigenvalue issuchthat = I First,let =1.If | =1for

some?2 i m,then we also have ;' =1 and therefore we will focus on the 2 eigenvalues
Mo 4o 2As 261, atmost T 1of the eigenvalues ;' %:iir; §canequal 1.
As & 2% forall4 i m,itfollows that at most ™2 + " of these eigenvalues can

equal 1, where"=1if4-m 2and"=0if4jm 2. Therefore:

1+2( ™2 +1),if4-m 2 (1+m- if4-m 2 Imk
. 4 ] - 2’ + o .
dim(Vs(1)) 1+M2 jf4jm 2 moif4jm 2 I+ 5

Now, let = 1 and, again, we focus on the eigenvalues of the form f,where2 i m.
As 1 & }?forall2 i m,itfollows that at most 2 + of these eigenvalues can
equal 1, where =1if4-mand =0if4jm. Therefore:
C . C . i K
209 +1,if4-m _ 1+giifa-m o Im
Lif4jm o if4jm 2

dim(Vs( 1))
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We now assume that m is odd. Let 2k be an eigenvalue of sonV. If & 1 then,
arguing as in the case of m even, we deduce:

. dim(V m 1
dim(Vs( )) ) =1+ T:
We can now assume that the eigenvalue issuchthat = *ie. = 1. If {= 1
forsome 1 i m, then we also have ,' = 1 and therefore we will focus on the ™t
eigenvalues ; T 2 i1y 1. Since 1 & 1, at most mTl of these eigenvalues can equal 1
and, moreover, since } & } % forall3 i m, we deduce that at most ™1 + of
these eigenvalues can equal 1, where =1if4-m land =0if4jm 1. Therefore:
C .
. 2(m 1 +1)if4-m 1 1+m L if4-m 1 Imk
dimvo( 1) oL, e T = v 1M
miif4jm 1 miif4jm 1 2

We have shown that dim(Vs( )) 1+ 3 foralls 2 TnZ(G) and all eigenvalues 2 k
of s on V. We will now show that there exist (s; ) 2 T nZ(G) k for which the bound
is attained. For this, let s = diag( 1; ;') 2 T be such that ? = 1. First, we note that
s 2 Z(G). Now, the eigenvalues of sonV are ; " %:::; ™2 ™M™ As 2= 1 it
follows that ™= T 4 forall 0 i ™1 if mis odd, respectively forall 0 i 2 ifm
even. It follows that dim(Vs( 1)) =1+ 2 .
Lastly, in the cases of m = 3 an = 4, one sees that there exist (s; ) 2T nZ(G) k

for which dim(Vs( )) dim(V) dim(V), for example s = diag( 1; ;') with 2= 1
d = . On the other hand, for 5 m 8, we have 0 < m?> 4m 4, trgerefore
m+1<m 3. Moreover,as % Sforallm 1,weghavel+ 3 <m+1 m+ 1,
forall5 m 8. It follows that dim(Vs( )) < dim(V) dim(V) forall s2 T nZ(G) and

all eigenvalues 2k ofsonV. O

We now turn our attention to the irreducible kG-modules V with highest weights listed
in Table 2.7.1. To treat these modules, we will use the inductive algorithm for calculating

2rTnz%)éG)fdim(Vs( )] 2 k g presented in Subsection 2.4.3. To begin, we refer the reader
S n

to the construction of the Levi subgroup L- of the maximal parabolic subgroup P- of G, as
given in Section 2.4. We recall that L- = Z(L-) [L-; L], where Z(L-:) is a one-dimensional
torus and [L-; L] is a simple simply connected group of type A- ;. We also recall that we
have denoted by T’ the maximal torus T \ [L-; L] of [L-; L-].

Lets2T. Thens=2z h,wherez 2 Z(L:) and h 2 [L-;L:]. Asz 2 Z(L-) , we have

z = h j(cki), wherec 2 k and k; 2 Zforall1 j  *. Moreover, as j(z) =1 for
i=1
Y i
all1 3 ° 1, it follows that z = h,(c'), wherec 2 k. As h 2 [L-;L:], we have
j=1

Yt Yt ) )
h= h,(g) wherea; 2k foralll j * 1, and therefores = h,(ca) h .(c)

j=1 j=1
withc2k anda; 2k foralll j * 1.
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Let V be an irreducible kG-module of p-restricted dominant highest weight 2 X(T),

X
where = d-'ywith0 d p 1lforalll r . We consider the decomposition:
r=1

\Y j[|_(;|_‘]: Vi;
i=0
wagre e<( ) is the maximum --level of weights in V, see Definition 2.4.1, and vVi=

V j. forall0 i e<( ). Lets 2 T and write s = z h, as above. Then,
2N -
by (2.5), we have:

ss=( i )@=( P9 h )= U ¢ DA = T dd ¢ (D0
i=1 i=1 i=1

Therefore, zactsonVi, 0 i e-( ), asthescalarsi =  ci% ¢ C*DU Now, let §;:::; 1,

ti 1, be the distinct eigenvalues of hon Vi, 0 i e«( ), and let nj;:::;n{ be their

Proposition 3.2.10. Let k be an algebraically closed field of characteristic p = 3. Assume
‘=3andletV =Lg('y +1,). Then for all s 2 T nZ(G) and all eigenvalues 2 k of s
on V we have

dim(Vs( )) 10

where there exist pairs (s; ) 2 T nZ(G) Iig for which the bound is attained.
In particular, dim(Vs( )) <dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues
2k ofsonV.

Proof. Let L =Lzandlet =1,+ 1,. Then dim(V) = 16 and, by Lemma 2.4.4, we have
es( ) = 2, therefore:
VijLy=Vve vt v
_ M
where V' = V
2N 3

L. (Y;+1,). InV?1, the weight ( 2 3)jpo=21; admits a maximal vector, therefore V!
has a composition factor isomorphic to L, (21,) and dim(V?!) dim(L_(2',)) =6, asp = 3.
Similarly, the weight ( 1 2 5 2 3)jp=1; admits a maximal vector in V 2, therefore
V2 has a composition factor isomorphic to L (¥;) and dim(V?) dim(L_(';)) = 3. By
dimensional considerations, we deduce that V! =L, (21,), V? = L_(11) and:

, forall O I 2. By [Smi82, Proposition], we have V° =

Vijg=Lo(ta+ 1) Lo@Y)  Lo(to): (3.22)
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If dim(VJ( )) = dim(V") for some eigenvalue 2 k of sonV, where i =0;1ori =2,
thens 2 Z(L) nZ(G), and so s = z with ¢c* & 1. In this case, as s actsoneach V', i =0;1; 2,

4i 3 4i

as scalar multiplication by s, = ¢l% ¢
=1
on V, not necessarily distinct are:

=c> ™, we determine that the eigenvalues of s

8

=c® with dim(Vs(c®)) dim(v°®) =7;
_¢ bwith dim(Vs(c ) dim(v?) = 6;
= ¢ 5 with dim(Vs(c %)  dim(V?) = 3;

As c* & 1, it follows that dim(Vs( )) 10 for all eigenvalues 2 k of s on V. Moreover,
fors 2 Z(L) withc¢*= 1, we have s 2 Z(G) and dim(Vs(c®)) = 10.

We can now assume that dim(VJ( )) < dim(V') for all eigenvalues 2 k of s on V
andall0 i 2. Wewrites =2z h, wherez 2 Z(L) and h 2 [L;L]. Since z acts
by scalar multiplication on V', i = 0;1;2, it follows that dim(V/i( n)) < dim(V') for all
i = 0;1;2, where |, is any eigenvalue of h on V'. Now, as p = 3, by Corollary 3.2.8,
we have dim(V°( )) 4 for all eigenvalues 1 of h on V°. Similarly, by Proposition 3.2.4,
respectively by Lemma 3.2.3, it follows that dim(V( n)) 4, respectively dim(V,2( 1)) 2,
for all eigenvalues  of h on V1, respectively on V2. This gives dim(Vn( 1)) 10 for all
eigenvalues 1, of h on V, therefore dim(Vs( )) 10 for all eigenvalues of sonV.

In conclusion, we have shown that dim(Vs( )) 10forall s 2 TnZ(G) and all eigenvalues

2 k of sonV, and that there exist pairs (s; ) 2 T nZ(G) k for which the bound is
attained. In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T n Z(G) and
all eigenvalues 2k ofsonV. m

Proposition 3.2.11. Let “* =5 and let V = Lg(¥3). Then for all s 2 T nZ(G) and all
eigenvalues 2k of sonV we have

dim(Vs( )  12:

In particular, dim(Vs( )) <dim(V) Iodim(V) for all s2 T nZ(G) and all eigenvalues
2k ofsonV.

Proof. We first note that the kG-module V is self-dual, as V. = Lg( wgo(13)), see [MT11,
Proposition 16.1], and wo(¥3) = 3. Now, let L =Ls and let = '3;. Then dim(V) = 20
and, by Lemma 2.4.4, we have es( ) = 1, therefore
Vipu=Vv® Vi
_ M
where V' = V ;. fori=0andi=1 By [Smi82, Proposition], we have V° =

2N 5
L, (Y3) and thus, by Lemma 2.4.3, we also have V! = (L_(13)) = L.(1,). It follows that

Vo= Lo(ts)  Li(t): (3.23)

If dim(VJ( )) = dim(V') for some eigenvalue 2 k of sonV, wherei =0ori =1,
then s 2 Z(L) nZ(G) and so s = z with c¢® & 1. In this case, as s acts on V' as scalar
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multiplication by s} = % ¢ ¢ =¢® ® and, as ¢® & 1, we determine that the distinct
j=1

eigenvalues of s on V are

(03 with dim(Vs(c®)) = dim(V ©) = 10;
¢ 3 with dim(Vs(c 2)) = dim(V %) = 10

We can now assume that dim(VJ( )) < dim(V') for all eigenvalues 2 k of s onV
and for bothi=0and i =1. We writes =z h, wherez 2 Z(L) and h 2 [L;L]. Since
z acts by scalar multiplication on V', i = 0;1, it follows that dim(V/( 1)) < dim(V") for
both i =0 and i = 1, where |, is any eigenvalue of h on V'. Now, by Proposition 3.2.5, we
have dim(V,}( v)) 6, hence dim(V,°( 1)) 6, as V! = (V?), for all eigenvalues 1 of h
on V! and VP respectively. It follows that dim(V,( )) 12 for all eigenvalues | of h on
V, therefore dim(Vs( )) 12 for all eigenvalues 2k of son V.

In conclusion, we have shown that dim(Vs( )) 12 < dim(V) dim(V) for all s 2
T nZ(G) and all eigenvalues 2k of sonV. m

We will require the following corollary in the proof of Proposition 3.2.13.
Corollary 3.2.12. Let “ =5 and let V = Lg(13). If
dim(Vs( )) =12
for some (s; ) 2T nZ(G) k, then one of the following holds:
(1) =1 and, up to conjugation, s = diag(d;d;d;d;d ?; d 2) with d® & 1.
(2) = 1 and, up to conjugation, s = diag(d;d;d;d; d 2; d ?)withd®& 1.
Moreover, if (s; ) 2T nZ(G) k are such that dim(Vs( )) & 12, then dim(Vs( ))  10.

Proof. Let L = Ls and recall from Proposition 3.2.11 that V is a self-dual kG-module with
Vi =V% Vi whereVe =L (13)and V! = L (1;). Moreover, we have dim(Vs( )) 12
forall s2 T nZ(G) and all eigenvalues 2k of sonV.

Let s2 T nZ(G) be such that dim(Vs( )) = 12 for some eigenvalue 2 k on V. Then,
as dim(V) = 20 and V is self-dual, it follows that = 1. Now, as V! = (V?) , by the
proof of Proposition 3.2.11, we have dim(VP( 1)) = 6 and dim(V( 1)) = 6. Secondly, by
Proposition 3.2.5, as dim(V.( )) = 6, one of the following holds:

(a) =c 2 1 ,and, up to conjugation, s = diag(c 1;C 1;C 1;C 2;C 2;C °)with , &
and 3= ,2
(o) =c 3 2and, up to conjugation, s = diag(c 1;C¢ 1;C 1;C 1;¢ ;% ¢ %) with $6& 1.

Ifsand areasin(a),thenc ® ; , = landso ,= <¢® ;. Moreover,since 3= ,3

and ;& 5, wededucethat ;=c ®and ,= c% Now,if ,=c thenc® &1, as ; &
». Similarly, if , = ¢° thenc® & 1. Letd =c 5 Then, up to conjugation, we have
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that s = diag(d;d;d;d;d ?;d 2) with d® & 1, respectively s = diag(d;d;d;d; d ?; d ?)
withd® & 1.

If sand areasin (b), wehavec 3 2= 1 Sete=c?! ;. Now,ifc? =1, then
¢ = e? and therefore ; =€% as ; =ec. Since 3 & 1, it follows that e®® & 1. Set d = °.
Then, up to conjugation, we have s = diag(d;d; d;d;d ?;d 2) with d® & 1. Analogously, one
shows that if c ® 2 = 1, then, up to conjugation, we have s = diag(d;d;d;d; d 2; d ?)
with d® & 1.

Therefore, we have shown that if (s; ) 2 T nZ(G) k are such that dim(Vs( )) = 12,
then either =1 and, up to conjugation, s = diag(d;d;d;d;d ?;d ?)withd®* & 1,or = 1
and, up to conjugation, s = diag(d;d;d;d; d ?; d ?)withd*& 1.

To prove the last statement of the result, we assume by contradiction that there exist
(s; )2TnZ(G) Kk such that dim(Vs( )) = 11. First, we argue as in the previous case to
determine that = 1. Secondly, for dim(Vs( 1)) = 11 to hold, by the proof of Proposition
3.2.11, we either have dim(V2( 1)) = 6 and dim(V&( 1)) =5, or dim(VS( 1)) = 5 and
dim(V( 1)) = 6. However, since V! = (V?) , neither of the two cases holds. We conclude
that for (s; ) 2T nZ(G) k with dim(Vs( )) & 12, we have dim(Vs( )) 10. m

Proposition 3.2.13. Let * =6 and let V = Lg(¥3). Then for all s 2 T nZ(G) and all
eigenvalues 2k of s onV we have

dim(Vs( )) 20

where there exist (s; ) 2T nZ(G) k fogwhich equality holds.
In particular, dim(Vs( )) <dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues
2k ofsonV.

Proof. Let L = Lg and let = 13, Then dim(V) = 35 and, by Lemma 2.4.4, we have
es( ) = 1, therefore:
Vijpu=Vv® v

_ M

where V' = V ;, fori=0andi=1 By [Smi82, Proposition], we have V° =
2N ¢

L. (¥3). Since the weight ( 3 4 5 6) Jro= 1, admits a maximal vector in

V1, it follows that V! has a composition factor isomorphic to L_(!,). By dimensional
considerations, we deduce V! =L (!,) and

Vijg=Li(ts)  Lo(to): (3.24)

If dim(VJ( )) = dim(V") for some eigenvalue 2 k of s on V, where i = Oori=1,
then s 2 Z(L) nZ(G), and so s = z with ¢/ & 1. In this case, as s acts on V' as scalar

multiplication by st = % ¢ 7 =¢® " and, as ¢ & 1, we determine that the distinct

i=1
eigenvalues of s on V are

(c3 with dim(Vs(c?)) = dim(V °) = 20;
¢ 4 with dim(Vs(c 4)) =dim(v?!) = 15:
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We can now assume that dim(V.( )) < dim(V ') for all eigenvalues 2k of sonV and
forbothi=0andi=1. Wewrites=2z h,wherez 2 Z(L) and h 2 [L;L]. Since z acts by
scalar multiplication on V', i = 0;1, it follows that dim(V( n)) < dim(V") for both i =0
and i = 1, where |, is any eigenvalue of h on V'. Now, by Proposition 3.2.5, respectively
by Proposition 3.2.11, we have dim(V,}( 1)) 10, respectively dim(V,2( 1)) 12, for all
eigenvalues 1, of h on V!, respectively on V°. It follows that dim(Vn( 1)) 22 for all
eigenvalues  of honV, hence dim(Vs( )) 22 for all eigenvalues 2k ofsonV.

Assume there exists (s; ) 2 TnZ(G) k for which dim(Vs( )) =22. Wewrites =z h,
where z 2 Z(L) and h 2 [L;L]. Now, as dim(Vs( )) = 22, we have dim(V2( )) = 12 and
dim(V&( )) = 10. Moreover, as dim(VS( )) = 12, it follows that h admits an eigenvalue

h on V0 with the property that = c¢® , as z acts on V° as multiplication by c3, and
dim(V,2( n)) = 12. Thus, by Corollary 3.2.12, we either have =1 and, up to conjugation,
h = diag(d;d;d;d; d ?;d ?;1) with d® & 1, or , = 1 and, up to conjugation, h =
diag(d;d;d;d; d 2; d ?;1) with d®> & 1. We first consider the case when , = 1 and
h = diag(d;d; d;d; d ?;d ?;1) with d® & 1. We want to determine the eigenvalues of h on
V1. To achieve this, we use (3.7) and we see that the eigenvalues of h on V1, not necessarily
distinct, are d?, with multiplicity at least 6, d * with multiplicity at least 1, and d ! with
multiplicity at least 8. As d® & 1, it follows that dim(V,}( 1)) 8 for all eigenvalues 1, of h
on V1, thus dim(VsO( )) 8 for all eigenvalues of s on V!, contradicting our assumption.
Analogously, one shows that when , = 1 and h = diag(d;d;d;d; d 2; d ?;1) with
d® & 1, we also get dim(Vs( ))  20. Therefore, dim(Vs( )) 21 for all eigenvalues 2 k
ofsonV.

Assume there exists s 2 T n Z(G) that admits an eigenvalue 2 k on V for which
dim(Vs( )) = 21. Then, either dim(VS( )) = 12 and dim(VZ( )) =9, or dim(V2( )) = 11
and dim(VZ( )) = 10. If dim(V2( )) = 12, we have seen earlier that dim(Vs( )) 20,
while, by Corollary 3.2.12, we know that the second case does not occur. It follows that
dim(Vs( )) 20foralls2T nZ(G) and all eigenvalues 2k ofsonV.

In conclusion, we have shown that dim(Vs( )) 20 for all s 2 TnZ(G) and all eigenvalues

2 k of sonV, and that there exist pairs (s; )2 T nlg(G) k for which the bound is
attained. In particular, we have dim(Vs( )) < dim(V) dim(V) for all s2 T nZ(G) and
all eigenvalues 2k ofsonV. ]

Proposition 3.2.14. Let * =7 and let V = Lg(¥3). Then for all s 2 T nZ(G) and all
eigenvalues 2k of sonV we have

dim(Vs( )) 35

where there exist (s; ) 2T nZ(G) k fogiwhich equality holds.
In particular, dim(Vs( )) <dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues
2k ofsonV.

Proof. Let L = L; and let = 3. Then dim(V) = 56 and, by Lemma 2.4.4, we have
e;( ) = 1, therefore:
VijLyg=Vv? Vv
_ M
where V' = V ;, fori=0andi=1 By [Smi82, Proposition], we have V° =
2N 7
L. (13). Since the weight ( 3 4 5 6 7) Jro= 1, admits a maximal vector in
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V1, it follows that V! has a composition factor isomorphic to L (!,) and therefore dim(V 1)
dim(L_(?,)) = 21. By dimensional considerations, we deduce V! =L, (!,) and

Vo= Lo(ts)  Li(t): (3.25)

If dim(VJ( )) = dim(V'") for some eigenvalue 2 k of sonV, wherei=0ori=1,
then s 2 Z(L) nZ(G), and so s = z with ¢® & 1. In this case, as s acts on V' as scalar

multiplication by st =  ¢% ¢ 8 =¢3 8 and, as c® & 1, we determine that the distinct
i=1
eigenvalues of son V are

« |
¢ with dim(Vs(c®)) = dim(Vv °) = 35;
¢ 5 with dim(Vs(c %)) = dim(V1) = 21:

We can now assume that dim(VJ( )) < dim(V ') for all eigenvalues 2k of sonV and
forbothi=0andi=1. Wewrites=2z h,wherez 2 Z(L) and h 2 [L;L]. Since z acts by
scalar multiplication on V', i = 0;1, it follows that dim(V( n)) < dim(V?) for both i =0
and i = 1, where 4 is any eigenvalue of h on V'. Now, by Proposition 3.2.13, respectively
by Proposition 3.2.5, we have dim(V,°( »)) 20, respectively dim(V( n)) 15, for all
eigenvalues 1, of h on V°, respectively on V1. It follows that dim(Vy( n)) 35 for all
eigenvalues 1, of h on V, therefore dim(Vs( )) 35 for all eigenvalues 2k of son V.

In conclusion, we have shown that dim(Vs( )) 35foralls 2 TnZ(G) and all eigenvalues

2 k of sonV, and that there exist pairs (s; ) 2 T nZ(G) k for which the bound is
attained. In particular, we have dim(Vs( )) < dim(V) dim(V) for all s2 T nZ(G) and
all eigenvalues 2k ofsonV. m

Although the following result is not required for the proof of Theorems 3.2.1 and 3.2.2,
it is a nice a generalization for all © 6 of Propositions 3.2.13 and 3.2.14.

Proposition 3.2.15. Let * 6 and let V = Lg(¥3). Then, forall (s; ) 2T nZ(G) k
we have
¢ ¢ 1
6

dim(Vs( ))

where there exist pairs (s; )2 T nZ(G) k for whigh equality is attained.
In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. We will use induction to prove this result. The base step for * = 6 is given by
Proposition 3.2.13. We thus assume that ©* 7 and that the statement holds forall r  * 1,
and we proceed to prove it for “.

Set = 13 and note that dim(v) = C2CD By | emma 2.4.4, we have e-( ) = 1,
therefore:
Vijpg=Vve vh
. M
where V' = V ;. fori=0andi=1 By [Smi82, Proposition], we have V° =
2N -
L..(Y¥3). Since the weight ( 3 <) j;o= 1, admits a maximal vector in V!, it
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follows that V! has a composition factor isomorphic to L,.(!,) and therefore dim(V?)
dim(L..(1,)) = &2, By dimensional considerations, we deduce V* = L,.(1,) and

2
Vo= L (Ys)  Le(T2): (3.26)

If dim(VJ( )) = dim(V") for some eigenvalue 2 k of sonV, wherei =0ori=1,
then s 2 Z(L:) nZ(G), and so s = z with ¢"** & 1. In this case, as s acts on V' as scalar

multiplication by s = % ¢ (DI =¢3 C+Dignd, as ¢"*! & 1, we determine that the
j=1
distinct eigenvalues of son V are

¢ with dim(Vs(c®)) = dim(V ) = %
¢ " with dim(Vs(c? 7)) = dim(v ) = &2

We can now assume that dim(VJ( )) < dim(V ') for all eigenvalues 2k of sonV and
for bothi =0andi =1 We writes=2z h, wherez 2 Z(L:) and h 2 [L-;L:]. Since
z acts by scalar multiplication on V', i = 0;1, it follows that dim(V,/( )) < dim(V') for
both i =0 and i = 1, where 4 is any eigenvalue of h on V'. Now, by induction, we have
dim(Vo( n)) 22D while, by Proposition 3.2.5, we have dim(V,i( 1)) &250,
for all eigenvalues n, of h on V°, respectively on V 1. It follows that dim(Va( 1)) &2

for all eigenvalues 1, of h on V, therefore dim(Vs( )) 282 for all eigenvalues 2 k
ofsonV.

In conclusion, we have shown that dim(Vs( )) 282 for all s 2 T nZ(G) and all
eigenvalues 2 k of s on V and that there exist pairs (s; ) 2 TnZ(G) k for which
the bound is attained. Moreover, as th@dnequality 0 <3 5° 2holds for all ©* 86,

it follows that &2 2 < € DD C DD for all © 6, therefore dim(Vs( )) <

dim(V) Iodim(V) for all s2 T nZ(G) and all eigenvalues 2k ofsonV. O

We conclude this subsection by noting that Proposition 3.2.9 completes the proof of
Theorems 3.2.1 and 3.2.2 for simple simply connected linear algebraic groups of type A;.
Furthermore, for G of type A, * 2, Propositions 3.2.10 through 3.2.14 cover all the
irreducible kG-modules corres-ponding to p-restricted dominant weights featured in Table
2.7.1. This completes the proof of Theorems 3.2.1 and 3.2.2, respectively.

3.3 Eigenspace dimensions for unipotent elements

In this section we prove the following two theorems, analogs of Theorems 3.2.1 and 3.2.2 in
the case of unipotent elements. As in the semisimple case, the proofs will be given in a series
of results, each treating one of the candidate-modules. In Subsection 3.3.1, we determine
rgax dim(V,(1)) for the families of irreducible kG-modules V. = Lg( ) with 2 F#,

u2Gynflg
where FA* = f1,:21,;1,: 1, + 1.9, see Subsection 2.7.1. For the irreducible kG-modules
V =Lg( ), where either *=1and =m!;with3 m 8,or“ 2and isfeatured in
Table 2.7.1, we determine 2r(r31a>]gl dim(Vy(1)) in Subsection 3.3.2.

u2Gynflg
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Theorem 3.3.1. Let k be an algebraically closed field of characteristicp 0 and let G be a
simple simply connected linear algebraic group of type A<, * 1. Let T be a fixed maximal
torusin G. If “=1,letV =Lg(m!;), wherel m 8, and assume thatp =0 or p>m.
If < 2, letV = Lg( ), where 2 F” or appears in Table 2:7:1. Then, there exist
non-identity unipotent elements u 2 G for which

dim(Vy(1)) dim(V) IOW(\/);
if and only if “, and p appear in the following list:
1) < 1, =l andp O;
2 ¢ 4, =landp O.

Theorem 3.3.2. Let k be an algebraically closed field of characteristic p 0 and let G be
a simple simply connected linear algebraic group of type A<, ©* 1. Let T and V be as in
Theorem 3:3:1. Then the value of max dim(Vy(1)) is given in the table below:

u2Gynflg
Vv Char. Rank max dim(Vy(1))
u2Gunflg
La(!1) p 0 1 ‘
YLg(21,) P62 <1 D
"Lo(12) p 0 © 3 —
Lot + 1) p-*+1 T2 2
V(1 + 1) pjc+1 £ 2 21
YLg(M!1),3 m 8 | p=0,orp>m ‘=1 1
Vlg(1, + 1)) p=3 ‘=3 8
Lo (1s) p 0 ‘=567 (DHC 240
Table 3.3.1: The value of max dim(Vy(1)).
u2Gunflg

In particular, for each V in Table 3.3.1 labeled as YV, respectively as *V with 5, we
have dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent elements u 2 G.

3.3.1 The families of modules

For the rest of this chapter, we fix the following hypothesis on unipotent elements in G:

M >
(Hy) : every u 2 Gy n f1g has Jordan form on W given by Jli; where niri = “ +1;

nj?
i=1 i=1

ri lforalll i mandn; 2:

Lemma 3.3.3. Let V = Lg(!;). Then for all non-identity unipotent elements u 2 G we
have
dim(Vu(1)) 5
where equality holds if and only if the Jordan form of uon W is J, J; *.
In partiﬁular, there exist non-identity unipotent elements u 2 G for which dim(V,(1))
dim(V) dim(V).
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Proof. To begin, we note thatV = W as kG-modules. Now, let the unipotent elementu 2 G
be as in (YH). Let uy denote the action of u on W. Then:

>
dim(V,(1)) = dim(W,,, (1)) = ri: (3.27)

i=1

As u & 1, it follows that dim(Vy(1)) °, therefore, we have shown that dim(V (1)) *
for all non-identity unipotent elements u 2 G. To complete the proof, we will identify the
unipotent classes in G for which equality holds. For this, we assume that dim(Vy(1)) = *

>

Then, by (3.27) and keeping in mind that niri = “ + 1, we have:

i=1

> > >
1= N;r; ri = (ni 1)ri (328)

i=1 i=1 i=1

and, in particular, 1 (n; 1)ry n; 1, hencen; =2,asn; 2. Furthermore, by (3.28)
>
and keeping in mind that r; 1, we deduce that r; =1 and (nj  1r; = 0. It follows

that m 2. If m=1, then,asn; =2 and r; =1, we have * = 12, in which case the Jordan
formofuon W isJ,. f m=2,thenn,=1and r, =“ 1, in which case the Jordan form
ofuonW isJ, J; % Conversely, let u be a unipotent element of G whose Jordan form
onW isJ, J; . Then, by (3.27), we have dim(Vu(l)) =

In conclusion, we have shown that dim(V,(1)) * for all non-identity unipotent elements
u 2 G and that equality holds if andIBnIy if the Jordan formof uon W is J, J; *. NSN Iet
u be such anelementof G. Then,as “+1 1forall* pl it follows that ©  “+1
for all © 1 and, consequently, dim(Vy(1)) dim(V) dim(V). D

Proposition 3.3.4. Let * 3 and let V = Lg(!,). Then for all non-identity unipotent
elements u 2 G we have

2 ‘4 2.

—

Moreover, we have equality if and only if one of the following holds:

dim(Vy,(1))

(1) ¢ =3 and the Jordan form of u on W is one of J2 and J, J?Z.
(2) © 4 and the Jordan form of uon W is J, J; !

In particular, in both cases * = 3 and /5= 4 there exist non-identity unipotent elements
u 2 G for which dim(V, B)) dim(V) dim(V). On the other hand, for * 5 we have
dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent elements u 2 G.

Proof. To begin, we note that, by Lemma 2.8.1, we have the following kG-module isomorphism:
V = ~2(W). Now, let the unipotent element u 2 G be as in (YHy).
We first assume that the Jordan form of u on W is J-4;. Then, by applying either Lemma

; . . ‘+1 “+ 1+
2.9.4 if p & 2, or Lemma 2.9.5 if p = 2, we have dim(Vy(1)) = = ———, where

2 2
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=0if “isodd, or = 1if“iseven. Since0 < (* 1) for all © 3, it follows that
2 c

dim(Vy(1)) < —+. We can now assume that the Jordan form of u on W consists of
at least two blocks.

Secondly, we consider the case when exactly one block, J,,, appearing in the Jordan form
of uon W, is nontrivial. Then2 n; “and we write W =W; W,, where dim(W;) =n;
and u acts as J,, on Wy, and dim(W;) = “+1 n; and u acts trivially on W,. AsV = ~3(W),
we have the following k[u]-modules isomorphism:

=MW1 (W Wp) M (Wo);
which gives
dim(Vy(1)) = dim((M*(W1))u(1)) +dim((Wy - W)y (1)) + dim((M*(W2))u(D)): (3.29)

As u acts as a single Jordan block on le by Lemma 2.9.4 if p & 2, or by Lemma 2.9.5
+
if p = 2, we have dim(("?(W1))u(L)) = % =M -
= 1if n, is odd. As u acts trivially on W,, it also acts trivially on ~?(W,) and so
J‘+1 ny

dim((™2(W,))u(1)) = ¢ n)C m+ 1). Lastly, as u acts as Jn, 1 on W; Wy,
by Lemma 2.9.4, we have dim((W; W;)y(1)) =“+1 n;. Substituting in (3.29) gives

, where = 0 if n; is even, or

i + & & + 1

dim(Vy (1)) = ng +o41 N+ ( nl)(2 n; +1)
22N +3° 2ng+nf+2+
B 2
_ o t+2 i 2'ng 2m+4T+
-2 2

One checks that the inequality
n: 2'ng 2np+4*+ 0 (3.30)

holds foball n 2 [“+1 p(‘ 1)2p; ‘+1+p(‘ 1)2 Idand all 1. Since
“+1+ (- 12 >‘and‘+1 12 ‘41 ¢ 1)2=2 as 0,

it follows that, in particular, Inequality (3.30) holds for all 2 n; “and all * 3.
2

Therefore dim(Vy(1)) 5

WisJd,, J;7t ™ where2 n; . Moreover, equality holds if and only if n, = 2.
Lastly, we assume that the Jordan form of u on W admits at least two nontrivial blocks.
Then2 n; ° 1andwewrite W =W, W,, where dim(W,) =n; and u acts as J,,
(\V4|

for all unipotent elements u of G whose Jordan form on

on W;, and dim(W,) = “+1 n; and u acts as J/* * J on W,. Now, by (3.29), to

i=2
determine dim(Vy(1)) comes down to determining dim(("2(W,))u(1)), dim((W;  W,)u(1))
and dim((’\z(Wzo))u(l)). Again, either by Lemma 2.9.4 if p & 2, or by Lemma 2.9.5if p = 2,
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: Jp, K
we have dim(("™?(W,))u(1)) = % _ n12+ &

\V4|
odd. As u acts as (Jn, Jn,)™ ! (Jn, Jn)TonW, W, by Lemma 2.9.4, we have
i=2

,Where¢ =0ifnjiseven,or& = 1ifngis

) ) > >
dim((W; W,).1)=(r1 L)n;+ niri = n;+ niri=°“+1 ng (3.31)

i=2 i=1

Substituting in (3.29) gives:
. ny + & . ) 2 0
dim(Vu(1)) = +5+1  np+dim((M(Wo)u(1)): (3.32)
L : . . 2442 .

Using induction, we will show that dim((~?(W))u(1)) — where dim(W) =

“+ 1, for all * 3 and all unipotent elements u of G whose Jordan form on W admits at
least two nontrivial blocks . First, let * = 3. Then u has Jordan form J2 and thus acts as a
single Jordan block on W2°. By Lemma 2.94 if p & 2, or by Lemma 2.9.5 if p = 2, we have
dim(("2(W,))u(1)) = 1. Substituting in (3.32) gives dim(("2(W)).(1)) = 4.
We now assume that © 4. If u acts on W, as a single Jordan block, we have shown earlier
3 2 [ + 2
that dim((~W5)u() < )
W, consists of at least two blocks and if exactly one of these blocks is nontrivial, then we

0 3 2 3 + 2 .
have shown earlier that dim(("2W.), (@) " M) *2 1 o it the Jordan
form of the action of u on W, admits at least two nontrivial blocks, then, by induction,

it follows that dim((A2(W)u() MY (¢ n)+2

. If the Jordan form of the action of u on

. In all cases, substituting in

2
(3.32) gives:
+ I3 2 3 +
dim(V, (1)) n12 &+.+1 n1+( ny) 2( ni) +2
22+ ni+ 4+
B 2
2 ‘+2+n§ 2N +2°+2+4
2 2 '
One checks that the inequality
nf 2'm+2°+2+4<0
[ p‘ [ . [ p‘ [ [ H [
Eplds for all n; 2 ( 22 2 g+ 22 2 &) andall 3. Since “ +
22 2 &>° 1landsince * 202 2 d<2 ab6+& <2 forall ¢ 4,

it follows that, in particular, the inequality holds forall2 n; * Zlandall ©* 4. We
2 3

. +2 .
deduce that dim(V,(1)) < — for all © 4 and all unipotent elements u of G whose
Jordan form on W admits at least two nontrivial blocks. This completes the induction.
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<2 [
Having treated all possible cases, we conclude that dim(V,(1)) Tﬂ for all non-
identity unipotent elements u 2 G. Moreover, we have shown that for * = 3 equality holds
if and only if the Jordan form of u on W is one of J2 and J, J?; while, for © 4,
equality holds if and only if the Jordan form of u on W is J, J, . In particular, since
the inequality 0 < ‘2 5° + 2 holds for all 9 it follows that in both cases * = 3
242 (D) (D)
2 2 2
unipotent elements u 2 G, for example those whose Jordan form on W is J, J, %, for

N <2 c
which dim(Vy(1)) dim(V) Iodim(V). On the other hand, for * 5 we have S <

and © = 4 we have and thus there exist non-identity

. 2
( ;1) ¢+1) and we conclude that dim(Vy(1)) < dim(V) IDdim(V) for all non-
identity unipotent elements u 2 G. m

Proposition 3.3.5. Let k be an algebraically closed field of characteristic p & 2. Let V =
Ls(21,). Then for all non-identity unipotent elements u 2 G we have

(+D).

dim(Vy(1)) 5

where equality holds if and only if the Jordan form p§u on W is J; J, L
In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. We first note that, as p & 2, by Lemma 2.8.1, we have V = S?(W), as kG-modules.
Let the unipotent element u 2 G be as in (YHy).
We first assume that the Jordan form of u on W is J-4,. Then, by applying Lemma 2.9.4,

: ‘+1 ‘+1 e
asp & 2, we get dim(Vy(1)) = “+1 5 = 5 , where = 11if “is even, or
el . o . . ‘+1 ‘(“+1)
=0 if “ is odd. Since 0 1+ holds for all 1, it follows that > 5

‘(- +1)

and so dim(V,(1))

form on W is J-.;. Moreover, we have equality if and only if > 1+ =0, hence, if and
only if * =1 and u has Jordan form J, on W. We can now assume that the Jordan form of
u on W admits at least two blocks and we note that, as u & 1, we then have © 2.

We consider the case when exactly one block, J,,, appearing in the Jordan form of u on
W, is nontrivial. Then u has Jordan form J,, J;"* ™ on W, where2 n; *, and we
write W = W; W, where dim(W;) = n; and u acts as J,, on Wy, and dim(W;) = “+1 n;
and u acts trivially on W5. Then, as k[u]-modules, we have

for all © 1 and all unipotent elements u of G whose Jordan

V =8W) (Wi W) S(W,)
and this gives:

dim(Vu(1)) = dim((S*(W1))u(1)) + dim((W1  W,)y (1)) + dim((S*(W2))u(1)):  (3.33)
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As u acts as a single Jordan blﬁck of size n; on Wy and since p & 2, by Lemma 2.9.4, we
. n n

have dim((S*(W1))u(1)) = ?1 = 12

even. Furthermore, as u acts trivially on W, it also acts trivially on S?(W,), and we have

[ < <2 < 2 €
dim((S3(W2))u(1)) = (1 n1)2( 2 M) _ 2 n1+n12+3 3 +2 Lastly, u

acts as Jn, J;7* ™ on W; W, and so, by (3.31), dim((W; W,),(1)) = “+1 n,.
Substituting in (3.33) gives:

,Where = 1ifn;isodd,or =0ifngis

22 +n?+3° 3n;+2

n, + 5
_ (D nd 2 +40 dng+4
2 2
We write
nZ 2‘ng+4¢ 4n; +4 :n§ 2°ny 2Ny +4° + +4 2n; 2
2 2 2

and, by (3.30), which holds forall 2 n; “andall © 2, we have

nZ 2'ng+4° 4n;+4+ 4 2n; 2

2 2
Now, since 2 n, and since = 1 or = 0 according to whether n; is odd or even,
we have 221 2 0. Therefore i 2+ 4‘2 4ny + 4 0 and, consequently,
dim(Vy(1)) C ; ) for all © 2 and all unipotent elements u of G whose Jordan form on
WisJy,, J;' ™, where2 n; ‘. We note that equality holds if and only if we have
equality in (3.30) and # = 0, hence, if and only if n; = 2, as in the statement of
the result.

Lastly, we consider the case when the Jordan form of u on W admits at least two nontrivial
blocks. We note that in this case we have * 3 and that 2 n, “ 1. We write
W =W, W,, where dim(W,) = n; and u acts as J,,, on W, and dim(W,) = “+1 n; and

M

u acts as J! ! Jnion W2°. By (3.33) it follows that in order to determine dim(V,(1))

we only need to krllof/v dlm((Sz(Wl)) (1)), dlm((W Wz) (1)) and dlm((Szjwzp() (1)) We

can apply Lemma 2.9.4, as p & 2, to deduce that dlm((Sz(Wl))u(l)) =m 7 = 2 ,
where & = 1 if ny isodd, or & = 0 if ny is even. Furthermore, by (3.31) we have dim((Wf

W,)u(1) = “+1 ny. It follows that:
&

dim(Vu(D) = "=+ + 1 ny +dim((S2(W5))u(D)): (3.34)

i i i ‘(“+1 i
Inductively, we will show that dim((S*(W))u(1)) < ( ;_ ), where dim(W) = “ + 1, for
all © 3 and all unipotent elements u of G whose Jordan form admits at least two nontrivial
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blocks on W. First, let * = 3. Then u has Jordan form J2 and thus acts as a single Jordan
block on W,. By applying Lemma 2.9.4, as p & 2, we have dim((S2(W,)).(1)) = 1 and
substituting in (3.34) gives dim((S?(W)).(1)) = 4.

We now assume that * 4. If u acts on W, as a single Jordan block, we have shown

earlier that dim((S2(W,))u(1)) < ¢ nl)(‘2+ L

u on W, consists of at least two blocks and if exactly one of these blocks is nontrivial, then
: . Cong)(t ong+1 ,

we have shown earlier that dlm((SZ(WZO))u(l)) ( 1)( ! ). Lastly, if the Jordan

form of the action of u on W, admits at least two nontrivial blocks, then, by induction, we

have dim((S%(W,)).(1)) < ¢ ”1)(‘2 n; + 1)

. If the Jordan form of the action of

. In all cases, substituting in (3.34) gives:

dlm(Vu(l)) n12 4 +°+1 n, + (‘ nl)(‘2+ 1 nl)

243 2'ng 20 +n2+2 §

2
_ ‘(‘+1)+n§ 2'ng 2 +2°+2 &
2 2 '
2 < + 2¢ + 2 < +4° + <
We write ny 2°ny 2n;+2 2 & _m 2°ng  2n; +4 &+2 26 2 By (3.30),

2 T p_ P
which holds for all ny 2 [*+1 (“ 12 & “+1+ (* 1?2 ¢&landall® 1, hence,in

. nZ 2°ng 2m+2°+2 &
particular, holds forall2 n; “ 1andall © 4, we have L ! 1

2
2 26 2 : .
— Furthermore, as * 4 and asé& =0 or & = 1 according to whether n; is
2 2% 2f 2 2 2n; +2°+2
even or odd, we have + <0. It follows that "L~ 21 L and,
. ‘(*+1 .
consequently, dim(Vy(1)) < ( 5 ) for all © 4 and all unipotent elements u of G whose

Jordan form on W admits at least two nontrivial blocks. This completes the induction.

i . . ‘(“+1
Having treated all possible cases, we conclude that dim(Vy(1)) ( 5 ) for all non-

identity unipotent elements u 2 G. Moreover, we have shown that equality holds if and only
if the Jordan form of u on Y. is J J; 1 Since 0 < 2+ “forall © 1, it follows that
¢+ _(+DE+2) (+1)(+2)

2 p 2 2
dim(V) dim(V), for all non-identity unipotent elements u 2 G. This completes the proof
of the proposition. m

for all © 1 and, consequently, dim(Vy(1)) <

Before we proceed with the proofs of Theorems 3.3.1 and 3.3.2, we recall that the
irreducible kG-module Lg(Y; + !-) is a composition factor of the kG-module W W , see
Lemma 2.8.1. This is a relevant fact, since by Lemma 2.9.4, we can calculate the dimension
of the fixed point space of a unipotent elementu 2 Gon W W . Furthermore, Theorem 6:1
of [Kor19], shows how to deduce dim((Lg(; + !-))u(2)) from dim((W W )y(1)). Before
we give this result, we remind the reader that ry(u), where u 2 G is a unipotent element and
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t 1, is the number of Jordan blocks of size t appearing in the Jordan decomposition of u,
and that , is the p-adic valuation on the integers.

M
Theorem 3.3.6. [Korl9, Theorem 6.1] Let u 2 G be a unipotent element and let Jn

i=1
be the Jordan form of u on W, wherem 1, n; landr; 1foralll 1 m. Set

= p(ged(ng;:ii;nm)). Let u’ be the action of uon W W and let uy be the action of u

onV :=Lg('y + ). Then the Jordan block sizes of uy are determined from those of u’ in
the following way:

(@) ifp-“+1, then ri(uy) = ri(U) 1 and re(uy) = re(u) for all t & 1.

(b) ifpjc+1and =0, then ri(uy) =ri(U) 2 and re(uy) = re(u) for all t & 1.
() ifpj“+1land =>0:

(c.l) ifpj ,thenr, (u)=r, (U) 2,1, 1(uy)=2and r(uy) = r(u’) for all
t&p;p 1.
(c.2) ifp- andp >2,thenr, (uy) =r, w) 1, rp, 2(uy) =1and ry(uy) =

r(u) forallt&p;p 2.
(©.3) if p-

1 and p =2, then ry(uy) = rp(u") 1and re(uy) = ryu’) for all t & 2.
Remark 3.3.7. By Theorem 3:3:6, we determine that:

(D) ifp-*+1, then dim(Vy(1)) =dim((W W )(1) 1;

@ ifpj“+1and =0, then dim(Vy(1)) =dim((W W (1) 2;

@) ifpj“+1, =>0and

B1) pj : 1, then dim(Vy(2)) =dim((W W )y(2));
B.2) p- 1 and p > 2, then dim(Vy(1)) =dim((W W )yu(2));
3.3) p- 1 and p =2, then dim(Vy(1)) =dim((W W ),(1) 1.

Proposition 3.3.8. Let * 2 and let V' =W W . Then for all non-identity unipotent
elements u 2 G we have

dim(v (1)) ?+1;

where equality holds if and only if the Jordan form of uon W is J, J; *.
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Proof. Let the unipotent element u 2 G be as in hypothesis (YH,). We first consider the
case when the Jordan form of u on W is J-,,. Then, u acts on W as J-,; and, by applying
Lemma 2.9.4 and keeping in mind that * 2, we deduce that

dim(V (1)) = “+1<“2+1; (3.35)

We can now assume that the Jordan form of u on W admits at least two blocks.

Secondly, we consider the case when exactly one block, J,,, appearing in the Jordan form
of u on W, is nontrivial. Then u has Jordan form J,, J;** ™on W, where2 n; °,
and we write W = W; W,, where dim(W;) = n; and u acts as J,, on W;, and dim(W;) =

‘+1 ny;and u acts trivially on W,. Then, as k[u]-modules, we have:
Vi= (Wi W) (Wh W) (We W) (W, W) (3.36)

SinceW; W, =(W; W,) and since the action of uon (W; W;) has the same Jordan
form as the action of u on W; W, , it follows that

dim(Vy (1) = dim((Ws W, )u(D) +2dim((W;  W,)u(1)) +dim((W,  W,)u(): (3.37)

Since u acts as J,, on Wy, it also acts as J,, on W, and, by Lemma 2.9.4, we get dim((W;
W, )u(1)) = n;. Moreover, as u acts as J,"* ™ on W,, it also acts as J;** "™ on W,, and
sodim((W, W,)u(1))=("+1 ny)% Lastly,asuactsasJ,, J;7* ™onW; W,, we

have dim((W; W,)u(1)) = “+1 n;. Substituting in (3.37) gives:

dim(V,()) =ny+2(* +1 n)+ (" +1 ny)?
=2+1+n2 2'n; 3ng+4°+2 (3.38)
=2+1+(; 2(n, 2° 1):

As2 n; “,wehave (n, 2)(n; 2° 1) 0 and therefore dim(V (1)) “2+1 for
all © 2 and all unipotent elements u of G with Jordan form J,, J,"* ™ on W, where
2 n; ‘. Moreover, equality holds if and only if (n; 2)(n; 2° 1) =0, hence, if and
only if ny = 2.
We can now assume that the Jordan form of u on W admits at least two nontrivial blocks.
We note that, in this case, we have * 3and2 n; * 1. WewriteW =W, W,, where
M

dim(W;) = n; and u acts as J,, on Wy, and dim(W,) = “+1 n;and uactsas J* * gl

i=2
on W,. By (3.37), to determine dim(V, (1)) we only need to know dim((W; (W,) )u(1)),
dim((W, (W,) )u(1)) and dim((W, (W,) )u(1)). As u acts as J,,, on W, by Lemma 2.9.4,

MM
we have dim((W; (W) )u(1)) = ni. We note that since u acts as J\* * I on W, it
i=2
v 0 v
also acts as Jf* * Jfion (W,) . Therefore, u acts as (Jn, Jn,)™ * (Jn, JIn)"
i=2 i=2

onW, (W,) and, by (3.31), we have dim((W, (W,) )u(1)) = “+1 n;. Substituting in
(3.37) gives:

dim(V,()) =ny+2(" +1 ) +dim((W, (W,) )u(D): (3.39)
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Using induction, we will show that dim((W W ),(1)) < >+ 1, where dim(W) = “ +1,
for all © 3 and all unipotent elements u of G whose Jordan form on W admits at least two
nontrivial Jordan blocks.

First, assume that * = 3. Then u has Jordan form JZ on W and thus acts as J, on W,
and (W,) , respectively. Thus, by Lemma 2.9.4, we have dim((W, (W,) )u(1)) = 2 and
substituting in (3.39) gives dim(VLf(l)) =8.

We can now assume that * 4. If u acts on W, as a single Jordan block, we have
shown earlier that dim((W, (W,) )u(1)) < (* n;)2+ 1. If the action of u on W, consists
of at least two blocks and if exactly one of these blocks is nontrivial, then we have seen
earlier that dim((W, (W,) )u(1)) (* ny)? + 1. Lastly, if the Jordan form of the
action of u on W, admits at least two nontrivial blocks, then, by induction, it follows that
dim((W, (W,) )u(D)) < (* n1)?+1. Inall cases, substituting in (3.39) gives:

dim(V,(1)) m+2(+1 n)+( n)?+1
=2+1+(n] 2'M+2°+2 ny)
=“2+1+[n(ny H+(+1@2 ny)l:

Since2 n; ¢ 1, it follows that ny(n; ‘) <Oand (“+1)(2 n;) 0. Therefore
n(n, )+C+12 n)<Oforall* 4andall2 n; * 1. We deduce that
dim(Vlj(l)) < “2+1forall * 4 and all unipotent elements u of G whose Jordan form on
W admits at least two nontrivial blocks. This completes the induction.

In conclusion, we have shown that dim(VLf(l)) ‘241 forall * 2 and all non-identity
unipotent elements u 2 G, where equality holds if and only if the Jordan form of u on W is
J, J; L O

Corollary 3.3.9. Let * 2,p-“+1andletV = Lg(!; + ). Then for all non-identity
unipotent elements u 2 G we have

dim(Vu(1)) %

where equality holds if and only if the Jordan form pfu on W is J, J, L
In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. Set V' =W W and note that, by Lemma 2.8.1, since p - “ + 1, we have V' =
V  Lg(0) and, consequently, dim(V,(1)) = dim(VLf(l)) 1. We now use Proposition 3.3.8
to deduce that dim(Vy(1))  “? for all non-identity unipotent elements u 2 G. Moreover, we
achieve equality if and only if dim(VLf(l)) = “2+ 1, hence, again by Proposition 3.3.8, if and
only if the Jordan form of uon W is J, J; *.

In conclusion, we have shown that dim(V,(1))  “? for all non-identity unipotent elements
u 2 G and that equality holds if and only if the Jordan form of u on W is J, Eﬂ ' In
particular, since 0 < 32 2“forall * 2, it follows that the inegyality ® < “2+2¢ = 2+ 2°
holds for all © 2 and, consequently, dim(V,(1)) < dim(V) dim(V) for all non-identity
unipotent elements u 2 G. O

We will require the following result in the proof of Corollary 3.3.11.
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Proposition 3.3.10. Let ©* 2 and let V' =W W . Let u be a nontrivial unipotent
element of G whose Jordan form on W is di[efent than J, J; *. Then

dim(v,(1)) * L
where we have equality if and only if one of the following holds
(1) © =2 and the Jordan form of u on W is Js.
(2) ¢ =3 and the Jordan form of u on W is JZ.

Proof. Let the unipotent element u 2 G be as in hypothesis (YH,) and assume that its
Jordan form on W is dilefent than J, J; . Thus, if ny = 2, then, r; 2. We first
consider the case when the Jordan form of u on W is J-,;. We proceed as in the proof of
Proposition 3.3.8, see (3.35), to deduce that dim(VLf(l)) = “+1, hence dim(Vlj(l)) 21,
as 2. Moreover, equality holds if and only if * = 2, in which case u has Jordan form Js
on W. We can now assume that the Jordan form of u on W consists of at least two blocks
and, since it is di[efent than J, J; *and u & 1, we then have © 3.

We consider the case when exactly one block, J,,, appearing in the Jordan form of u on
W, is nontrivial. Then u has Jordan form Jy, Jl‘+1 " where 3 n; “. We proceed as
in the proof of Proposition 3.3.8, see (3.36), (3.37) and (3.38), to deduce that

dim(V,()) =2 1+n? 2'n; 3n;+4°+4:

One checks that the inequality

n? 2'ny 3N +4°+4<0 (3.40)
P P
2° + 42 4 7 2°4+3+ 42 4 7 .
holds for all n; 2 3 > ; 3 > and all * 2. Since
P P_—%—
2°+ 3+ 42 4 7 ) 2° + 42 4 7 .
3 > “ and since 3 < 3, as 2 < 8¢, it follows that,

2 2
in particular, Inequality (3.40) holds for all 3 n;  “and all © 3. We deduce that
dim(VLf(l)) < 2 1 for all unipotent elements u of G with Jordan form J,, J,** ™, where
3 nq ‘.
Lastly, we consider the case when the Jordan form of u on W admits at least two nontrivial
blocks. Then2 n; * 1andwewrite W =W, W,, where dim(W,) = n; and u acts

as Jn, on W,, and dim(W,) = “+1 n; and u acts as J/* * J'on W,. Now, by (3.39)

ni
i=2
of Proposition 3.3.8, we have dim(V,(1)) = n; +2(* +1 ny) +dim((W, (W,) )u(1)).
Furthermore, by the induction argument of same result, we have dim((W, (W,) )u(1))

0

(* n;)?+ 1, where equality holds if and only if u actsas J, J; ™ YonW, (W,) .
Therefore

dim(V,(1)) n+2(+1 n)+(* n)’+1
= 1+ni 2°'n; np+2°+4
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One checks that the inequality

nf 2'ng np+2°+4 0 (3.41)
P P
2°+1 424 15 2°+1+ 42 4 1 .
holds for all n; 2 5 5; F; > and all © 3. Since
2°+ 1+ IO4‘2 4 15 . . 2°+1 42 4 15 ..
> 1 and since 2, as 3 , it

2 2
follows that, in particular, Inequality (3.41) holds forall2 n; “ 2landall © 3.

Moreover,,we achieve equality in (3.41) if and only if n; = 2, in which case * = 3, as
< p#
2°+1 4 2 4 15

= 2. We conclude that dim(V,(1)) “? 1 for all unipotent

elements u of G whose Jordan form on W admits at least two nontrivial blocks. Furthermore,
we have equality if and only if * = 3 and the Jordan form of u on W is J2. This completes
the proof of the proposition. ]

Corollary 3.3.11. Let © 2,pj“+1andletV = Lg(¥;+ ). Then for all non-identity
unipotent elements u 2 G we have

dim(Vu(1)) “* 1
Moreover, we have equality if and only if one of the following holds:
(1) © =2 and the Jordan form of u on W is one of J; and J, J;.
(2) ¢ =3 and the Jordan form of u on W is one of J2 and J, J?Z.
(3) © 4 and the Jordan form of uon W is J, J; !

In particular, we have dim(V,(1)) < dim(V) pdim(V) for all non-identity unipotent
elements u 2 G.

Proof. To begin, set V' =W W and let the unipotent element u 2 G be as in hypothesis
(YHy). If we denote by u’, respectively by uy, the action of u on V", respectively on V, then
by Theorem 3.3.6 we know that we can determine the Jordan form of uy from that of u'.

Set = p(gcd(nl;""nm)) If = 0, then, by item (2) of Remark 3.3.7, we have
dim(Vy(1)) = dim(V, (1)) 2. By Proposmon 3.3.8, it then follows that dim(V,(1)) “? 1,
where equality holds if and only if dim(V,, (1)) = “2+1, hence, if and only if the Jordan form
ofuonWisJ, J;*!

We can assume that > 0. Then, by item (3) of Remark 3.3.7, we have dim(Vy(1))
dim(V,(1)). Moreover, since > 0, the Jordan form of u on W is dilerent than J, J; *
and therefore, by Proposition 3.3.10, we have dim(VLf(l)) ‘2 1, hence dim(Vy(1)) “? 1.
Now, in order for dim(V,(1)) = 2 1, we must have dim(V;(1)) = ¢ 1.

Assume that dim(VJ(l)) = ‘2 1. Then, by Proposition 3.3.10, either * = 2 and the
Jordan form of u on W is Js, or ©* = 3 and the Jordan form of u on W is J2. In the first
case, sincep =3, =1landp- +1 , by item (3:2) of Remark 3.3.7, we determine that

dim(Vy(1)) = dim(V, (1)) = 3. Slmllarly, in the second case, since p=2and =1, we have
Pj pll and so dim(V,(2)) = dim(Vlf(l)) = 8, by item (3:1) of Remark 3.3.7.
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In conclusion, we have shown that dim(V,(1)) “? 1 for all non-identity unipotent
elements u 2 G. In particular, s'p_:]ce the inequality 0 < 3“2 2“+ 1 holds for all * 2, it
follows thallz)‘2 1<+2° 1 ~ 2+2¢ 1forall* 2,and, consequently, dim(V,(1)) <
dim(V) dim(V) for all non-identity unipotent elements u 2 G. O

To conclude this subsection, we remark that Lemma 3.3.3, Propositions 3.3.4 and 3.3.5,
and Corollaries 3.3.9 and 3.3.11 give the proof of Theorems 3.3.1 and 3.3.2 for the families
of kG-modules corresponding to p-restricted dominant weights 2 FA-.

3.3.2 The particular modules

As previously mentioned, in this subsection, we will prove Theorems 3.3.1 and 3.3.2 in the
case of the particular kG-modules. In the first part, we determine dim(V,(1)), where u 2 G
is a non-identity unipotent element, for the irreducible kG-module V. = Lg(m?!;), where
3 m 8andp=0orp=>m, of the simple simply connected linear algebraic group G of
type A1, see Proposition 3.3.12. Afterwards, we assume that © 2 and we establish an upper-
bound for dim(V,(1)), where u 2 G is a non-identity unipotent element and V = Lg( ),
where the p-restricted dominant weight appears in Table 2.7.1, see Propositions 3.3.16,
3.3.17, 3.3.18 and 3.3.19, respectively.

Proposition 3.3.12. Let k be an algebraically closed field of characteristic p =0 or p > m.
Let “=1andletV = Lg(m!;), where 3 m 8. Lastly, let u 2 G be a non-identity
unipotent element. Then

dim(Vy(1)) = 1

In particular, we have dim(V,(1)) < dim(V) dim(V) forall 3 m 8 and for all
non-identity unipotent elements u 2 G.

Proof. The result is proven in [Sup95, Theorem 1.9]. ]

We now assume that * 3 and we focus on the irreducible KG-modules V with highest

weights featured in Table 2.7.1. In order to determine 2rga>§1 dim(Vy(1)), where G, is the
u2Gynflg

set of unipotent elements of G, we will use the inductive algorithm presented in Subsection
2.4.4. Following this algorithm, we first determine the unipotent conjugacy classes of G and
for each non-identity class we identify a representative u’ with the property that u} & 1,
where L := L- is the Levi subgroup of the maximal parabolic subgroup P- of G constructed in
Section 2.4. By Theorem 2.9.2 we know that two unipotent elements of G are conjugate if and

only if they have the same Jordan form on W. Therefore, we can label unipotent conjugacy
M
classes in G by symbols Jg;, wherel m, 1 d; dm and d =°“+1

i=1 i=1
Now, in order to identify a representative for each class, we use [Kor18, Lemma 2.8.8], which
\V4|

shows how to associate a unipotent element u to a given symbol Jq,. Before we state

i=1
this lemma, we recall that, to each un-ipotent element u 2 G, we have associated the subset

Sy * with the property that u = X (c ), where the product is taken with respect to

2Sy
the total order on , see Section 1.3, andc 2k forall 2S,.
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Lemma 3.3.13. [Korl8, Lemma 2.8.8] Let m 1 and let d; dmn be such that

d=“+1 Setks =1landk; =1+ dj for all 2 i m. Moreover, for all

i=1 j=1
1 i m, define: s

31, ifd; =1,

uj = kingr 2 .
= x ;(Q); ifdi>1
T =k
(\V{|

Then u=u; un lies in the unipotent G-conjugacy class labeled by Jg; -
i=1
In the following two results, Remark 3.3.14 and Proposition 3.3.15, we will show that
each non-identity unipotent conjugacy class admits a representative u’ with the property
that S \f ;:::; < 106 ;.

M
Remark 3.3.14. Let Jg, be the label of a nontrivial unipotent G-conjugacy class. Then,

i=1
there exists 1 ] m such that d; ; = 1 and d;j > 1, where we set doy := 1.
by Lemma 3:3:13, this class admits a representative u = u;  Un, where u; = 1, for all

ki-N?( 2
1 i1 j 1, anduy = X ,;(), forallj i m. Since Sy, =F ;;:105 k+a; 20
J=ki
for all j I m, it follows that for any 2 S,; and any 4 2 Sy;, where 1 I <
] m, we have r < g and so S;; \S,; = ; forall 1 i< m. Therefore, S, =
T il gedy 20 kgHdiiTy kgrdjtdien 200000 kg+dj+ +dm 1ae-o> 0, Wherel j o omis

such that dj ; =1 and d; > 1.

Proposition 3.3.15. Let * 2. Then, each nontrivial unipotent conjugacy class in G
admits a representative u’ with the property that Sue \f q;:::; « 196 ;.

M >
Proof. Let Jg;, Wwherel mandl d; dy, are such that di = “ +1, be the

i=1 i=1
label of a nontrivial unipotent conjugacy classin G. Let1 j mbesuchthatd; ; =1and
dj > 1, where we set do := 1. Let U’ be the representative of this class given by Lemma 3.3.13.

We have seen in Remark 3.3.14 that Sy = T ;1110 Kk+d; 27 Ki+djrii0r Kj+dj+djan 200005

Kj+dj+ +dm 1.+ 0. If j <m, then , 2 Sy, where kj < km kpn+dn 2=° as
dn dj>1,andso S \Tf 4;:::; - 10 & ;. We can thus assume that j = m. If dy > 2,
then kyy <kn+dyn 2= and, as g, 2 Sy, we determine that Sy \ T 1;:::; < 106 ;.
I;_g(stly, we consider the case when d,, = 2. As d; = 1 for all 1 i m 1 and as

di = “ + 1, it follows that m = “, thereby the label of the unipotent conjugacy class of

i=1
W=u-=x.(1)is ]]1 I J} J,. In this case, since U’ and x , (1) are G-conjugate (they

m 1
have the same Jordan form on W), we choose x , (1) as representative of this class and note

that Sy 1) \f 1;:::5 - 19 & ;. This completes the proof of the proposition. O
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Having finalized the first step of the algorithm, we will now begin the process of determining
an upper-bound for dim(Vy(1)), where u 2 G is a non-identity unipotent element and
V = Lg( ) with a p-restricted dominant weight listed in Table 2.7.1. Recall that we
have denoted by L the Levi subgroup L- of the maximal parabolic subgroup P := P- of G
constructed in Section 2.4. Set Q := Ry (P-). Note that, by Proposition 3.3.15, we know that
each non-identity unipotent G-conjugacy class admits a representative u’ with the property
that u} & 1.

Proposition 3.3.16. Let k be an algebraically closed field of characteristic p =3, let * =3
and let V. = Lg(¥; + 1,). Then for all non-identity unipotent elements u 2 G, we have

dim(Vu(1)) 8:

In particular, we have dim(V,(1)) < dim(V) IDdim(V) for all non-identity unipotent
elements u 2 G.

Proof. To begin, we recall the Decomposition (3.22) of Proposition 3.2.10 which states:
Vijog=Lo(ta+ 1) Lo@Y)  Lo(t):

Let u 2 G be a non-identity unipotent element and let u’ be a representative of the
unipotent G-conjugacy class of u with the property that u} & 1, see Proposition 3.3.15.
Then, as dim(Vy(1)) = dim(Vw(1)), by Inequality (2.7) and Decomposition (3.22), we
determine that

dim(Vy(1))  dim(Vig (1)) = dim((LL(t2 + 12))e (1)) +dim((LL(Z2!1)),e (1)) + dim((L(T1)),e (1)):

Now, as p = 3, by Corollary 3.3.11, we have dim((L_(?; + !2))U°L(l)) 3. Similarly, by
Proposition 3.3.5, we have dim((L._(2!1))uoL(1)) 3, while by Lemma 3.3.3, it follows that
dim((L._(!l))uoL(l)) 2. We determine that dim(V,(1)) 8.

In conclusion, we have shown that dim(V,(1)) 8 < dim(V) dim(V) for all non-
identity unipotent elements u 2 G. ]

Proposition 3.3.17. Let * =5 and let V = Lg('3). Then for all non-identity unipotent
elements u 2 G, we have
dim(Vy(1)) 14

where there exist u 2 G for which the bound is attaiped.
In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. To begin, we recall the Decomposition (3.23) of Proposition 3.2.11, which states:
Vijg=Le(ts)  Lo(to):

Let u 2 G be a non-identity unipotent element and let u’ be a representative of the
unipotent G-conjugacy class of u with the property that u! & 1, see Proposition 3.3.15.
Then, as dim(Vy(1)) = dim(V (1)), by Inequality (2.7) and Decomposition (3.23), we get

dim(Vy(1))  dim(Vy (1)) = dim((LL(¥3)) (1)) + dim((LL(Y2))y (1)):
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Now, using Proposition 3.3.4 and keeping in mind that L, (¥3) = L, (Y,) , we determine
that dim((L._(!z))uoL(l)) 7 and dim((L._(!3))uoL(1)) 7, therefore dim(Vy(1)) 14.

Lastly, we consider the unipotent element x ,(1) 2 G. We first note that (x ,(1)). =
X ,(1) and (x ,(1))o = 1. Therefore, by Equality (2.8) and Decomposition (3.23), we have
dim(Vx , (1)) = dim((LL(12))x , (D)) +dim((LL(18)x (1)), thus dim(Vy , 1) (1)) = 14,
by [LS12, Subsection 3.3.2] and Proposition 3.3.4. This shows that there exist unipotent
elements u 2 G for which dim(V,(1)) = 14.

In conclusion, we have shown that dim(V,(1)) 14 for all non-identity unipotent elements
u 2 G and that there exist u 2 Gfpr which the bound in attained, for example x ,(1). Lastly,
we have dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent elementsu 2 G. [

Proposition 3.3.18. Let * = 6 and let V = Lg('3). Then for all non-identity unipotent
elements u 2 G, we have
dim(Vy(1)) 25;

where there exist u 2 G for which the bound is attaiped.
In particular, we have dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. To begin, we recall the Decomposition (3.24) of Proposition 3.2.13 which states:
Vo= Lo(ts)  Lo(Yo):

Let u 2 G be a non-identity unipotent element and let u’ be a representative of the
unipotent G-conjugacy class of u with the property that u} & 1, see Proposition 3.3.15.
Then, as dim(V(1)) = dim(Vy(1)), by Inequality (2.7) and identity (3.24), we get

dim(Vy(1))  dim(Vy (1)) = dim((LL(!3)) (1)) +dim((LL(Y2)) (1)):

Now, by Proposition 3.3.4, we have dim((L._(!z))uoL(l)) 11 and, similarly, by Proposition
3.3.17, we have dim((LL(!g))uoL(l)) 14. It follows that dim(V,(1)) 25.

Lastly, we consider the unipotent element x ,(1) 2 G. We first note that (x ,(1)). =
X ,(1) and (x ,(1))o = 1. Therefore, by Equality (2.8) and Decomposition (3.24), we have
dim(Vy (1)) = dim((LL(12))x (@) +dim((LL(12))x , (D)), thus dim(Vy | 1)(1)) = 25,
by [LS12, Subsection 3.3.2] and Propositions 3.3.4 and 3.3.17. This shows that there exist
unipotent elements u 2 G for which dim(V(1)) = 25.

In conclusion, we have shown that dim(V,(1)) 25 for all non-identity unipotent elements
u 2 G and that there exist u 2 Gfpr which the bound in attained, for example x ,(1). Lastly,
we have dim(Vy (1)) < dim(V) dim(V) for all non-identity unipotent elementsu 2 G. [

Proposition 3.3.19. Let * = 7 and let V = Lg('3). Then for all non-identity unipotent
elements u 2 G, we have
dim(Vy(1)) 41;

where there exist u 2 G for which the bound is attaiped.
In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.
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Proof. To begin, we recall the Decomposition (3.25) of Proposition 3.2.14 which states
Vo= Lo(ts)  Li(t):

Let u 2 G be a non-identity unipotent element and let u’ be a representative of the
unipotent G-conjugacy class of u with the property that u} & 1, see Proposition 3.3.15.
Then, as dim(V,(1)) = dim(Vy(1)), by Inequality (2.7) and Identity (3.25), we get

dim(Vy(1))  dim(Vy (1)) = dim((LL(Y3)) (1)) +dim((LL(Y2))y (1)):

Now, by Proposition 3.3.4, we have dim((L._(!g))uoL(l)) 16, while, by Proposition 3.3.18,
we have dim((L._(!3))uoL(1)) 25. It follows that dim(V,(1)) 41.

Lastly, we consider the unipotent element x ,(1) 2 G. We first note that (x ,(1)). =
X ,(1) and (X ,(1))o = 1. Therefore, by Equality (2.8) and Decomposition (3.25), we have
dim(Vy | (1)) = dim((LL(*2))x ,@y(1))+dim((LL(Ys))x , (D)), thus dim(V, | a)(1)) = 41,
by [LS12, Subsection 3.3.2] and Propositions 3.3.4 and 3.3.18. This shows that there exist
unipotent elements u 2 G for which dim(V(1)) = 41.

In conclusion, we have shown that dim(V,(1)) 41 for all non-identity unipotent elements
u 2 G and that there exist u 2 GFB)r which the bound in attained, for example x ,(1). Lastly,
we have dim(Vy (1)) < dim(V) dim(V ) for all non-identity unipotent elementsu 2 G. [

Although the following result is not required for the proof of Theorems 3.3.1 and 3.3.2,
it is a nice a generalization for all © 5 of Propositions 3.3.17, 3.3.18 and 3.3.19.

Proposition 3.3.20. Let * 5 and let V = Lg(!3). Then, for all non-identity unipotent
elements u 2 G, we have

(2 2°+6),
6 1
where there exist u 2 G for which the bound is attaiped.

In particular, we have dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

dim(Vy (1))

Proof. The base case for * =5 is given by Proposition 3.3.17. Thus, we assume that * 6
and that the result holds for all r < “. We proceed to prove it for “. For this, we recall the
Decomposition (3.26) of Proposition 3.2.15 which states

Vojioeg= Le(T3)  Le.(Yy):

Let u 2 G be a non-identity unipotent element and let u’ be a representative of the
unipotent G-conjugacy class of u with the property that u} & 1, see Proposition 3.3.15.
Then, as dim(V(1)) = dim(Vy(1)), by Inequality (2.7) and identity (3.26), we get

dim(Vy(1)) dim(Vy (1)) =dim((LL.(*3))y (1) +dim((Li.(Y2))e (1)):

Now, by Proposition 3.3.4, we have dim((L,_,(!z))uOL‘(l)) ¢ 1?2 2( D*2 \while, by induction,
we have dim((L,_‘(!3))u0L‘ 1) Lol 1)?3 2 D46 ¢ follows that dim(Vy(1)) ¢ 1)(‘2 2:46)
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Lastly, we consider the unipotent element x ,(1) 2 G. We first note that (x ,(1)).. =
X ,(1) and (X ,(1))o. = 1. Therefore, by Equality (2.8) and Decomposition (3.26), we have
dim(Vx , () = dim((L. (12))x (D) + dim((LL.(Ta)x ,@(D)), thus dim(Vy | y(1)) =
CDCE 246 'y [1512, Subsection 3.3.2], Proposition 3.3.4 and induction. This shows that

there exist unipotent elements u 2 G for which dim(V,(1)) = C-2C 240

In conclusion, we have shown that dim(V,(1)) <229 for all non-identity unipotent
elements u 2 G and that there exist u 2 G for which the bound in attained, for example

x ,(1). Moreover, as the ingﬁ]uality 0<3“ 17°2+22° 12holds for all * 5, we have that

NG C oy N . . . P——
CDE 220 DD C DD forg)l ¢ 5, and so dim(Vy(L)) < dim(V) — dim(V)
for all non-identity unipotent elements u 2 G. ]

We conclude this subsection by noting that Proposition 3.3.12 completes the proof of
Theorems 3.3.1 and 3.3.2 for simple simply connected linear algebraic groups of type A;.
Furthermore, Propositions 3.3.16, 3.3.17, 3.3.18 and 3.3.19 treat all the irreducible kG-
modules, where G is of type A- with © 2, corresponding to p-restricted dominant weights
featured in Table 2.7.1. This completes the proofs of Theorems 3.3.1 and 3.3.2.

3.4 Results

In this section we collect the results proven in this chapter. In Proposition 3.4.1 we give the
values of max fdim(Vs( ))j 2kg, max dim(Vy(1)) and (V) for all kG-modules
s2TnZ(G) u2Gynflg

V belonging to one of the families we had to consider.

Proposition 3.4.1. Let k be an algebraically closed field of characteristicp 0 and let G be
a simple simply connected linear algebraic group of type A-, © 1. Let T be a fixed maximal
torus in G and let V = Lg( ), where 2 FA*. Then the value of (V) is as given in the
table below:

\ Char. | Rank 52rTnnz%)éG)fdlm(Vs( i 2kg uzrg%lg dim(Vu(1)) | (V)
Lae(1y) p 0 [ 1 ‘ ‘ 1
Lo(@2!) | p&2 |* 1 T 5 ‘
La(Y2) p 0 4 ‘(‘2 1) 2 2‘+2 T

Le(¥;+1) |p-“+1|° 2 ‘2 ‘2 2°
.. f=2 4 3 3
LG(!1+!‘) pj +1 3 3 [V 1 c? l 2‘

Table 3.4.1: The value of (V) for the families of modules of groups of type A-.

Proof. The result follows by Proposition 2.2.3 from Lemmas 3.2.3 and 3.3.3, for V. = Lg(!1,);
Propositions 3.2.4 and 3.3.5, for V. = Lg(21,); Propositions 3.2.5 and 3.3.4, for V. = Lg(!,);
and Corollaries 3.2.7, 3.2.8, 3.3.9 and 3.3.11, for V = Lg(!; + I.). O

99



Similarly, Proposition 3.4.2 records the values of max fdim(Vs( ))j 2k g,
s2TnzZ(G)

2r(151a>§1 dim(Vy(1)) and (V) for all the particular KG-modules treated in this chapter.
u2Gynflg

Proposition 3.4.2. Let k be an algebraically closed field of characteristicp 0 and let G be
a simple simply connected linear algebraic group of type A, * 1. Let T be a fixed maximal
torusin G. If “=1,letV =Lg(m?)with3 m 8andp=0orp>m. If © 2, let
V = Lg( ), where is featured in Table 2:7:1. Then the value of (V) is given in the table
below:

Group La( ) Char. 52rTnnz%)((G)fdlm(VS( i 2kg u2r(2$1)é1gdlm(vu(1)) c(V)
Lg(m! =0, or
Ay , G(m 1)8 pp>m 1+ 2 1 m 7
Az Le(11+ 1) | p=3 10 8 6
As La(Y3) p 0 12 14 6
As La(13) p 0 20 25 10
A; La(13) p 0 35 41 15

Table 3.4.2: The value of (V) for the particular modules of groups of type A..

Proof. The result follows by Proposition 2.2.3, using the detailed results of Subsections 3.2.2
and 3.3.2. O

Lastly, we state the following additional result, whose proof follows by Propositions 2.2.3,
3.2.15 and 3.3.20.

Proposition 3.4.3. Let * 6 and V = Lg(!3). Then max fdim(Vs( ))j 2 kg =
s2TnZ(G)

¢ ¢ 1 : _ (1 20 +6)
6 ' uzrguaﬁ)ﬁlgdlm(VU(l)) N 6

and g(v) =200
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Chapter 4

Groups of type C-

In this chapter we prove Theorems 1.1.1 and 1.1.3 for the simple simply connected linear
algebraic groups of type C-, © 2. The structure is as follows: in the first section we construct
such a group and exhibit some properties of its semisimple and unipotent elements. In Section
4.2 we determine 52rTnne%>(<G)fdim(VS( )] 2k g,whereV runs through the list of KG-modules

we identified in Subsection 2.7.2. Similarly, in Section 4.3, we determine Zr(r;a)gﬂ dim(Vy(1)),
u2Gynflg

where Gy, is the set of unipotent elements of G, for the same kG-modules V. Lastly, Section
4.4 records all the results of this chapter.

We now fix some notation which will be used throughout this chapter. The field k is an
algebraically closed field of characteristic p 0, unless otherwise specified, and the group
G is a simple simply connected linear algebraic group of type C-, * 2. By T, , B,

of G determined by T, the positive Borel subgroup of G, the set of simple roots in  given
by B, and the fundamental dominant weights of G corresponding to

4.1 Construction of linear algebraic groups of type C-

Let W be a 2°-dimensional, * 2, k-vector space equipped with a nondegenerate alternating

bilinear form b. We fix Bw = fuy; Up;:::; U< ve;::1; Vo, vag to be an ordered basis in W with
M

the property that W = hui; vj1 is an orthogonal direct sum, where fu;;vig, 1 1 °,
i=1

is a hyperbolic pair, see 'Il'heorem 2.1.1. Let D, respectively U, denote the set of diagonal,

respectively upper-triangular, matrices in GL(W). Set G = Sp(W) and note that G is a

simple simply connected linear algebraic group of type C-, see [Car89, p.184]. Moreover,

B := U\ G is a Borel subgroup of G which contains the maximal torus T =: D \ G of G.

4.1.1 Semisimple elements

Lets 2 T,s=diag(as;:::;aa. Y;:i;a ) witha; 2k foralll i ‘. Let 4 o:cc;
m0d, where 1 m  *, be the set of distinct a;’s, and let n;j, 1 i m, be the multiplicity
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>
of each ;ins. It follows that n; = “ and we can assume, without loss of generality, that

i=1

ng np Nnn 1. By conjugating s by an element of Ng(T), we can also assume
thats=diag( 1 In; 2 lnpiiis m dnes b Ioesciis 28 Iny 11 Iny):
Lemma 4.1.1. Assume there exists 1 i <j msuchthat ;j = ;' Then there exists
g 2 G such that
1 A0

g "= o A
where
A= dlag( 1 Inl;”'; i1 In. 11 In +nj, i+1 In.+1;”'; j1 InJ 11 j+1 Inﬁl;”'; m Inm)

and A = (A;;)i; is a diagonal matrix with A, = A%, L o o wnmer o fOralll
rong+ +np.

O 1
0 1

Proof. Forany r 1, set K, to be ther r matrix K, := 8 g We now consider
1 0

O 1
nj Knj :
the element g; 2 SL(W) given by g; = B': 0 ly, 0 ¢ wherea= ni and
. i=1

Op; O
0 I
X
b= nj. We calculate and determine that
_j+]_
O 1
0
0 0nJ Kn
1 — gtr — .
Op; O
0 I

We denote by [b] the representing matrix of b with respect to the basis Byy. By Theorem

2.1.1, we have that [b] = ?< Ig . One calculates and determines that gi'[b]g; = [b],
hence g, 2 G, and
0:50; F =diag( 1 Ingiiiis G 1 Moy oo i Iy g+t i mo Do me Does 005
1 .. - 1 .- 1 TR 1 I ):
j+1 Nj+17 1] nj» j 1 nj 1 v 1 ni

Finally, reordering as before, we deduce that there exists g 2 G such that gsg ! has the
desired matrix form. O
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Now, let s 2 T, s =diag( 1 In;::00 m lams mb owsiiis 11 In,) with ; &
foralll 1<] m. By Lemma 4.1.1, we may further assume that ; & jl for all
1 i1<j m. For the rest of this chapter, we fix the following hypothesis on semisimple
elements of G:

where ;& ;‘foralll i<j m; n; =
Moreover, if m=1; then ;& 1:

4.1.2 Unipotent elements

M P ¢
Let u be a unipotent element of G and let J{,: be its Jordan form on W, where nir; =

2and ri 1iseven for all odd nj, see Théo?em 2.9.2. If p & 2, we know that the éo?ljugacy
class of u in G is completely determined by its Jordan form on W. However, when p = 2,
the Jordan form is no longer enough to characterize conjugacy classes in G and so we will
use the Hesselink normal form to distinguish between unipotent conjugacy classes. Now,
by Theorem 2.9.15, the Hesselink normal form of u is (n{;:::;nftngtt i nfm), where
m 1,t Oandr; 1iseven forall odd n;, see Lemma 2.9.13.

In conclusion, regardless of the characteristic of k, if u is a unipotent element of G with
M >
Jordan form J;; on W, then rin; = 2%, r; is even for all odd n; and, moreover, we

can assume, without loss of generality, that 2 n; > >n, 1l

4.2 Eigenspace dimensions for semisimple elements

Before we state the main results of this section, we recall that F¢ = f1,;21,; 1,9, see
Subsection 2.7.2.

Theorem 4.2.1. Let k be an algebraically closed field of characteristicp 0 and let G be a
simple simply connected linear algebraic group of type C-, * 2. Let T be a fixed maximal
torus in G and let V. = Lg( ), where 2 F€ or is given in Tables 2:7:2 and 2:7:3. Then,
there exist s2 T nZ(G) and 2k , an eigenvalue of s on V, such that

dim(Vs( )) dim(V) pdim—(\/)
if and only if “, and p appear in the following list:
1) < 2, =landp O;
2 =2, =landp O.

Theorem 4.2.2. Let k be an algebraically closed field of characteristic p 0 and let G be

a simple simply connected linear algebraic group of type C-, * 2. Let T and V be as in

Theorem 4:2:1. Then the value of 2rTnaZ>(<G)fdim(Vs( ))J 2k gisgiven in the table below:
S n
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V Char. Rank 32rTnnz%)éG)fdlm(Vs( )i 2kg
La(!y) p 0 2 2" 2
VLg(21)) pE&2 2 22 3°+4
o.r | =234 2 6°+8
. <5 22 5°+3
La(!2) . c=2:3 27 45 +2
Pl 4 27 5 +2
yI—G(!l+!2) p 0 =2 8 2 p;5
yLG(Z!z) p 62 ‘= 10 p;5
yL@(3!1) p 62,3 = 10
Lo(1,+21,) | p=7 = 12
YLg(31,) p=7 = 16
Le(@!1+ 1) | p=3 F=2 16
Le(t) | p=2[3 ° 8 2
La(Ys) p&2 ‘=3 10
o(hi+ 1) | p=2 | ‘= 2
yL@(2!1+!3) p:2 £ = 20
La(Ya) p O ‘= 30 4 p3
Lo(ls) | pE2 | ‘= 28
Mo(ls) | p=2 | =5 58

Table 4.2.1: The value of 52rTnnz?éG)fdlm(Vs( )] 2kg.

In particular, for each V in Telge 4.2.1 labeled as YV, respectively as each *V with ¢ 3,
we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues 2 k
of sonV.

We will give the proof of Theorems 4.2.1 and 4.2.2 in a series of results, each treating one
of the candidate-modules. In Subsection 4.2.1, we determine 2rTne?((G)fdim(Vs( )] 2kag,
S n

where V belongs to one of the families of modules, i.e. V is an irreducible kG-module
Le( ) with p-restricted dominant weight 2 FC. In Subsection 4.2.2, we determine

2rTrlz?((G)fdim(Vs( )] 2 k g for the irreducible KG-modules V = Lg( ) with p-restricted
S n

dominant weight featured in one of the Tables 2.7.2 and 2.7.3.

4.2.1 The families of modules

Lemma 4.2.3. Let V = Lg(!;). Then for all s2 T nZ(G) and all eigenvalues 2 k of s
on V we have
dim(Vs( )) 2° 2
where equality holds if and only if = 1 and, up to conjugation, s = diag( 1;:::; 1;d;d %
1;::0; Dwithd& 1.
In particular, there egdst s 2 T n Z(G) that alord an eigenvalue 2 k on V for which
dim(Vs( )) dim(V) dim(V).
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Proof. We first note that V = W as kG-modules, hence dim(V) = 2°. Now, let s 2
TnZ(G) and let 2 k be an eigenvalue of s on V with & 1. Then, dim(Vs( ))

dmv) = < as dim(Vs( )) = dim(Vs( !)). On the other hand, for = 1, ass 2 Z(G),
we have dim(Vs( )) 2° 2. Now equality holds if and only if, up to conjugation, s =
diag( 1;:::; 1;d;d % 1;:::; 1) withd & 1, as in the statement of the result.

In conclusion, we proved that dim(Vs(1)) 2° 2foralls2 T nZ(G) and all eigenvalues

2 k of sonV, and that there exig_pairs (s; )2TnzZ(G) k for which the bounBE
attained. Now, as the inequality 2 2° holds for all © 2, it follows that 2 2  2¢ 2°
forall © 2 and thus, we haveéhown that there exist (s; ) 2 TnZ(G) Kk with the property
that dim(Vs( )) dim(V) dim(V). O

Proposition 4.2.4. Let k be an algebraically closed field of characteristic p & 2 and let
V = Lg(21,). Then for all s2 T nZ(G) and all eigenvalues 2 k of s onV we have

dim(Vs( )) 22 3“+4:
Furthermore, we have equality if and only if one of the following holds:
(1) =2, = 1and, up to conjugation, s=diag( 1; 1; % ;%) with 2= 1.
(2) © 2, =1and, upto conjugation, s= diag(1;:::;1; 1; 1;1;:::;1).

In particular, we have dim(Vs( )) < dim(V) IDdim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Let s 2 T nZ(G) be as in hypothesis (YHs). By Lemma 2.8.2, since p & 2, we have
that V = S?(W) and so we deduce that dim(V) = 22 + “ and that the eigenvalues of s on
V', not necessarily distinct, are:

8
% 2and ;2,1 i m,each with multiplicity at least ™D,
i jand ;' ;% 1 i<j m,each with multiplicity at least nn;;
(4.1) i Yand ;' ;,1 i<j m,each with multiplicity at least n;n;;
>

=1 with multiplicity at least  n?:

o
i=1
Let 2k be an eigenvalue of sonV such that & 1. Then:

dim(Vs( ) dim(V) dim(Vs(l)) dim(Vs( )):

> >
Since dim(Vs(1)) nfandn; 1foralll i m,we have that dim(Vs(1)) ni =
i=1 i=1
‘. Furthermore, V is a self-dual module, hence dim(Vs( )) = dim(Vs(  1)). Now, as ¢ 2,

it follows that:
. 2‘2 + [ 3 ) )
dim(Vs( )) — ="<2 3+ 4 (4.2)

Therefore we can assume that is such that = 1.
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Let m = 1. Then, n; = “ and, since s 2 Z(G), we have ; & 1, hence 2 & 1. Now, by
(4.1), the eigenvalues of s on V, not necessarily distinct, are ?and , 2, each with multiplicity
at least >, and 1 with multiplicity “2. It follows that dim(Vs( 1)) 2+ If ¢ 3, then
dim(Vs( 1)) <22 3°+4. On the other hand, if * =2, then dim(Vs( 1)) 22 3°+4,
where equality holds if and only if 1= 2 and, up to conjugation, s = diag( 1; 1; ;% 1),
as in (1).

We now assume that m 2. First, we consider the eigenvalue 1 of son V. Since ; & j !
foralll i<j mgjtfollows that bijtelforalll i<j m. By (4.1), these

account for at least 4 nin; eigenvalues of s on V which are dilerent than 1, therefore

i<j
<
dim(Vs(1)) 2“+° 4 nn;:
i<j
Assume dim(Vs(1)) 22 3“+4. Then:
X
“ 1 nin; O: 4.3)
i<j
>
Since * = n;, by Inequality (4.3), we have:
i=1
<2 <
ni(1 nj)+Mm i1 D@ nym) O (4.4)
i=1 i<j
D2 X
But n;(1 nj) Oand (Nmw: 1) ny) O,asn 1foralll & m,
i=1 i<j

and so Inequality (4.4) holds if and only if m =2, n, = 1and n; = ° 1. In this case,
dim(Vs(1)) = 2“2 3+ 4 if and only if all eigenvalues of s on V dilerent than ,* , ' are
equal to 1. Hence, by (4.1), it follows that 2 = 3 =1, where ; & »,, and so, we deduce
that, up to conjugation, s = diag(1;:::;1; 1; 1;1;:::;1), asin (2).

Finally, we consider the eigenvalue 1 of s on V. We first remark that

>
dim(Vs( 1)) 2%+° nZ:

i=1
It ;& 1foralll i<j, mthenalso ;*;"6& 1lforalll i<j m. By
(4.1), these account for at least 2 n;n; additional eigenvalues of s on V dilerent than 1

i<j
and so:
> X
dim(Vs( 1)) 2%+*° nZ 2 nin;
i=1 i<j
45

=22+ ( my )
i=1

:‘2+‘:



If < 3, then dim(Vs( 1)) < 2?2 3° + 4, while, for * = 2, we have that dim(Vs( 1))
22 3° + 4 where equality holds if and only if all eigenvalues of s on V dilerknt than 1,
1 2and ;' ,'areequal to 1. But then, by (4.1), it follows that 2 = ; ,* and so
1= ,*, acontradiction.
We can thus assume that there exists some 1 i<j msuchthat ; j = 1. Inthis
case, we also have ! .*= 1. Furthermore, since the ;’s are distinct, it follows that:

i
8
gg& 1, ;°6 land 6 1; ;°6 I
i r& L fori<r m;ré&j;and , i6& 1, forl r<i
tle Lfori<r myré&j;and !;t6& 1 forl r<i
%,—r& 1, forj<r m;and , ;& 1, forl r<j, ré&i

- j1r1& 1; forj<r m; and rlj-l& 1; forl r<j, ré&i:

By (4.1), these account for at least ni(n; +1) +n;(n; +1) +2(n; +n;)(* n; n;) additional
eigenvalues of s on V which are dilerent than 1. Thus, we have:

X
dim(Vs( 1)) 22+ m omm+1) my+1) 2+ nng): (46)

r=1

Assume dim(Vs( 1)) 22 3“+4. Then:

X
4« 4 nZ nini+1) nj(nj+1) 2(ni+n)(* n n;) 0 4.7)
r=1
and therefore
X
4 4 nZ 2nz 2ni (Mi+n)dC mong) (mi+n) (Mi+n)dC nong) 0
réi;j
which gives:
X
‘4 ni ) nf (i n)? (mi+n)(C+1 ni ny) 4 0 (4.8)
réi;j
X
We remark that *+1>n;+n;j,as n,="*, and so ( nzZ (m nm)? (ni+n)(“+
r=1 ré&i;j

1 ni n;) 4)<0. Therefore, by (4.8), we have:
‘4 n nj)=>0

and, since n; n; 1, it follows that (n;; n;) 2 £(2;1); (1;1)g. If (ni;n;) = (2;1), then the
left-hand side of Inequality (4.7) becomes:

<
4¢ 4 nn 4 1 6 2 6(* 3=1 2 nZ <O0;
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while if (n;; n;) = (1;1) we get:
> >
4 4 nzZ 2 2 2 4 2)= 2 n2 < 0:
réi;j réi;j
Having covered all cases, we deduce that dim(Vs( 1)) <22 3“+4foralls2 T nZ(G).
In conclusion, we showed that dim(Vs( )) 2 3“+4foralls2 T nZzZ(G) and all
eigenvalues 2 k of son V. In particular, since the meqkljallty 0 < 142 33+ 16 holds

for all * 2, it followsghat 22 3+ 4 < 22+ ° 22+ ¢ for all * 2, thereby
dim(Vs( )) < dim(V) dim(V) forall (s; )2TnZ(G) k. O

Proposition 4.2.5. Let V' = ~2(W). Moreover, let s 2 T nZ(G) and let 2 k be an
eigenvalue of s on V'. Then one of the following holds:

1) “=2and dim(Vs°( )) 4, where we have equality if and only if one of the following
holds:

(1:1) =1 and, up to conjugation, s =diag( 1; 1; ;% ;%) with ;& 1.
(1:2) p&2, = 1and, up to conjugation, s =diag(1; 1; 1;1).

2 * =3 and dim(VSO( ) 9, where equality holds if and only if = 1 and, up to
conjugation, s =diag( 1; 1; 1; % 15 (D) with ;& 1.

@) © 4and dim(VSO( )) 22 5°+4, where we have equality if and only if one of the
following holds:

(3:1) “ =4, =1 and, up to conjugation, s = diag( 1; 1; 1, 1; 15 15 1% 1Y)

B2 “=4,p&2, = 1and, upto conjugation, s=diag(1;1; 1; 1, 1; 1;1;1).

(3:3) © 4, =1 and, up to conjugation, s = diag(1;:::;1; 2; ,*1;:::;1) with
2 6 1.

Proof. Let s 2 T nZ(G) be as in hypothesis (YHs). We first remark that the kG-module
V' = ~2(W) is self-dual, see Remark 2.8.3. Secondly, we note that dim(vV') = 22 * and
we determine that the eigenvalues of s on V', not necessarily distinct, are:

8
2and .21 i m,each with multiplicity at least " D
i i 2
i jand ;' ;% 1 i<j m,each with multiplicity at least nn;;
(4.9) i tand ;' ;1 i<j m,each with multiplicity at least nin;;

j

§ >

=1 with multiplicity at least ~ n:
i=1

Let 2k be an eigenvalue of son V' such that & . Then:

dim(V( )) dim(v") dim(vi(1) dim(V.( )
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- - - 0 X X
Sincen; 1lforalll i m, we have dim(V4(1)) n? ni =

i=1 i=1
have that dim(V( )) = dim(V,( 1)), as V' is a self-dual kG-module, and so, substituting
in the above yields:

. Moreover, we

2‘2 c 3 o

dim(v,( )) = ‘ (4.10)

If < 4, then dim(V,( )) <22 5°+4, while, if © 3, then dim(V,( )) < 2 Thus, we
can assume from this point onward that the eigenvalue is such that = 1.

We now consider the case of m = 1, hence n; = “. Since s 2 Z(G), we have that

2 & 1. By (4.9), we deduce that dim(V, (1)) = ‘2 and dim(V,( 1)) ‘2 . Therefore,
if © 5, it follows that dim(VSO( 1)) 2 <22 5°“+4. On the other hand, if * 4,
then dim(V;( 1))  “?, where equality holds if and only if the eigenvalue is 1 and, up to
conjugation, s = diag(, 1;:c2; 415 :e0; (D) with & 1, asin (1:1), (2) and (3:1).

jug g(ll_{7 ¥ 1 1y) 1 (1:1), (2) and (3:1)

Now we can assume that m 2.

Let “ =2. Then m =2, hence n; = n, = 1, and, by (4.9), the eigenvalues of s on V' are
1 with multiplicity at least 2, ; 5, ,* ,% ;! >and ; ,' Therefore, dim(V, (1)) = 2,
as 1 6& ,tanddim(V.( 1)) 4 where equality holds if and only if ; ,*= 1, hence if

and only if ; = ,and 3= 1. We conclude that dim(VSO( )) 4dforalls2TnZ(G)
and all eigenvalues 2k of s on V' and that equality holds if and only if = 1 and, up
to conjugation, s = diag(1; 1; 1;1), asin (1:2).

Let * = 3.

Case 1.1: Assume that m = 2. Thenn; =2 and n, = 1, as n; n,., For =1,
since , & L% it follows that ,* , & 1, hence dim(V_(1)) 7. For = 1 we have

dim(VSO( 1)) 10, as the eigenvalue 1 occurs with multiplicity at least 5, see (4.9). Since
1 & ,, itfollowsthat 26 ; , hence ,26 ,! ,% andsodim(Vi( 1)) 8.

Case 1.2: Assume that m = 3. For =1, since ; & jl foralll i<j 3, we
have that ;' ;* & 1foralll i<j 3, hence dim(V,(1)) = 3. For = 1 we have
dim(V,( 1)) 12, see (4.9). Since the ;'s are distinct, it follows that 1 can equal at most
one eigenvalue of the form ; j and at most one of the form ; ; ! thus dim(VSO( 1)) 4

Having dealt with the cases of “* = 2 and “ = 3, we can now assume that * 4. Recall
that we are still in the case of m 2and = 1. For =1, since ; & jl for all
1 i<j m,itfollowsthat ;* ;*&1foralll i<j m. Therefore:

. 0 X
dim(Vg(1)) 2% * 4  nn;: (4.11)
1<)
Assume dim(V, (1)) 22 5°+4. Then:
x
‘ 1 nin; 0
i<j

and this is just Inequality (4.3), which we have shown to hold if and only if m=2,n, =1
andn; =*“ 1. Inthis case, by (4.11), we have dim(VS°(1)) 22 5°+4 where equality holds

if and only if all eigenvalues of s on V dilerent than ,' ,* are equal to 1. Hence 2 =
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and, since 1 , & 1, it follows that, up to conjugation, s = diag(1;:::;1; 2 ,%1;:::;1)
with , &1, as in (3:3).

>
Lastly, let = 1. We remark that dim(V,( 1)) 22 ° nZ, see (4.9). If

re
r=1
i j& 1foralll i<j m,then ;*;*6& 1foralll i<j m,andwe have:

o X < X
dim(Vg( 1)) 2 - nZ 2 nmnj=22 * ( n)=2 = (4.12)

r=1 i<j r=1

Therefore dim(Vso( 1)) <2 5°+4, as * 4. We can thus assume that there exist
1

1 i<j msuchthat ; j= 1. Then ; 1 =1 and, since the ;’s are distinct, we

have that:
8
gi?& land ?& 1,hence ;°6 land ;*6& 1,
ir& Li<r mré&jand ( ;& 1,1 r<i
(4.13) 16 Li<r mré&jand ''6 1,1 r<i

rj& L1 r<jré€&iand ; (& 1l j<r m

- rljlﬁz 1,1 r<j,r&i, and j1,1& Lj<r m:
By (4.9), all of the above account for at least n;j(n; 1)+n;(n; 1)+2(ni+n;)(" ni  n;)
additional eigenvalues of s on V' dilerent than 1. Therefore, we have:

X
dim(ve( 1)) 2 ¢ 02 omni 1) om(y 1) 2m+n)¢ o ng): (4.14)
r=1
Assume dim(V,( 1)) 22 5°+4. Then:
X

4° 4 n
r=1

2 omi(ni 1) nj(nj 1) 2(ni+n)(C ni nj) O (4.15)

After simplifications, this becomes:

>
4 4 ng 2nf 2ni+(ni+n) 2(ni+n))(C ni Ny O
ré&i;j
X
Since nZ 0, we must have:
réi;j

4 4 2nf 2nk (i+n)(C o) (mi+n)C oo 1) O

Again, after simplifications, this becomes:

4 4 (ni+n)° nf+2mng ni (ni+n)(C nonp 1) O

therefore
‘4 nj nj) 4 (n; nj)2 (nj + nj)(‘ Ny N 1) O0: (4.16)
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>
If“ n n; 1<0, then, as n.="* wehave m=2andso“=n;+n, By

r=1
Inequality (4.16), it follows that :

‘G ) 4 (@2ny ) O

As“ 4and (2n; “)?> 0, the above inequality holds if and only if * = 4 and 2n, = °,
hence if and only if ©* = 4 and n; = n, = 2. Substituting in (4.14) gives dim(V_,f( 1)) 16
and we note that equality holds if and only if all eigenvalues of s on V' di[efent than 1 and
the ones listed in (4.13) are equal to 1. Hence ; ,'= 1land,as ; ,= 1, it follows
that 2= 2 =1 and so, up to conjugation, s =diag(1;1; 1; 1; 1; 1;1;1), asin (3:2).

On the other hand, if * n; n; 1 0, then, by (4.16), it follows that ‘(4 n; n;) >0
and so n; + n; 3. Since nj nj 1, we deduce that (nj;n;) 2 f(2;1);(1;1)g. If
(ni; nj) = (2;1), then, by (4.16), we have 7 2° 0, contradicting * 4. If (n;; n;) = (1;1),

then, by (4.15), we have >
2 nz O
réi;j
> > >
As n? ¢ 2and“ 4 itfollowsthat n? 2. We deduce that  n? =2, hence
réi;j réi;j réi;j
m=4,nj=1foralll 1 4and ‘= 4. Substituting in (4.14) gives dim(VSO( 1)) 16
and we note that equality holds if and only if all eigenvalues of s on V' di[efent than 1 and
the ones listed in (4.13) are equal to 1. Therefore jl = 1foralll i 4andall
i <]J 4, contradicting the fact that the ;’s are distinct. This completes the proof of the
proposition. ]

Corollary 4.2.6. Assume p - “ and let V = Lg(!,). Moreover, let s 2 T nZ(G) and let
2 k be an eigenvalue of s on V. Then one of the following holds:

(1) * = 2 and dim(Vs( )) 4, where equality holds if and only if = 1 and, up to
conjugation, s = diag(1; 1; 1;1).

(2) * =3 and dim(Vs( )) 8, where we have equality if and only if one of the following

holds:
(221) =1 and, up to conjugation, s=diag( 1; 1; 1; 5 1% ;) with ;& 1
(222) p6&62, = 1and, uptoconjugation, s= diag(1;1; 1; 1;1;1).

(3) * =4 and dim(Vs( )) 16, where equality holds if and only if = 1 and, up to

conjugation, s =diag(1;1; 1, 1; 1; 1;1;1).

(4) © 5anddim(Vs( )) 22 5°+3, where equality holds if and only if =1 and, up
to conjugation, s = diag(1;:::;1; 2 ,%1;:::;1) with 5 6 1.

In particular, for * = 2 there exist %2 T n Z(G) which aloid an eigenvalue 2 k
on V for which dim(Vs(F) dim(V) dim(V). On the other hand, for ©* 3 we have

dim(Vs( )) <dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues 2k ofsonV.
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Proof. Let s 2 T nZ(G) be as in hypothesis (YHs). Set V? = ~?(W). By Lemma 2.8.2, since
p- < itfollowsthat V' =V Lg(0), thusdim(V) =22 *© 1, dim(Vs(1)) =dim(V4 (1)) 1
and dim(Vs( )) = dim(VS°( )) for all eigenvalues & 1ofsonV.

We remark that for any eigenvalue 2 k of s on V such that & 1, by Inequality
(4.10), we have dim(Vs( )) 2 ¢ and so dim(Vs( )) < “? for * 4, respectively
dim(Vs( )) <2 5“+3for“ 5. Furthermore, for the eigenvalue 1 of s on V, items (2)
and (3) of Proposition 4.2.5 establish statements (2:1) and (4) of this corollary.

In order to complete the proof, we assume p & 2 and consider the eigenvalue 1 of s
onV. For “ =2and * =4, items (1) and (3) of Proposition 4.2.5 establish statements (1)
and (3) of this corollary. For the case of * = 3, by Case 1.1 and Case 1.2 of the proof of
Proposition 4.2.5, we have that dim(VSO( 1)) 8, where equality holds if and only if m =2
and ; ,'= 1. We determine that dim(Vs( 1)) 8 and equality holds if and only if, up
to conjugation, s = diag(1;1; 1; 1;1;1), asin (2:2).

We can now assume that * 5. First, if ; & 1foralll <] m, then we
proceed as for Inequality (4.12) to determine that

dim(Vs( 1)) ¢ =«

Since 0 < 2 4“+3forall © 5, it follows that dim(Vs( 1)) < 22 5°+ 3. We can
thus assume that there exist 1 1 <j msuch that ; j = 1. Then, we argue as for
Inequality (4.14) to determine that

dms( D) 27w D omy D 2nermC m ) @D

r=1

N

Suppose that dim(Vs( 1)) 22 5°+3. Then

X
4 3 nZ nm(ni 1) nj(n; 1) 2(ni+n)(C nm n;) O (4.18)

¢
r=1

We proceed as in the proof for V)( 1), see (4.16), and we arrive at
‘(4 n;j nj) 3 (ni nj)2 (ni + nj)(‘ n; n;j 1) 0: (419)

Assume that * n; n; 1<0. Thenm =2, * =n;+n, and, by Inequality (4.19), we get
1—3(n1 Z) + 1—3(n2 l_l) 1:

It follows that (ny; n2) 2 £(2;2); (2;1); (1; 1)g, contradicting * 5. Therefore* n; n; 1
0 and so, by (4.19), we have
‘4 n; nj) > 0:
Hence n; + n; 3 and, since n;  n;, we have (n;; n;) 2 T(2;1); (1;1)g. If (ni;n;) = (2;1),
then Inequality (4.19) gives 2°+8 0, contradicting * 5. If (nj;n;) = (1;1), then
> > X
Inequality (4.18) gives nZ 3, therefore n=3,as n? “and*‘ 5. It follows
r&i;j réi;j r=1
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that m=5n;=1,foralll i 5 and “ = 5. Substituting in Inequality (4.17) gives
dim(Vs( 1)) 28. Equality holds if and only if all eigenvalues of s on V dilerknt than 1
and the ones listed in (4.13) are equal to 1. By (4.9), it follows that ; ; L= Lforall
1 1 bandi<j<r 5, contradicting the fact that the ;’s are distinct.

In conclusion, for * = 2 we have shown that dim(Vs( )) 4 foralls2 T nZ(G) and
all eigenvalues 2 k of s on V, and that there exist (s; ) 2 T nZ(G) k for which
equality holds, for example s = diag(1; 1; 1;1) and ,5 1. Therefore, there exist
(s; ) 2TnzZ(G) k such that dim(Vs( )) dim(V) dim(V). On the other hand,
for * = 3 and * = 4 we have proven that dim(Vs( )) 22 6°+ Eicjor all s 2 Tnz(G)
and all eigenvalues 2 k of s on V, thus dim(Vs( )) < dim(V) dim(V). Lastly, for
“ 5 we have proven that dim(Vs( )) 22 5“+3forall s 2T nZ(G) and all eigenvalues

2k of sonV. Now, eBthe inequality 0 < 14‘2 31 + 17 holds for all *  5we have
22 543 <22 ¢ 1 22 ¢ 1forall* 5, hencedim(Vs( )) <dim(V) dim(V)
forall s2 T nZ(G) and all eigenvalues 2k of sonV. m

Corollary 4.2.7. Assume p j “ and let V = Lg(!,). Moreover, let s 2 T nZ(G) and let
2 k be an eigenvalue of s on V. Then one of the following holds:

(1) “=2and dim(Vs( )) 2, where we have equality if and only if one of the following

holds:
(1:1) =1 and, up to conjugation, s =diag( 1; 1; | ;) with ;&1
(1:22) = ,'and, up to conjugation, s = diag( 1;1;1; ,%) with ;& 1.
(2) * = 3 and dim(Vs( )) 8, where equality holds if and only if = 1 and, up to

conjugation, s = diag(1;1; 1, 1;1;1).

(B) “=4 and dim(Vs( )) 14, where we have equality if and only if one of the following
holds:
(3:1) =1 and, up to conjugation, s = diag( 1; 1; 1; 1, 15 1% 1% 1) with
16 L

(3:2) =1 and, up to conjugation, s = diag(1;1;1; »; ,*;1;1;1) with , & 1.
2

(4) © 5anddim(Vs( )) 22 5°+2, where equality holds if and only if =1 and, up
to conjugation, s = diag(L;:::;1; 2 ,% 1 1) with , 6 1.

In particular, for * = 2 there exist %32 T n Z(G) which alaf an eigenvalue 2 k
on V for which dim(VS(F) dim(V) dim(V). On the other hand, for ©* 3 we have

dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues 2k ofsonV.

Proof. Let s 2 T nZ(G) be as in hypothesis (YHs). Let V? = "2(W). By Lemma 2.8.2, since
pj* we have that V' = Lg(0) j V j Lg(0), hence dim(V) = 22 =« 2, dim(Vs(1)) =
dim(V.(1)) 2 and dim(Vs( )) = dim(V,( )) for all eigenvalues & 1 of son V.

Let © = 2 and note that, in this case, p = 2. For the eigenvalue 1 item (1:1) of Proposition
4.2.5 gives the result, while for any eigenvalue 6 1 of sonV, by Inequality (4.10), we have
dim(Vs( )) 2. Now, if m =1, then dim(Vs( )) =2 ifand only if 2 = 2, contradicting
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s 2 Z(G). On the other hand, if m = 2, then the eigenvalues of s on V, not necessarily

distinct, are 1 5, 1 ,%, . sand ;' ,?', see (4.9). One checks that dim(Vs( )) = 2 if

and only if = ! and, up to conjugation, s = diag( 1;1;1; ;') with ; & 1, as in (1:2).

We can now assume that © 3. Then for any eigenvalue 2 k of s on V such that

& 1, by Inequality (4.10), we have dim(Vs( )) ‘> ¢, therefore dim(Vs( )) < 2 for

* = 3;4, respectively dim(Vs( )) <2 5°+2for“ 5. Moreover, Proposition 4.2.5 solves

the case of the eigenvalue =1 and, in particular, establishes statements (3) and (4) of the

corollary. Hence, to complete the proof, we only need to investigate the dimension of the
eigenspace corresponding to the eigenvalue 1ofsonV.

We first consider the case of * = 3. By Case 1.1 and Case 1.2 of the proof of Proposition
4.2.5, we determine that dim(Vs( 1)) 8forall s2 T nZ(G) and that equality holds if and
only if, up to conjugation, s = diag(1;1; 1; 1;1;1), asin (2).

As p j © and as we want to determine dim(Vs( 1)), we can assume that * 5 If

i j6 1lforalll 1i<j m. Weargue as for Inequality (4.12) to determine that

dim(Vs( 1)) 2 =

As0 < “2 4+ 2forall © 4, it follows that dim(Vs( 1)) < 2‘2 5°+ 2. Hence, we
can assume that there exist 1 i <j msuch that ; j = 1. Then, we argue as for
Inequality (4.14) to determine that:

X
dimvs( 1)) 22 < T on2 omv D oy 1) 20i+n)( mong): (4.20)

r=1
Assume dim(Vs( 1)) 22 5°+2. Then:

X
4« 2 neZ nmi(mi 1) nj(n; 1) 2ni+n)(¢ ni ny) O (4.21)

c
r=1
Once again, we proceed as for V)( 1), see (4.16), to arrive at
‘G onmony) 2 (i om)? (Mmi+n)CE omony 1) O (4.22)

Assumethat* n; n; 1<0. Thenm=2, “=n;+n;and, by Inequality (4.22), we get
— —) + — — X
M P+ 7 L

Therefore (ny;ny) 2 £(2;2);(2;1); (1;1)g, contradicting * 5. Thus* n; n; 1 Oand
so by (4.22), we get
‘4 ni nj)>0:
Hence n; + n; 3 and, since n;  n;, we have (n;;n;) 2 (2;1); (1; 1)g. If (ni;n;) = (2;1),
then, by (4.22), we get 2°+9 0, contradicting * 5. On the other hand, if (n;;n;) =
> XX
(1:1), then, by Inequality (4.21), we get n? 4.But,as n? “‘and‘ 5, it follows
réi;j r=1
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X

that nf 2 13;4g. In both cases, since * 5, it follows that m = “, n; = 1, for all
réi;j
1 1 “,and*® 6.
Assume that * = 5. Then, up to conjugation, s = diag( 1;:::; s £5:::; 1) with

i&jlforalll i<j 5andthereexistl r<gq 5suchthat , 4= 1. We

can assume without loss of generality that ;

> = 1 Now by (4.9), the eigenvalues of
s on V, not necessarily distinct, are:  j, ;' ;' ;% ;' 1 i<j 5andl
with multiplicity 3. Since ; , = 1, itfollowsthat ; ;& 1, ;' ;'6& 1, , ;& 1
and ,' ;'& 1forall3 i 5, asthe j’sare distinct. This totals 12 eigenvalues of
s on V that are dilerkent than 1. Similarly, since ; & jl forall 1l 1<] 5, we
determine that ,' ;& 1, ; ;'6 1, ,' ;& land , ;'6& 1forall3 i 5.

This amounts to another 12 eigenvalues of s on V that are dilerknt than 1. It follows that
dim(Vs( 1)) 16, contradicting our assumption that dim(Vs( 1)) 27.

If ©* =6, then, substituting in Inequality (4.20) gives dim(Vs( 1)) 44. Equality holds
if and only if all eigenvalues of s on V dilerknt than 1 and those listed in (4.13) are equal
to 1. Therefore, ; jl = ;  tforalll i 6andi<j<r 6, contradicting the fact
that the ;’s are distinct.

In conclusion, for * = 2 we have shown that dim(Vs( )) 2 foralls2 T nZzZ(G) and
all eigenvalues 2 k of s on V and that there exist (s; ) 2 T nZ(G) k for which
equality holds, for example s = diag( 1;1;1; ,'), with ; & 1, and = 1. Therefore,
there exist (s; ) 2 TnZ(G) Kk such that dim(Vs( )) dim(V) dim(V). On the
other hand, for * = 3 we have proven that dim(Vs( )) for all s 2 T nZ(G) and all
eigenvalues 2 k of son V, thus dim(Vs( )) < dim(V) dim(V). Lastly, for ©* 4 we
have proven that dim(Vs( )) 22 5‘+2foralls2 T nZ(G) and all eigenvalues 2 k

of son V. Now, as the |E§quallty 0 < 142 31°+ 18 holds for all © 4, it foIBws that
22 5'42< 22 ¢ ¢ 2forall© 4, hence dim(Vs( )) <dim(V) dim(V)
forall s2 T nZ(G) and all elgenvalues 2k ofsonV. O

To conclude this subsection, we remark that Lemma 4.2.3, Proposition 4.2.4 and Corollaries
4.2.6 and 4.2.7 give the proof of Theorems 4.2.1 and 4.2.2 for the families of kG-modules
given by p-restricted dominant weights 2 F¢:.

4.2.2 The particular modules

As previously mentioned, in this subsection we will give an upper-bound for dim(Vs( )),
where (s; )2TnZ(G) Kk andV is an irreducible kG-module with p-restricted dominant
highest weight featured in one of the Tables 2.7.2 and 2.7.3. In order to determine

2rTrlz?((G)fdlm(Vs( ) j 2 k g we will use the inductive algorithm of Subsection 2.4.3. For
S n

this, we will use the properties of the Levi subgroup L; of the maximal parabolic subgroup
P, of G given in Section 2.4. We recall that L, = Z(L,) [Ly; L4], where Z(L,) is a one-
dimensional torus and [Li; L] is a simply connected group of type C- ;; and that we have
denote by T’ the maximal torus T \ [Li;Lq] of [Ly; L1]. Moreover, for © = 2, we also recall
that L,, a Levi subgroup of the maximal parabolic subgroup P, of G, is such that L, =
Z(L,) [Ly; Ly], where Z(L,) is a one-dimensional torus and [L;;L;] is a simply connected
group of type A;. We abuse notation and denote by T’ the maximal torus T \ [Ly; L]
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of [Ly; Ly], as it will be clear from the context which derived subgroup we are refering to.
Lastly, although we do not mention the result explicitly, we make great use of the data in
[LU01b], when discussing weights and weight multiplicities in this subsection.

Lets2T. Thens =1z h, wherez 2 Z(L;) and h 2 [Ly;L,]. Asz 2 Z(L;) , we have

Y
z= h j(cki), wherec2k andk; 2Zforalll j “. Moreover, we have ;(z) =1 for
j=1
Y Y
al2 j “andsoz= h (c)forsomec2k . Ash2][L;;L;], we have h = h (&)
i=1 j=2

Y
with a; 2k forall2 j “. Therefore,s=h (c) ( h,(cq)) withc2k and a 2k

i=2
forall2 j °.
Let V be an irreducible kG-module of p-restricted dominant highest weight 2 X(T),
where =d; 1, + +d-1-with0 di;:::;d- p 1. We consider the decomposition:
_ M
\% JiLLg= v
i=0
M _ _
where V' = V. i, forall0 1 ey ). Lets2T and writes=1z h as above. By
2N 1
(2.5), we have that:
s;=(C i1 )A=(C i h;@©)= ¢ cth
j=1 j=1
Therefore, z acts on Vi, 0 i ei( ), as the scalar s. Now, let _i1i553? L.t 1, be
the distinct eigenvalues of hon V', 0 i ei( ), and let n};:::;n; be their respective
multiplicities. Then, by Lemma 2.4.8, it follows that the distinct eigenvalues of s on V1 are
Sy 1:15;Sy t With respective multiplicities ny;:::;ng

Now, we consider the case of * =2 and let s 2 T. Thens =2z' h’, where z' 2 Z(L,)
and h’ 2 [Ly;Ly]. Asz'2 Z(L,) , we have ((z)) =1landsoz’=h  (c)h ,(c?) withc2k .
As h' 2 [L,; L,], we have h® = h  (a;), where a; 2 k . Therefore, s = h ,(ca;)h ,(c?) with
c;a, 2 k. As before, let V be an irreducible kG-module of p-restricted dominant highest
weight 2 X(T), =d;I;+ +d-'-with0 dj;:::;d- p 1. We have the following
decomposition:

\ j[Lzle]: Vv i;
i=0
_ M
where V' = V i, forall0 i ey( ). Lets2T and write s =2"' h’as above.

2N »
By (2.5), we have that:
spi=( 12 )E@)=( i), (©h (%) =ch"E ¢ 2
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Therefore, 2" actson V', 0 i  ep( ), as the scalar sh,. Now, let §;:::; L, i 1, be

the distinct eigenvalues of i’ on V', 0 i e,( ), and let n};:::;n{ be their respective
multiplicities. Then, as in the previous case, by Lemma 2.4.8, the distinct eigenvalues of s
onV'aresy ;1S t,, With respective multiplicities ny;:::;ng.

Proposition 4.2.8. Let k be an algebraically closed field of characteristic p = 5. Assume
‘*=2andletV = Lg(¥y + ;). Then for all s2 T nZ(G) and all eigenvalues 2 k of s
on V we have

dim(Vs( )) 6

where there exist pairs (s; ) 2 T nZ(G) FI§ for which the bound is attained.
In particular, dim(Vs( )) <dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues
2k ofsonV.

Proof. Let =1,+1,andletL =L,. Thendim(V) =12, asp =5, and, by Lemma 2.4.5,
we have e,( ) = 3, therefore

VijLyg=Vv°® vt vz v

) M
where V' = V. i, forall0 i 3. By [Smi82, Proposition], it follows that
2N -
VO =L, (1) and, by Lemma 2.4.3, we also have V3 = (L. (';)) = L.('1). Now, the
weight ( 2) j;o= 31, admits a maximal vector in V1, therefore V! has a composition

factor isomorphic to L (3!,) and thus dim(V?Y)  dim(L_(3!,)) = 4, since p = 5. Since
V2 = (V1Y) , see Lemma 2.4.3, it follows that dim(V') = 4 and so V! = L, (3!,), hence
VZ=(L.(3'1)) =L_(3",). Therefore, we have:

Vijg=Lo(t)  Lo@BY)  Lo@Br) Loy (4.23)

If dim(VJ( )) = dim(V') for some eigenvalue 2k of sonV, wherei=0;1;20ri=3,
then s 2 Z(L) nZ(G), and so s =h ,(c)h ,(c?) with ¢c2 & 1. In this case, as s acts on each
VI, 0 i 3, as scalar multiplication by ¢ ?', we determine that the eigenvalues of s on
V', not necessarily distinct, are:

8 :

¢ with dim(Vs(c®)) dim(V%) =2;

¢ with dim(Vs(c)) dim(vV?) =4;
=c ' withdim(Vs(c 1)) dim(V?) = 4;
"¢ 3 with dim(Vs(c 3)  dim(V?3) = 2:

As ¢? & 1, it follows that dim(Vs( )) 6 for all eigenvalues 2 k of s on V. Moreover, for
s=h ,(c)h ,( 1) withc®= 1, we have dim(Vs( c)) =86.

We can now assume that dim(VJ( )) < dim(V ') for all eigenvalues 2k of sonV and
all0 i 3. Wewrites=2" h’, where 2’2 Z(L) and h’ 2 [L;L]. Since z’ acts by scalar
multiplication on V', 0 i 3, it follows that dim(V,5( o)) < dim(vV') forall0 i 3,
where o is any eigenvalue of h’ on V'. Now, by Lemma 3.2.3, we have dim(V,3( w))

1, respectively dim(V,3( w)) 1, for all eigenvalues o of h” on V?, respectively on V3.
Similarly, by Proposition 3.2.9, we have dim(Vi( n)) 2, respectively dim(V5( w)) 2,
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for all eigenvalues o of h? on V1, respectively on V2. This gives dim(Vio( w)) 6 for all
eigenvalues p of h' on V, therefore dim(Vs( )) 6 for all eigenvalues 2k of son V.

In conclusion, we have shown that dim(Vs( )) 6 foralls 2 T nZ(G) and all eigenvalues

2 k of sonV, and that there exist pairs (s; ) 2 T nZ(G) k for which the bound is

attained. In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T n Z(G) and
all eigenvalues 2k ofsonV. m

Proposition 4.2.9. Let k be an algebraically closed field of characteristic p & 5. Assume
‘=2andletV =Lg('y+1,). Then for all s2 T nZ(G) and all eigenvalues 2 k of s
on V we have

dim(Vs( )) 8

where there exist pairs (s; ) 2 T nZ(G) rg for which the bound is attained.
In particular, dim(Vs( )) <dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues
2k ofsonV.

Proof. SetL=L;and =1;+1,. Thendim(V) =16, asp & 5, and, by Lemma 2.4.5, we
have e1( ) = 4, therefore
Vo= Ve v
_ M
where V' = V i, forall0 i 4. By [Smi82, Proposition], it follows that
2N 1

VO = L. (Y,) and, by Lemma 2.4.3, we also have V# = (L. (',)) = L.(',). Now, the
weight ( 1) j;o= 21, admits a maximal vector in V!, therefore V! has a composition
factor isomorphic to L, (21,). Moreover, we also note that the weight ( 1 2) jro=10
occurs with multiplicity 2 in V!, where it has multiplicity 1 ., in the composition factor
of V1 isomorphic to L (21,). It follows that dim(V?!) 4 and, by Lemma 2.4.3, we also have
dim(V3) 4, hence dim(V?2) 4. Similarly, the weight (2 ; ;) j;o= 1, is the highest
weight in V 2, in which it occurs with multiplicity 2, and admits a maximal vector. It follows
that V2 has two composition factors, both isomorphic to L (1,). As dim(L_(!,)) = 2, we
deduce that V2 has exactly two composition factors, both isomorphic to L, (!,), and, by
[Jan07, 11.2.14], we have V2 = L (¥,) L_(1,). Moreover, it also follows that dim(V ) = 4
and dim(V?3) = 4. If p & 2, then V%, hence V3, by Lemma 2.4.3, consists of exactly two
composition factors: one isomorphic to L, (21,) and one isomorphic to L, (0). Then, by
[Jan07, 11.2.14], we have V! = L (21,) L. (0) and V3 =L, (21,) L, (0). Therefore, in
the case of p & 2, we have:

Vijuyg=Lo(2) Le@') Li(0) Li(Yz) Lo(fz) Loe(2') L)  Lo(ry):

On the other hand, if p = 2, then V1, hence V3, by Lemma 2.4.3, has three composition
factors: one isomorphic to L, (1,)® and two isomorphic to L, (0).

If dim(VJ( )) = dim(V') for some eigenvalue 2 k of son V, where i = 0;1;2;3 or
i =4,thens2Z(L) nZ(G), and so s = h ,(c)h ,(c) with ¢ & 1. In this case, as s acts on
each V', 0 i 4, as scalar multiplication by ¢? !, we determine that the eigenvalues of s
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on V, not necessarily distinct, are:
8c2 with dim(Vs(c?)) dim(V°) =2;
%C with dim(Vs(c)) dim(V?1) =4;
1 with dim(Vs(1)) dim(V?) = 4;
¢ Y with dim(Vs(c 1)) dim(V?3) =4,
- ¢ 2 with dim(Vs(c 2)) dim(V4) =2:

Since ¢ & 1, it follows that dim(Vs( )) 8 for all eigenvalues 2 k of s on V. Moreover,
fors=h ( 1)h ,( 1) 2Z(L) nZ(G) we have dim(Vs( 1)) =8.

We can now assume that dim(VJ( )) < dim(V ') for all eigenvalues 2k of sonV and
all0 i 4. Wewrites =12z h, where z 2 Z(L) and h 2 [L;L]. Since z acts by scalar
multiplication on V', 0 i 4, it follows that dim(V,/( 1)) < dim(V") forall0 i 4,
where 1, is any eigenvalue of h on V'. Using (3.1) of the proof of Proposition 3.2.4, we
determine that the eigenvalues of h on V' * are of the form a2, 1 with multiplicity 2, and a, 2.
Note that, if a = 1, or a, 2 = 1, then dim(V,}(1)) = dim(V 1), hence dim(Vl(c)) = dim(V 1),
contradicting our assumption. Therefore, dim(V,}( 1)) 2 for all eigenvalues  of hon V1.
Moreover, as V3 = (V1) , we also have dim(V3( n)) 2 for all eigenvalues 1 of h on V3.
Lastly, by Lemma 3.2.3, we have dim(V,2( 1)) 1, dim(V>( v)) 2and dim(V;}( n)) 1
for all eigenvalues  of h on V° V2 and V#, respectively. It follows that dim(Va( 1)) 8
for all eigenvalues  of h onV and so dim(Vs( )) 8 for all eigenvalues 2k ofsonV.

In conclusion, we have shown that dim(Vs( )) 8foralls 2 TnZ(G) and all eigenvalues

2 k of sonV, and that there exist pairs (s; ) 2 T nZ(G) k for which the bound is
attained. In particular, we have dim(Vs( )) < dim(V) dim(V) for all s2 T nZ(G) and
all eigenvalues 2k ofsonV. O

Proposition 4.2.10. Let k be an algebraically closed field of characteristic p & 2. Assume
‘=2andletV =Lg(21,). Then for all s2 T nZ(G) and all eigenvalues 2k of sonV
we have

dim(Ve( )) 10 ps;

where there exist pairs (s; ) 2T nZ(G) r5 for which the bound is attained.
In particular, dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues
2k ofsonV.

Proof. Let =21,andletL =L;. Thendim(V) =14 s and, by Lemma 2.4.5, we have
e1( ) =4, therefore
VijLyg=Vv°® vt vz vi v+
) M
where V! = V
2N 1
VO =L,.(21,) and, by Lemma 2.4.3, we also have V* = (L_(2',)) = L.(2',). Now, the
weight ( 1 2) jro= 1, admits a maximal vector in V1, therefore V! has a composition
factor isomorphic to L, (¥,) and so dim(V?')  dim(L_(!;)) = 2. Since V3 = (V1) , see
Lemma 2.4.3, we have dim(V3) 2, and so dim(V?) 4 5. Lastly, in V2 the weight
( 21 2)jro=21,admits amaximal vector, thus V 2 has a composition factor isomorphic

for all 0 i 4. By [Smi82, Proposition], it follows that

1
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to L, (21,) and dim(V?)  dimL_(2',) =3, asp & 2. If p =5, then V! = L (1)),
V3=(L.(')) =L.(Y) and V2 =1L, (21,). Therefore

Vijug=Li@Y) Li(t) Lo@Y) Li(t) Lo@ia): (4.24)

Similarly, if p & 5, then,as3 dim(V?) 4, itfollowsthatV =L (1,),V3=(L.(1,)) =
L, (1,) and dim(V?2) = 4. Therefore, V2 consists of exactly two composition factors: one
isomorphic to L, (21,) and one to L, (0). We use [Jan07, 11.2.14] to show that V2 = L (21,)
L. (0), and so

Vijyg=Le@r)  Le(Y2) Lo2Y) Lo(0)  Lo(fz) Lo2Yy): (4.25)

If dim(VJ( )) = dim(V') for some eigenvalue 2 k of s on V, where i = 0;1;2;3 or
i =4,thens2Z(L) nZ(G), and so s =h ,(c)h ,(c) with ¢ & 1. In this case, as s acts on

each V', 0 i 4, as scalar multiplication by ¢ ', we determine that the eigenvalues of s
on V, not necessarily distinct, are:
8

¢ with dim(Vs(c?)  dim(V°) = 3;
%c with dim(Vs(c)) dim(V?1) =2;
1 with dim(Vs(1)) dim(V3) =4 s
¢ L with dim(Vs(c 1)) dim(V3) =2
- ¢ 2 with dim(Vs(c 2)) dim(V4) = 3:
Asc & 1, it follows that dim(Vs( )) 10 s for all eigenvalues 2 k ofsonV. Moreover,

fors=h ,( 1)h ,( 1) 2Z(L) nZ(G) we have dim(Vs(1)) =10  s.
We can now assume that dim(VJ( )) < dim(V') for all eigenvalues 2 k of s on

V and all 0 i 4. We write s =z h, where z 2 Z(L) and h 2 [L;L]. Since z
acts by scalar multiplication on Vi, 0 i 4, it follows that dim(V/( n)) < dim(V')
forall 0 i 4, where | is any eigenvalue of h on V'. By Proposition 3.2.4, we have

dim(Vo( n)) 2, dim(VJ( n)) 2and dim(VZ( n)) 3 s for all eigenvalues  of
hon V% V#and V2, respectively. Similarly, by Lemma 3.2.3, we have dim(V,}( 1)) 1,
respectively dim(V3( »)) 1, for all eigenvalues 1, of hon V1, respectively on V3. It follows
that dim(Va( 1)) 9 5 for all eigenvalues n of honV, therefore dim(Vs( )) 9 s
for all eigenvalues 2k ofsonV.
In conclusion, we proved that dim(Vs( )) 10 ,sforalls 2 TnZ(G) and all eigenvalues
2 k of sonV, and there exist pairs (s; )Fg TnzZ(G) k for which the bound is attained.
Therefore, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues
2k ofsonV. O

Proposition 4.2.11. Let k be an algebraically closed field of characteristic p & 2;3. Assume
“=2andletV =Lg(31;). Then for all s2 T nZ(G) and all eigenvalues 2k of sonV
we have

dim(Vs( )) 10

where there exist pairs (s; )2 T nZ(G) k for whigh the bound is attained.
In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.
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Proof. Let =3I, andlet L =L,. Then dim(V) = 20, as p & 2;3, and, by Lemma 2.4.5,
we have e;( ) = 3, therefore:

VijLy=Vv® vt vz v
) M
where V' = V j, forall0 i 3. By [Smi82, Proposition], it follows that
2N »
VO=1_L,.(31)andso V3= (L_(3':)) = L_(3",), see Lemma 2.4.3. Therefore dim(V?!) +
dim(V?) =12and,asV?2 = (V1) , see Lemma 2.4.3, we deduce that dim(V ') = dim(V ?) = 6.
Now, the weight ( 1 2) jpp= 31, admits a maximal vector in V!, thus V! has a
composition factor isomorphic to L_(3!;). Moreover, the dominantweight (2 ; ;) jpo=
1., occurring with multiplicity 2 in V1, has multiplicity 1 in the composition factor of V1!
isomorphic to L, (3';). As dim(V') = 6, we determine that V! consists of exactly two
composition factors: one isomorphic to L (3!;) and one isomorphic to L, (1;). Asp & 2;3,
we use [Jan07, 11.2.14] to show that V! = L, (3';) L.(';). Lastly, asV? = (V1) , it
follows that V2 =L (31;) L.(!1), and so:

Vijg=Lo@Y) Li@Bh) Lo(t) LoBh) Lo(ty) L@y (4.26)

If dim(VJ( )) = dim(V') for some eigenvalue 2k of sonV, wherei=0;1;20ri=3,
then s 2 Z(L) nZ(G), and so s =h ,(c)h ,(c?) with ¢c® & 1. In this case, as s acts on each
VI, 0 i 3, as scalar multiplication by c® ', we determine that the eigenvalues of s on
V', not necessarily distinct, are:

8., .. . :

c¢® with dim(Vs(c®)) dim(V°) = 4;

¢ with dim(Vs(c)) dim(v?!) =6;
=c twith dim(Vsc 1))  dim(V?) = 6;
"¢ % with dim(Vs(c 3)) dim(V3) =4:

As ¢? & 1, it follows that dim(Vs( )) 10 for all eigenvalues 2 k of s on V. Moreover,
fors=h (c)h ,( 1) withc2= 1 we have dim(Vs( c)) = 10.
We can now assume that dim(VJ( )) < dim(V") for all eigenvalues 2 k of sonV

and all 0 i 3. Wewrites = 2" h’, where 2’ 2 Z(L) and h' 2 [L;L]. Since 2’
acts by scalar multiplication on VI, 0 i 3, it follows that dim(V( n)) < dim(V')
forall 0 i 3, where o is any eigenvalue of h! on V'. Now, by Proposition 3.2.9, we

have dim(V,3( o)) 2, respectively dim(V,3( 1)) 2, for all eigenvalues o of h' on VO,

respectively on V3. Moreover, by the same result together with Lemma 3.2.3, it follows

that dim(V,5( n)) 3 and dim(V,3( w)) 3 for all eigenvalues o of h’ on V! and V2,

respectively. This gives dim(Vno( o)) 10 for all eigenvalues o of h” on V, therefore
dim(Vs( )) 10 for all eigenvalues 2k ofsonV.

In conclusion, we have shown that dim(Vs( )) 10forall s 2 TnZ(G) and all eigenvalues

2 k of sonV, and that there exist pairs (s; )2 T nLZ)(G) k for which the bound is

attained. In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T n Z(G) and
all eigenvalues 2k ofsonV. m
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Proposition 4.2.12. Let k be an algebraically closed field of characteristic p = 7. Assume
‘=2and letV = Lg(¥; +21,). Then for all s2 T nZ(G) and all eigenvalues 2k of s
on V we have

dim(vs( )) 12

where there exist pairs (s; ) 2 T nZ(G) ﬂ; for which the bound is attained.
In particular, dim(Vs( )) <dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues
2k ofsonV.

Proof. Let = 1;+21,andletL =L;. Then dim(V) = 24, as p = 7, and, by Lemma
2.4.5, we have e;( ) = 6, therefore:

VijLyg=Vv°® vt VAL

M
where V' = V i, forall0 i 6. By [Smi82, Proposition], it follows that V° =
2N 1
L, (21,) and, moreover, by Lemma 2.4.3, we also have V¢ = (L_(2!,)) = L. (21,). Now, in
V1, the weight ( 1) jo= 31, admits a maximal vector, therefore V! has a composition
factor isomorphic to L, (31,) and dim(V?Y)  dim(L_(3',)) = 4, since p = 7. Moreover,
by Lemma 2.4.3, we also have dim(V?®) 4. Similarly, the weight ( 2 ; 2) jpo= 121,
admits a maximal vector in V2, thus V2 has a composition factor isomorphic to L, (21,)
and dim(V?) dim(L_(21,)) = 3, as p = 7. Once more, by Lemma 2.4.3, we also have
dim(V#) 3. Lastly, the weight (3 ; ) j;o= 31, admits a maximal vector in V2 and
so V2 has a composition factor isomorphic to L, (31,), hence dim(V?®) 4, sincep=7. We
deduce that:

Vijug=Lo@Y2) Lo@Br2) Li(@'2) LL(BY2) Li(2Y) LB Li(22): (4.27)

If dim(VJ( )) = dim(V') for some eigenvalue 2k of sonV,where0 i 5ori=5,
then s 2 Z(L) nZ(G), and so s = h ,(c)h ,(c) with ¢ & 1. In this case, as s acts on each
VI, 0 i 6, as scalar multiplication by c® ', we determine that the eigenvalues of s on V,
not necessarily distinct, are:

8
¢ with dim(Vs(c®))  dim(V°) = 3;

¢ with dim(Vs(c?)) dim(V?) = 4;

¢ with dim(Vs(c)) dim(V?) = 3;

1 with dim(Vs(1))  dim(V?3) = 4;

¢ L with dim(Vs(c 1) dim(V*) = 3;

¢ 2 with dim(Vs(c 2)) dim(V5) = 4;
- ¢ 2 with dim(Vs(c 3)) dim(V®) =3:

As c & 1, it follows that dim(Vs( )) 12 for all eigenvalues 2 k of s on V. Moreover, for
s=h ,( Dh ,( 1)22Z(L) nZ(G) we have dim(Vs( 1)) = dim(Vs(1)) = 12.

We can now assume that dim(VJ( )) < dim(V') for all eigenvalues 2 k of s on V
andall0 i1 6. Wewrites =2z h, wherez 2 Z(L) and h 2 [L;L]. Since z acts
by scalar multiplication on V', 0 i 6, it follows that dim(V,i( 1)) < dim(V') for all
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0 i 6, where 4 is any eigenvalue of h on V'. Now, by Propositions 3.2.4 and 3.2.9,
we have dim(Vi( )) 2forall0 i 6 and all eigenvalues  of h on V. It follows
that dim(Vn( 1)) 14 for all eigenvalues 1 of h on V, therefore dim(Vs( )) 14 for all
eigenvalues 2 k of son V. However, we will show that, in fact, we have dim(Vs( )) 12
for all pairs (s; )2TnzZ(G) k.

Assume there exist (s; ) 2 TnZ(G) k with the property that dim(Vs( )) > 12. Then,
as V is a self-dual kG-module and dim(V) = 24, it follows that = 1. Moreover, since
dim(Vs( 1)) > 12, by the arguments of the previous paragraph, it follows that there exist
at least 6 V ’s such that dim(V,( 1)) = 2. Furthermore, asV® ' = (V') forall0 i 6,
we determine that dim(VJ( 1)) =2 fori =0;1;2;4;5 and i = 6. We write s =z h, where
z=h (c)h ,(c)and h 2 [L;L]. Let [,0 i 6, be the eigenvalue of h on V' with the
property that =c¢® ' |. We have that dim(V,i( 1)) =2 fori=0;1;2;4;5and i =6. We
now use Proposition 3.2.4 to determine that 2 = 1 and so, we getc= . Similarly, we
use the proof of Proposition 3.2.9 to determine that ! =d !, where d> = 1. Therefore,
we have =c2d '=( )%d !=d ¢!, contradicting the fact that d> = 1. This shows that
there do not exist pairs (s; ) 2T nZ(G) Kk such that dim(Vs( )) > 12.

In conclusion, we have shown that dim(Vs( )) 12foralls 2 TnZ(G) and all eigenvalues

2 k of sonV, and that there exist pairs (s; ) 2 T nZ(G) k for which the bound is
attained. In particular, we have dim(Vs( )) < dim(V) dim(V) for all s2 T nZ(G) and
all eigenvalues 2k ofsonV. ]

Proposition 4.2.13. Let k be an algebraically closed field of characteristic p = 7. Assume
“=2andletV =Lg(3Y,). Then for all s2 T nZ(G) and all eigenvalues 2k ofsonV,
we have

dim(Vs( )) 16;

where there exist pairs (s; ) 2 T nZ(G) 6 for which the bound is attained.
In particular, dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues
2k ofsonV.

Proof. Let =31, and let L =1L;. Thendim(V) =25, as p =7, and, by Lemma 2.4.5, we
have e;( ) = 6, therefore

Vojy=V° A
_ M
where V' = V. i, forall0 i 6. By [Smi82, Proposition], it follows that
2N 1
VO =L, (31,) and thus V® = (L_(31,)) = L_(31,), see Lemma 2.4.3. Now, the weight
( 1 2)jpo= 21, admits a maximal vector in V!, therefore V! has a composition factor

isomorphic to L (21,) and dim(V?Y) dim(L_(21,)) = 3, since p = 7. Moreover, by Lemma
2.4.3, we also have dim(V®) 3. The weight ( 2 1 2) Jro= 31, admits a maximal
vector in V 2, therefore V2 has a composition factor isomorphic to L, (3!,) and dim(V 2)
dim(L_(3!,)) = 4, since p = 7. Once more, by Lemma 2.4.3, we have dim(V#) 4. Lastly,
the weight ( 31 2 3) jpo= 21, admits a maximal vector in V3, therefore V3 has a
composition factor isomorphic to L (21,) and dim(V3®) 3. We deduce that:

Vijug=Lo@BY2) Lo@t2) Li(Br2) Li(2'2) LGB Li(2') Li(3Y2): (4.28)
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If dim(VJ( )) = dim(V1) for some eigenvalue 2k ofsonV,where0 i 5ori=G8,
then s 2 Z(L) nZ(G), and so s = h ,(c)h ,(c) with ¢ & 1. In this case, as s acts on each

VI, 0 i 6, asscalar multiplication by c® !, we determine that the eigenvalues of son Vv,
not necessarily distinct, are:
8

¢ with dim(Vs(c®)) dim(V°) =4,

¢ with dim(Vs(c?)) dim(V?!) =3;

¢ with dim(Vs(c)) dim(V2) = 4;

1 with dim(Vs(1))  dim(V?3) = 3;

¢ L with dim(Vs(c 1)) dim(V?%) = 4;

¢ 2 with dim(Vs(c 2)) dim(V°®) =3;
- ¢ 3 with dim(Vs(c 3)) dim(V®) =4

As c & 1, it follows that dim(Vs( )) 16 for all eigenvalues 2 k of s on V. Moreover, for
s=h ,( 1)h ,( 1) 22Z(L) nZ(G) we have dim(Vs( 1)) = 16.
We can now assume that dim(VJ( )) < dim(V'") for all eigenvalues 2 k of s on
V and all 0 i 6. We write s =z h, where z 2 Z(L) and h 2 [L;L]. Since z
acts by scalar multiplication on V', 0 i 6, it follows that dim(V,!( 1)) < dim(V') for
all0 i 6, where | is any eigenvalue of h on V'. Now, by Propositions 3.2.9 and
3.2.4, we have dim(V,/( 1)) 2 for all eigenvalues  of hon V', 0 i 6. It follows
that dim(Vn( n)) 14 for all eigenvalues |, of h on V, therefore dim(Vs( )) 14 for all
eigenvalues 2k ofsonV.
In conclusion, we have shown that dim(Vs( )) 16 forall s 2 TnZ(G) and all eigenvalues
2 k of sonV, and that there exist pairs (s; ) 2 T nZ(G) k for which the bound is
attained. In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T n Z(G) and
all eigenvalues 2k ofsonV. m

Proposition 4.2.14. Let k be an algebraically closed field of characteristic p = 3. Assume
‘=2andletV =Lg(2', + 1,). Then for all s2 T nZ(G) and all eigenvalues 2 k of s
on V we have

dim(Vs( ))  16;

where there exist pairs (s; ) 2T nzZ(G) k for thh the bound is attained.
In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Let =2V, + 1, andlet L =L,. Then dim(V) = 25, as p = 3, and, by Lemma
2.4.5, we have e,( ) = 4, therefore

VijLyg=Vv°® v! V4
_ M
where V' = V i, forall0 i 4. By [Smi82, Proposition], it follows that
2N -
VO =1,(21,) and therefore V4 = (L_(2'1)) = L_(211), see Lemma 2.4.3. Now, the weight
( 2) jpo= 41, admits a maximal vector in V1, thus V ! has a composition factor isomorphic
to L, (41,). We remark that, asp =3, we have L_(4',) = L, (1)) L, (¥1)®, see Theorem
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2.3.8, thusdim(V?!) 4. Moreover, we also note that the dominant weight (2 ; ;) jro=
0, occurring with multiplicity 2 in V1, is not a sub-dominant weight in the composition factor
of V!isomorphic to L (Y1) L. (1:)®. It follows that dim(V') 6, hence dim(V3) 6, by
Lemma 2.4.3, thereby dim(V?2) 7. Similarly, the weight ( 1 2 2)jpo=41; admits a
maximal vector in V2, thus V2 has a composition factor isomorphic to L (1;) L (1,)®.
Moreover, the dominant weight (2 1 2 ;) jpo= 214, occurring with multiplicity 2 in V 2,
is a sub-dominant weight in the composition factor of V 2 isomorphic to L, (1;) L (¥)®,
in which it has multiplicity 1. As p = 3, we have dim(L,_(2!;)) = 3 and so V ? consists of
exactly two composition factors: one isomorphic to L, (11) L (¥;)® and one isomorphic to
L, (21,). It follows that dim(V ') = 6, therefore V! is composed of exactly three composition
factors: two isomorphic to L, (0) and one isomorphic to L, (11) L, (11)®. Lastly, we apply
Lemma 2.4.3 once more to determine that V2 also consists of exactly three composition
factors: two isomorphic to L, (0) and one isomorphic to L (¥;) L (1)®.

If dim(VJ( )) = dim(V') for some eigenvalue 2k ofsonV,where0 i 3ori=4,
then s 2 Z(L) nZ(G), and so s =h ,(c)h ,(c?) with ¢c® & 1. In this case, as s acts on each
VI, 0 i 4, as scalar multiplication by ¢* ?', we determine that the eigenvalues of s on
V, not necessarily distinct, are:

8

¢* with dim(Vs(c*) dim(V°) = 3;
%cz with dim(Vs(c?)) dim(V?) = 6;

1 with dim(Vs(1)) dim(V?2) =7;

¢ 2 with dim(Vs(c 2)) dim(V?3) = 6;
- ¢ 4 with dim(Vs(c %)) dim(V%) = 3:

As ¢? & 1, it follows that dim(Vs( )) 13 for all eigenvalues 2k ofsonV.
We can now assume that dim(VJ( )) < dim(V') for all eigenvalues 2 k of sonV

andall0 i 4. We writes =2" h', where 2" 2 Z(L) , z°_: h ,(c)h ,(c?) withc 2 k ,
and h' 2 [L;L]. Since z' acts by scalar multiplication on V', 0 i 4, it follows that
dim(Vh( p)) < dim(v') forall0 i 4, where 1 is any eigenvalue of h’ on V'. First,

we will show that dim(Vi( n)) 4. For this, we recall that V! has three composition
factors: two isomorphic to L, (0) and one isomorphic to L, (41;). Now, by the proof of
Proposition 3.2.9, we determine that the eigenvalues of h’ on V!, not necessarily distinct,
are 1 with multiplicity 2, a$, a2, a; ? and a, %, where a; 2 k . If a2 = 1, then dim(V,3(1)) = 6
and so dim(Vl(c?)) = 6, contradicting our assumption. Therefore, a3 & 1 and we have
dim(V,5( o)) 4 for all eigenvalues o of h’ on V. Moreover, as V3 = (V1) , we also
have dim(V3( w)) 4 for all eigenvalues o of h' on V3. We now focus on V2 and we
will show that dim(V,3( n)) 4 for all eigenvalues 1 of h’ on V2. For this, we recall
that V2 consists of two composition factors: one isomorphic to L (2!,) and one isomorphic
to L (41,). Thus, the eigenvalues of h’ on V2, not necessarily distinct, are a2, 1, a, %, by
(3.1), and a}, a2, a, 2, a, *, by the proof of Proposition 3.2.9. As in the case of V!, we argue
that a? & 1. Therefore, dim(V,3( w)) 4 for all eigenvalues o of h’ on V2. Lastly, by
Proposition 3.2.4, we have dim(V,3( w)) 2 and dim(Vii( w)) 2 for all eigenvalues 1o of
h? on V© and V#, respectively. We conclude that dim(Vio( 1)) 16 for all eigenvalues
of h' on V, therefore dim(Vs( )) 16 for all eigenvalues 2k ofson V.
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We will now show that there exist (s; ) 2 T nZ(G) k such that dim(Vs( )) = 16.
Let s = 2" h', where 22 = h (c)h ,( 1) withc2= l1andh’=h ( ;) with 2= 1.
Then s 2 T nZ(G). Using Propositions 3.2.4 and 3.2.9, we determine that the distinct
eigenvalues of son vV are 1and 1 with dim(VS( 1)) =dim(V3( 1)) =2and dim(V2(1)) =
dim(V&(@)) = 1; dim(V3( 1)) = dim(V3( 1)) =4 and dim(V1(1)) = dim(V3(1)) = 2; and
dim(VZ( 1)) =4 and dim(VZ2(1)) = 3. Therefore, dim(Vs( 1)) = 16 and dim(Vs(1)) = 9.

In conclusion, we have shown that dim(Vs( )) 16 foralls 2 TnZ(G) and all eigenvalues

2 k of sonV, and that there exist pairs (s; ) 2 T nZ(G) k for which the bound is
attained. In particular, we have dim(Vs( )) < dim(V) dim(V) for all s2 T nZ(G) and
all eigenvalues 2k ofsonV. ]

Proposition 4.2.15. Let k be an algebraically closed field of characteristic p = 2. Assume
* 3andletV =Lg(!:). Then for all s2 T nZ(G) and all eigenvalues 2k of s onV
we have

dim(vs( )) 2" %
where there exist pairs (s; ) 2T nZ(G) k for whigh the bound is attained.

In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Let = 1. and let L =L,. Then, dim(V) =2, as p =2, and, by Lemma 2.4.5, we
have e;( ) = 2, therefore
Vijpy=Vv® vt vz
_ M
where V' = V
2N 1

Proposition], it follows that V°® = L, (!-) and thus V2 = (L _(!:)) = L_(!.), see Lemma
2.4.3. Therefore, we have:

forall0 i 2. Now, as p =2, we have V! = f0g. By [Smi82,

1

Vijg= Lot Lo (4.29)

If dim(VJ( )) =dim(VT) for some eigenvalue 2 k of sonV, wherei=0ori=2, then
s2Z(L) nZ(G),andsos=h ,(c) h .(c) with ¢ & 1. In this case, as s acts on each V',
i =0and i =2, as scalar multiplication by ¢! ', we determine that the distinct eigenvalues
of sonV arecandc ! with dim(Vs(c 1)) =2" 1.

We can now assume that dim(VJ( )) < dim(V ) for all eigenvalues 2k of sonV and
forbothi=0andi=2. Wewrites=12z h,wherez 2 Z(L) and h 2 [L;L]. Since z acts
by scalar multiplication on V° and V 2, respectively, it follows that dim(V,/( 1)) < dim(V ")
for both i = 0 and i = 2, where  is any eigenvalue of h on V'. First, suppose that
“ = 3. Then, by Corollary 4.2.7, as p = 2, we have dim(V°( n)) 2 and dim(V?( n)) 2
for all eigenvalues 1, of h on V° and V2, respectively. It follows that dim(Vh( »)) 22
for all eigenvalues 1 of h on V, therefore dim(Vs( )) 22 for all eigenvalues 2 k of
s on V. Suppose now that * 4. Then, by recurrence, we have dim(V,°( 1)) 2 2
and dim(V,2( 1)) 2" 2 for all eigenvalues 1 of h on V° and V2, respectively. This gives
dim(Va( 1)) 2 ! for all eigenvalues 1, of h on V, therefore dim(Vs( )) 2"t for all
eigenvalues 2k ofsonV.

In conclusion, we have shown that dim(Vs( )) 2 ! foralls 2 T nZ(G) and all
eigenvalues 2 k ofsonV, and that there exist pairs (s; ) 2 TnZ(G) k for which equality
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holds. Since the inequality 0 < 2°(2" ? 1)Fpolds forall ©* 3,wehavwe?2 <2 pf for
all © 3, and thus dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all eigenvalues
2k ofsonV. m

Proposition 4.2.16. Let k be an algebraically closed field of characteristic p & 2. Assume
“=3andletV =Lg(!3). Then for all s2 T nZ(G) and all eigenvalues 2k of sonV
we have
dim(Vs( )) 10
where there exist pairs (s; ) 2T nZ(G) k for whigh the bound is attained.
In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Let = lIzandletL =1L;. Thendim(V) =14, as p & 2, and, by Lemma 2.4.5, we
have e;( ) = 2, therefore:
Vijpy=Vv® vt vz

forall0 i 2. By [Smi82, Proposition], it follows that V° =

. M
where V' = V
2N 1
L. (13), therefore V2 = (L. (¥3)) = L.('3), by Lemma 2.4.3. Since the weight ( 1
5 3) jro=1, admits a maximal vector in V1, it follows that V! has a composition factor
isomorphic to L, (,) and dim(V?!) dim(L_(',)) = 4. By dimensional considerations, we
deduce that V! = L (1,) and

V j[|_;|_]: |_|_(!3) L|_(!2) L|_(!3): (430)

If dim(VJ( )) = dim(V') for some eigenvalue 2 k of sonV, wherei=20;1ori=2,
thens 2 Z(L) nZ(G), and so s = h ,(c)h ,(c)h ,(c) with ¢ & 1. In this case, as s acts on
each V', i = 0;1;2, as scalar multiplication by c¢* ', we determine that the eigenvalues of s
on V, not necessarily diséinct, are

>c with dim(Vs(c))  dim(V?) = 5:
_1with dim(Vs(1))  dim(v?) = 4;
"¢ L with dim(Vs(c 1)) dim(V?2)=5:

1

As ¢ & 1, it follows that dim(Vs( )) 10 for all eigenvalues 2 k of s on V. Moreover, for
s=h ( Dh,( Dh ,( 1)22Z(L) nZ(G) we have dim(Vs( 1)) = 10.
We can now assume that dim(VJ( )) < dim(V') for all eigenvalues 2 k of s on V

andall0 i 2. Wewrites =2z h, wherez 2 Z(L) and h 2 [L;L]. Since z acts
by scalar multiplication on V', 0 i 2, it follows that dim(V,( 1)) < dim(V') for all
0 i 2,where 4y isany eigenvalue of h on V'. As p & 2, by Corollary 4.2.6, we have

dim(V°( 1)) 4anddim(V,2( 1)) 4 forall eigenvalues 1 of honV?and V2, respectively.
Similarly, by Lemma 4.2.3, we have dim(V/:( 1)) 2 for all eigenvalues  of hon V1. This
implies that dim(V,( n)) 10 for all eigenvalues 1 of h on V, therefore dim(Vs( )) 10
for all eigenvalues 2k ofsonV.
In conclusion, we have shown that dim(Vs( )) 10 forall s 2 TnZ(G) and all eigenvalues
2 k of sonV, and that there exist pairs (s; ) 2 T nZ(G) k for which the bound is
attained. In particular, we have dim(Vs( )) < dim(V) dim(V) for all s2 T nZ(G) and
all eigenvalues 2k ofsonV. O
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Proposition 4.2.17. Let k be an algebraically closed field of characteristic p = 2. Assume
‘=3 andletV = Lg('y + 13). Then for all s 2 T nZ(G) and all eigenvalues 2 k of s
on V we have

dim(Vs( ) 24:

In particular, we have dim(Vs( )) < dim(V) IDdim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Let =1!;+1;andletL =L;. Thendim(V) =48, as p = 2, and, by Lemma 2.4.5,
we have e;( ) = 4, therefore

VijLyg=Vv°® vt vz vi v+
_ M
where V' = V ;, forall0 i 4. By [Smi82, Proposition], it follows that V° =
2N 1
L. ('3) and so, by Lemma 2.4.3, we also have V* = (L. (¥3)) = L_('3). Since the weight
( 1) jyo= 1, + 13 admits a maximal vector in V1, it follows that V! has a composition
factor isomorphic to L, (Y,+ ¥3) and dim(V?1) dim(L_(>+ '3)) = 16, since p = 2. Hence,
by Lemma 2.4.3, we also have dim(V3)  16. Lastly, astheweight ( 2 ; 2 , 3)jpo=13
is the highest weight in V 2, in which it has multiplicity 2, and admits a maximal vector, it
follows that V2 has two composition factors, both isomorphic to L_(¥3). By dimensional
considerations, it follows that V! = L (1, + 13), hence V3 = (L (1, + 13)) =L, (1, + 13),
V2=1L,('3) Lg(13), by [Jan07, 11.2.14], and so:

Vijug=Lo(ts) Lo(Ya+1Y3) Li(¥s) Li(fs) Lo(Ya+13) Lo(ls): (4.31)

If dim(VJ( )) = dim(V') for some eigenvalue 2k ofsonV,where0 i 3ori=4,
thens 2 Z(L) nZ(G), and so s =h ,(c)h ,(c)h ,(c) with c & 1. In this case, as s acts on
each V', 0 i 4, as scalar multiplication by ¢® ', we determine that the eigenvalues of s
on V, not necessarily distinct, are

802 with dim(Vs(c?)) dim(V°) = 4;
%c with dim(Vs(c)) dim(V?!) = 16;

1 with dim(Vs(1)) dim(V?2) =8;

¢ L with dim(Vs(c 1)) dim(V3) = 16;
= ¢ 2 with dim(Vs(c 2)) dim(V*) =4:

As c& 1andp=2, it follows that dim(Vs( )) 20 for all eigenvalues 2k ofsonV.
We can now assume that dim(VJ( )) < dim(V") for all eigenvalues 2 k of sonV

andall0 i 4. Wewrites =2z h, wherez 2 Z(L) and h 2 [L;L]. Since z acts
by scalar multiplication on V', 0 i 4, it follows that dim(V,i( 1)) < dim(V') for all
0 i 4, where 4 is any eigenvalue of h on V'. Now, as p = 2, by Corollary 4.2.7, we

have dim(V°( 1)) 2, dim(V2( 1)) 4 and dim(V;}( »)) 2 for all eigenvalues 1 of h on
VO V2and V4, respectively. Furthermore, by Proposition 4.2.9, we have dim(V,}( 1)) 8
and dim(V3( n)) 8 for all eigenvalues n of h on V! and V3, respectively. This implies
that dim(Vn( 1)) 24 for all eigenvalues 1, of h on V, therefore dim(Vs( )) 24 for all
eigenvalues 2k ofsonV.
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In conclusion, we have shown that dim(Vs( )) 24 < dim(V) pdim(V) for all s 2
T nZ(G) and all eigenvalues 2k ofsonV. O

Proposition 4.2.18. Let k be an algebraically closed field of characteristic p = 2. Assume
‘=3andletV =Lg(21, + 13). Then for all s2 T nZ(G) and all eigenvalues 2 k of s
on V we have

dim(Vs( )) 20

where there exist pairs (s; )2 T nZ(G) k for whigh the bound is attained.
In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Let =2V, + Y3andlet L =L;. Then dim(V) = 48, as p = 2, and, by Lemma
2.4.5, we have e;( ) = 6, therefore

VL= A A
_ M
where V' = V i, forallO i 6. By [Smi82, Proposition], it follows that
2N 1

VO =1L,(13) and so, by Lemma 2.4.3, we also have V¢ = (L_('3)) = L. ('3). Asp = 2,
we have V! = f0g, V3 = f0g and V° = f0g. This gives dim(V?) = 20, as V% = (V?),
by Lemma 2.4.3. Since the weight ( 2 1) jpo= 21, + I3 admits a maximal vector in
V2, it follows that V2 has a composition factor isomorphic to L, (21, + !3). Remark that
dim(L_(21,+13)) =16,as L (21,+13) = L (1)@ L, (13), by Theorem 2.3.8. Moreover,
we note that the dominantweight ( 2 ; 2 , 3) jyo= 13, which occurs with multiplicity
3in V2, is a sub-dominant weight in the composition factor of VV 2 isomorphic to L (21,+15),
in which it has multiplicity 2. Therefore, as dim(V ?) = 20, we determine that V?2 has two
composition factors: one isomorphic to L, (21, + 13) and one isomorphic to L, (¥3). Lastly,
by Lemma 2.4.3, it follows that V* also consists of exactly two composition factors: one
isomorphic to L (2!, + 13) and one isomorphic to L (13).

If dim(VJ( )) = dim(V1) for some eigenvalue 2 k of sonV, where i =0;2;40ri =8,
thens 2 Z(L) nZ(G), and so s =h ,(c)h ,(c)h ,(c) with c & 1. In this case, as s acts on
each V', i = 0;2;4;6, as scalar multiplication by ¢® ', we determine that the eigenvalues of
s on V, not necessarily distinct, are

§c3 with dim(Vs(c®) dim(V°) = 4;

¢ with dim(Vs(c)) dim(V?) = 20;
Zc Lwith dim(Vs(c 1) dim(V4) = 20;
“¢ 3 with dim(Vs(c 3)) dim(V®) = 4

Asc6& 1and p =2, it follows that dim(Vs( )) 20 for all eigenvalues 2k ofsonV.
We can now assume that dim(VJ( )) < dim(V ') for all eigenvalues 2k of sonV and
all i =0;2;4and i =6. We writes =2z h, where z 2 Z(L) and h 2 [L;L]. Since z acts
by scalar multiplication on V', i = 0;2;4;6, it follows that dim(V,!( 1)) < dim(V ) for all
i =0;2;4and i =6, where 4 is any eigenvalue of h on V'. In what follows, we will show
that dim(V,2( 1)) 8 for all eigenvalues 1 of h on V2. First, we determine the eigenvalues
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of h on the composition factor of V2 isomorphic to L, (2!, + !3). For this, we recall that,
by Theorem 2.3.8, we have

Le@Y + 1) =L (1)@ Lo(ta):

Now, the eigenvalues of h on L (1,)® have the form a2, a2, a,? and a; 2, while the eigenvalues
of hon L (13), by (4.9), have the form a,as, a,a,*, a,'as and a,*a, !, where a,;a; 2 k are
not both simultaneously equal to 1. Therefore, keeping in mind that the other composition
factor of V2 is isomorphic to L_(13), we determine that the eigenvalues of h on V2, not
necessarily distinct, are

C

a,a3; axa;'; a, *az and a, *a, '; each with multiplicity at least 3;
alas; aya3; ajas '; a, 'ad; axa, % a, %as; a, 'a, ® and a, *a; *; each with multiplicity at least 1:

Case 1: Consider the eigenvalue , =1 of hon V2.

(1) If ayaz = 1, then a; = a,* and the eigenvalues of h on V2, not necessarily distinct,
are: a3 and a, 2, each with multiplicity at least 5, a3 and a,*, each with multiplicity at
least 2, and 1 with multiplicity 6. It follows that dim(V,2(1)) = 6 and dim(V2( v)) 7
for all eigenvalues , with , & Yof hon V2.

(2) If a,'ay* =1, then, as above, we obtain dim(V,2(1)) = 6 and dim(V2( 1)) 7 for all
eigenvalues  with & ,*of honV2

(3) The cases of a,a;* =1 and a, 'az = 1 are analogs of (1) and (2).

Lastly, if each a,as, a,'a,y !, a,a; ' and a, 'as is di[erent that 1, then we get dim(V,2(1)) 8.
Case 2: Consider the eigenvalue 1, of h on V2 with |, & hl. We first note that
dim(V,2( n)) 10, as V2 is self-dual.

(1) Suppose that |, = ayas.

@y I L= a2a31, then az = 1, hence a, & 1, , = a, and the distinct eigenvalues
of h on V2 are a, and a,*, each with multiplicity 8; and a3 and a, ®, each with
multiplicity 2.

@21 = azlag, then a, = 1, hence a3 & 1, = ag, and, as in the previous case,
we have dim(V2(as)) = dim(V/2(a; 1)) = 8 and dim(V,2(a3)) = dim(V2(a3 %)) = 2.

(1:3) If & aatand 1, & a,'as, then dim(V2( 1)) 7. This completes the case of
h — dpas.

(2) If =a,%a;?, then, we argue as in (1) to show that dim(V?( 1)) 8.
(3) If & aazand & a,'a;?’, thendim(V2( ) 7.

To summarize all of the above, we have shown that dim(V,2( ,)) 8 for all eigenvalues
of h on V2. Furthermore, we note that, as V* = (V?) , we also have dim(V,}( 1)) 8 for
all eigenvalues p of h on V4. Lastly, as p = 2, by Corollary 4.2.7, we have dim(V2( n)) 2
and dim(V%( 1)) 2 for all eigenvalues  of h on V° and V®, respectively. Therefore,
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dim(Vh( 1)) 20 for all eigenvalues 1 of h on V, and, consequently, dim(Vs( )) 20 for
all eigenvalues 2k ofsonV.

In conclusion, we have shown that dim(Vs( )) 20 forall s 2 TnZ(G) and all eigenvalues

2 k of sonV, and that there exist pairs (s; ) 2 T nZ(G) k for which the bound is

attained. In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T n Z(G) and
all eigenvalues 2k ofsonV. m

Proposition 4.2.19. Let k be an algebraically closed field of characteristic p = 3. Assume
‘=4 and letV = Lg(!3). Then for all s2 T nZ(G) and all eigenvalues 2 k of sonV
we have

dim(Vs( ))  26;

where there exist pairs (s; ) 2T nZ(G) k for whigh the bound is attained.
In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Let = Izandlet L =1L;. Then dim(V) =40, as p = 3, and, by Lemma 2.4.5, we
have e;( ) = 2, therefore:
Vijpy=Vv? vt vz
) M
where V' = V i, forall0 i 2. By [Smi82, Proposition], it follows that
2N 1

VO =1L,(Y3) and so, by Lemma 2.4.3, we also have V2 = (L_('3)) = L_('3). Therefore,
dim(V?) = 14, as dim(V?%) = dim(V 2) = 13. Since the weight ( 12 3)ip= 1y
admits a maximal vector in V1, it follows that V! has a composition factor isomorphic to
L (%4) and dim(V1) dim(L_(Y4)) = 14, since p & 2. Therefore, V1 =L, (1,) and

Vipu=Lo(ts) Li(ts)  Lo(te): (4.32)

If dim(VJ( )) = dim(V') for some eigenvalue 2 k of sonV, wherei =0;1ori=2,
thens 2 Z(L) nZ(G),andsos=h ,(c) h ,(c) with c & 1. In this case, as s acts on each
V', 0 i 2, asscalar multiplication by c* ', we determine that the eigenvalues of s on V,
not necessarily distinct, are

8

>c with dim(Vs(c))  dim(V°) = 13;
_1with dim(Vs(1))  dim(v?) = 14;

=¢ Y with dim(Vs(c 1)) dim(V?) = 13:

As c & 1, it follows that dim(Vs( )) 26 for all eigenvalues 2 k of s on V. Moreover, for
s=h, (1 h,( 1)22Z(L) nZ(G) we have dim(Vs( 1)) = 26.
We can now assume that dim(VJ( )) < dim(V') for all eigenvalues 2 k of s onV

andall0 i 2. Wewrites =z h, wherez 2 Z(L) and h 2 [L;L]. Since z acts
by scalar multiplication on V', 0 i 2, it follows that dim(V,( 1)) < dim(V') for all
0 i 2, where 4 isany eigenvalue of h on V'. As p = 3, by Corollary 4.2.7, it follows

that dim(V2( »)) 8 and dim(V?( »)) 8 for all eigenvalues 1 of h on V° and V2,
respectively. Similarly, as p & 2, by Proposition 4.2.16, we have dim(V,}( 1)) 10 for all
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eigenvalues  of h on V. This implies that dim(Vnh( 1)) 26 for all eigenvalues  of h on
V, therefore dim(Vs( )) 26 for all eigenvalues 2k of son V.

In conclusion, we have shown that dim(Vs( )) 26 forall s 2 TnZ(G) and all eigenvalues

2 k of sonV, and that there exist pairs (s; ) 25 nZ(G) k for which the bound is

reched. Therefore, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all

eigenvalues 2k ofsonV. m

Proposition 4.2.20. Let k be an algebraically closed field of characteristic p & 3. Assume
‘=4 and letV = Lg(!3). Then for all s2 T nZ(G) and all eigenvalues 2 k of sonV
we have

dim(Vs( )) 30:

In particular, we have dim(Vs( )) < dim(V) Iodim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Let = IzandletL =1L;. Thendim(V) =48, as p & 3, and, by Lemma 2.4.5, we
have e1( ) = 2, therefore
Vijpyg=Vv® vt vz

) M
where V' = V i, forall0 i 2. By [Smi82, Proposition], it follows that
2N 1
VO =L, (Y3) and so, by Lemma 2.4.3, we also have V2 = (L_('3)) = L_(13). This gives
dim(V 1) = 20. Now, in V! the weight ( 1 2 3)jp= 1, admits a maximal vector,

hence V! has a composition factor isomorphic to L, (1,). Furthermore, the dominant weight
( 1 2 23 4)jpo= 1, occurs with multiplicity 2 in V! and it has multiplicity 1~ .
in the composition factor of V! isomorphic to L, (!4). By dimensional considerations, we
deduce that, if p & 2, then V! consists of exactly two composition factors: one isomorphic to
L, ('4) and one isomorphic to L, (1,), while, if p = 2, then V! consists of three composition
factors: one isomorphic to L, (1,) and two isomorphic to L (1,).

If dim(VJ( )) = dim(V') for some eigenvalue 2 k of sonV, wherei=20;1ori=2,
thens 2 Z(L) nZ(G),andsos=nh ,(c) h ,(c)withc & 1. In this case, as s acts on each
VI, 0 i 2, asscalar multiplication by c* !, we determine that the eigenvalues of s on V,
not necessarily distinct, are

8

>c with dim(Vs(c))  dim(V?) = 14;

_ 1 with dim(Vs(1)) = dim(v ?) = 20;

“¢ Ywith dim(Vs(c 1)) dim(V?) =14:

As c & 1, it follows that dim(Vs( )) 28 for all eigenvalues 2k ofsonV.

We can now assume that dim(VJ( )) < dim(V ') for all eigenvalues 2k of sonV and
allo0 1 2. Wewrites=2z h,wherez2 Z(L) and h 2 [L;L]. Since z acts by scalar
multiplication on VI, 0 i 2, it follows that dim(V/( n)) < dim(V') forall0 i 2,
where  is any eigenvalue of hon V. Asp & 3, by Corollary 4.2.6, we have dim(V°( 1)) 8
and dim(V,2( »)) 8 for all eigenvalues 1 of h on V° and V2, respectively. Similarly, by
Lemma 4.2.3 and Proposition 4.2.16 if p & 2, respectively by Proposition 4.2.15 if p = 2, we
have dim(V,l( n)) 14 if p & 2, respectively dim(V,}( 1)) 12 if p =2, for all eigenvalues
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h of h on V1. In both cases it follows that dim(Vn( 1)) 30 for all eigenvalues 1 of h on
V, therefore dim(Vs( )) 30 for all eigenvalues 2k of sonV.

In conclusion, we have shown that dim(Vs( )) 30 < dim(V) dim(V) for all s 2

T nZ(G) and all eigenvalues 2k ofsonV. O

Proposition 4.2.21. Let k be an algebraically closed field of characteristic p & 2. Assume
‘=4 and letV = Lg('4). Then for all s2 T nZ(G) and all eigenvalues 2 k of sonV
we have

dim(Vs( ) 28;

where there exist pairs (s; )2 T nZ(G) k for whigh the bound is attained.
In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Let = !, and let L =L;. Then, as p & 2, we have dim(V) = 42 .3 and, by
Lemma 2.4.5, we have e;( ) = 2, therefore

VijLyg=Vv°® vt vz
) M
where V' = V i, forallO i 2. By [Smi82, Proposition], it follows that
2N 1
VO =1L,(1,) and so, by Lemma 2.4.3, we also have V2 = (L (14)) = L.(14). Moreover,
as dim(V°) = dim(V?2) = 14, since p & 2, we have dim(V') = 14 3. Now, since the
weight ( 1 2 3 4)jpo= Y3 admits a maximal vector in V1, it follows that V ! has
a composition factor isomorphic to L_(13) and dim(V?!)  dim(L_('3)). We deduce that
Vi=1L,.(¥3) and
Vijg=Lo(ts)  Lo(ts)  Lo(ta): (4.33)

If dim(VJ( )) = dim(V') for some eigenvalue 2 k of sonV, wherei=20;1ori=2,
thens 2 Z(L) nZ(G),andsos=nh ,(c) h ,(c)withc & 1. In this case, as s acts on each
VI, 0 i 2, asscalar multiplication by c* !, we determine that the eigenvalues of s on V,
not necessarily distinct, are

8

=c with dim(Vs(c)) dim(V°) = 14;
_Lwithdim(Ve(1)) dim(V) =14
“¢ with dim(Vs(c 1))  dim(V?) = 14:

As c & 1, it follows that dim(Vs( )) 28 for all eigenvalues 2 k of s on V. Moreover, for
s=h (1) h,1)22(L) nZ(G) we have dim(Vs( 1)) = 28.

We can now assume that dim(VJ( )) < dim(V ') for all eigenvalues 2k of sonV and
all0 1 2. Wewrites=2z h,wherez2 Z(L) and h 2 [L;L]. Since z acts by scalar
multiplication on VI, 0 i 2, it follows that dim(V/( n)) < dim(V') forall0 i 2,
where 1, is any eigenvalue of h on V'. Now, either by Corollary 4.2.6 if p & 3, or by Corollary
4.2.7 if p = 3, it follows that dim(V,}( 1)) 8 for all eigenvalues  of h on V1. Similarly,
as p & 2, by Proposition 4.2.16, we have dim(V°( n)) 10 and dim(V?( »)) 10 for all
eigenvalues 1, of h on V° and V2, respectively. This implies that dim(V,( 1)) 28 for all
eigenvalues 1 of h on V, therefore dim(Vs( )) 28 for all eigenvalues 2k of son V.
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In conclusion, we have shown that dim(Vs( )) 28foralls 2 TnZ(G) and all eigenvalues

2 k of sonV, and that there exist pairs (s; ) 2 [yznZ(G) k for which the bound is
attained. Therefore, we have dim(Vs( )) < dim(V) dim(V) forall s2 T nZ(G) and all
eigenvalues 2k ofsonV. ]

Proposition 4.2.22. Let k be an algebraically closed field of characteristic p = 2. Assume
‘=5andletV =Lg(!'3). Then for all s2 T nZ(G) and all eigenvalues 2 k of sonV
we have

dim(Vs( )) 58:

In particular, we have dim(Vs( )) < dim(V) pdim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Let = '3andlet L =L;. Then dim(V) =100, as p = 2, and, by Lemma 2.4.5, we
have e;( ) = 2, therefore:
VijLyg=Vv°® vt v?

_ M

where V! = Vo
2N 1

VO = L. (Y3) and so, by Lemma 2.4.3, we also have V2 = (L_('3)) = L.('3). This
gives dim(V?) = 48, as dim(V?% = dim(V?2) = 26, since p = 2. Now, in V! the weight
( 1 9 3) j;o= 1,4 admits a maximal vector, therefore V! has a composition factor
isomorphic to L, (!4) and dim(V?')  dim(L_('4)) = 48, since p & 3. We deduce that
V1 = L|_(!4) and

for all 0 i 2. By [Smi82, Proposition], it follows that

1

Vo= Loe(ts)  Li(ts)  Lo(Ya): (4.34)

If dim(VJ( )) = dim(V) for some eigenvalue 2 k of sonV, where i =0;1ori=2,
thens 2 Z(L) nZ(G),andsos=nh ,(c) h .(c) withc & 1. In this case, as s acts on each
VI, 0 i 2, asscalar multiplication by c* !, we determine that the distinct eigenvalues of

sonV are s
=c with dim(Vs(c)) = dim(V °) = 26;

_ 1 with dim(Vs(1)) = dim(V %) = 48;
= ¢ ! with dim(Vs(c 1)) = dim(V?) = 26:

We can now assume that dim(VJ( )) < dim(V') for all eigenvalues 2 k of s on V

andall0 i 2. Wewrites =2z h, wherez 2 Z(L) and h 2 [L;L]. Since z acts
by scalar multiplication on V', 0 i 2, it follows that dim(V,i( 1)) < dim(V') for all
0 i 2, where p isany eigenvalue of h on V'. As p = 2, by Corollary 4.2.7, it follows

that dim(V,°( 1)) 14 and dim(V2( 1)) 14 for all eigenvalues  of h on V? and V2,
respectively. Similarly, as p = 2, by Proposition 4.2.20, we have dim(V,}( )) 30 for all
eigenvalues p of h on V. This implies that dim(V,( 1)) 58 for all eigenvalues  of h on
V, therefore dim(Vs( )) 58 for all eigenvalues 2k of sonV.

In conclusion, we have shown that dim(Vs( )) 58 < dim(V) dim(V) for all s 2
T nZ(G) and all eigenvalues 2k ofsonV. O

We conclude this subsection by noting that Propositions 4.2.8 through 4.2.22 complete
the proofs of Theorems 4.2.1 and 4.2.2, as they cover all the irreducible kG-modules Lg( )
corresponding to p-restricted dominant weights featured in Tables 2.7.2 and 2.7.3.
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4.3 Eigenspace dimensions for unipotent elements

This section is dedicated to the proof of the following two theorems, analogs of Theorems 4.2.1
and 4.2.2 in the case of unipotent elements. Similar to the semisimple case, the proofs will be
given in a series of results, each treating one of the candidate-modules. In Subsection 4.3.1, we

determine 2r(131a>§1 dim(Vy (1)), where Gy, is the set of unipotent elements in G and V belongs
u2Gynflg

to one of the families of kG-modules that satisfies the dimensional criteria (2.16), i.e. V isan
irreducible kG-modules Lg( ) for which 2 F¢, where F¢ = f1,;21,; 1,g. We complete

the proofs of the two theorems in Subsection 4.3.2, where we establish nga>§1 dim(Vy(1))
u2Gynflg

for the irreducible kG-modules V = Lg( ) corresponding to p-restricted dominant weights
featured in one of the Tables 2.7.2 and 2.7.3.

Theorem 4.3.1. Let k be an algebraically closed field of characteristicp 0 and let G be a
simple simply connected linear algebraic group of type C-, ©* 2. Let T be a fixed maximal
torus in G and let V. = Lg( ), where either 2 FC, or is featured in one of the Tables
2:7:2 and 2:7:3. Then there exist non-identity unipotent elements u 2 G for which:

dim(Vy(1)) dim(V) IoW(v)
if and only if *, and p appear in the following list:
@ 2, =landp O
2 =2, =landp O;
B) “=3;4, =l.andp=2.

Theorem 4.3.2. Let k be an algebraically closed field of characteristic p 0 and let G be
a simple simply connected linear algebraic group of type C, ©* 2. Let T and V be as in

Theorem 4:3:1. Then the value of Zr(r;a)]gl dim(Vy(2)) is given in the table below:
u2Gynflg
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Y Char. Rank max dim(Vy(1))
u2Gynflg
Lo(Th) p 0| ° 2 2 1
yL@,(Z!l) p &2 ‘ 2 2¢° ¢
p-°- £ 2 22 3 +1
"La(Y2) . =2 3
PJ 3 T
yI—G(!l"_!Z) p 0 =2 8 3p;5
yLG(Z!z) p&Z =2 8
ILe(3Y,) |p6&23| ‘=2 10
We(h, +20,) | p=7 =2 7
VLo (31) p=7 =2 7
YLG(2!1+!2) p=3 =2 13
2L(TY) p=2 |3 - 8 322
yL@,(!g) p 62 ‘=3 9
Lg(ta+13) | p=2 ‘= 28
e, + 1) | p=2 =3 28
yI—G(!3) Y 0 ‘= 34 7 p;3
yL(;(!4) p 62 £ = 28 p:3
VLg(15) p=2 “=5 74

Table 4.3.1: The value of max dim(Vy(1)).
u2Gunflg

In particular, for each V in Table 4.3.l1:)IabeIed asYV;as’V with * 3; and as 2V with
* 5; we have dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent elements
uZ2G.

4.3.1 The families of modules

For the rest of this chapter, we fix the following hypothesis on unipotent elements in G:

A4 >
(Hy) : every u 2 G, n flg; has Jordan form on W given by Jni; where niri = 2°;
i=1 i=1
ri liseven forall odd n;; 2 n;> >n, landn; 2:

Lemma 4.3.3. Let V = Lg('1). Then for all non-identity unipotent elements u 2 G we
have
dim(Vy(1)) 2¢ 1;

where equality holds if and only if the Jordan form of uon W is J, JZ 2.

In partiﬁular, there exist non-identity unipotent elements u 2 G for which dim(Vy(1))
dim(V) dim(V).
Proof. To begin, we note thatV = W as kG-modules. Now, let the unipotent elementu 2 G
be as in ("H,). Let uy denote the action of u on W. Then:

>
dim(Vu(1)) = dim(Wy,, (1)) = ri: (4.35)

i=1
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As u & 1, it follows that dim(V,(1)) 2° 1. Moreover, by Lemma 3.3.3, we have
dim(V,(1)) =2¢ 1 if and only if the Jordan form of uon W is J, JZ" 2.

In conclusion, we have shown that dim(V,(1)) 2° 1 for all non-identity unipotent
elements u 2 G and that equality holds if and only if u hasJordan form J, JZ % on W.
Now, let u be such an elepgg]t of G. Since the inequality = 2° 1 holds forall © 2, it
follows that 2* 1 2° 2° forall © 2 and thus dim(Vy(1)) dim(V) dim(vV). O

The following corollary, although not relevant for this subsection, will be the fundamental
result used in the proof of Lemma 6.3.4.

Corollary 4.3.4. Assume 4 and let V = Lg(',). Let u be a non-identity unipotent
element of G and assume that its Jordan form on W is di[erent than J, JZ 2. Then:

dim(Vy()) 2¢ 2
where equality holds if and only if u has Jordan form J2 JZ° “on W.

Proof. Let the unipotent element u 2 G be as in (YHy). We note that if n; = 2, then, by

hypothesis, we have r; 2. Moreover, by Lemma 4.3.3, as the Jordan form of u on W is

dilerent than J,  JZ 2, we have dim(Vy(1)) 2° 2. Assume that dim(V,(1)) =2° 2.
> XX

Then, by (4.35) and keeping in mind that nir; = 2°, it follows that (ni Dri=2
i=1 i=1
and, in particular, that2 (ny 1r; n; 1, hence3 ny.

Assume that ny = 3. Thenr; 2 and thus (ni Dr; 4, acontradiction. Therefore
i=1

XX
ng =2, hencem 2andr; 2. Moreover, as (ni Dr; 2, it follows that r; = 2.

Lastly, as © 4, we deduce that m =2, n, =1, rlz = 2° 4 and, consequently, the Jordan
form of uon W is J2 JZ° “. Conversely, let u 2 G be a unipotent element whose Jordan
formon W is J? JZ° 4. Then, by (4.35), we have that dim(V,(1)) =2¢ 2. This completes
the proof of the corollary. O

Before, we continue the proofs of Theorems 4.3.1 and 4.3.2, we recall that the irreducible
kG-module Lg(!,) is a composition factor of the kG-module ~?(W), see Lemma 2.8.2. This
is a relevant fact, since, using Proposition 3.3.4, we can calculate the dimension of the fixed
point space on ~?(W) of any unipotent element u 2 G. With dim(("~2(W)),(1)) known, we
can deduce dim((Lg('2))u(1)) using either [Korl9, Corollary 6:2], or [Kor20, Theorem B],
depending on whether p & 2 or p = 2. Before we state these two results, we recall that ry(u)
is the number of Jordan blocks of sizet 1 appearing in the Jordan form of the unipotent
element u; and that , denotes the p-adic valuation on the integers.

Theorem 4.3.5. [Korl9, Corollary 6:2] Let k be an algebraically closed field of characteristic
M
p & 2. Let u 2 G be a unipotent element and let Jni be its Jordan form on W, where

i=1
m 1,n landr; 1foralll i m. Set = ,(gcd(ns;:::;nNm)). Let u’ be the
action of u on ~2(W) and let uy be the action of u on V := Lg(!,). Then the Jordan block
sizes of uy are determined from those of u’ in the following way:
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(@) Ifp-*, then ri(uy) = ri(u) 1 and re(uy) = re(u’) for all t & 1.
(b) Ifpj“and =0, then ry(uy) =ry(u) 2 and re(uy) = re(u’) for all t & 1.
() Ifpj“and >0, then:

(cl) Ifpj s— then r, (Uuy) =1, (uU) 2, 1y 1(uy) =2 and ry(uy) = re(u’) for all

t&p;p 1.
2‘

(c.2) Ifp- p— then r, (uy) =1, (uo) 1, rp 2(uy) =1and ry(uy) = re(u’) for all

t&p;p 2
Theorem 4.3.6. [Kor20, Theorem B] Let k be an algebraically closed field of characteristic
p =2 Letu 2 G be a unipotent element and let (n{;:::;nf;2n i 2nm) be its
Hesselink normal form, where m 1, t 0 and r; 1 for all 1 i m. Set =
o(ged(Ng; 111N Newr) 50 Nm)). Let U’ denote the action of u on ~2(W) and let uy denote

the action of u on V := Lg(!,). Then the Jordan block sizes of uy are determined from
those of u’ in the following way:

(@) If 2-¢, then ry(uy) = ry(u’) 1 and re(uy) = re(u’) for all t & 1.
() If2j<and =0, then ri(uy) =ri(U) 2 and r(uy) = re(u’) for all t & 1.
(c) If2j“and >0, then

(c) If 2] 7 thenr, (uy) =r; (uo) 2, r; 1(uy) =2 and re(uy) = re(u’) for all
162 ;2 1.

(c2) If >1land?2- 5 thenr, (uy)=r, (uo) 1,1, »(uy)=1and re(uy) = re(u)
forallt&2 ;2 2.

(c3) If =1and2- -, then ra(uy) = r(u) 1 and re(uy) = ry(u) for all t & 2.

Proposition 4.3.7. Let V' = ~2(W). Then for all non-identity unipotent elements u 2 G
we have
dim(v,(1)) 22 3 +2:

Moreover, we have equality if and only if one of the following holds:
(1) © =2 and the Jordan form of u on W is one of J2 and J, J?Z.
(2) © 3 and the Jordan form of uon W is J, JZ 2.

Proof. Let u be a non-identity unipotent element of G. We apply Proposition 3.3.4, keeping
L . : 2° 1?2 (2 1+2

in mind that dim(W) = 2¢, to deduce that dlm(Vuo(l)) ( > ) = 22
3“ + 2 for all non-identity unipotent elements u 2 G. Moreover, by the same result, for * = 2

equality holds if and only if the Jordan form of u on W is one of J2 and J,  J?2, while, for
* 3 equality holds if and only if the Jordan form of uon W is J, JZ" 2. O
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Corollary 4.3.8. Assume p - “ and let V = Lg(!,). Then for all non-identity unipotent
elements u 2 G we have
dim(Vy(1)) 22 3°+1:

Moreover, we have equality if and only if one of the following holds:

(1) =2 and the Jordan form of u on W is one of J? and J, J2.

(2) © 3 and the Jordan form of uon W is J, JZ 2.

In particular, for © 52 there exist non-identity unipotent elements u 2 G for which
dim(Vy(2) dim(V) dim(V). On the other hand, for ©* 3, we have dim(V,(1)) <
dim(V) dim(V) for all non-identity unipotent elements u 2 G.

Proof. To begin, we set V' = ~2(W). By Lemma 2.8.2, since p - *, we have that V' =
V  Lg(0) and therefore dim(Vy(1)) = dim(VJ(l)) 1. We now apply Proposition 4.3.7
to deduce that dim(Vy(1)) 2?2 3“+1 for all non-identity unipotent elements u 2 G.
Moreover, equality holds if and only if dim(VLf(l)) = 2‘2 3+ 2 and we use Proposition
4.3.7 once more to obtain the result.

To conclude, we first assume that “ = 2, hence dim(V) =5, and we let u be a unipotent
element of G whose Jordan form on W is J2. Then dim(V,(1)) = 3 and so, we have
shown thabthere exist non-identity unipotent elements u 2 G for which dim(V,(1))
dim(V) dim(V). On the other hand, for © 3, since the inectyality 0<(@2° 5 1
holds for all < 3, it follows that 2¢2 3“+1 <22 * 1 22 ¢ 1forall © 3
and, consequently, we have dim(V(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G. ]

As with Corollary 4.3.4, the following result, although not relevant for this subsection,
will be one of the fundamental tools used in the proof of Proposition 6.3.6.

Lemma 4.3.9. Let u be a non-identity unipotent element of G whose Jordan form on W is
dilerent than J, J2 2. If V' = ~2(W), then one of the following holds:

(1) “=2and dim(VLf(l)) 4, where equality holds if and only if the Jordan form of u on
W is J2.

(2) “=3and dim(Vlj(l)) 9, where equality holds if and only if the Jordan form of u on
W is one of J3 and JZ J2

R “ 4and dim(VJ(l)) 22 5+ 6, where equality holds if and only if the Jordan
formof u on W is J2  J& 4.

Proof. We note that for * = 2 the result follows from Proposition 4.3.7 and thus, we can
assume that © 3.

Let the unipotent element u 2 G be as in (YH,). First, we assume that the Jordan form
of u on W is J,-. Then, either by Lemma 2.9.4 if p & 2, or by Lemma 2.95if p = 2, it
follows that dim(V,,(1)) = . Hence, for * = 3 we have dim(V,(1)) < 9, while for < 4 we
have dim(V,(1)) <22 5°+86.
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We can now assume that the Jordan form of u on W consists of at least two blocks and
we first consider the case when exactly one of these blocks, Jn,, is nontrivial. Then the
Jordan form of uon W is J,, JZ ™ where4 n; 2° 2iseven, since ry = 1. We
write W =W; W,, where dim(W;) = n; and u acts as J,, on Wy, and dim(W;) =2 n;
and u acts trivially on W,. Then, we have the following isomorphism of k[u]-modules:

Vi=AWh) (Wa W) (W)
which gives:
dim(V, (1)) = dim(("*(W1))u(1)) + dim((W1  Wo)u (1)) + dim(("(W2))u(1)):  (4.36)

We now apply eitherj Leryama 2.9.4 if p & 2, or Lemma 295 if p = 2, to deduce that

dim(("™2(W1))u(1)) = —l =M and that dim((Wy W,)y(1)) =2° n,. Lastly, as u acts

2 T2
trivially on W, it acts trivially on ~2(W.,), and so dim(("2(Wz))u(1)) = &M 21)(2 n).

Substituting in (4.36) gives:

2 ny 1@° ny)
2

dim(V,. (1) = % +2° ng+
42 A'ng+n?+2°
B 2
Assume ¢ = 3. Then u has Jordan form J;, J2 on W and by (4.37) it follows that
dim(Vj(l)) = 5. We can now assume that * 4 and, by (4.37), we have
n? 4‘n;+12° 12
5 :

(4.37)

dim(V, (1)) =22 5°+6+
One checks that the inequality

nZ 4n;+12° 12<0

hgds for all n; 2 (2° 2'0‘2 3“+3;,2° + 2|o‘2 3*+3) and all * 1. Since 2° +

3*+3>2° 2andsince 2° 2 ‘2 3“+3 <4, it follows that, in particular, the
mequallty holds forall4 n; 2 2andall © 4. Therefore dim(Vu°(1)) <22 5°+6
for all * 4 and all unipotent elements u of G whose Jordan form on W is J,, J& ™,
where4 n; 2° 2.
Lastly, we consider the case when the Jordan form of u on W admits at least two nontrivial
blocks. Then2 n; 2° 2and we writt W =W, W,, where dim(W,) = n; and u acts
[\

as Jn, on Wy, and dim(W,) =2 n; and u acts as Jjt * J on W,. Now, either by

i=2 jak
Lemma 2.9.4 if p & 2, or by Lemma 2.9.5 if p = 2, we have dim((’\z(Wf))u(l)) ="M

2
n, + . . . . .
! ,where =0ifn;iseven,or = 1ifn, isodd, and, furthermore, since u acts as

\V4|
(Jn, o)™t (Jn, Jn)PonW; W, we also deduce that
i=2

0 0 X
dim((W; W,)u(1))=(r1 I)ni+  nirp=2° nqg (4.38)

i=2
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Substituting in (4.36) gives:

dim(Vg(D) = "+ 2 ng + dim((M(W5))u(D)): (4.39)

Assume ‘ = 3. Then the Jordan form of uon W isone of J;, J,,J2,J3and J2 J2. In
the first two cases, as u acts as a single Jordan block on W2°, we apply either Lemma 2.9.4
if p& 2, or Lemma 2.9.5 if p = 2, to determine that, in both cases, dim((’\z(Wg))u(l)) =1.
Therefore, by (4.39), in both cases, we have dim(VLf(l)) = 5. Similarly, for the last two
cases, as u acts on W20 as J2 and as J, J?, respectively, we apply Proposition 3.3.4 to
determine that, in both cases, dim((’\z(W2°))u(l)) = 4. Now, by (4.39), in both cases, we get
dim(V, (1)) = 9. Therefore dim(V,(1)) 9 for all unipotent elements u 2 G whose Jordan
form on W admits at least two nontrivial blocks. Moreover, equality holds if and only if the
Jordan form of u on W is one of J3 and J2 J2.

We can now assume that ©* 4. We use Proposition 3.3.4 to deduce that dim((’\Z(Wg))u(l))

(2‘ np 1)2 (2‘ n; 1) +

> , Where equality holds if and only if u acts on W2° as
J, JZ ™ 2 Substituting in (4.39) gives:

n{ + (2‘ ng 1)2 (2‘ nq 1) + 2
2

+2¢ n{ + 5
2 « 2 I3
=4 4n1+n122 +2n, +4+ (4.40)
n? 4‘n;+2n;+8° 8+

2

dim(V, (1))

=2 5°+6+

If np =2, then =0 and, by (4.40), we have d|m(V (1)) 22 5°+6, where, as previously
noted, equality holds if and only if u acts on W, as J, JZ" *. We can thus assume that
n; 3. One checks that the inequality

nf 4'ng+2n;+8° 8+ <0

holds for all ny 2,(2* 1 Pz 7v9 20 1+P27 17+9 Handal* 1.

l$Jnce 2 1 42 12 +9 <3 a7+ <4 forall* 4, and since 2° 1+
42 12°+9 > 2 2, it follows that, in particular, the inequality holds for all 3

n, 2° 2andall © 4. Therefore, dim(V,(1)) <22 5+ 6 for all unipotent elements

u of G whose Jordan form on W admits at least two nontrivial blocks and n; 3. This

completes the proof of the lemma. ]

Proposition 4.3.10. Assume pj “ and let V = Lg(;). Then for all non-identity unipotent
elements u 2 G one of the following holds:

(1) * =2 and dim(Vy(1)) 3, where equality holds if and only if the Hesselink normal
form of u is (23).

(2) © 3anddim(Vy(1)) 22 3, where equality holds if and only if the Jordan form
ofuonWisJ, J& 2
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In particular, for * =p2 there exist non-identity unipotent elements u 2 G for which
dim(Vu(l)b dim(V) dim(V). On the other hand, for ©* 3, we have dim(V,(1)) <
dim(V) dim(V) for all non-identity unipotent elements u 2 G.

Proof. To begin, set V' = ~2(W) and let u be a non-identity unipotent element of G. If we
denote by u’, respectively by uy, the action of u on V', respectively on V, then either by
Theorem 4.3.5 if p & 2, or by Theorem 4.3.6 if p = 2, we know that we can determine the
Jordan form of uy from that of u'.

First, assume © = 2. Then p = 2 and the Hesselink normal form of u is one of (4,), (22),
(22) and (13; 21). In each case, one determines that the Jordan form of uisds Jy, Jz J2
J? JZand JZ J?, respectively. We apply Theorem 4.3.6, cases (c:3), (b), (c:3) and (b),
respectively, to deduce that dim(V,(1)) = 1;2;3 and 2, respectively. We conclude that for
‘=2, we have dim(Vy(1)) 3 and equality holds if and only if the Hesselink normal form
of u is (2%). We can now assume that < 3.

ofuon W, where m 1, andset = p(gcd(ng;:::;ny)). If =0, then, since p j “, by
Theorem 4.3.5 (b), it follows that dim(Vy(1)) = dim(Vlj(l)) 2. We now use Proposition
4.3.7 to deduce that dim(Vy(1)) 2% 3* for all unipotent elements u, u & 1, of G with

= 0. Moreover, by the same result, equality holds if and only if the Jordan form of u on
W is J, JZ 2. On the other hand, if > 0, then by Theorem 4.3.5 (c), it follows that
dim(Vy(1)) = dim(V,(1)). Let * =3. As > 0, the Jordan form of u on W is either Jg or
J2. In both cases, by Proposition 4.3.9, it follows that dim(Vlf(l)) < 9 and, consequently,
dim(Vy(1)) < 9. We now assume that * 4. Again, as > 0, the Jordan form of u
on W is diletent than J, JZ 2and J? JZ * therefore, by Proposition 4.3.9, we have
dim(V,(1)) <22 5°+6. As the inequality 22 5°+6 <22 3 holds forall © 4, we
deduce that dim(Vu°(1)) < 22 3 and, consequently, dim(V,(1)) < 2¢2 3 for all unipotent
elements u of G with > 0.

We now consider the case when p = 2. Fort 0, let (n{};:::;n{; 2o 2nfm) be
the Hesselink normal form of u. Set = ,(gcd(ny;:::;Ng; Newr;iii;NW)). I =0, we use

Theorem 4.3.6 (b), Proposition 4.3.7 and proceed as in the analogous case of p & 2 to deduce
that dim(Vy(1)) 2‘2 3* for all unipotent elements u, u & 1, of G. Moreover, equality
holds if and only if the Jordan form of u on W is J, JZ 2. On the other hand, if >0,
we use Theorem 4.3.6 (c), Proposition 4.3.9 and proceed as in the analogous case of p & 2
to deduce that dim(V,(1)) <22  3“ for all unipotent elements u of G with > 0.
In conclusion, we have shown that for * = 2 there exist non-identity unipotent elements
G, for example those with Hesselink normal form (23), for which dim(V,(1)) dim(V)
dim(V). On the other hand, for * 3, sinﬁ the inequality 0 < (* 2)(2° 3) holds for
all © 3, have 22 3 <22 < 2 22 2 and, consequently, dim(Vy(1)) <
dim(V) dim(V) for all non-identity unipotent elements u 2 G. m

As with Corollary 4.3.4 and Lemma 4.3.9, the following result, although not relevant for
this subsection, will be one of the fundamental tools used in the proof of Proposition 6.3.6.

Proposition 4.3.11. Let u be a non-identity unipotent element of G whose Jordan form on
W is dilerent than J2, 33, J, J2 2and J2 JZ 4. 1f V' = ~2(W), then:

dim(V (1)) 2% 5°+4:
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Furthermore, we have equality if and only if one of the following holds:
(1) * =2 and the Jordan form of u on W is J,.
(2) © =4 and the Jordan form of u on W is one of JJ and J3 J2.

Proof. Let the unipotent element u 2 G be as in (YHy). We note that, if n; = 2, then, by
hypothesis, * 4 and r; 3. First, assume that the Jordan form of u on W is J,-. Then,
either by Lemma 2.9.4 if p & 2, or by Lemma 2.9.5 if p = 2, we have dim(VLf(l)) = “and, as
the inequality 0“2 3“+2 holds for all © 2, it follows that dim(V,,(1)) 22 5°+4.
Moreover, equality holds if and only if ©* = 2, in which case u has Jordan form J, on W. We
can now assume that the Jordan form of u on W admits at least two blocks. Furthermore,
we can also assume that © 3.

Secondly, we consider the case when exactly one block, J,,, appearing in the Jordan form
of uon W, is nontrivial. Then4 n; 2° 2iseven and we write W =W; W,, where
dim(W;) = n; and u acts as J,, on Wy, and dim(W,) = 2° n; and u acts trivially on W5.
We proceed as in the proof of Lemma 4.3.9, see arguments leading to (4.37), to deduce that:

A7 A2 Lo gy, M 4mt12Y 8

dim(V, (1)) = ; -

One checks that the inequality

ni 4‘n;+12° 8<0
hejds for all n; 2 (2° Zp‘2 3: +2 2° + 2'0‘2 3*+2) and all * 2. Since 2°
3+ 2 <4 and since 2° + 2 3*+2>2° 2, it follows that, in particular, the
mequallty holdsforall4 n; 2° 2andall“ 3. Hence, dim(Vlf(l)) <22 5°+4forall
unipotent elements u 2 G whose Jordan form on W is Jy, Jf‘ " where4 n; 2¢ 2.
Lastly, we consider the case when the Jordan form of u on W admits at least two nontrivial
blocks. Then 2 ng  2° 2. Assume that np = 2. Then * 4, r; 3 and we write
W =W, W,, where dim(W,) = 4 and u acts as JZ on W,, and dim(W,) = 2° 4 and u acts
as Jjt 2 JZ 21 on W,. By (4.36), to determine dim(V, (1)) comes down to determining
dlm((’\Z(Wlo))u(l)), dim((W,  W,)u(1)) and dim((~2(W,)).(1)). By Proposition 4.3.7 we
have dim((’\z(Wlo))u(l)) = 4 and, furthermore, as u acts nontrivially on W2°, sincer; 3, we
also have dim((™2(W,))u(1)) 2(* 2)2 3(* 2)+2=2‘2 11‘+ 16. Moreover, by the
same result, equality holds if and only if u acts on W, as one of J2 and J, JZ" ©. Finally,
asuactsas (J, Jo)2 4 (I, J)* “tonW, W,, we use Lemma 2.9.4 to deduce that
dim((W, W,u(1)) =2(2r; 4)+4° 4r, =4° 8. By (4.36), it follows that:

dim(V (1)) 4+4° 8+2? 11°+16=2% 7°+12

As the inequality 22 7 +12 22 5°+4 holds for all * 4, we have dim(V, (1))
22 5*+4 for all unipotent elements u of G whose Jordan form on W is J;*  JZ° ", where
r. 3. Furthermore, equality holds if and only if 2> 7+ 12 =22 5°“+4, hence ‘ =4,
and dim(("2(W,))u(1)) =22 11 + 16, hence u acts on W, as one of J2 and J,  JZ, see
Proposition 4.3.7. Therefore, dim(VLf(l)) =2‘2 5°+4ifand only if * =4 and the Jordan
form of u on W is one of J; and J3 JZ.
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We now assume that n; 3. We write W = W, W, where dim(W,) = n; and u

acts as Jn, on Wy, and dim(W,) =2* n; and u acts as J/* * J% on W,. We then
i=2
proceed as in the proof of Lemma 4.3.9, see (4.38), (4.39) and (4.40), to deduce that:
n{ 4°ng+2n;+8° 4+
5 ;

dim(v (1)) 2% 5°+4+
One checks that the inequality

n? 4'ng+2n;+8° 4+ <0
holds for all ny 6 2 1 IO4‘2 12°+5 ;2 1+ I04‘2 62‘ +5 )andall © 3.
Since 2 1+ 42 12°+5 > 2° 2andsince 2° 1 42 12°+5 <3, as
11+ < 4° holds for all ©* 3, it follows that, in particular, the inequality holds for all
3 ng 2¢° 2andall © 3. We deduce that dim(VLf(l)) < 2“2 5%+ 4 for all unipotent
elements u of G whose Jordan form on W admits at least two nontrivial blocks and n; 3.
This completes the proof of the proposition. H

Proposition 4.3.12. Let k be an algebraically closed field of characteristic p & 2 and let
V = Lg(21,). Then for all non-identity unipotent elements u 2 G we have

dim(Vy(1)) 2 =

where equality holds if and only if the Jordan form pf u on W is J; JZ 2
In particular, we have dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. We first note that, as p & 2, by Lemma 2.8.2, we have V. = S*(W). Keeping in mind
that dim(W) = 2¢, we apply Proposition 3.3.5 to determine that dim(V,(1)) Al CH)

22 * for all non-identity unipotent elements u 2 G. Furthermore, equality holds if and

only if the Jordan forgg of u on W is J; JZ 2,

p In conclusion, as =~ 2“2+ ¢ < 2° for all ©* 2, it follows that the inequality 2% + *
22+ > 22 “ holds for all * 2, and so dim(Vy(1)) < dim(V) dim(V) for all

non-identity unipotent elements u 2 G. m

To conclude this subsection, we remark that Lemma 4.3.3, Propositions 4.3.10 and 4.3.12
and Corollary 4.3.8 give the proof of Theorems 4.3.1 and 4.3.2 for the families of KG-modules
corresponding to p-restricted dominant weights 2 F©-.

4.3.2 The particular modules

As previously mentioned, this subsection is dedicated to the proof of Theorems 4.3.1 and 4.3.2
for the particular kG-modules, i.e. the kG-modules V = Lg( ) for which the corresponding
p-restricted dominant weight is listed in one of the Tables 2.7.2 and 2.7.3. In order to
determine an upper-bound for dim(V,(1)), where u 2 G is a non-identity unipotent element,
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we will use the inductive algorithm described in Subsection 2.4.4. In the first part of this
subsection, we will consider the case of * = 2 and for each V = Lg( ) with featured

in Table 2.7.2 we will establish Jmax dim(Vy(1)), see Propositions 4.3.13 through 4.3.19.
u2Gynflg

In the second part, we assume that * 3 and we focus our attention on the irreducible
kG-modules V. = Lg( ), where s listed in Table 2.7.3, for which we will establish an
upper-bound for dim(Vy(1)), see Propositions 4.3.13 through 4.3.31.

For the moment, let us assume that * = 2. Let L; and L,, respectively, be Levi subgroups
of the maximal parabolic subgroups P; and P,, respectively, of G, see Section 2.4. Now, if
p & 2, we have seen in Theorem 2.9.2 that unipotent conjugacy classes in G are completely
determined by the Jordan normal form of a class representative on W. In Table 4.3.2
we list all unipotent conjugacy classes of G and we give a representative. Note that for
each non-identity class, the representative u’ has been chosen such that either ui_l €& 1, or
u(,’_2 €& 1. On the other hand, when p = 2, we have seen in Theorem 2.9.11 that unipotent
conjugacy classes in G are completely determined by the Hesselink normal form of a class
representative. In Table 4.3.3 we list all unipotent conjugacy classes of G and for each class
we give a representative. Once more, note that for each non-identity class, the representative
u’ has been chosen such that either u, & 1, or u,, & 1.

[LS12, Subsection 3:3:2][MKT21, Table 7]

Class representative Jordan normal form
1 J;
x,(1) 33
x (1) NPRIIN;
X 1(1)X 2(1) J4

Table 4.3.2: Unipotent class representatives in C, when p & 2.

[Remark 2.9.19][MKT?21, Table 7]

Class representative Hesselink normal form
1 (15)
x (1) (28)
x ,(1) (13;21)
X 2(1)X2 1+ 2(1) (2%)
x ,(1)x ,(1) (41)

Table 4.3.3: Unipotent class representatives in C, when p = 2.

Let u 2 G be a non-identity unipotent element and let u’ be the class representative
given in either Table 4.3.2 or Table 4.3.3, depending on whether p & 2, or p = 2, of the
unipotent conjugacy class of u. Because of the choice of representatives, we either have
U, &1, oruy, & 1. First, suppose that u_ & 1, thus u,, = x ,(1). Now, as dim(V,(1)) =
dim(Vp (1)), dim(Vp(1))  dim(Vx ,)(1)), see Inequality (2.7), it follows that dim(Vy(1))
dim(Vx ,y(1)). Now, suppose that u, | =1, hence u, & 1 and so u, = x ,(1). We argue
exactly as in the case of u°Ll & 1 to show that dim(Vy(1)) dim(Vx (1y(1)). Lastly, as either
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u_, &1, or u, & 1, for any pair (u;u’) of a non-identity unipotent element u 2 G and a
class representative u’ of the G-conjugacy class of u, we have:

dim(Vy(1)) maxfdim(Vx  1)(1)); dim(Vx )(1))g: (4.41)

Moreover, by ldentity (2.8), we deduce that there exist unipotent elements u 2 G for
which the bound in (4.41) is attained, for example x ,(1) or x ,(1), depending on whether
dim(Vx | @)(1)), or dim(Vx , (1)) realizes the maximum in (4.41). Hence, in what follows,
we concentrate on determining maxfdim(Vy _ )(1)); dim(Vx ,y(1))g.

Proposition 4.3.13. Let k be an algebraically closed field of characteristic p = 5. Assume
‘=2andletV = Lg(!,+1,). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) 5

where there exist u 2 G for which the bound is attajaed.
In particular, we have dim(V,(1) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. Let u 2 G be a non-identity unipotent element. We recall Inequality (4.41), which
states that:

dim(Vu(1)) maxfdim(Vx  1)(1)); dim(Vx ,1)(1))g:
Therefore, in order to establish a bound for dim(Vy (1)), we need to determine dim(Vx  (1y(1))

and dim(Vx ,(1)(1)). We begin with the former. For this, we recall the Decomposition (4.23)
of Proposition 4.2.8, which states:

Vi = L (1) LB L) L, (Yy):
By applying Lemma 3.3.3 and Proposition 3.3.12 it follows that dim(Vy  1)(1)) = 4.

We will now determine dim(Vyx ,1)(1)). For this, we consider the Levi subgroup L; of
the maximal parabolic subgroup P; of G. Let T’ denote the maximal torus T \ [Ly; L4] of
[Li;L4]. Set =T, + I, and note that dim(V) = 12, as p = 5. By Lemma 2.4.5, we have
e1( ) =4, therefore

VijLog=Vve vt vz vd ov4
., for0 i 4. By [Smi82, Proposition], it follows that V° =

_ M
where V' = V
2N 1
L.,(',) and, by Lemma 2.4.3, we also have V* = (L,('2)) = L,(',). Now, the weight
( 1) jpo= 21, admits a maximal vector in V!, therefore V! has a composition factor
isomorphic to L ,(21,), thus dim(V') 3. Moreover, as V3 = (V1) , see Lemma 2.4.3, we
have dim(V?2) 2. Lastly, since the weight 2 1 2 Jyo= 1, admits a maximal vector
in V2, it follows that V2 = L ,(¥,). Therefore, V1 =1L,,(21,), V® =L, (2',) and

Vo= Lo (Y2) L (@Y) L (Y2) L, (2Y) L (Y):

We now apply Lemma 3.3.3 and Proposition 3.3.5 to determine that dim(Vy ,1)(1)) =5.

In conclusion, we have shown that dim(V,(1)) 5 for all non-identity unipotent elements
u 2 G and that there exist u 2 G for whigh the bound is attained, for example x ,(1).
Moreover, we have dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent elements
uz2G. O
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Proposition 4.3.14. Let k be an algebraically closed field of characteristic p & 5. Assume
“=2andletV =Lg(!;+1,). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) 8

where there exist u 2 G for which the bound is attaipgd.
In particular, we have dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. Let u 2 G be a non-identity unipotent element. We recall Inequality (4.41), which
states that:
dim(Vy(1))  maxfdim(Vx | ) (1)); dim(Vy ,ay(1))g:

Therefore, in order to establish a bound for dim(V, (1)), we need to determine dim(Vx  (1y(1))
and dim(Vx ,(1)).
First, we assume that p = 2. In this case, by [Sei87, (1.6)], we have the following
isomorphism of kG-modules:
V =Ls(') Le(ta):

We start with determining dim(Vx _ 1)(1)). Now, x , (1) has Hesselink normal form (2%,
see Table 4.3.3. Thereby, the Jordan form of x ,(1) on W, hence on Lg(!4), is J2. This gives
rise to the following k[x , (1)]-module isomorphism: W jyx  y= V2 V2, where V;, i = 1;2,
is the unique, up to isomorphism, indecomposable k[x ,(1)]-module with dim(V;) = i and
on which x , (1) acts as the full Jordan block of size i. Then

N(W) ="V Vo) =MN(Ve) Voo Voo N(Vy)
=V7 VP

as K[x ,(1)]-modules. Thus, the Jordan form of the action of x (1) on (W) is J2 JZ.
Since the Hesselink normal form of x , (1) is (23), it follows that = ,(2) = 1, and since
2 - 5, we use case (c:3) of Theorem 4.3.6 to determine that the Jordan form of the action
of x ,(1) on Lg(Y,) is J, J2. Therefore, the Jordan form of the action of x ,(1) on V is
J5 (I JIF) =33, since p=2, and so dim(Vx (1)(1)) =8.

We will now determine dim(Vyx ,1y(1)). As X ,(1) has Hesselink normal form (13; 2,), see
Table 4.3.3, it follows that the Jordan form of x ,(1) on W, hence on Lg(!;), isJ, J2. This
gives rise to the following k[x ,(1)]-module isomorphism: W jyix ,ay= V2 V2, where V;,
I = 1,2, is the unique, up to isomorphism, indecomposable k[x ,(1)]-module with dim(V;) =i
and on which x ,(1) acts as the full Jordan block of size i. Then:

NMW) ="V, VE) =1(V) Voo VY ARV
=V}7 V2

as k[x ,(1)]-modules. Thus, the Jordan form of the action of x ,(1) on ~2(W) is J2  J2.
Since the Hesselink normal form of x ,(1) is (13;2,), it follows that = ,(1) = 0, and,
since 2 j “, we use case (b) of Theorem 4.3.6 to determine that the Jordan form of the
action of x ,(1) on Lg(!,) is J2. Therefore, the Jordan form of the action of x ,(1) on V is
(J2 Jf) I3 =133 since p=2, and so dim(Vy 1)(1)) = 8.

147



We can now assume that p & 2. We will first determine dim(Vx ,)(1)). For this, we
recall the decomposition of V jy .., from Proposition 4.2.9, which states:

Vo= Lo (P2) L @) Lo (0) L (P2) Lo(f2) Lu(2t2) Lo(0)  Lig(f):

By applying Lemma 3.3.3 and Proposition 3.3.5, we deduce that dim(Vx ,q)(1)) = 8.

We will now determine dim(Vx (1y(1)). For this, we consider the Levi subgroup L, of
the maximal parabolic subgroup P, of G. Let T’ denote the maximal torus T \ [Ly; L,] of
[Ly;Ly]. Set = 1, + 1, and note that dim(V) = 16. By Lemma 2.4.5, we have e;( ) = 3,
therefore

V=V vt ovZ v
_ M
where V' = V
2N 2
that V° = L.,(11), hence, by Lemma 2.4.3, we also have V3 = (L,('1)) = L,(%).
Then dim(V?Y) + dim(V?) = 12 and, as V? = (V') , see Lemma 2.4.3, it follows that
dim(V1) = dim(vV?2) = 6. Now, the weight ( 2) j;o= 31; admits a maximal vector
in V1, therefore V! has a composition factor isomorphic to L, ,(3;). Moreover, we note
that the dominant weight ( 1 2) j;o= 17 occurs in V1 with multiplicity 2. We now
distinguish the following two cases:

Case 1: Assume that p & 3. Then !, is a sub-dominant weight with multiplicity 1 in the
composition factor of V! isomorphic to L ,(3';). Now, by dimensional considerations, we
deduce that V! admits exactly two composition factors, one isomorphic to L, ,(3';) and one
isomorphic to L ,(¥;). Using [Jan07, 11.2.14], we determine that V! =L ,(3%;) L,(11),
therefore V2 =L,,(3';) L.,('1), by Lemma 2.4.3, and so:

Vijiog= L (1) L,BY)  Li,(Y)  Li,(Bhi)  Li(fa)  Li(Ta):

We apply Lemma 3.3.3 and Proposition 3.3.12 to determine that dim(Vx  1)(1)) = 6.

Case 2: Assume that p = 3. Then V!, respectively V 2, admits exactly three composition
factors: two isomorphic to L, (Y1) and one isomorphic to L, ,(¥;)®. In this case, using
Lemmas 2.4.9 and 3.3.3, we determine that dim(Vx _ 1)(1)) 8.

In conclusion, we have shown that dim(V,(1)) 8 for all non-identity unipotent elements
u 2 G and that there exist unipotent elements u 28 for which the bound is attained, for
example x ,(1). Therefore, dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G. O

, fori=20;1;2and i = 3. By [Smi82, Proposition], it follows

Proposition 4.3.15. Let k be an algebraically closed field of characteristic p & 2. Assume
‘=2andletV = Lg(2!,). Then for all non-identity unipotent elements u 2 G we have

dim(Vy(1)) 8:

In particular, we have dim(V,(1)) < dim(V) IDdim(V) for all non-identity unipotent
elements u 2 G.

Proof. Let u 2 G be a non-identity unipotent element. We recall Inequality (4.41), which
states that:
dim(Vy(1)) maxfdim(Vyx  1)(1)); dim(Vyx ,1)(1))g:
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Therefore, in order to establish a bound for dim(V, (1)), we need to determine dim(Vx  1)(1))
and dim(Vx ,)(1)). We begin with the latter. For this, we recall the decomposition of
V' jiL.:L,y from Proposition 4.2.10, which, in the case of p = 5, states that:

Vo= Lo (2Y2) L (Y2) Lo (2Y2)  L(Y2) L, (21w);

see (4.24). Then, by Lemma 3.3.3 and Proposition 3.3.5, we determine that dim(Vx ,1)(1)) =
5. Similarly, by (4.25), in the case of p & 5, we have

Vo= L, @Y) Ly (Y) L, @Y) L,0)  Li(f2) L, (2Ye):

Then, by Lemma 3.3.3 and Proposition 3.3.5, it follows that dim(Vx ,)(1)) = 6.

We will now determine dim(Vy (1y(1)). For this, we consider the Levi subgroup L, of
the maximal parabolic subgroup P, of G. Let T' denote the maximal torus T \ [Ly; L,] of
[L2; Lo]. Now, as p & 2, we have dim(V) =14 5. Set =21,. By Lemma 2.4.5 we have
e>( ) =4 and so:

\% j[Lz:Lz]: Ve V4;

M
where V' = V i, fori=0;1;2;3andi = 4. By [Smi82, Proposition], it follows that
2N 2
VO =1L,,(0)andsoV* = Ly,(0), by Lemma 2.4.3. Now, the weight ( 2) Jpo= 21, admits
a maximal vector in V1, therefore V! has a composition factor isomorphic to L ,(2!;) and
dim(V') 3,asp & 2. By Lemma 2.4.3, we also have dim(V3) 3, thusdim(V?) 6+ ,s.
In V2, the dominant weight ( 2 ) jpo= 41, admits a maximal vector, therefore V?2
has a composition factor isomorphic to L ,(4!;). We also note that the dominant weight
(21 2 3)jre=0occurs with multiplicity 2 .5 in V2. We distinguish the following
three case:

Case 1: Assume that p 7. Then dim(V?) 6 and the multiplicity of the weight 0 in
V2 is 2. As the weight 0 is a sub-dominant weight with multiplicity 1 in the composition
factor of V2 isomorphic to L ,(4!;) and as dim(V?2) 6, it follows that V2 consists of
exactly two composition factors: one isomorphic to L, ,(41;) and one isomorphic to L,(0).
Furthermore, by [Jan07, 11.2.14], we deduce that V2 = L ,(4'1) L.,(0). Moreover, we
have V! =L,,(2!;), hence V3 = L,(21,), and so:

Vijiag= L, (0)  Li,@2Y)  Li,(4Y) Li,(0) Li,(2Y) Li,(0):

We now use Proposition 3.3.5 and Proposition 3.3.12 to determine that dim(Vx _(1)(1)) = 6.
Case 2: Assume that p = 5. Then dim(V?) 5 and, consequently, V2 = L,(41,).
Furthermore, we have V! =L, ,(2!;), hence V3= L.,(21,), and so:

Vi = L,0)  L,@1)  L,(4Y) L,(2Y)  L,(0):

Once more, by Propositions 3.3.5 and 3.3.12, we determine that dim(Vx  )(1)) = 5.

Case 3: Assume that p = 3. Then, as in Case 1, we have dim(V?2) 6 and the multiplicity
of the weight 0in V2 is 2. However, as p = 3, the weight 0 is not a sub-dominant weight in the
composition factor of V2 isomorphic to L, ,(4';). Therefore, V2 consists of 3 composition
factors: one isomorphic to L,(4%;) = Li,('1) Li,(11)®, see Theorem 2.3.8, and two
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isomorphic to L,(0). Moreover, as in the previous two cases, we have V! = L,(21,),
hence V3 = L,(21;). Lastly, by Proposition 3.3.5, we establish that dim(Vy o) =
4 +dim(V? 1(l)(l)). Now, as X , (1) acts as J, on L,(¥;) and on L,(¥,)®, respectively, by
Lemmas 2.9.4 and 2.4.9, we determine that dim(V,2 1(1)(1)) 4, hence dim(Vx  1)(1)) 8.

In conclusion, we have shown that dim(Vy(1)) 8 < dim(V) dim(V) for all non-
identity unipotent elements u 2 G. O

Proposition 4.3.16. Let k be an algebraically closed field of characteristic p & 2;3. Assume
“*=2andletV =Lg(3!;). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) 10

where there exist u 2 G for which the bound is attaiped.
In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. Let u 2 G be a non-identity unipotent element. We recall Inequality (4.41), which
states that:
dim(Vy(1)) maxfdim(Vy 1y(1)); dim(Vx ,)(1))g:

Therefore, in order to establish a bound for dim(Vy (1)), we need to determine dim(Vx  (1)(1))
and dim(Vyx ,(1y(1)). We begin with the former. For this, we recall the Decomposition (4.26)
of V ji,.L,) from Proposition 4.2.11, which states:

Vo= Le,(BY1)  Li,(B'1)  Li,('1) Li,(B'1)  Li,(Y1) Li,(3y):

Applying Lemma 3.3.3 and Proposition 3.3.12, it follows that dim(Vyx _(1)(1)) = 6.

We will now determine dim(Vyx ,1y(1)). For this we consider the Levi factor L; of the
maximal parabolic subgroup P; of G. Let T’ denote the maximal torus T \[L+; L1] of [L1; L4].
Set =3I, and note that dim(V) = 20. By Lemma 2.4.5, we have e;( ) = 6, therefore:

\% j[Ll:Lﬂ: ve vt V6;
_ M
where V' = V ;, for0 i 6. By [Smi82, Proposition], it follows that V° =
2N 1

L.,(0) and so V® = L,(0), by Lemma 2.4.3. Now, in V1, the weight ( 1) jpe= 1
admits a maximal vector, therefore V! has a composition factor isomorphic to L, ,(!) and
dim(V1)  dim(L_,('2)) = 2. By Lemma 2.4.3, we also have dim(V®) 2. Similarly,
the weight ( 2 1) jpo= 21, admits a maximal vector in V2, thus V2 has a composition
factor isomorphic to L ,(21,). Moreover, we also note that the dominant weight (2 ;

») j;o= 0, which occurs with multiplicity 2 in V2, as p & 2, is a sub-dominant weight in the
composition factor of V2 isomorphic to L, ,(21,), in which it has multiplicity 1. Therefore
dim(V2) 4, hence dim(V#) 4, by Lemma 2.4.3. It follows that dim(V3) 6. Lastly, the
weight (3 1) j;o= 31, admits a maximal vector in V3, thus V3 has a composition factor
isomorphic to L, (3!,). Moreover, the dominant weight (3 1 ) j;o= 15, which occurs
with multiplicity 2 in V3, as p & 2; 3, is a sub-dominant weight in the composition factor of
V3 isomorphic to L, ,(31,), in which it has multiplicity 1. Therefore, as dim(V3) 6, we
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determine that V3 consists of exactly two composition factors: one isomorphic to L, (31,)
and one isomorphic to L, (Y;). Moreover, by [Jan07, 11.2.14], we have V3 = L (31,)
L., (Y2). Now, by dimensional considerations, it follows that V* = L, (1,), V° = L, (1)),
by Lemma 2.4.3, V2 =1L,,(21,) L,(0), by [Jan07, 11.2.14], and V* = L, (21,) L., (0),
by Lemma 2.4.3. We have shown that:

V j[Ll;Ll]: LLl(O) LL1(!2) LL1(2!2) LL1(O) LL1(3!2) LLl(!Z) LL1(2!2)
L,(0) Li(T2) Li,(0):

We now use Lemma 3.3.3, Proposition 3.3.5 and Proposition 3.3.12 to determine that
dim(Vx ,1(1)) = 10.

In conclusion, we have shown that dim(V,(1)) 10 for all non-identity unipotent elements
u 2 G and that there exist u 2 Gr;or which the bound is attained, for example x ,(1). Lastly
we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent elementsu 2 G. [

Proposition 4.3.17. Let k be an algebraically closed field of characteristic p = 7. Assume
“=2andletV = Lg(!, +21,). Then for all non-identity unipotent elements u 2 G we
have

dim(Vu(1)) 7

where there exist u 2 G for which the bound is attaiped.
In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. Let u 2 G be a non-identity unipotent element. We recall Inequality (4.41), which
states that:
dim(Vu(1))  maxfdim(Vy  1y(1)); dim(Vx ,(1))g:

Therefore, in order to establish a bound for dim(V, (1)), we need to determine dim(Vx _ 1)(1))
and dim(Vx ,)(1)). We begin with the latter. For this, we recall the Decomposition (4.27)
of Proposition 4.2.12, which states:

Vo= Lo @) L, Bl2) Ln(@2)  LBlz)  Li@1z) L,@r) L, (2L

Using Proposition 3.3.5 and Proposition 3.3.12, it follows that dim(Vx ,1)(1)) = 7.

We will now determine dim(Vy (1)(1)). For this, we consider the Levi subgroup L, of
the maximal parabolic subgroup P, of G. Let T’ denote the maximal torus T \ [L;; L,] of
[Lo;Ly]. Set = 1, + 21, and note that dim(V) = 24, as p = 7. By Lemma 2.4.5, we have
e>( ) =5, therefore

\ j[Lz:Lz]: ve vt VS;

) M
where V' = V

2N »
Li,(';) and so V°® = (L ,('1)) = L.,('1), by Lemma 2.4.3. Now, in V1, the weight
( 2) j7o= 31, admits a maximal vector, therefore V! has a composition factor isomorphic
to L ,(31;) and dim(v?) dim(L_,(3'1)) = 4, since p = 7. Moreover, by Lemma 2.4.3,
we also have dim(V4) 4, therefore dim(V?) = dim(V3) 6, as V3 = (V?) . Lastly,
the weight (2 ;) j;o= 51, admits a maximal vector in V2, thus V2 has a composition

, for0 i 5. By [Smi82, Proposition], it follows that V° =
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factor isomorphic to L,,(5!;) and, as dim(L_,(51)) = 6, since p = 7, it follows that
V2 =1L,,(5",). Therefore, we also have V3 = L,(5'1). Now, since dim(V ) = 4, it follows
that Vi =L, ,(3";) and so V* = L,(31,), by Lemma 2.4.3. We have shown that:

Vijeag= L, (1) L,(BYr) L, (Y1) Li,(5%:) Li,(BY)  Li,(Ta):

Using Lemma 3.3.3 and Proposition 3.3.12 we determine that dim(Vx _ 1)(1)) = 6.

In conclusion, we have shown that dim(V,(1)) 7 for all non-identity unipotent elements
u 2 G and that there exist u 2 Géor which the bound is attained, for example x ,(1). Lastly,
we have dim(Vy (1)) < dim(V) dim(V ) for all non-identity unipotent elementsu 2 G. [

Proposition 4.3.18. Let k be an algebraically closed field of characteristic p = 7. Assume
‘=2and letV =Lg(3!,). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) 7,

where there exist u 2 G for which the bound is attaiped.
In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. Let u 2 G be a non-identity unipotent element. We recall Inequality (4.41), which
states that:
dim(Vy(1))  maxfdim(Vy ,(1)); dim(Vy 1 (1))g:

Therefore, in order to establish a bound for dim(Vy (1)), we need to determine dim(Vx  1)(1))
and dim(Vx ,)(1)). We begin with the latter. For this, we recall the Decomposition (4.28)
of Proposition 4.2.13, which states:

V= L @) L, (@l2) LBl Li(2fz)  Li,@rz)  Li,@r) LBl

Using Proposition 3.3.5 and Proposition 3.3.12, it follows that dim(Vx ,)(1)) = 7.

We will now determine dim(Vx (1y(1)). For this we consider the Levi subgroup L, of
the maximal parabolic subgroup P, of G. Let T’ denote the maximal torus T \ [L,; L,] of
[Ly;Ly]. Set = 3!, and note that dim(V) = 25, as p = 7. By Lemma 2.4.5, we have
e,( ) = 6, therefore

V jig=V° Ve
_ M
where V' = Vo
2N 2
L.,(0) and thus V® = L,(0), by Lemma 2.4.3. Now, the weight ( 2) Jro= 21, admits
a maximal vector in V1, therefore V! has a composition factor isomorphic to L ,(2!;) and
dim(v 1) dim(L_,(21,)) = 3, since p = 7. Moreover, by Lemma 2.4.3, we also have
dim(V®) 3. The weight (2 ,) jro= 41, admits a maximal vector in V2, therefore
V2 has a composition factor isomorphic to L,,(41;) and dim(V?)  dim(L_,(4!;)) = 5,
since p = 7. Once more, by Lemma 2.4.3, we also have dim(V#) 5. Lastly, the weight
( 3 ) j;o= 61 admits a maximal vector in V3, therefore V3 has a composition factor
isomorphic to L, ,(61;) and dim(V3) 7, as p=7. We deduce that:

\% j['—z;'—z]: LLz(O) LL2(2!1) LL2(4!1) LL2(6!1) LL2(4!1) LLz(Z!l) LLz(O):

for 0 i 6. By [Smi82, Proposition], it follows that V° =

2
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Using Proposition 3.3.5 and Proposition 3.3.12 we determine that dim(Vx 1)(1)) =7.

In conclusion, we showed that dim(V,(1)) 7 for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bowd is attained, for example x (1) and
X ,(1). Moreover, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G. O

Proposition 4.3.19. Let k be an algebraically closed field of characteristic p = 3. Assume
“=2andlet V = Lg(21; + 1,). Then for all non-identity unipotent elements u 2 G we
have

dim(Vy(1)) 13

In particular, we have dim(V,(1)) < dim(V) Iodim(V) for all non-identity unipotent
elements u 2 G.

Proof. Let u 2 G be a non-identity unipotent element. We recall Inequality (4.41), which
states that:
dim(Vy(1))  maxfdim(Vy , (1)); dim(Vy 1 (1))g:

Therefore, in order to establish a bound for dim(Vy (1)), we need to determine dim(Vx  (1)(1))
and dim(Vx ,1)(1)). We begin with the former. For this, we recall the decomposition of
V jiLs:L,) from Proposition 4.2.14, which states:

Vo= L. (21) vt vz oy L, (211);

where V1 and V 2 each have three composition factors: one isomorphic to L (1) L. ,(¥1)®
and two isomorphic to L,,(0); and V2 has two composition factors: one isomorphic to
L, (") L, (*)® and one isomorphic to L,(2';). Now, as X ,(1) acts as J, on both
Li,(11)and Ly, (1:)®, by Lemma 2.9.4, it follows that dim((L,(11) L, ('1)®)x ,@(D) =
2. Thus, by Lemma 2.4.9, we have dim(Vxll(l)(l)) 4, dim(Vfl(l)(l)) 4 and, by
Proposition 3.3.5, we also have dim(VXZl(l)(l)) 3. Lastly, applying Proposition 3.3.5

one more time, we deduce that dim(Vx  1)(1)) 13.

We will now determine dim(Vyx ,1)(1)). For this we consider the Levi factor L; of the
maximal parabolic subgroup P, of G. Let T’ denote the maximal torus T \[Ly; L1] of [L1; L4].
Set =21;+ 1, and note that dim(V) = 25, as p = 3. By Lemma 2.4.5, we have e;( ) =6,
therefore:

Vijpag=Vve v Ve
_ M
where V' = V ;, for0 i 6. By [Smi82, Proposition], it follows that V° =
2N 1
L, (") and so Ve = (L., (1)) =L, (1), by Lemma 2.4.3. Now, the weight ( 1) Jpo=
21, admits a maximal vector in V %, thus V! has a composition factor isomorphic to L, (21,)
and dim(V!') 3, asp = 3. Then, dim(V® 3, by Lemma 2.4.3. Similarly, in V3, the
dominant weight ( 31 2) jpo= 21, admits a maximal vector, therefore V3 has a
composition factor isomorphic to L ,(21,) and dim(V3) 3, as p = 3. Then, by Lemma
2.4.3, it follows that dim(V?2) = dim(V*) 6. Now, the weight (2 ;) j;o= 31, admits a
maximal vector in V 2, thus V 2 has a composition factor isomorphic to L, (312) = L, (1,)®,
as p = 3. Moreover, since p = 3, the dominant weight (2 ; 2) Jro= 15, which occurs
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with multiplicity 2 in V2, does not appear as a sub-dominant weight in the composition
factor of V2 isomorphic to L, (1,)®. Since dim(V?2) 6, it follows that V2 consists of
exactly three composition factors: one isomorphic to L, (!,)®® and another two isomorphic
to L,(',). Thus, by Lemma 2.4.3, V* also consists of exactly three composition factors:
one isomorphic to L, (,)® and two isomorphic to L, (Y,). Lastly, as dim(V %) = 3 and
dim(V1) = 3, we determine that V3 = L ,(21,), V! = L ,(21,) and so V° = L ,(21,),
by Lemma 2.4.3. Having determined the decomposition V jy ,..,;, we use Lemma 3.3.3,
Proposition 3.3.5 and Lemma 2.4.9 to deduce that dim(Vy ,1)(1)) 11.

In conclusion, we showed that dim(V,(1)) 13 <dim(V) dim(V) for all non-identity
unipotent elements u 2 G. ]

At this point, we have determined max dim(V,(1)) for all the irreducible modules V

u2Gynflg
of G of type C, featured in Table 2.7.2. We will now assume that * 3 and fogus on the
kG-modules of Table 2.7.3. Let u 2 G be a unipotent element and write u = x (c),

2Su
where the product is taken with respect to the total order on , see Section 1.3, S, *

andc 2k forall 2 S,. Inwhat follows, we will prove that each non-identity unipotent
conjugacy class in G admits a representative u’ with the property that Se \f 2 -0,
see Proposition 4.3.22.

First, assume that p & 2. Theorem 2.9.2 tells us that unipotent conjugacy classes in
G are completely determined by the Jordan form on W of a representative. Moreover, we
know that odd sized Jordan blocks occur with even multiplicity. With that in mind, let
u 2 G be a non-identity unipotent element and let V;, 1 i ord(u), be the unique, up to
isomorphism, indecomposable k[u]-module with dim(V;) =i and on which u acts as the full
Jordan block of size i. Following [Korl8, Subsection 2.8.2], we associate to u the (possibly
empty) sequences (0i); i « and (gj)1 j s such that:

_ (\%| , M
W u= Vg Ve
i=1 j=1
X =
where 1 04 oareodd and 1 e gs are such that 0; + e = “.
i=1 j=1

Note that the above decomposition completely determines the conjugacy class of u in G.
We now assume that p = 2. Theorems 2.9.11 and 2.9.15 tell us that unipotent conjugacy
classes in G are completely determined by the Hesselink normal form of a representative.

2eg,) be its Hesselink normal form, wheret 0,s 0,1 o0 opand 1 e

X X
e are such that 0; + ej = “. Then W admits the following decomposition as

i=1 j=1
on orthogonal direct sum of indecomposable k[u]-modules:

o™ M1
W = W(0) V (2¢;):

i=1 j=1
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Note that the above decomposition completely determines the conjugacy class of u in G.

Lemma 4.3.20. [Korl8, Lemmas 2.8.11 and 2.8.12] Let k he an algebraically closed field

of characteristic p 0. Let1 o0, 0¢, Where the 0;’s are odd if p & 2, and let
X X )

1 e es be such that 0; + ej = “. Setowj =¢ej, foralll j s. Further,
i=1 j=1

setky=1and kj=1+0,+ +0; 1,2 i t+s. Lastly,foralll i t+s 1, define:

8
1;if1 1 tando; =1;
kiVZ
x,(); ifl i tando;>1;
— J=kKi

Ui—g

X2 \ooy 1+ +2 1+ ) ift+1 i t+s lando; =1;
kiYZ
= X (1) X2\, 4+ +2 ..+ (1) ift+1 i t+s lando;>1;
J=ki
8
3SX .(1); ifores = 15
- Y
n - -
and Hers B X J(l), if Ot4s = 1:
-j:kt+s

Then, one of the following holds:

(1) If p& 2, then u=u; U lies in the unipotent conjugacy class of G determined by
[\ M
the decomposition W jyy= V¢ Ve, -
i=1 j=1

(2) If p=2,then u=u; Uws lies in the unipotent conjugacy class of G determined by

[\ M
the decomposition W jiu= W (05) V (2¢j).
i=1 j=1

Remark 4.3.21. In this remark we will determine S for a non-identity unipotent element

M (N4
uw2G. Ifp&2 let W ju= VOZi Va; be the corresponding decomposition of
i=1 j=1
(% (N4
W as a k[u’]-module. Similarly, if p = 2, let W jyuq= W (0;) V (2e5) be the
i=1 j=1

corresponding decomposition of W as a k[u']-module. In both situations, by Lemma 4:3:20,
there exists a representative u of the unipotent G-conjugacy class of u’ with the property that
U=U;  Ugss.

Case 1: Assume thatt = 0. If o = 1, then 0; = 1 for all 1 i s 1, and we
have Sy, = 2 ., 1+ +2 ,+ <, foralll i s 1,and S, =T -g. Clearly,
Suy \Sy; =, foralll i<j s. Wenow use the commutator relations, see [MT11,
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Theorem 11.8], to determine that the u;’s commute, i.e. we have:

M
U=u; Uy U= X2 (o 1+ 42 - g+ (D) x.(D
i=1
=X (1) Xz ks 1+ +2 - 1+ (1) X2 Ko 1+ +2 - 1+ (1) = Us Us 1 UJ_:
This gives Sy =F 2 1+ +2 1+ 2,1+ +2 1+ <.
On the other hand, ifos 2,let1 j sbesuchthato; ; =1ando; > 1. Now, for all
1 1 j 1,wehaveS, =12 ,,, 1+ +2 - ;+ g, while,forallj i s 1, wehave
Suy =F k11100 Ky 202 Ky 1+ F2 -1+ cgand Sy, =T ;i1 -g. To determine

Sy, we once again apply the commutator relations, [MT11, Theorem 11.8], by which all the
terms in the product u;  us commute, and it follows that:

u=u, Ui 1 Uj Ug

N G Y

= X2 g, 1+ 2 - g+ (D) X (1) Xz 0 w20+ (D) X (1)
i=1 i=j r=ki r=ks
G

= x (1) X (1) X e w20+ ()Xo g w2+ (D)

i=j r=k; r=Kks

X2 kj 1+ +2 - g (1) X2 kp 1+ +2 < 1+ (1) :

This shows that

Su=T i1 ka1 20 Kawriitr ka2 205000 ke ity ke 20 keriilr 92 ke 1F  H2 o g+
2 kjiss 1F +2 1+ 2 K 1+ +2 1+ 2 g 1t +2 1+ @
Case 2: Assumet 1. Ifo=1,theno;=1,foralll 1 t, andso u; =1, for all
1 i t. Inthiscase, S, is as in one of the two situations in Case 1. On the other hand, if
o 2,letl j; tbesuchthato;, ;=1andoj, 2. Thenu;=1,forall i j; 1,
kiYZ
and u; = X (1), forall j; 1 t. In this case, we have
r=K;j
Y koy?
U=U; Uj 1 Uj U Ug Urj, Uprjprr Upes = x (1)
i=j1 r=kj
Nz try 1 kingr 2
X2 kipqg 1+ +2 < 1 .(1) X (1) X2 gy, 1+ +2 - 1+ (1) Ugss;
i=t+1 i=t+jo+1 r=ki

where 1 j, s is such that 0¢+j, = 1 and 0¢+j,+1 > 1. We determine that

SU1 Ut :f kjlil kjl“'l 2; kjl“'l"”’ kj1+2 27y Kgrtroa K1 Zg:



Moreover, we argue as we did in Case 1 to show that, if j, = s, then:

S =Ff 52 o1+ +2 1+ 52 o1+ +2 <1+ <G

Ut+1 Ut+s

while, if J, <'s, then:

L | kt+j2+2 2 kt+j2+2’ LR | kt+j2+3 21y kt+s 19" kt+S 23 kt+s’

92 ke 1t F2 ot SN2 ke 1t 2 o+

2 fjyer 1 F2 gt G2 1t +2 00+
1, we have that ; jand ; & ;, forall 1 i m; and all 1 ] m,, thus

Proposition 4.3.22. Let k be an algebraically closed field of characteristic p 0. Assume
that * 3. Then all non-identity unipotent conjugacy classes in G admit a representative u
with the property that Sy \f ,;:::; g€ ;.

M
Proof. Let u’ 2 G be a non-identity unipotent element. If p & 2, let W jyqq= V2

Oj
i=1
M
V2, be the corresponding decomposition of W as a k[u"]-module. Similarly, if p = 2,

j=1
N\ M
let W jiu= W (0i) V (2€;) be the corresponding decomposition of W as a k[u']-
i=1 ji=1
module. Then, there existsJ a representative u in the unipotent G-conjugacy class of u’ such
that u = u;  Uwes With u;’s as in Lemma 4:3:20.
We first consider the case when there are no odd sized blocks in the Jordan form of
uonW, ie. t=0. Then S, is as in Case 1 of Remark 4.3.21. Therefore, we see that

ofuon W, ie. t 1. Then Sy is as given in Case 2 of Remark 4.3.21. We distinguish the
following two cases:

Case 1: Assume that s = 0. Then, since u is nontrivial, it follows that oy > 1. Let
1 j; tbesuchthato;, 1 =1andoj, > 1. Therefore,

Su=Su u=F ki ke 20 ke T Kigee 20000 ket ke 205
X
by Case 2 of Remark 4.3.21. Now, since o = “and ky4+q = 1+ 0 + + 0¢, We have
i=1
kivs 2=° landso - ;28Sy, thereby Sy,\f ,;:::; g6 ;.
Case 2: Assume that s > 1. Then, by Case 2 of Remark 4.3.21, it follows that - 2 S,
hence Sy \ T ,;:::; g & ;. This completes the proof of the proposition. ]

We now continue with the proofs of Theorems 4.3.1 and 4.3.2 in the case of the irreducible
kG-modules Lg( ), where the p-restricted dominant weight s listed in Table 2.7.3.
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Proposition 4.3.23. Let k be an algebraically closed field of characteristic p = 2. Assume
‘=3 and let V = Lg(¥3). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) 6;

where there exist u 2 G for which equality holds.
In partigular, there exist non-identity unipotent elements u 2 G for which dim(V,(1))
dim(V) dim(V).

Proof. To begin, we recall the Decomposition (4.29) in the case of * = 3 of Proposition
4.2.15, which states:

Vo= Lo (Ys) L, (F): (4.42)

Let u 2 G be a non-identity unipotent element and let u’ be a representative of the
unipotent G-conjugacy class of u with the property that ui_l & 1. Note that, by Proposition
4.3.22, such a representative always exists. Then, by Inequality (2.7) and Decomposition
(4.42), it follows that:

dim(Vy(1)) dim(Vu (1)) = 2dim((Le, (T3))u (1)):

Since p = 2, we apply Proposition 4.3.10 to determine that dim((L._l(!g))uoL D) 3,

thereby dim(V,(1)) 6. Now, consider the unipotent element x ,(1) 2 G. We firslt note that
X ,(D), = x,(1) and (X ,(1))o, = 1. Therefore, by Equality (2.8) and Decomposition
(4.42), we have dim(Vy (1)) = 2dim((L, (Ya))x ,(D), thus dim(Vy (1)) = 6, by
Proposition 4.3.10 and Table 4.3.3.

In conclusion, we showed that dim(V,(1)) 6 for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bound is attained, for example x ,(1).
Therefore,rshere exist non-identity unipotent elements u 2 G such that dim(V(1))
dim(V) dim(V). O

Proposition 4.3.24. Let k be an algebraically closed field of characteristic p & 2. Assume
‘=3 and let V = Lg(13). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) 9;

where there exist unipotent elements u 2 G for Whicﬁthe bound is attained.
In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. To begin, we recall the Decomposition (4.30) of Proposition 4.2.16, which states:
Vijgig= L (fs) Ly (Y2) L, (Ts):

Let u 2 G be a non-identity unipotent element and let u’ be a representative of the
unipotent G-conjugacy class of u with the property that uUL1 & 1. Note that, by Proposition
4.3.22, such a representative always exists. Then, by Inequality (2.7) and Decomposition
(4.30), we have:

dim(Vu())  dim(vy (1) = 2dim((L,(*s))e (D) +dim((Le,(T2))y; (D):
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Since p & 2, we apply Corollary 4.3.8 to determine that dim((LLl(!g))uoL (1)) 3, while,
by Lemma 4.3.3, it follows that dim((LLl(!g))u?_ ) 3. Therefore, dim(Vy(1)) 9.

Now, consider the unipotent element x (1) 2 G. We first note that (x (1)), = X ,(1)
and (X ;(1))o, = 1. Thus, by Equality (2.8) and Decomposition (4.30), it follows that
dim(Vy (1)) = 2dim((Le, (1)) ,@y@)+dim((LL, (1))« ,(1)) and so dim(Vy (1)) =
9, by Corollary 4.3.8, Lemma 4.3.3 and Table 4.3.2. This shows that there exist u 2 G for
which dim(V,(2)) = 9.

In conclusion, we have shown that dim(V,(1)) 9 for all non-identity unipotent elements
u 2 G and that there exist u 2 Gr_f)or which the bound is attained, for example x ,(1). Lastly,
we have dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent elementsu 2 G. [

Proposition 4.3.25. Let k be an algebraically closed field of characteristic p = 2. Assume
‘=3 andletV = Lg(!,+ 13). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) 28;

where there exist u 2 G, u & 1, for which the boundFi)s attained.
In particular, we have dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. To begin, we recall the Decomposition (4.31) from Proposition 4.2.17, which states:
Vv j[Ll;Ll]: LLl(!3) LL1(!2 + !3) LL1(!3) LL1(!3) LLl(!Z + !3) LL1(!3):

Let u 2 G be a non-identity unipotent element and let u’ be a representative of the
unipotent G-conjugacy class of u with the property that uoLl & 1, see Proposition 4.3.22.
Then, by Inequality (2.7) and Decomposition (4.31), we have:

dim(Vy(1)) dim(Vy (1)) 4dim((Le,(Ts))y (1)) +2dim((LL, (Y2 + 13))e (D))

Using Proposition 4.3.10, we determine that dim((L.,(?3))u,_, (1)) 3, while, by Proposition
4.3.14, we have dim((L,(?2 + ¥3))u,, (1)) 8. It follows that dim(Vu(1))  28. Now,
consider the unipotent element x ,(1) 2 G. We first note that (x ,(1)).,, = X ,(1) and
(X ,(1))o, = 1. Therefore, by Equality (2.8) and Decomposition (4.31), it follows that
dim(Vx ,@)(1)) = 4dim((Le,(3))x ,@)(1)) + 2dim((Le, (T2 + ¥5))x (1)) and this gives
dim(Vx ,)(1)) = 28, by Proposition 4.3.10, the second paragraph of the proof of Proposition
4.3.14 and Table 4.3.3. This shows that there exist u 2 G for which dim(V,(1)) = 28.

In conclusion, we have shown that dim(V,(1)) 28 for all non-identity unipotent elements
u 2 G and that there exist u 2 Grgor which the bound is attained, for example x ,(1). Lastly,
we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent elementsu 2 G. [

Proposition 4.3.26. Let k be an algebraically closed field of characteristic p = 2. Assume
“=3and let V = Lg(21; + 13). Then for all non-identity unipotent elements u 2 G we
have

dim(Vy(1)) 28;

where there exist u 2 G, u & 1, for which the bound s attained.
In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.
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Proof. To begin, we note that, by Theorem 2.3.8, as p = 2, we have the following isomorphism
of kG-modules:
V =Le(1)?®  Lo(1s): (4.43)

We first focus on the kG-module Lg(11)®. We remark that dim(Lg(!1)®) = 6 and, by
Lemma 2.4.5, we have e;(21,) = 4, therefore

LG(!l)(Z) j[Ll;Ll]: Ve V4;
. M
where V' = Vo
2N 1
V% = L,(0) and so, by Lemma 2.4.3, we also have V4 = L (0). As p = 2, we have
V! = f0g and V3 = f0g. Lastly, as the weight ( 2 ;) jro= 21, admits a maximal
vector in V2, it follows that V2 has a composition factor isomorphic to L, (21,) and, as
dim(L.,(21,)) = 4, since p = 2, we determine that V2 = L, (21,). Therefore, we have:

forall 0 i 4. By [Smi82, Proposition], it follows that

1 i1

Lo(*)® juyg= L (0) L, (2Y2) Loy (0): (4.44)
In the case of the kG-module Lg(!3), by Decomposition (4.29), we have:
Lo(Ys) Jiig= Lo (Ts) Lo, (Ys): (4.45)

Coming back to (4.43), by (4.44) and (4.45), using Theorem 2.3.8, we determine that:

Lo(2Ys+ ¥3) juyyg = (L, (0) L, (212) L, (0)  (Li,(fs)  Liy(13)
=L, (') (L, (12) L, (1)) (4.46)
=L, (1) L, (21, + 1%

Let u 2 G be a non-identity unipotent element and let u’ be, as usual, a representative
of the unipotent G-conjugacy class of u with the property that u°Ll & 1. Then, by Inequality
(2.7) and Decomposition (4.46), we have:

dim(Vu(1)) dim(Vy (1)) 4dim((Li, (Ya))y (D) +2dim((Le, (222 + 15)) (1)):

We will first determine dim((L., (2!, + !3))uoLl (1)). By Theorem 2.3.8, we note that:

L, @Y+ 1) =L, (1)@ L, (Ys):

Now, by Table 4.3.3, we have that the Hesselink normal form of u°Ll on L, (Y) is one of
(13;21), (23), (23) and (41). Thus, the Jordan form of the action of u}_ on L, (1,)® is one of
J, J? J2, 3% and Jy, respectively. Using the second paragraph of the proof of Proposition
4.3.10 and Theorem 5.3.5 cases (b), (c.3), (b) and (c.3), respectively, we determine that
the Jordan form of the action of ul on L., (Y3) is 32, J, JZ, JZ and J4, respectively.
We now calculate the Jordan form of the action of ul , on L, (12)® L., (1s3), either by
hand or using a computer, keeping in mind that p = 2, and we get that it is J$, J8, J8
and J7, respectively. Thus, dim((L_,(21, + !3))U°Ll(1)) 8. Furthermore, by Proposition
4.3.10, we determine that dim((LLl(!g))uoLl (1)) 3, andso, it follows that dim(V,(1)) 28.
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Now, consider the unipotent element x ,(1) 2 G. We first note that (x (1)), = x ,(1)
and (X ,(1))o, = 1. Therefore, by Equality (2.8) and Decomposition (4.46), it follows that
dim(Vx ,1)(1)) = 4dim((LL, (¥3))x (1)) + 2dim((LL, (212 + ¥3))x ,2)(1)) and this gives
dim(Vx ,@)(1)) = 28, by the above, Proposition 4.3.10 and Table 4.3.3. This shows that
there exist u 2 G for which dim(V,(1)) = 28.

In conclusion, we have shown that dim(V,(1)) 28 for all non-identity unipotent elements
u 2 G and that there exist u 2 GFgor which the bound is attained, for example x ,(1). Lastly,
we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent elementsu 2 G. [

Proposition 4.3.27. Let k be an algebraically closed field of characteristic p = 3. Assume
‘=4 and let V = Lg(13). Then for all non-identity unipotent elements u 2 G we have

dim(Vy(1)) 27,

where there exist u 2 G for which the bound is attaipgd.
In particular, we have dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. To begin, we recall the Decomposition (4.32) of Proposition 4.2.19, which states:
Vo= L (1s) L, (Ta) L, (Ys):

Let u 2 G be a non-identity unipotent element and let u’ be, as usual, a representative
of the unipotent G-conjugacy class of u with the property that u?_l & 1. Then, by Inequality
(2.7) and Decomposition (4.32), we have:

dim(Vu(@)) dim(v (1)) 2dim((L,(ta))e (D) +dim((L, () (D):

Since p = 3, we apply Propositions 4.3.10 and 4.3.24 to determine that dim((L.,('3)), (1))
L1
9and dim((LLl(!4))uoL (1)) 9, respectively. It follows that dim(Vy(1)) 27. Now consider

the unipotent element x ,(1) 2 G. First, we note that (x ,(1)),, =x ,(1) and (X ,(1))o, =
1. Therefore, by Equality (2.8) and Decomposition (4.32), we have dim(Vx ,1)(1)) =
2dim((Li, (Ya))x ,(D)+dim((Le, (1))« ,@y(1) and so dim(Vy ,ay(1)) = 27, by Proposition
4.3.10, the proof of Proposition 4.3.24 and [LS12, Subsection 3.3.2]. This shows that there
exist u 2 G with dim(V(1)) = 27.

In conclusion, we have shown that dim(V,(1)) 27 for all non-identity unipotent elements
u 2 G and that there exist u 2 Géor which the bound is attained, for example x ,(1). Lastly,
we have dim(Vy (1)) < dim(V) dim(V ) for all non-identity unipotent elementsu 2 G. [

Proposition 4.3.28. Let k be an algebraically closed field of characteristic p & 2. Assume
‘=4 and let V = Lg(14). Then for all non-identity unipotent elements u 2 G we have

dim(Vy(l)) 28 s

In particular, we have dim(V,(1)) < dim(V) pdim(V) for all non-identity unipotent
elements u 2 G.
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Proof. To begin, we recall the Decomposition (4.33) of Proposition 4.2.21, which states:

Vijioeg= Lo (Ye) L (Y3) L (Ya):

Let u 2 G be a non-identity unipotent element and let u’ be, as usual, a representative
of the unipotent G-conjugacy class of u with the property that u‘}_l & 1. Then, by Inequality
(2.7) and Decomposition (4.33), we have:

dim(Vu())  dim(vy (1)) = dim((Le,(Ya))yg (D) + 2dim((Le,(Ya))e (1):

Using Proposition 4.3.24, we have dim((LLl(!4))uoL (1)) 9. If p=3, then by Proposition
4.3.10, it follows that dim((L._l(!g))uoL (1)) 9, while, if p & 3, then by Corollary 4.3.8, we
have dim((L,(3)), (1)) 10. We obtain dim(Vy(1)) 28 .

L1

In conclusion, we showed that dim(Vy(1)) 28 3 < dim(V) pdim(V) for all
non-identity unipotent elements u 2 G. ]

Proposition 4.3.29. Let k be an algebraically closed field of characteristic p & 3. Assume
‘=4 and let V = Lg(13). Then for all non-identity unipotent elements u 2 G we have

dim(Vy(1)) 34,

where there exist u 2 G for which the bound is attaiped.
In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. To begin, we recall the decomposition of V j ,..,; from Proposition 4.2.20, which
states:

Vijietg= Lo (Fs) VP L (Ys);

where, if p & 2, V! has two composition factors: one isomorphic to L, ('4) and one
isomorphic to L, (1,); while, if p = 2, then V! has three composition factors: one isomorphic
to L ,(¥,4) and two isomorphic to L, (1,).

We first consider the case when p & 2. Then, by [Jan07, 11.2.14], it follows that V! =
Li,(Ya) Li,(Y2) and so

Vo= L (Ts) L (Ys) Ly (Y2) L (fs): (4.47)

Let u 2 G be a non-identity unipotent element and let u’ be a representative of the
unipotent G-conjugacy class of u with the property that u?_l & 1, see Proposition 4.3.22.
Then, by Inequality (2.7) and Decomposition (4.47), we have:

dim(Vu())  dim(Vy (1)) = 2dim((L,(*s))yy (1) +dim((Le,(Ta)y; (D)+
+dim((Le, (12)); (D):

Since p & 2;3, we use Corollary 4.3.8, Lemma 4.3.3 and Proposition 4.3.24 to determine
that dim((L,(Ys))e (1)) 10, dim((Li,(12))y (1)) 5 and dim((L,(ta)) (D) 9,
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respectively. It follows that dim(V,(1)) 34. Now, consider the unipotent element x ,(1) 2
G. First, we note that (x ,(1))., = x ,(1) and (X ,(1))o, = 1. Therefore, by ldentity
(2.8) and Decomposition (4.47), it follows that dim(Vx ,)(1)) = 2dim((LL,(*3))x , (1) +
dim((Lr, (Y4))x ,@(1)) +dim((Le,(*2))x , (1)) and so dim(Vx ,)(1)) = 34, by Corollary
4.3.8, Lemma 4.3.3, proof of Proposition 4.3.24 and [LS12, Subsection 3.3.2]. This shows
that there exist u 2 G for which dim(Vy(1)) = 34.

We can now assume that p = 2. Again, let u 2 G be a non-identity unipotent element
and let u’ be a representative of the unipotent G-conjugacy class of u with the property
that u?_l & 1, see Proposition 4.3.22. We apply Proposition 4.3.23 and Lemma 4.3.3 to
determine that dim((L.,(Y4)), ] (1)) 6 and that dim((L._l(!z))uoL (1)) 5. Therefore, by

Lemma 2.4.9, we obtain dlm(V1 (1)) 16. Moreover, by Corollary 4.3.8, as p & 3, we
have dim((L.,(3)), (1)) 10 ‘therefore dim(Vy(1)) 36. However, we will show that
L1

dim(Vy(1)) 34 for all unipotent elements u 2 G, u & 1.

Assume there exists u 2 G, u & 1, such that dim(Vy(1)) > 34. Then, by the above
discussion, keeping in mind that V! has two composition factors isomorphic to L, (1,),
it follows that dim((L.,(!2)), ] (1)) 5, where u’ is a representative of the unipotent

G-conjugacy class of u such that u0 6 1. Furthermore, by Lemma 4.3.3, we have that
dim((L,(Y2)) o (1)) =5if and only if the Jordan form of the action of u‘,)_1 on L, (¥,)is

J, J{. Thus, by [Korl8, Lemma 3.2.3], the possibilities for the Jordan form of u’ on W
are J, JP,J2 JfandJ3 JZ Now, as p = 2, by [McN98, Lemma 4:8:2], we have the
following kG-module isomorphism:

~N(W) =Lo(ls) Lo(ly):

Therefore, in order to determine dim(V:(1)), we only need to know dim(("3(W))w (1)) and

dim((Le(11))w(1)).

Case 1: The Jordan form of u’ on W is 3,  J%. Then W jyun= V2V, where V; is the
unique, up to isomorphism, indecomposable k[u’]-module with dim(V;) =i and on which U’
acts as J;. This gives rise to the following k[u']-module isomorphism:

AS(W) = A3(V2 V16) = A3(V2) AZ(VZ) V16 Va AZ(V16) AS(V16)
=V, VS V, ViS5 vy
— V215 V126:
Therefore, U’ acts on ~3(W) as J3°  J2, hence dim((™3(W))w(1)) = 41. It follows that
dim(Ve()) =41 7 =34, as dim((La(11))w (L)) = 7.
Case 2: The Jordan form of u’on W is 37 J. Then W jyun= V5 V%, where V; is the

unique, up to isomorphism, indecomposable k[u‘]-module with dim(V;) = i and on which U’
acts as J;. This gives rise to the following k[u’]-module isomorphism:

A3(W) = A3(V22) AZ(sz) V14 V22 AZ(V14) A3(V14)
=[N(V2) M(V2) Vol [NV Voo Vo] VY VPR ve v
=V V2]2 [V12 V22] V14 V212 V14

— 22 12.
=VvZ2 v?
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Therefore, U’ acts on ~3(W) as J22  J12, hence dim(("™3(W))w (1)) = 34. It follows that
dim(Vp(1)) =34 6 =28, as dim((Lc('1))w(1)) = 6.

Case 3: The Jordan form of u’on W is 33 JZ. Then W jyun= V5 V72, where V; is the
unique, up to isomorphism, indecomposable k[u’]-module with dim(V;) =i and on which u’
acts as J;. This gives rise to the following k[u']-module isomorphism:

AS(W) = AB(VZS) /\2(\/23) V12 V23 ,\2(\/12) AS(V12)
=[N3V NV Vo VE NR(V) (V)
[M2(VF) Vi Vo MRV VOV v
= [V22 (V22 V12) Va V22 Vi] [Vz2 \/12 V24 Vi) V12 V23
=V vy
Therefore, U’ acts on ~3(W) as J2°  J8, hence dim(("™3(W))w(1)) = 31. It follows that
dim(Vye(1)) =31 5=26, as dim((Lg('1))w (1)) =5.
In conclusion, by Cases 1, 2 and 3, it follows that dim(V,(1)) 34 for all non-identity
unipotent elements u 2 G. Moreover, we have showed that there exist u 2 G for which the

bound is attained, for exampkﬁhose with Jordan form on W given by J, J?. Lastly, we note
that dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent elementsu2 G. [

Proposition 4.3.30. Let k be an algebraically closed field of characteristic p = 2. Assume
“=5and let V = Lg(¥3). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) 74

where there exist u 2 G for which the bound is attaiped.
In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. To begin, we recall the Decomposition (4.34) of Proposition 4.2.22, which states:
Vo= L (fs) Lo (Te) L (Bs):

Let u 2 G be a non-identity unipotent element and let u’ be a representative of the unipotent
G-conjugacy class of u with the property that u°Ll & 1, see Proposition 4.3.22. Then, by
Inequality (2.7) and Decomposition (4.34), we have:

dim(Vu(@))  dim(Vy (1)) = 2dim((LL,(Ya))g (1)) +dim(Le, () (D):

By Proposition 4.3.10, as p = 2, we have dim((L._l(!3))uoLl (1)) 20, while, by Proposition
4.3.29, we have dim((L._l(!4))uoL1 (1)) 34. It follows that dim(Vy(1)) 74. Now, consider
the unipotent element x (1) 2 G. First, we note that (X (1)), =X (1) and (X ;(1))o, =
1. Therefore, by Identity (2.8) and Decomposition (4.34), it follows that dim(Vx _1)(1)) =
2dim((Le, (13)x (D) + dim((Li, (12))x (1)) and this gives dim(Vx _1y(1)) = 74, by
[LS12, Section 6.1], using Proposition 4.3.10 and the proof of Proposition 4.3.29. This shows
that there exist u 2 G for which dim(V,(1)) = 74.

In conclusion, we have shown that dim(V,(1)) 74 for all non-identity unipotent elements
u 2 G and that there exist u 2 GFf)or which the bound is attained, for example x _(1). Lastly,
we have dim(V, (1)) < dim(V) dim(V ) for all non-identity unipotent elementsu 2 G. [
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Proposition 4.3.31. Let k be an algebraically closed field of characteristic p = 2. Assume
“ 4andletV =Lg(Y-). Then for all non-identity unipotent elements u 2 G we have

dim(Vy(1) 3 2 2

where there exist u 2 G for which the bound is attained.
In particular, in the case of, 5 = 4 there exist non-identity unipotent elements u 2 G for
%ﬂch dim(Vy(1)) dim(V) dim(V), while, for ©* 5 we have dim(V,(1)) < dim(V)
dim(V) for all non-identity unipotent elements u 2 G.

Proof. To begin, we recall the Decomposition (4.29) of Proposition 4.2.15, which states:

Vo= Lo () L (1):

Let u 2 G be a non-identity unipotent element and let u’ be a representative of the unipotent
G-conjugacy class of u with the property that u‘}_l & 1, see Proposition 4.3.22. Then, by
Inequality (2.7) and Decomposition (4.29), we have:

dim(vy(1)) dim(Vy (1)) = 2dim((Le, (1) (1):

Recursively and using Proposition 4.3.23 for the base case of © = 4, we get dim((L, (! ‘))U‘Ll ()

3 2" 3, therefore dim(Vy(1)) 3 2" 2. Now, consider the unipotent element x ,(1) 2 G.
First, we note that (x ,(1))., = x ,(1) and (X ,(1))q, = 1. Therefore, by Identity (2.8)
and Decomposition (4.29), it follows that dim(Vx ,)(1)) = 2dim((L.,(*-))x ,1)(1)) and so
dim(Vx ,@(1)) =3 2" 2, by [LS12, Section 6.1], the proof of Proposition 4.3.23 in the case
of * =4 and recursively for ©* 5.

In conclusion, we showed that dim(V,(1)) 32" 2 for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bound is attained, for example x ,(1).
Therefore, in the case of * 4, we see Igpat there exist non-identity unipotent elements
u 2 G for which dim(Vy(1)) dim(V) dim(V). On tt}g other hand, for * 5, we have
0<2(@ 4 1, therefckga the inequality 3 2" 2 < 2 2" holds for all * 5 and thus
dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent elements u 2 G. O

We conclude this subsection by noting that Proposition 4.3.13 through 4.3.31 complete
the proof of Theorems 4.3.1 and 4.3.2, as they cover all the irreducible kG-modules correspon-
ding to p-restricted dominant weights featured in one of the Tables 2.7.2 and 2.7.3.

4.4 Results

In this section we collect the results proven in this chapter. In Proposition 4.4.1 we give the
values of 52rTnne%)éG)fdlm(Vs( )i 2kag, u2rg?n)§19dlm(vu(1)) and g(V) for all kG-modules
V belonging to one of the families we had to consider. Similarly, Proposition 4.4.2 records
the same data for the particular kG-modules treated in this chapter.

Proposition 4.4.1. Let k be an algebraically closed field of characteristicp 0 and let G be
a simple simply connected linear algebraic group of type C:, * 2. Let T be a fixed maximal
torus in G and let V = Lg( ), where 2 FC . Then the value of (V) is given in the table
below:

165



V Char. | Rank 52rTnnz%)éG)fdim(Vs( ) 2kg L12r(r;j;ln)]glgdim(Vu(l)) c(V)
Le('y)) |p O° 2 2 2 2 1 1
Le(2Y) [ p&E2 | 2 22 3“+4 242 ¢ 2°

‘=2 4 3 1
) ‘=3 8 10 4
P~ =3 16 71 6
La(Y,) 5 22 5°+3 22 3 +1 2° 2
‘=2 2 3 1
pj- ‘=3 8 9 4
“ 4 22 5 +2 22 3° 2 2

Table 4.4.1: The value of (V) for the families of modules of groups of type C-.

Proof. The result follows by Proposition 2.2.3 from Lemmas 4.2.3 and 4.3.3 for V. = Lg(!1,);
from Propositions 4.2.4 and 4.3.12 for V. = Lg(2!,); and from Corollaries 4.2.6 and 4.3.8 in
the case of p - “, respectively from Corollary 4.2.7 and Proposition 4.3.10 in the case of p j *,
forv = Lg(!z)

Proposition 4.4.2. Let k be an algebraically closed field of characteristic p

a simple simply connected linear algebraic group of type C-, *

torus in G and let V = Lg( ), where

value of (V) is given in the table below:

]

0 and let G he

2. Let T be a fixed maximal

is featured in one of the Tables 2:7:2 and 2:7:3. The

Rank Char. 52rpne%e)fdlm(vg( )i 2kg uz@%wd'm(\/“a)) c(V)
‘= Lo(t1+ 1)) p 0 8 25 8 35 8 2ps
‘= Ls(21,) p6&2 10 p:5 8 4
‘= Ls(31,) p6&2;3 10 10 10
‘= Le(l,+28,) | p=7 12 7 12
‘= LG(3!2) p= 7 16 7 9
‘= L2, +1,) | p=3 16 13 9

3 ° 8 Le(!) p=2 2° 1! 32 ° 2 ?
‘=3 La(13) p6&2 10 9 4
= Lo(l + 1) p=2 24 28 20
‘= L2l +13) | p=2 20 28 20
f = LG(!3) p 0 30 4 p:3 34 7 p;3 14 p:3
‘= La(1s) p6&2 28 28 p:3 14 s
‘=5 La(13) p=2 58 74 26

Table 4.4.2: The value of g(V) for the particular modules of groups of type C-.

Proof. The result follows by Proposition 2.2.3, using the detailed results of Subsections 4.2.2

and 4.3.2.
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Chapter 5

Groups of type B-

In this chapter we prove Theorems 1.1.1 and 1.1.3 for simple simply connected linear algebraic
groups of type B<, © 3. The structure is as follows: in the first section we construct G the
simple adjoint group of type B- and exhibit some properties of its semisimple and unipotent

elements. In Section 5.2 we determine max fdim(Vs( ))j 2 k g, where G is a simple
s2TnZ(G)

simply connected linear algebraic group of type B-, * 3, T is a maximal torus in G and V
runs through the list of kG-modules we identified in Subsection 2.7.3. Similarly, in Section

5.3, we determine max dim(V(1)) for the same kG-modules V. Lastly, Section 5.4 records
u2Gynflg

all the results of this chapter.

We will now give some notation which will be used throughout the chapter. We fix k
to be an algebraically closed field of characteristic p & 2, G to be a simple adjoint linear
algebraic group of type B, * 3, and G to be the simple simply connected linear algebraic
group of the same type as G. We also fix : G ¥ G a central isogeny with d 6 0 and
ker( ) =Z(G). InG,weletT, X(T), ,B, =*F 4;:::; gand 14;:::; 1. be as usual.
Moreover, we let T, respectively B, be a preimage of T, respectively of B, in G, and we
note that T is a maximal torus of G contained in the Borel subgroup B of G. As for G, we
let X(T), =, = =F~y;:::;~gand ¥;:::; % be the rational character group of T, the root
system of G determined by T, the set of simple roots in ~ given by B, and the fundamental
dominant weights of G corresponding to ~.

5.1 Construction of linear algebraic groups of type B-

Let W be a 2 +1-dimensional k-vector space, for some 3, equipped with a nondegenerate

M
:11;Vo; V10 to be an ordered basis in W with the property that W = hu;; vil ~ hwi is an
i=1
orthogonal direct sum, where fu;;vig is a hyperbolic pair forall 1 i *“, and w is such
that Q(w) = 1, see Corollary 2.1.4. Let D, respectively U, be the set of diagonal matrices,
respectively the set of upper-triangular matrices, in SL(W). Let G = SO(W) and note that
G is a simple adjoint group of type B-, see [Car89, Theorem 11.3.2]. Now, we have that
T = G\ D is a maximal torus in G contained in the Borel subgroup B = G\ U of G.

167



Remark 5.1.1. We recall from Subsection 2:7:3 that FB, the set of p-restricted dominant
weights = 2 X(T’) with the property that the associated irreducible kG-module L (™) satisfies
the dimensional criteria (2.17) for all ¢ 3, is given by FB = f4;;2%,; ¥,9. We remark
that for all = 2 T4#,;2%,; ¥,0, there exists 2 X(T) such that ~ is the image of when
viewed as an element of X(T), see Subsection 2:3:3. More precisely, the weight 1, 2 X(T)
is denoted by *; when viewed as an element of X(T), the weight 21, 2 X(T) is 2%, 2 X(T)
and the weight 1, 2 X(T) is #, 2 X(T). In all of these cases, by Lemma 2:3:10, we have:

(1) Mg = max fdim(L;(M)s(~))j~2k g= max fdim(Ls( )s( )] 2k g= M.
s2TnZ(G) s2Tnz(G)

(2) My = max dim(Lg(T)s(1)) = max dim(Ls( )u(1)) = My, where G, is the set
t2Gyunflg u2Gynfig
of unipotent elements in G.

@) e = celle( )

5.1.1 Semisimple elements

where m 1, denote the distinct a;’s, where ; & 1, and, forall1 i m, let n; denote
the multiplicity of ; in s. Furthermore, let n be the multiplicity of 1 in s. Then n is odd
>

and, ifs22(G),thenl n 2° 1. Moreover, we have n+ 2 n; = 2° + 1. Further, we
i=1

can assume without loss of generality that * n; n; nm 1 and, by conjugating

s by an element of Ng(T), we can also assume that

— i A . . I ¢ ... 1 . 1 .
S_dlag( 1 Inl, 2 Inz,..., m Inm,l In, m Inm,..., 2 Inz, 1 Inl).

We recall that W = Ng(T)=T is the Weyl group of G associated to T and thats 2 W is
the reflection correspondingto 2 . Letn 2 Ng(T) be an arbitrary fixed preimage of s .

Lemma 5.1.2. With the notation introduced above, assume there exist 1 1 <j m with

i = ;' Then there exists w 2 W with arbitrary fixed preimage n 2 Ng(T) such that
o 1
A
nsn'=@ |, A
A?
where
A:diag( 1 Inl;”'; i1 Ini 1; i Ini+nj; i+1 Ini+1;”'; j1 Inj 1; j+1 Inj+1;”'; m Inm)

and A = (A;;)i;j Is the diagonal matrix with A, = An11+ +hm+1 rni+ +nm+1 ro for all
1 r n+ + Ng.

Proof. Let s . 2 W be the reflection corresponding to the simple root 2 . We remark
that when we conjugate sby n ,wherel r “ 1, we interchange the entry in position
(r; r) with the one in position (r +1;r + 1), the entry in position 2°+1 r;2*+1 r) with

168



theonein 2°+2 r;2°+2 r), and all the other entries are fixed. When we conjugate s
by n . we interchange the entry in position (*; ) with the one in position (* + 2; * + 2) and
all the other entries are fixed. Hence, in order to interchange the entry in position (r; r) with
the one in position (2 +2 r;2°+2 r) we conjugate s by

n:=n.,n,, n.n., n.:
nl-lyi-nj
Therefore, conjugating s by n, gives a matrix of the form
r=ni+ +nj ;+1
dlag( 1 Inl;”'; j 1 InJ 11 Inj; j+1 Inj+1;'”; m Inm;l Ina m1 Inm;'”; j-&l Inj+1a
1 |- 1 TR 1 | )
i nj» _Il nj 1r--+1 1 ni/-
Finally, reordering as before, we arrive at the desired matrix form. O
Now, let s 2T,s=diag( 1 In;; 2 ;i m I d Inp o Does s 20 Tngs 1% Iny)
with ;& jforalll i<j m. Lemma 5.1.2 allows us to assume as well that ; & i !
foralll i<] m. Therefore, for the remainder of the chapter, we fix the following
hypothesis on semisimple elements in G:
(Hs) :any s 2T nZ(G) issuch that s=diag( 1 In;;:i2; m sl oy b Do
Pl with (& ;Yforalll i<j m; &1 foralll i m; and
XX
n+2 nj=2°+1, wherel n 2° land*“ ng N 1

i=1

5.1.2 Unipotent elements

Since the algebraically closed field k has characteristic p & 2, by Theorem 2.9.2, we know
that unipotent elements in G are G-conjugate if and only if they are GL(W)-conjugate,

i.e. if and only if they have the same Jordan form on W. Let u be a unipotent element
M >
of G and let Jrﬁ: be its Jordan form on W. Then, niri = 2+ 1 and r; 1is

even for all even n;, see Theorem 2.9.2. We can assume without loss of generality that
2°+1 ni>n,> >n, 1andwe alsonote thatifu&land m=1, thenn; 3.

5.2 Eigenspace dimensions for semisimple elements

Before we state the main results of this section, we recall that FB = f¥,;%,;24,q, see
Subsection 2.7.3.

Theorem 5.2.1. Let k be an algebraically closed field of characteristic p & 2 and let G be a
simple simply connected linear algebraic group of type B, * 3. Let T be a fixed maximal
torus in G and let V = L(7), where ~ 2 FB or ~ is given in Table 2:7:4. Then there exist
s2TnZ(G)and 2k, an eigenvalue of s on V, such that

dim(Vs( ))  dim(V) pdim(V)
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if and only if = = #,.

Theorem 5.2.2. Let k be an algebraically closed field of characteristic p & 2 and let G be
a simple simply connected linear algebraic group of type B, * 3. Let T and V be as in
Theorem 5:2:1. Then the value of max fdim(Vs( ))j 2 k g is given in the table below:

s2TnzZ(G)
Vv Char. Rank max fdim(Vs( )] 2kg
s2TnzZ(G)
Ls(*1) p6&?2 £ 3 2°
VLo (%2) p6&?2 £ 3 2‘2 ‘
p&E2andp-2°+1 “ 3 2+ ¢
y 1
Le(2t) p&2andpj2-+1| ° 3 27+ 1
YL (2%3) p6E?2 ‘=3 20
yLG(!’l + ‘!‘3) p 62 “=3 24 4 p;7
YLa(¥) p6E?2 3 “ 8 2 1

Table 5.2.1: The value of max fdim(Vs( ))j] 2k g.
s2TnzZ(G)

In particular, for each V in Table 5.2.1 labeled YV we have dim(Vs( )) < dim(V)
dim(V) for all s 2 TnZ(G) and all eigenvalues 2k ofsonV.

We will give the proofs of Theorems 5.2.1 and 5.2.2 in a series of results, each treating
one of the candidate-modules. In Subsection 5.2.1, we determine 2rTnalZ)((G)fdim(Vs( i 2
S n

k g, see Remark 5.1.1, where V belongs to one of the families of kG-modules we have
to consider, i.e. V is an irreducible kG-module Lg( ) with p-restricted dominant weight

2 T1,;21,; 1,9. In Subsection 5.2.2, we establish max fdim(Vs( ))j 2 k g for the
s2TnZ(G)

irreducible kG-modules L (™) with p-restricted dominant weight ~ featured in Table 2.7.4.

5.2.1 The families of modules

Lemma 5.2.3. Let V = Lg(',). Then for all s2 T nZ(G) and all eigenvalues 2 k of s
on V we have
dim(vs( )) 2%
where equality holds if and only if = 1 and, up to conjugation, s =diag( 1;:::; 1;1; 1,
o D).
In particular, there edst s 2 T n Z(G) that alord an eigenvalue 2 k on V for which
dim(Vs( )) dim(V) dim(V).

Proof. To begin, note that V = W as kG-modules, therefore V is self-dual and dim(V) =
2°+ 1. Lets 2 T nZ(G). Then dim(Vs( )) 2¢ for all eigenvalues 2 k of s on

V. Now, as dim(Vs(1)) = n, where n is odd, and dim(Vs( )) 2™ for all eigenvalues
& !ofsonV, it follows that dim(Vs( )) = 2 ifand only if = 1lands =
diag( 1;:::; 1;1; 1;:::; D).
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In conclusion, we have shown that dim(Vs( )) 2 foralls 2 TnZ(G) and all eigenvalues
2 k of son V and that there exist pairs (s; ) 2 T nZ(G) k for which the bound

is attained, for example s = diag( 1;:::; 1;1; 1;:::; 1) and = 1. Now, as the
inequality 2° 2°+1 2+ 1 holds for all4* 2, we have shown that there exist
s 2 T nZ(G) such that dim(Vs( )) dim(V) dim(V) for some eigenvalue 2k onV.
This completes the proof of the lemma. m

Proposition 5.2.4. Let V = Lg(Y;). Then for all s2 T nZ(G) and all eigenvalues 2 k
of son V we have
dim(Vs( )) 22 -

where equality holds if and only if =1 and, up to conjugation, s =diag( 1;:::; 1;1; 1,
ooy 1)
In particular, dim(Vs( )) <dim(V) pdim(V) for all s 2 T nZ(G) and all eigenvalues
2k ofsonV.

Proof. Let s 2 T n Z(G) be as in hypothsis (YHs). By Lemma 2.8.4, since p & 2, it follows
that V. = ~?(W), therefore dim(V) = 22+ “, and we determine that the eigenvalues of s on
V', not necessarily distinct, are:

i jand ;* ;% wherel i<j m,each with multiplicity at least nin;;

i 1
ij
i and

1

and ;- j,wherel 1<j m,each with multiplicity at least n;jn;;

' where 1 i m, each with multiplicity at least nn;;

(5.1)

1 with multiplicity at least "C-2 +  nZ

r=1

8
§ 2and ;2 wherel i m,each with multiplicity at least "2,

Let 2k beaneigenvalue of son V. If issuch that & 1, then:
dim(vs( )) dim(V) dim(Vs( );

where, since V is self-dual, we have that dim(Vs( )) = dim(Vs( 1)). Keeping in mind that

“ 3, we deduce that:
2‘2 + I3

dim(Vs( )) <22 =

Therefore, we can assume that = 1.

First, consider the case of m = 1. As s 2 Z(G), it follows that ; & 1. Moreover, by

(5.1), we determine that the eigenvalues of s on V, not necessarily distinct, are 2 and 2,

each with multiplicity at least M » and ', each with multiplicity at least nn;, and
1 with multiplicity at least "2 + n2,
Let =1. Then, ass 2 Z(G), we have ;! & 1 and it follows that

dim(Vs(1)) 22+ 2nng: (5.2)
Suppose that dim(Vs(1)) 22  “. Then, keeping in mind that 2n; =2 +1 n, we have:
2 n)(@ n) O (5.3)
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Asl n 2° 1, Inequality (5.3) holds if and only if n = 1. Then n; = * and, by (5.2),
we have dim(Vs(1)) 22 ‘. Now, equality holds if and only if all eigenvalues of s on V
di[erent than ' are equal to 1, hence if and only if 2 = 1. Therefore dim(Vs(1)) =22 °
if and only if ; = 1 and, up to conjugation, s =diag( 1;:::; 1;1; 1;:::; 1).

Let = 1. Then,as ; & 1, we distinguish the two cases:

Casel: ;= 1. Thendim(Vs( 1)) = 2nn;. Keeping in mind that 2n, =2+ 1 n,
1 n 2° 1, and that © 3, we have

2:2 13 2nn1 — 2‘2 I3 (2n + 1 n)n — (‘ n)2 + 2 c n
(" NP+ 3F+1>0

therefore 242 “ > dim(Vs( 1)).

Case 2: 2= 1. Thendim(Vs( 1)) =ny(n; 1). Sincel n; *, we have 22 *
nZ+n;=( n)(“+n; 1)+ “?>0, therefore 22 > dim(Vs( 1)).

We have shown that for all s 2 T nZ(G) with m = 1 we have dim(Vs(1)) 2‘? *, where
equality holds if and only if s =diag( 1; ; 1;1; 1; ; 1); and that dim(Vs( 1)) <
242,

We can now assume that m 2 and start by considering the eigenvalue 1 of son V. Since

i & foralll i<j m,wehavethat ;! jl & 1foralll i<j m. Furthermore,

X XX
we also have ;' & 1. By (5.1), all of the above account for at least 4 ~ nin; +2n n;
i<j i=1
additional eigenvalues of s on V dilerent than 1. Therefore, we have:
> XX
dim(Vs(1)) 2“+° 4 nmn; 2n g
i<j i=1
If dim(Vs(1)) 22 ¢, then:
X XX
2° 4  ninj 2n ni O (5.4)
i<j i=1
X
and, since 2 ni=2“+1 n, it follows that:
i=1
>
2 nN@ n) 4 nin; O: (5.5)
i<j
>
Sincel n 2° 1,wehave(2° n)(1 n) O0,while,sincem 2, wehave 4 nin; <0,
i<j
therefore Inequality (5.5) does not hold, hence dim(Vs(1)) <22 “.
Finally,let = 1.If ;6 1foralll i m, then:
XX XX
dim(Vs( 1)) 2%+* M nZ 2n  ng.
r=1 r=1



Suppose that dim(Vs( 1)) 22 *. Then

1 > >
2¢ % n 2n n, O
r=1 r=1
>
Since 2 n=2°+1 n, we have:
r=1
1 >
2 nd n) w n2 o (5.6)
r=1

X
But(2* n) n) 0, @Y oand n?<0,asn landn, 1foralll r m.

r=1
Therefore, Inequality (5.6) does not hold. We can now assume that there exist1 1 m
such that ; = 1. Then, since the ;’s are distinct, we have i e 1foralll j m,
j &i. Moreover, since ;& 1foralll j m, we also have )(1 jit= jte 1forall
1 jJ m,j&i By (5.1), the latter account for at least 4n; n, additional eigenvalues
réi
of sonV dilerent than 1. Further, we have ?= ;%=1 and so:
. nn 1) X x <
dim(Vs( 1)) 2%+° % nz 2n n, 4n; ne ni(ng 1)
r=1 ré&i ré&i
Suppose that dim(Vs( 1)) 22 . It follows that:
2¢ % nfZ 2n n, 4n;  n, nmi(n; 1) O (5.7)
r=1 réi réi
X X X
We have that nf ni,asn, l1lforalll r m,andthat2° =2 no+n 1.
r=1 r=1 r=1
By (5.7), it follows:
XX 1y X > >
2 n+n 1 % n. 2n ne 4n; n. nin; 1) O
r=1 r=1 réi réi
which we rewrite as:
< < n 1)(n 2
n(@ad 2n)+n(2 n; 4 ny) ( )2( ) 0: (5.8)
réi ré=i

X
Asn 1, it follows that @22  gand n (1 2n) <0. Moreover, since m 2

réi >
andn, 1foralll r m,wehaveni(2 n; 4 n;) <0, thus Inequality (5.8) does
ré&i
not hold. This proves that dim(Vs( 1)) <22 “foralls2 T nZz(G) withm 2.
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In conclusion, we have shown that dim(Vs( )) 22 “forall s 2 T nZ(G) and all
eigenvalues 2 k of son V. In partl%lar as the inequality 0 < 22 * holds for all
* 3, it fglows that 22 <22+ 22+ “for all © 3 and therefore dim(Vs( )) <
dim(V) dim(V) for all s2 T nZ(G) and all eigenvalues 2k ofsonV. O

Proposition 5.2.5. Let V' =S2(W). Then for all s 2 T nZ(G) and all eigenvalues 2 k
of son V' we have
dim(V( ) 22+ °¢+1;

where equality holds if and only if = 1 and, up to conjugation, s = diag( 1;:::; 1;1;

Proof. Lets 2 TnZ(G) be as in hypothesis (YHs). We first remark that, asp & 2, V' = S2(W)
is a self-dual module, see [McN98, Lemma 4.7.1(b)]. Secondly, we note that dim(V) =
22+ 3 + 1 and we determine that the eigenvalues of s on V', not necessarily distinct, are:

8

2and ;%1 i m, each with multiplicity at least M
% i jand ;' ;%1 i<j m,each with multiplicity at least nn;;
(5.9) i j Yand ;! j»1 1<j m,each with multiplicity at least n;n;;

% iand ;' 1 i m,each with multiplicity at least nn;;
X n(n +1
=1 with multiplicity at least  n2 + %:

r=1
Let be aneigenvalueof sonV'. If & I then:
dim(V.( )) 22+3“+1 dim(V.( b)
and, since dim(V,( )) =dim(VJ( 1), as V'is self-dual, and * 3, we have that

2243+ 1

dim(Vs () )

<22+ +1: (5.10)
Therefore we can assume that = 1.
Suppose that m = 1. We note that, in this case, as s 2 Z(G), we have ; & 1. Then,

by (5.9), the eigenvalues of s on V', not necessarily distinct, are 2 and 2, each with

multiplicity at least ™%*D  and !, each with multiplicity at least nny, and 1 with
multiplicity at least ”(”2+1) +n2,
For =1,since s 2 Z(G), we have ,!& 1 andso
dim(V_(1)) 22+3“+1 2nng: (5.11)

If dim(VS°(1)) 22+ “ + 1, then, keeping in mind that 2n; =2“+1 n, we have:
@2 n@ n) O

But, this is just Inequality (5.3) which holds if and only if n = 1. Then n; = * and, by
(5.11), we have dim(Vs°(1)) 22+ “ + 1. Equality holds if and only if all eigenvalues
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dim(V;](l)) = 2“2+‘+1if and only if, up to conjugation, s = diag( 1;:::; 1;1; 1;:::; 1),
as in the statement of the proposition.
For = 1 we have that
: 0 2 . , n(n+1)
dim(Vi( 1)) 2°+3“+1 n3 — (5.12)
If dim(Vo( 1)) 22+ °+1, then:
n(n+1)
vk 2
n3 — 0
and, since 2° +1 = 2n; + n, we have:
1
(e 1?+n= "o (5.13)

Inequality (5.13) holds if and only if n = 1 and n; = 1, contradicting * 3. Therefore
dim(V.( 1)) <22+“+1forall s2 T nz(G) withm=1.

We can now assume thatm 2. For =1, we firstrecall that ,*& 1foralll i m.
Secondly,as ;& ;'foralll i<j m,wehavethat ;' ;'6&1foralll i<j m.
Hence, by (5.9), it follows that:

X X

dim(V;(1)) 22+3“+1 2n n; 4 nin;
i=1 i<j
If dim(V_(1)) 22+ “+ 1, then:
> >
2° 2n n 4 nin; 0:
i=1 i<j

We see that this is just Inequality (5.4), which does not hold. Therefore, dim(VSO(l)) <
22+ “+1foralls2Tnz(G) withm 2.

Lastly, let = 1. Supposethat ; & 1foralll i m. Then ,'& 1 forall
1 1 mand, by (5.9), it follows that:
> + >
dim(v.( 1) 22+3+1 n2 M on” ny (5.14)
r=1 r=1
If dim(V_( 1)) 22+ “+1, then:
2¢ n? % 2n n, O
r=1 r=1
>
and, since 2°+1=n+2 ny, we have:
r=1
1 n X
n > + n(2 n, 2n) 1, (5.15)
r=1



contradictingn landn, 1foralll r m. Therefore we can assume that there
exists1 i Rysuch that ;= 1. Then .16 1forallr&i. By (5.9), these account

for at least 2n n, additional eigenvalues which are dilerent than 1. Furthermore, we
ré&i
have ?= .?=1and so:

> >
dim(v.( 1)) 22+3 +1 e D i+ 1) (5.16)

r=1 réi
Assume dim(V,( 1)) 22+ “+1. Then

X N >
n2 n(n+1) 2n n, ni(ni+1) 0

r

r=1 2 ré&i

>

and, since 2°+1=n+2 N, we have:
r=1
1 n X 2
n 5 + n2 n. 2n) (@n; ni+1) O (5.17)

réi

Sincen landn, 1foralll r m, one sees that
1 n X , _
5 + n2 n 2n) (@2n; n;j+1)<0;

n 1
réi

therefore, Inequality (5.17) does not hold. We conclude that dim(VSO( 1)) <22+ “+1 for
all s2Tnz(G) withm 2, completing the proof of the proposition. O

Corollary 5.2.6. Assume that p-2“+1 and let V = Lg(2!;). Then for all s 2 T nZ(G)
and all eigenvalues 2 k of son V we have

dim(Vs( )) 29%+*;

where equality holds if and only if = 1 and, up to conjugation, s = diag( 1;:::; 1;1,
1000 1).
In particular, we have dim(Vs( )) < dim(V) Iodim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Let s 2 T nZ(G) be as in hypothesis (YHs). Let V' = S2(W). Then, since p - 2° + 1,
by Lemma 2.8.4, it follows that V' =V  Lg(0) and so dim(V) = 22 + 3, dim(Vs( )) =
dim(V.( )) for all eigenvalues & 1 of s on V, and dim(Vs(1)) = dim(V (1)) 1.

For the eigenvalue 1, by Proposition 5.2.5, we have dim(Vs(1)) 22+ “, where equality
holds if and only if s is as in the statement of the result. Furthermore, as * 3, by Inequality
(5.10), we have dim(Vs( )) % < 22+ “ for all eigenvalues & !ofsonV. What
is left is to determine dim(Vs( 1)).
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Suppose that m = 1. Then, by (5.12), we have:

dim(Vs( 1)) 2243 +1 n’ M:
If dim(Vs( 1)) 2?2+ ¢, we proceed as in the proof for VSO( 1), see (5.13), and arrive at
nl N ni(2 np) O: (5.18)

Since n 1, it follows that n; 2. If n; = 2, then, by (5.18), we have n = 1, contradicting
* 3. On the other hand, if n; = 1, then, by (5.18), we have n n?+2 0 and, since n is
odd, it follows that n = 1, again contradicting < 3.

We can now assume thatm 2. If ;& 1foralll i m, then, by (5.14), we have:
dim(Ve( 1)) 22+3+1 n2 % on” ny:
r=1 r=1

If dim(Vs( )) 22+ ¢, we proceed as in the proof for VSO( 1), see (5.15), and arrive at

1 X
N4 n2 n. 2n) O0;

r=1

contradictingn landn, 1foralll r m. On the other hand, if there exists
1 i msuchthat ;= 1, then, by (5.16), we have:

dim(Ve( 1) 22+3°+1 n? % on” ne i + 1)

r=1 réi

If dim(Vs( 1)) 2?2+ “, we proceed as in the proof for VSO( 1), see (5.17), and arrive at

1 n X
5 + n2 n. 2n) nm@n; 1) O
ré&i

n

Sincen landn, 1foralll r m, the above inequality does not hold. It follows
that dim(Vs( 1)) <22+ “ forall s 2 T nZ(G).

We conclude that dim(Vs( )) 2+ “for all s 2 T nZ(G) and all eigenvalues 2 k
of son V. Moreov%, as the inequality 0 < 22 3¢ holds for all © 3.t follows that
22+ <224+ 3¢ 22+ 3 forall © 3, and so dim(Vs( )) < dim(V) dim(V) for all
s 2T nZ(G) and all eigenvalues 2k ofsonV. m

Corollary 5.2.7. Assume that pj 2+ 1 and let V = Lg(2Y,). Then for all s 2 T nZ(G)
and all eigenvalues 2 k of s onV we have

dim(vs( )) 2%+ 1

where equality holds if and only if = 1 and, up to conjugation, s = diag( 1;:::; 1;1;
1,000 1).
In particular, we have dim(Vs( )) < dim(V) IDdim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.
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Proof. Lets 2 TnZ(G) be as in hypothesis ('Hs). Let V' = S2(W). Then, since p j 2°+1, by
Lemma 2.8.4, we have V' = Lg(0) j V j Lg(0) and so dim(V) =22+ 3¢ 1, dim(Vs( )) =
dim(V.( )) for all eigenvalues & 1 of s on V, and dim(Vs(1)) = dim(V (1)) 2.

For the eigenvalue 1, by Proposition 5.2.5, we have dim(Vs(1)) 22+ “ 1, where
equality holds if and only if s is as in the statement of the result. Furthermore, as * 3, by
Inequality (5.10), we have dim(Vs( )) % <2°2+* 1forall eigenvalues & 1! of
son V. What is left is to determine dim(Vs( 1)).

Suppose that m = 1. Then, by (5.12), we have:

dim(Vs( 1)) 2243 +1 nl W:
If dim(Vs( 1)) 22+ ¢ 1, we proceed as for VSO( 1), see (5.13), and arrive at
1 n 9
n +((2n; ni+1) O (5.19)

Since n 1, then 2ny nf +1 0 and so, we have n; 2 f1;2g. If n; = 2, then, by (5.19),
it follows that n  n?2+2 0 and, since n is odd, we have n = 1, contradicting * 3. On
the other hand, if n; =1, then, by (5.19), we have n n?+4 0 and so n = 1, which again
contradicts © 3.

We can now assume thatm 2. If ;& 1foralll i m, then, by (5.14), we have:
dim(Ve( 1)) 22+3°+1 n?2 % on” ny:
r=1 r=1

If dim(Vs( )) 22+ 1, we proceed as in the proof for VS°( 1), see (5.15), and arrive at

1 n X
n +1+ n2 n. 2n) O: (5.20)
r=1
XX
We have that N2 n 2n)<0,asn landn, 1lforalll r m, therefore
r=1
an” +1 0. Since n is odd, it follows that n = 1 and substituting in (5.20) gives:
XX
1 nz 0
r=1
contradicting m 2. On the other hand, if there exists1 1 msuch that ; = 1, then,
by (5.16), we have:
dim(Ve( 1)) 22+3+1 n2 % on” T ne ni(ng + 1)
r=1 réi

If dim(Vs( 1)) 2“2+ 1, we proceed as in the proof for VSO( 1), see (5.17), and arrive at

1 n X ,
5 + n2 no 2n)+( 2n;+n;+1) O
réi

n
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Sincen landn, 1foralll r m, the above inequality does not hold. It follows
that dim(Vs( 1)) <22+ 1.

We conclude that dim(Vs( )) 2¢2+° 1forall s 2 TnZ(G) and all eigenvalues of s on
V. Moreover ai)the inequality 0 < 2“2 3“+1holds for all ¢ 3, it follows that 22+ 1<
22 + 3¢ 22+ 3 1forall © 3, therefore dim(Vs( )) < dim(V) dim(V) for
alls2Tn Z(G) and all eigenvalues 2 k ofsonV. m

To conclude this subsection, we remark that Lemma 5.2.3, Proposition 5.2.4 and Corollaries
5.2.6 and 5.2.7 give the proof of Theorems 5.2.1 and 5.2.2 for the families of kG-modules
corresponding to p-restricted dominant weights 2 f1,;1,;21,9. Therefore, in view of
Remark 5.1.1, they prove Theorems 5.2.1 and 5.2.2 for the families of kG-modules with
p-restricted dominant weights ~ 2 FB-,

5.2.2 The particular modules

As previously mentioned, in this subsection we will give an upper-bound for dim(Vs( )),
where (s; ) 2 TnZ(G) k andV is an irreducible kG-module with associated highest
weight featured in Table 2.7.4. In order to achieve our goal, we will use the same inductive
algorithm as for groups of type A- and C-, see Subsection 2.4.3 for a description of this
method. To begin, let L; be a Levi subgroup of the maximal parabolic subgroup P, of G, as
given in Section 2.4. We recall that L, = Z(L;) [L;; Ls], where Z(L;) is a one-dimensional
torus and [Lj;L,] is a simple simply connected linear algebraic group of type B- ; with
maximal torus T® = T \ [Ly;L;]. We note that, although we do not mention the result
explicitly, we make great use of the data in [LU01b] when discussing weights and weight
multiplicities in this subsection.

Let s 2 T. Thens =z h, where z 2 Z(L;) and h 2 [L;;L;]. Asz 2 Z(L,),

Y
it follows that z = h-.(c), where ¢ 2 k and ki 2 Z for all 1 I ‘. Moreover,
i=1

\A
It follows that z =  h_(c®) h-.(c) with

i=1

we have that ~j(z) = 1 for all 2 j

Y
c2k. Ash 2[Ly;Ly], we have h = h_,(aj), where a; 2 k forall 2 i ‘. Hence,
i=2
\(I
s=h_,(c? h-,(c’a;) h-.(ca:)withc2k anda; 2k forall2 i *“
i=2
Let V be an irreducible KG-module of highest weight = 2 X(T), ~ =d;% + +d-%
with 0 dy;:::;d- p 1. We consider the decomposition:
\ JiLLg= \ I;
i=0
_ M
where V' = Vo, -forall0 i ey (7). Lets2T and write s =z h, as above. By
~2N~1
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(2.5), we have that:

_ g h g .
;=C i1 @=C i) h-(c® h..c) = ¢4 ¢* ¢
i=1 j=1
Therefore, z acts on V', 0 i  e;(7), as the scalar s} = ¢2d1* *2d- 1+d- 21 Now, let
Lo Lotio 1, be the distinct eigenvaluesof hon VI, 0 i e (7), and let nj;:::;n be
their respective multiplicities. Then, by Lemma 2.4.8, it follows that the distinct eigenvalues
ofsonV'ares) i;:::;sh i, with respective multiplicities n};:::;n}.

Proposition 5.2.8. Assume that * =3 and let V = L(%3). Then for all s2 TnZ(G) and
all eigenvalues 2 k of sonV we have

dim(Vs( )) 4

where there exist pairs (s; )2TnzZ(G) k for thh the bound is attained.
In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Let =~ = #;. Then dim(V) = 8 and, by Lemma 2.4.6, we have e;(7) = 1, therefore

\ j[Ll;Ll]: VO Vl;

M
where V' = Vo . fori = 0and i = 1. By [Smi82, Proposition], it follows that

i~y ~
~2N~1

VO =1L, (*;) and so, by Lemma 2.4.3, we also have V! = (L ,(*3)) = L.,(*3). Therefore
Viseg= Lo (d3) Ly (3): (5.21)

If dim(VJ( )) = dim(V") for some eigenvalue 2 k of sonV, wherei=0ori=1,
then s 2 Z(L,) nZ(G), and so s = z with ¢ & 1. In this case, as s acts on each V', i = 0; 1,
as scalar multiplication by ¢! 2!, we determine that the distinct eigenvalues of s on V are:

(c with dim(Vs(c)) = dim(V°) = 4;
¢ L with dim(Vs(c 1) = dim(V1) = 4:

We can now assume that dim(VJ( )) < dim(V ') for all eigenvalues 2k of sonV and
for bothi=0andi=1. Wewrites=2z h, wherez 2 Z(L;) and h 2 [Ly;L,]. Since z acts
by scalar multiplication on V', i = 0; 1, it follows that dim(V,( n)) < dim(V") for i = 0;1,
where 4, is any eigenvalue of h on V'. Now, by Lemma 4.2.3, we have dim(V,%( 1)) 2
and dim(V,}( n)) 2 for all eigenvalues n of hon VP and V1, respectively. We deduce that
dim(Vs( )) 4 for all eigenvalues 2k ofsonV.

In conclusion, we have shown that dim(Vs( )) 4 foralls 2 TnZ(G) and all eigenvalues

2 k of sonV, and that there exist pairs (s; ) 2 |znZ(G) k for which the bound is
attained. Moreover, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV. a
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Proposition 5.2.9. Assume * 4 and let V = Lg(%:). Then for all s 2 T nZ(G) and all
eigenvalues 2k of sonV we have

dim(vs( )) 2 %

where there exist pairs (s; )2 TnZ(G) k for whigh the bound is attained.
In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Let ~ = %.. Then dim(V) = 2" and, by Lemma 2.4.6, we have e,(~) = 1, therefore

\ j[Ll;Ll]: Ve Vl;
. M
where V' = |\ for i = 0 and i = 1. By [Smi82, Proposition], it follows that

i~ ~
~2N71

VO =1L, (*)and so, by Lemma 2.4.3, we also have V! = (L, (*:)) = L., (*:). Therefore
v j[Ll;Ll]: L, (%) Lo, (%) (5.22)

If dim(VJ( )) = dim(V") for some eigenvalue 2 k of sonV, where i =0ori =1,
then s 2 Z(L;) nZ(G), and so s = z, with ¢2 & 1. In this case, as s actsoneach V', i =0;1,
as scalar multiplication by ¢! 2, we determine that the distinct eigenvalues of s on V are:

¢ with dim(Vs(c)) = dim(V ) = 2" 1
¢ 1 with dim(Vs(c 1)) =dim(v) =2" %

We can now assume that dim(VJ( )) < dim(V ) for all eigenvalues 2k of sonV and
for bothi =0andi =1 Wewrites=12z h, where z 2 Z(L;) and h 2 [L;;L,]. Since
z acts by scalar multiplication on V', i = 0;1, it follows that dim(V,/( )) < dim(V') for
i =0;1, where | is any eigenvalue of h on V'. In the case of * = 4, by Proposition 5.2.8,
we have dim(V°( n)) 2% and dim(V,}( n)) 22 for all eigenvalues , of h on V°%and V1,
respectively. This gives dim(Vs( )) 22 for all eigenvalues 2 k of sonV. Now, for ¢ 5,
by recurrence and using the result for © = 4 as base case, one shows that dim(V,%( )) 2" 2
and dim(V,}( n)) 2" 2 for all eigenvalues n of h on V? and V1, respectively. It follows
that dim(Vs( )) 2" ! for all eigenvalues 2k ofsonV.

In conclusion, we have shown that dim(Vs( )) 2" 1foralls 2 TnZ(G) and all
eigenvalues 2 k of son V, and that there exist pairs (s; )2 TnZ(G) k for which the
bound is attajned. Moreover, as the inequality 0 < 2° 2 1hqldsforall ¢ 4, we have that
2 1< ? 2" for all © 4, hence dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G)
and all eigenvalues 2k ofsonV. ]

Proposition 5.2.10. Assume * = 3 and let V = L;(2%3). Then for all s 2 T nZ(G) and
all eigenvalues 2k of sonV we have

dim(Vs( )) 20

where there exist pairs (s; )2 TnZ(G) k for whigh the bound is attained.
In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.
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Proof. Let ™ =2%;. Then dim(V) = 35 and, by Lemma 2.4.6, we have e;(7) = 2, therefore
\ j[Ll;Ll]:VO v Vz;

) M
where V' = Vo ., ~forall0 i 2. By [Smi82, Proposition], it follows that VO =
~2N71
L., (2%3) and so, by Lemma 2.4.3, we also have V? = (L.,(2%3)) = L.,(2%3). This gives
dim(V?1) = 15. Now, in V1, the weight (" ~; =~ ~3) jro= 2%3 admits a maximal vector,

therefore V! has a composition factor isomorphic to L, (2%*;). Moreover, the dominant
weight (7 ~1 ~2 2~3) jro= *¥,, which occurs with multiplicity 2 in V 1, is a sub-dominant
weight in the composition factor of V ! isomorphic to L, (2+3), in which it has multiplicity 1.
Comparing dimensions, we determine that V! has two composition factors: one isomorphic
to L, (2%3) and one isomorphic to L, (*,); therefore V1 =L, (2%3) L, (*¥,), by [Jan07,
11.2.14]. This gives

V j[Ll;Ll]: |_|_1(2!'3) |_|_l(2!‘3) I—Ll(!'Z) L|_1(2‘!'3): (523)

If dim(VJ( )) = dim(V') for some eigenvalue 2 k of sonV, wherei=20;1ori=2,
then s 2 Z(L;) nZ(G), and so s = z, with ¢® & 1. In this case, as s acts on each V',
0 i 2,asscalar multiplication by ¢ ', we determine that the eigenvalues of s on V, not
necessarily distinct, are:

8

=c? with dim(Vs(c?)) dim(V ) = 10;

_ 1 with dim(Vs(1)) = dim(v *) = 15;

= ¢ 2 with dim(Vs(c 2)  dim(V?2) = 10

As c? & 1, it follows that dim(Vs( )) 20 for all eigenvalues 2 k of s on V. Moreover,
fors=h ,( 1)h ,( 1)h .(c) 2Z(L,) nZ(G) with c2= 1 we have dim(Vs( 1)) = 20.

We can now assume that dim(VJ( )) < dim(V') for all eigenvalues 2 k of s on V
andall0 1 2. Wewrites =2z h, wherez 2 Z(L;) and h 2 [L;L;]. Since z acts
by scalar multiplication on V', 0 i 2, it follows that dim(V,/( 1)) < dim(V') for all
0 i 2,where 4 isany eigenvalue of h on V'. We will first show that dim(V}( 1)) 8
for all eigenvalues  of h on V. For this, we use (4.1) of Proposition 4.2.4 and (4.9) of
Proposition 4.2.5, keeping in mind that p & 2, to determine that the eigenvalues of h on V1,
not necessarily distinct, are:

=d?;d 2;e? and e 2; each with multiplicity at least 1;
_de;d le 1;d e and de ! each with multiplicity at least 2;
= 1 with multiplicity at least 3;

where d; e 2 k not both simultaneously equal to 1. Thus, one can show that dim(V,}( 1))
8 for all eigenvalues n of h on V1. Now, by Proposition 4.2.4, we have dim(V°( )) 6
and dim(V,2( 1)) 6 for all eigenvalues 1, of h on V° and V2, respectively. It follows that
dim(Vs( )) 20 for all eigenvalues 2k ofsonV.
In conclusion, we have shown that dim(Vs( )) 20 forall s 2 TnZ(G) and all eigenvalues
2 k of sonV, and that there exist pairs (s; ) 2 |,nZ(G) k for which the bound is
attained. Moreover, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV. a
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Proposition 5.2.11. Let k be an algebraically closed field of characteristic p = 7. Assume
“=3andletV = Lg(¥ + ¥3). Then for all s 2 T nZ(G) and all eigenvalues 2 k of s
on V we have

dim(Vs( )) 20

where there exist pairs (s; ) 2 TnZ(G) k for whigh the bound is attained.
In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Let © = %; + #3. Then dim(V) = 40, as p = 7, and, by Lemma 2.4.6, we have
e1(7) = 3, therefore
Viiag=Ve vtovz v
) M

where V' = Vo ., - forall 0 i 3. By [Smi82, Proposition], it follows that

~2N~1
VO = L, (%3) and so, by Lemma 2.4.3, we also have V3 = (L,(*3)) = L,(*3). This
gives dim(V 1) = 16, since, by Lemma 2.4.3, we have V2 = (V1) . Now, in V! the weight
(" ~1) jro= %, + ¥; admits a maximal vector, therefore V! has a composition factor
isomorphic to L, (%, + ¥3) and, as dim(L,, (¥, + %3)) = 16, since p = 7, we deduce that
V=1L, (¥, +4%;5). Lastly, we use Lemma 2.4.3 once more to determine that V2 = (L, (¥, +
13)) =L, (¥2+ %3), and so

Vo= Lo, (F)3) Ly (F2+%3) L, (F2+%3) L, (E3): (5.24)

If dim(VJ( )) = dim(V') for some eigenvalue 2k of sonV, wherei=0;1;20ri=3,
then s 2 Z(L;) nZ(G), and so s = z with ¢ & 1. In this case, as s acts on each V1,
0 i 3, asscalar multiplication by ¢ ?', we determine that the eigenvalues of s on V, not
necessarily distinct, are:

8, .

¢ with dim(Vs(c®) dim(V°) = 4;

¢ with dim(Vs(c))  dim(V1) = 16;
Zc L with dim(Vs(c 1) dim(v?) = 16;
"¢ 3 with dim(Vs(c %)) dim(V?®) =4:

As ¢ & 1, it follows that dim(Vs( )) 20 for all eigenvalues 2 k of s on V. Moreover,
fors=h ( 1)h ,( 1h ,(c) 2Z(L;) nZ(G) with ¢ = 1 we have dim(Vs( c)) = 20.
We can now assume that dim(VJ( )) < dim(V ') for all eigenvalues 2k of sonV and
al0 i 3. Wewrites=2z h,wherez 2 Z(L,) and h 2 [L;;L,]. Since z acts by scalar
multiplication on V', 0 i 3, it follows that dim(V/( n)) < dim(V') forall0 i 3,
where 1, is any eigenvalue of h on V. Now, by Lemma 4.2.3, it follows that dim(V,%( 1)) 2
and dim(V3( 1)) 2 for all eigenvalues 1 of h on V?and V3, respectively. By Proposition
4.2.9, we have dim(V/}( 1)) 8 and dim(V,2( 1)) 8 for all eigenvalues 1, of hon V! and
V2, respectively. It follows that dim(Vs( )) 20 for all eigenvalues 2k ofsonV.
In conclusion, we have shown that dim(Vs( )) 20 forall s 2 TnZ(G) and all eigenvalues
2 k of sonV, and that there exist pairs (s; ) 2 znZ(G) k for which the bound is
attained. Moreover, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV. a
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Proposition 5.2.12. Let k be an algebraically closed field of characteristic p & 2;7. Assume
“=3andletV = Lg(¥ + ¥3). Then for all s 2 T nZ(G) and all eigenvalues 2 k of s
on V we have

dim(Vs( )) 24

where there exist pairs (s; ) 2 TnZ(G) k for whigh the bound is attained.
In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Let © = #; + #3. Then dim(V) = 48, as p & 7, and, by Lemma 2.4.6, we have
e1(7) = 3, therefore
v j[Ll;Ll]: Ve vtov? V3;
_ M
where V' = V. .. _forall O i 3. By [Smi82, Proposition], it follows that

1~1
~2N~1

VO =1L, (*;) and so, by Lemma 2.4.3, we also have V3 = (L, (*3)) = L., (*3). This gives
dim(V 1) =20, since V2 = (V1) , by Lemma2.4.3. Now, in V! the weight (7 ~;) jro= $,+%;
admits a maximal vector, thus V! has a composition factor isomorphic to L, (¥, + *3). We
also note that the dominant weight (~ ~1 ~, ~3) jyo= %3 occurs with multiplicity 3
in V1. Now, if p & 5, then %; is a sub-dominant weight in the composition factor of V1!
isomorphic to L, (¥, + %3), in which it has multiplicity 2. Thereby, when p & 5, V1, hence
V2 by Lemma 2.4.3, has exactly two compositions factors: one isomorphic to L, (¥, + %3)
and one isomorphic to L, (%*3). On the other hand, if p = 5, then *3 has multiplicity 1 in
the composition factor of V! isomorphic to L, (¥, + #3). In this case, we determine that
V1, hence V? by Lemma 2.4.3, has exactly three compositions factors: one isomorphic to
L., (¥, + ¥3) and two isomorphic to L, (¥3).

If dim(VJ( )) = dim(V1) for some eigenvalue 2k of sonV,wherei=0;1;20ri=3,
then s 2 Z(L;) nZ(G), and so s = z, with ¢> & 1. In this case, as s acts on each V',
0 i 3, asscalar multiplication by ¢ ?', we determine that the eigenvalues of s on V, not
necessarily distinct, are:

§c3 with dim(Vs(c®) dim(V°) = 4;

¢ with dim(Vs(c)) dim(V?1) = 20;
Zc L with dim(Vs(c 1)  dim(v2) = 20;
“¢ 3 with dim(Vs(c 3) dim(V?3) =4

As c? & 1, it follows that dim(Vs( )) 24 for all eigenvalues 2 k of s on V. Moreover,
fors=h ,( 1)h ,( 1)h .(c) 2 Z(L;) nZ(G) with c2= 1 we have dim(Vs( c)) = 24.

We can now assume that dim(V/( )) < dim(V ') for all eigenvalues 2k ofsonV and
al0 i 3. Wewrites=2z h,wherez 2 Z(L,) and h 2 [Ls;L,]. Since z acts by scalar
multiplication on VI, 0 i 3, it follows that dim(V/( n)) < dim(V') forall0 i 3,
where |, is any eigenvalue of h on V. Now, by Lemma 4.2.3, we have dim(V°( »)) 2and
dim(V;2( n)) 2forall eigenvalues 1, of honV?and V3, respectively. By Lemma 4.2.3 and,
if p =5 by Proposition 4.2.8, or, if p & 5 by Proposition 4.2.9, we have dim(V,}( )) 10
and dim(V,?( n)) 10 for all eigenvalues 1, of h on V! and V2, respectively. We deduce
that dim(Vs( )) 24 for all eigenvalues 2k ofsonV.
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In conclusion, we have shown that dim(Vs( )) 24 foralls 2 TnZ(G) and all eigenvalues

2 k of sonV, and that there exist pairs (s; ) 2 znZ(G) k for which the bound is
attained. Moreover, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV. ]

We conclude this subsection by noting that Propositions 5.2.8 through 5.2.12 complete
the proofs of Theorems 5.2.1 and 5.2.2, as they cover all the irreducible kG-modules L5(7)
with p-restricted dominant weight ~ featured in Table 2.7.4.

5.3 Eigenspace dimensions for unipotent elements

This section is dedicated to the proofs of the following two theorems, analogs of Theorems
5.2.1 and 5.2.2, in the case of the unipotent elements. Similar to the semisimple case, the
proofs will be given in a series of results, each treating one of the candidate.modules. In

Subsection 5.3.1, we determine Jmax dim(Vy(1)), see Remark 5.1.1, where V belongs to
u2Gunfig

one of the families of kG-modules we have to consider, i.e. V is an irreducible kG-module
Lo( ) with 2 £1,;21,;1,9. We complete the proofs of these two results in Subsection

5.3.2, where we establish max dim(V,(1)) for the irreducible kG-modules Ls(™) with
u2Gunflg

p-restricted dominant weight ~ listed in Table 2.7.4.

Theorem 5.3.1. Let k be an algebraically closed field of characteristic p & 2 and let G be a
simple simply connected linear algebraic group of type B-, * 3. Let T be a fixed maximal
torus in G and let V = Lg(7), where either ~ 2 FB, or ~ is featured in Table 2:7:4. Then
there exist unipotent elements ¢ 2 G, u & 1, for which

dim(Va(1)) dim(V) pdim—(\/)
if and only if “ and ~ appear in the following list:
(1) © 3and T =4y
(2) “=3;4and T =%,

Theorem 5.3.2. Let k be an algebraically closed field of characteristic p & 2 and let G be
a simple simply connected linear algebraic group of type B, ©* 3. Let T and V be as in

Theorem 5:3:1. Then the value of max dim(Vy(1)) is given in the table below:
u2Gynflg
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Vv Char. Rank max dim(Vy(1))
u2Gunflg
Ls(%1) p6&2 © 3 2 1
YLa(%2) p62 © 3 22 3“+4
p&E2andp-2°-+1 “ 3 22 ¢

y 1

LG(2-1) p&zandpj2‘+l 3 3 2‘2 < 1
YLs(2%3) p62 ‘=3 21

YLg(¥1 + ¥3) p&?2 ‘=3 28 6 D:7

Le(¥) p6&?2 3 8 32°

Table 5.3.1: The value of max dim(Vy(1)).
u2Gunflg

In particular, for each V in, Table 5.3.1 labeled as YV, respectively as ?V with © 5, we
have dim(Vy(1)) < dim(V) dim(V) for all unipotent elements u, u & 1, of G

5.3.1 The families of modules

For the rest of this chapter, we fix the following hypothesis on unipotent elements in G:

V4|
(Hy) : every u 2 Gy n f1g has Jordan normal form on W given by Jni; where
i=1
XX
niri=2+1; r; lisevenforallevennjand2°+1 ny>n,> >n, L
i=1
Moreover, if m=1; thenn; 3:

Lemma 5.3.3. Let V = Lg(!;). Then for all non-identity unipotent elements u 2 G we
have
dim(Vy(1)) 2¢ 1;
where we have equality if and only if the Jordan form of u on W is one of J; JZ 2 and
NEEEN RS
In partiﬁular, there exist non-identity unipotent elements u 2 G for which dim(V,(1))
dim(V) dim(V).

Proof. To begin, we note that V = W as kG-modules. Now, let u be a unipotent element
of G as in hypothesis (YH,). Let uy denote the action of u on W. Then, keeping in mind
X

that njr; = 2° + 1, we have:
i=1

> X
dim(V,(1)) = dim(W,,, (1)) = r=2+1 (ni  Dr;: (5.25)
i=1 i=1
Assume that dim(V,(1)) 2° 1. Then, by (5.25), it follows that
>
2 (ni 1)ri (526)



and, in particular, that3 n;,as2 (ny 1)ry ng 1. Now, if ny = 3, then, by (5.26),
XX
it follows that r; =1 and (ni Dri=0,hencem=2,n,=1landr, =2 2,as“ 3.
i=2
Thus, u has Jordan form J;  JZ % on W, and, by (5.25), dim(Vy(1)) = 2° 1. Similarly,
X

if n; = 2, then ry is even and, by (5.26), it follows that r; = 2 and (ni Dri =0. We
i=2

argue as before to deduce that the Jordan form of uon W is J2 JZ° 3 and, by (5.25), that

dim(Vy(1)) =2¢ 1.

Having treated all possible cases, we conclude that dim(V,(1)) 2° 1 for all non-
identity unipotent elements u 2 G. Moreover, we have shown that equality holds if and only
b the Jordan form of u on W is one of J2 J% 3andJ; JZ 2 Then, as the inequality

2°+1 2 holds for all * 3, we have shownrshat there exist non-identity unipotent
elements u 2 G for which dim(V,(1)) dim(V) dim(V). O

Proposition 5.3.4. Let V = Lg(Y,). Then for all non-identity unipotent elements u 2 G
we have
dim(Vy(1)) 2% 3 +4;

where equality holds if and only if the Jordan form pf u on W is J2 JF 3,
In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. First, we note that, by Lemma 2.8.4, we have V = ~2(W), as kG-modules. Now, let
u be a unipotent element of G as in hypothesis (YH,). We first consider the case when u
has Jordan form J,-.; on W. Then u acts as a single Jordan block on W and so, by Lemma

2.9.4, we have:
2°+1

dim(V, (1)) = =<2? 344

since 0 <22 4“+4forall * 3. We now assume that the Jordan form of u on W consists
of at least two blocks.

Secondly, we consider the case when exactly one block, J,,, appearing in the Jordan form
of u on W, is nontrivial. Then the Jordan form of u is J,, JZ* ™ where, since r; = 1,
n, isodd, thus3 n; 2 1. We write W =W; W,, where dim(W;) = n; and u acts
as Jn, on Wy, and dim(W,) = 2+1 n; and u acts trivially on W,. Then, as k[u]-modules,
we have

V=W (Wr Wo)  N(W,)

and so

dim(Vu(1)) = dim(("*(W1))u(1)) + dim((W1  W5)u (1)) + dim((M*(W2))u(1)):  (5.27)

jnlk_ N

Now, by Lemma 2.9.4, we have dim((™“3(W1))u(1)) = 5 T3 and, moreover, as u

actsas J,, JZ*t ™onW; W,, we also have dim((W;  W,)u(1)) =2°+1 ny. Lastly,
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as u acts trivially on W, it also acts trivially on ~2(W,), and so dim((""2(W-)).(1)) =
2° n)@° np+1)
. It follows that:

2
. 1 2° 2° +1

dimVu) =" L or et py 4 nl)(z Mt 1)
42 A'np+ni+6° 2n;+1
B 2

2 c [3
92 giygq 4°n;  2n; +12 7:
2
One checks that the inequality
nZ 4'n; 2n;+12° 7<0 (5.28)

holds forall ng2R2+1 2p( I01)2 +1; 2°+1+2 ( 1)2 + B and all © 1. Since

2°+1 2 (" 1D2+1<2'+1 2 (* 1)2=3andsince2‘+1+2 (* 1)2+1>2° 1,
it follows that, in particular, Inequality (5.28) holds forall3 n; 2 1landall © 3.
We conclude that dim(V,(1)) <22 3“+4forall * 3 and all unipotent elements u of G
with Jordan form J,, JZ** ™ onW, where3 n; 2° 1.
Lastly, we consider the case when the Jordan form of u on W admits at least two nontrivial
blocks. Then2 n; 2° 1. Wewrite W =W, W,, where dim(W,) = n; and u acts as
M

Jn, 0N Wy, and dim(W,) =2*+1 n;anduactsas Jft * J on W,. Now, by (5.27), in

order to determine dim(Vy (1)), we only need to know dlm((’\Z(Wl)) (1)), dlm((W1 WZ) (D)
and dlm((’\Z(WZ))u(l)j At§ u acts as a single Jordan block on Wl, by Lemma 2.9.4, we have

2 ng=_n+ _ _
dim((™ (Wl))u(l)) = 5 = ,Where =0ifnyiseven,or = 1ifn;isodd. Now,
since u acts as (Jn, Jn,)"™ * (Jn, Jn)"OnW, W, we again use Lemma 2.9.4 to
i=2
deduce: |
. 0 0 X [
dim((W; W,).1)=(r1 L)n + niri=2+1 ny: (5.29)

i=2
Furthermore, since the Jordan form of u admits at least two nontrivial blocks, it follows
that u acts nontrivially on W;) and by, Proposition 3.3.4, we have dim((’\z(Wé))u(l))
(2‘ n1)2 (2‘ nl) +2 . . .
. Moreover, we note that equality holds if and only if u acts on

2,
W, asJ, JZ ™ 1 Now, by (5.27) and keeping in mind that 0, we have:
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(2° ny)? (2° ny)+2

. niy +
dim(Vy(2)) 5 +2°+1 n+

2
42 4A'np+ni+2°+4+
B 2
42 4'n;+ni+2°+4
2
=22 gage 4‘”;+8‘ 4
=92 goyss 2)(n21+2 .

Since 2 ny 2° 1, it follows that (n; 2)(n; +2 4%) 0 for all * 3, thus
dim(Vy(1)) 22 3“+4forall * 3 and all unipotent elements u of G whose Jordan
form on W admits at least two nontrivial blocks. Moreover, equality holds if and only if

P 2 p
dim(R2wy)u() = & 2 M E

hence, if and only if u acts as J, J> ™ ! on W, and as J, on W,. We deduce that u has
Jordan form J2  JZ 3on W.

Having considered all possible cases, we conclude that dim(Vy(1)) 22 3‘ + 4 for
all non-identity unipotent elements u 2 G, where equality holds if and only if the Jordan
form of u on W is J2 JZ 3. Furthermore, since the mquaIlty 142 33 +16 > 0
holds for all * 3, it feljows that 22 3 +4 <22+ 22+ “ for all ©* 3, thus
dim(Vy (1)) < dim(V) dim(V) for all non-identity unipotent elements u 2 G. O

,hyisevenand (n; 2)(ny +2 4°) =0,

We will now consider the irreducible kG-module Lg(21;). We have seen in Lemma 2.8.4
that Lg(2!,) is a composition factor of the kG-module S?(W). This is a relevant fact, as
we can use Lemma 2.9.4 to calculate the dimension of the fixed point space on S?(W) of
any unipotent element u 2 G, see Proposition 5.3.7. Having determined dim((S?(W))u(1)),
where u 2 G is unipotent, we apply [Korl9, Corollary 6:3] to deduce dim(Lg(211)u(1)).
Before we give the statement of this result, we recall that r¢(u) is the number of Jordan
blocks of size t 1 appearing in the Jordan form of u, and that , is the p-adic valuation
on the integers.

Theorem 5.3.5. [Kor19, Corollary 6:3] Assume p > 2 and let H = SO(V ), where dim(V) =
n for some n 5. Let u 2 H be a unipotent element and let V jiu= Vn, V.., Where
m landn; 1foralll i m. Set = p(ged(ng;:::;nNm)). Let u’ be the action of
u on S?(V) and let ug be the action of u on Ly (2!,). Then the Jordan block sizes of ug are
determined from those of u’ in the following way:

(@) If p-n, then ri(Ug) = ri(u) 1 and re(uo) = re(u’) for all t & 1.
() Ifpjnand =0, then ri(Ug) = ri(U) 2 and re(uo) = re(u’) for all t & 1.

(c) Ifpjnand >0, then:
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(cl) Ifpj pﬂ then r, (Ug) =1, (uo) 2, 1y 1(Uo) = 2 and r¢(up) = rt(uo) for all

t&p;p 1.
(c2) Ifp- 1, then r, (Ug) =1, (uO) 1, rp 2(Up) = 1 and re(up) = re(u’) for all
t&p;p 2

Remark 5.3.6. Let V = Lg(2!,). By Theorem 5:3:5, for all unipotent elements u 2 G, we
have that:

(1) 1f p-2° +1, then dim(Vu(1)) = dim((S2(W))u(1)) 1.
(2) Ifpj2c+1and =0, then dim(Vy(1)) = dim((S2(W))u(1)) 2.
(3) Ifpj2c+1and >0, then dim(Vy(1)) = dim((S2(W))u(1)).

Proposition 5.3.7. Let V' = S2(W). Then for all non-identity unipotent elements u 2 G
we have

dim(v, (1)) 22 “+1:
Moreover, equality holds if and only if the Jordan form of u on W is one of J;  JZ" 2 and
J2 JF 3

Proof. Let u be a unipotent element of G as in hypothesis (YH,). We first consider the case
when u has Jordan form J,-.; on W. Then, as p & 2, we apply Lemma 2.9.4 and obtain:

2+1 :‘+1<2‘2 ‘+1.

dim(v, (1)) = 2 +1 5 ,

(5.30)

since the inequality 0 < 2¢2  2¢ holds for all © 3. We can thus assume that the Jordan
form of u on W consists of at least two blocks.

We now consider the case when exactly one block, J,,, appearing in the Jordan form of
u on W, is nontrivial. Then u has Jordan form J,, JZ** ™ where n, is odd, since r; = 1,
thus3 n; 2° 1. Wewrite W =W; W,, where dim(W;) = n; and u acts as J,, on
Wy, and dim(W;) =2°+1 n; and u acts trivially on W,. Then, as k[u]-modules, we have

Vi=S3(Wy) (Wi W,)  SE(Wy)
and so

dim(V, (1)) = dim((S2(W1))u(1)) + dim((W1  W,)u(1)) + dim((S*(W2))u(1)):  (5.31)
Jn Kk
Now, since p & 2, we apply Lemma 2.9.4, which gives dim((S?(W1))u(1)) = n; LS

2
ng+1 2°+1 ng
and, moreover, as u acts as J,, J; on W; W,, we also have

dim((W: Wy)(1)) =2°+1 ny. Lastly, as u acts trivially on W5, it also acts trivially on
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2° n+1)Q n+2)

S2(W,), and so dim((S*(W>))u(1)) = . It follows that:

2
dim(v,_ (1)) = ”12+ Ligepg n+ @ M+ 1)2(2‘ L +2)
_ 42 4'n+nf+10° 4ny+5
— 02 44 niz 4*n;  4n;+12°+3 (5.32)
(np 3)(m i 1 49,

:252 ‘H+ 1+

2

Since3 n; 2 1,wehave (ny 3)(ny 1 4¢) Oforall © 3, and, consequently,

dim(V, (1)) 22 “+1 for all unipotent elements u of G with Jordan form J,,, J2™** ™,

where3 n; 2° 1,onW. Moreover, equality holds ifand only if (n; 3)(n; 1 4°) =0,
hence, if and only if the Jordan form of uon W is J;  JZ 2

Lastly, we consider the case when the Jordan form of u on W admits at least two nontrivial

blocks. Then2 n; 2° 1. Wewrite W =W, W,, where dim(W,) = n; and u acts as
\V4|

Jn, 0N WY, and dim(W,) = 2°+1 n; and u acts as J;* * J' on W,. Now, by (5.31), in
i=2

order to determine dim(V,;(1)), we only need to know dim((S2(W,))u(1)), dim((W; W,),(1))

and dim((SZ(WS))u(l)). ASjl acgs as a single Jordan block on W;, by Lemma 2.9.4, we have

. n n
dim((S"W))(D) =n o = =
2 2 1
odd. Since u acts as (Jn, Jn,)"™ ! (Jn, Jn)7on W, W, by (5.29), we have
i=2
dim((W1° W2°)u(1)) =2°+1 ny. Furthermore, since the Jordan form of u on W admits
at least two nontrivial blocks, it follows that u acts nontrivially on WZ0 and, by Proposition

3.3.5, we have dim((S*(W,)).(1)) @ nl)(zz‘ +1 )

equality holds if and only if u acts on W, as J,  JZ ™ . Thus, by (5.31) we have:

, Wwhere =0ifn;iseven,or = 1ifngis

. Moreover, by the same result,

: 2" 2¢+1
dlm(VJ(l)) Ny +2°+1 n+ ( nl)(z n;)
_ 42 4*'ng+ni+6° 2n;+2
2
n2 4‘n; 2n; + 8¢

=2 41+

2
2 € + c
Ifngp =2,then =0, n 4 n12 2n +8 = 0 and, consequently, dim(Vlj(l)) 22 41

We have remarked earlier that equality holds if and only if u acts on W, as J, J2 ™ 1,
hence, equality holds if and only if u has Jordan form J2 JZ ®on W.
We can now assume that n; 3. One checks that the inequality

n? 4'n; 2n;+8° <0 (5.33)
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holds forljlll ng2@+1 ID(2‘ D2+ ; 2°+1+ p(2‘ 1)2 +p) and all © 1. Since
2°+1 2° 12+ <3,as3+ <4 forall* 3,and2°+1+ (2° 12+ >2° 1,
it follows that, in particular, Inequality (5.33) holds forall3 n; 2 l1andall © 3.
Therefore dim(Vj(l)) <22 “+1forall © 3 and all unipotent elements u of G whose
Jordan form on W admits at least two nontrivial blocks and n; 3.

Having considered all possible cases, we conclude that dim(VLf(l)) 22 <+ 1 for all
non-identity unipotent elements u 2 G. Moreover, we have shown that equality holds if and
only if the Jordan form of u on W is one of J; JZ 2and J? JZ 3 O

The following result will be required for the proof of Proposition 5.3.10.

Proposition 5.3.8. Let u be a non-identity unipotent element of G whose Jordan form on
W isdileent than J; JZ 2and J2  JZ 3. Let V' = S2(W), then:

dim(V (1)) <22 ¢ 1

Proof. Let u be a unipotent element of G as in hypothesis (YH,) and assume that its Jordan
form on W is di[efent than J;  JZ 2and J2 JZ 3. We first consider the case when u has
Jordan form J,-+1. Then by (5.30), we have dim(V,;(1)) = “ + 1 and therefore dim(V, (1)) <
22 ¢ 1,since0<“ ¢ 1forall * 3. We thus assume that the Jordan form of u on
W consists of at least two blocks.

We now consider the case when exactly one block, J,,, appearing in the Jordan form of
u on W, is nontrivial. We remark that since r; = 1, n; is odd and, since the Jordan form
of u is dilerent than J; J? 2, wehave 5 n; 2° 1. Furthermore, arguing as in the
proof of Proposition 5.3.7, we see that (5.32) applies and we have

42 4'ng+n3+10° 4n;+5 2 . nZ 4‘ny 4n;+12°+7
5 =2 1+ > :

One checks that the inequality

dim(v, (1)) =

Ny 4'ng 4ng+12°+7<0

holds forI@II ng 2 (2°+2 p4‘2 4 3; 2‘p+ 2+ p4‘2 4* 3)and all © 1. Since
2°+ 2+ 42 4 3>2° land2“+2 42 4 3<b5,as3 <4 forall © 3 it
follows that, in particular, the inequality holds forall5 n; 2° landall © 3. We
conclude that dim(VLf(l)) <2¢ ¢ 1 for all unipotent elements u of G with Jordan form
Jn, JZT ™MonW,where5 n; 2 1.

Lastly, we consider the case when the Jordan form of u on W admits at least two nontrivial
blocks. Then2 n; 2° 1 and we distinguish two cases. First, if n; = 2, then the Jordan
formof uon W is Jj*  J2*1 21 where ry is even and so, by hypothesis, r; 4. We remark

that, in this case, we have © 4. We write W =W; W,, where
dim(W,) =4, dim(W,) =2° 3and u acts as JZ on W; and as J;* 2 JZ*! Zion Wy

Now, by Proposition 3.3.5, we have dim((S?(W1))u(1)) < 6 and dim((S3(Wy))u(1)) &2 3
=2‘? 7°+6. Using Lemma 2.9.4 we determine that dim((W; W,)u(1)) =2(@2r, 4)+
4“+2 4rp = 4° 6 and so, by (5.31), we have dim(V, (1)) < 22 3‘+ 6. Therefore,
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since * 4, we determine that dim(VLf(l)) < 22 ¢ 1 for all unipotent elements u
of G whose Jordan form on W is Jj*  JZ*! #* where r; 4. We now consider the
case when n; 3. We proceed as in the proof of Proposition 5.3.7, see the third-to-last
paragraph, and writte W = W, W,, where dim(W,) = n; and u acts as J,, on W,, and
M n
dim(W,) =2°+1 n;anduactsasJj * J& on'W,. Then dim((S?(W,))u(1)) = — 5
i=2
and dim((W; WS)U(l)) =2°+1 n;. Moreover, we remark that, since n; 3 and r; is
even for even n;, it follows that u does not act on W20 as J, Jf‘ % and so, by Proposition

3.3.5, we have dim((Sz(Wzo))u(l)) < (2 nl)(22 *+1 nl). Therefore, by (5.31), we have

: 2° 2°+1
dimvi@) <™ w2r 41 ”1)(2 )
42 4*ng+ni+6° 2n;+2
B 2
g2 ¢ g4 n{ 4‘n; 2n;+8°+4
2
One checks that the inequality
ni 4'n; 2n;+8°+4 <0 (5.34)
P P

holds forﬁll ng2@2+1 42 4 3+ ;2°+1+ Ap 4 3+ )andall © 1. Since
2°+ 1+ 42 4 3+ >2°+1andsince 2° +1 42 4 3+ <3,as7 < 4*
for all © 3, it follows that, in particular, Inequality (5.34) holds forall 3 n; 2°+1
and all © 3. Therefore dim(Vu°(1)) < 2¢2 ¢ 1 for all unipotent elements u of G whose
Jordan form on W admits at least two nontrivial blocks and n; 3.

Having considered all possible cases, we conclude that dim(V, (1)) < 22 1 for all
non-identity unipotent elements u 2 G whose Jordan form on W is di[efent than J;  JZ 2
and J2 JZ 3. O

Corollary 5.3.9. Assume p - 2+ 1 and let V = Lg(2Y;). Then for all non-identity
unipotent elements u 2 G we have

dim(Vu(1)) 2%

where equality holds if and only if the Jordan form of u on W is one of J; JZ 2 and
NEEEN RS D

In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. To begin, set V' = S2(W). Then, asp & 2 and p - 2° + 1, by Lemma 2.8.4, we
have the following kG-module isomorphism V' =V Lg(0). It follows that dim(V,(1)) =
dim(V,(1)) 1 and, consequently, by Proposition 5.3.7, dim(V,(1)) 22 * for all non-
identity unipotent elements u 2 G. Moreover, we have equality if and only if dim(Vlf(l)) =
22 “+1, hence, by Proposition 5.3.7, if and only if the Jordan form of u on W is one of
J; J¥ Z2andJ? J7 3
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In conclusion, we proved that dim(V,(1)) 2‘? * for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bound is attained. Lastly, we BOte that, as
the inequality 142 3¢ >0 holds for all * 3, it follows that 2¢2  “ < 2‘2+3° ~ 22+ 3* for
all ©* 3 and, consequently, dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G. O

Proposition 5.3.10. Assume p j 2° +1 and let V = Lg(2!;). Then for all non-identity
unipotent elements u 2 G we have

dim(Vy(1)) 22 *° 1;

where equality holds if and only if the Jordan form of u on W is one of J; JZ" 2 and
NEEEN RS

In particular, we have dim(Vy(1)) < dim(V) pdim(V) for all non-identity unipotent
elements u 2 G.

Proof. To begin, set V' = S2(W) and let u be a unipotent element of G as in hypothesis
(YH,). If we denote by u’, respectively by uy, the action of u on V', respectively on V, then
by Theorem 5.3.5 we know that we can determine the Jordan form of uy from that of u'.
Moreover, by Remark 5.3.6, we also know that dim(V,(1)) dim(Vlf(l)).

Set = ,(gcd(ny;:ii;nm)). If =0, then, since p j 2° + 1, we have dim(V(1)) =
dim(Vj(l)) 2, see item (2) of Remark 5.3.6. Therefore, by Proposition 5.3.7, it follows that
dim(Vy(1)) 22 “ 1, where equality holds if and only if dim(V (1)) = 22 “+1, hence,
if and only if the Jordan form of u on W is one of J;  JZ %and JZ JZ 3.

We can now assume that > 0. Then, by item (3) of Remark 5.3.6, as p j 2° + 1, we
have dim(Vy(1)) = dim(VLf(l)). Moreover, we note that since > 0, the Jordan form of u
on W is dilerent than J; JZ 2 and J? J2° 3. Therefore, we use Proposition 5.3.8 to
deduce that dim(V,_(1)) <22 < 1 and, consequently, dim(V (1)) <22 * 1 for all
unipotent elements u 2 G with >0

We have shown that dim(V,(1)) 22 ¢ 1 for all non-identity unipotent elements
u 2 G. In particular, since the inewality 0 < 14 3“+1 holds for all © 3, it follows
that 22 < 1 < 2°? 1 22+ 3 1forall © 3 and, consequently, we have
dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent elements u 2 G. ]

To conclude this subsection, we remark that Lemma 5.3.3, Proposition 5.3.4 and Corollaries
5.3.9 and 5.3.10 give the proof of Theorems 5.3.1 and 5.3.2 for the families of kG-modules
corresponding to p-restricted dominant weights 2 f1,;1,;21,9. Therefore, in view of
Remark 5.1.1, they prove Theorems 5.3.1 and 5.3.2 for the families of kG-modules with
p-restricted dominant weights ~ 2 FB-.

5.3.2 The particular modules

As previously mentioned, this subsection is dedicated to the proofs of Theorems 5.3.1 and
5.3.2 for the particular kG-modules, i.e. the irreducible kG-modules L (™) with corresponding
p-restricted dominant highest weight ~ listed in Table 2.7.4. For each such kG-module V

we will establish  max dim(Vy(1)), where G, is the set of unipotent elements of G, see
u2Gynflg
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Propositions 5.3.11, 5.3.12, 5.3.13, 5.3.14 and 5.3.19. In order to achieve this goal, we will
use the inductive algorithm of Subsection 2.4.4. N

Now, let u 2 G be a unipotent element. We write u = x-(c-), where the product is
~2~+

taken with respect to the total order  on ~, see Section 1.3, aRg c- 2 k forall ~2 ~*. To

u we associate the subset S, =" with the property that u = x-(c-), where c. 2 k for

~2Sy
all ~2 Sy. Now, as p & 2, by Lemma 2.9.1 and Theorem 2.9.2, we know that the unipotent

conjugacy class of u in G is completely determined by the Jordan form of u on W.

We first assume that * = 3. Let L; be the Levi subgroup of the maximal parabolic
subgroup P; of G given in Section 2.4. In Table 5.3.2 we list all the unipotent conjugacy
classes in G and give a class representative. Note that all the chosen non-identity class
representatives U’ have the property that u°Ll & 1.

[LS12, Subsection 3:3:2], [MKT21, Table 10]

Class representative Jordan normal form
1 J/
X-,(1) NERIN
X~3(1) J3 Jf
X, (D)X~ (1) J I3
X, (D)X=, (1) NERENH
X, (1)x-,(1) Js  J?
X3 (DX, (1)X~5(1) J;

Table 5.3.2: Unipotent class representatives in B; when p & 2.

Let u 2 G be a non-identity unipotent element and let u’ be the class representative
featured in Table 5.3.2 of the unipotent G-conjugacy class of u. Then, as dim(Vy(1)) =
dim(Vy (1)) and dim(Vy (1)) dim(VuoLl (1)), by Inequality (2.7), it follows that dim(Vy(1))
dim(VuoLl (1)) and, consequently:

dim(Vy (1)) maxfdim(VVoL )] v’ in Table 5:3:29 (5.35)

for all non-identity unipotent elements u 2 G. Note that, since all v’ of Table 5.3.2 have

been chosen such that v°Ll & 1, we have that the bound in (5.35) is strictly less than dim(V ).

Now, let vﬁnax be the representative of Table 5.3.2 with the property that dim(V(ngx)L ()
1

realizes maxfdim(V, (1)) ] V' in Table 5:3:2g. If v, is such that (V,.,0)0, = 1, where

Q1 = Ry(Py), then, by Identity (2.8), we deduce that there exist unipotent elements u 2 G
for which the bound in (5.35) is attained.

Proposition 5.3.11. Assume that * = 3 and let V. = Lg(%3). Then for all non-identity
unipotent elements u 2 G we have

dim(Vu(1)) 6;
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where there exist u 2 G for which the bound is attained.
In partigular, there exist non-identity unipotent elements u 2 G for which dim(V,(1))
dim(V) dim(V).

Proof. We begin by recalling the Decomposition (5.21) of Proposition 5.2.8, which states:
v j[Ll;L1]= Li,(%3) L, (%a):

Let u 2 G be a non-identity unipotent element. Then, by Inequality (5.35) and Decomposition
(5.21), we have:

dim(Vy(1))  2maxfdim((Li,(¥s))y, (1)g;

where the maximum is taken over all non-identity unipotent class representatives V' in
Table 5.3.2. Using Lemma 4.3.3, we determine that maxvodim((LLl(!g))voLl(l)) = 3 and
so dim(Vy(1)) 6 for all non-identity unipotent elements u 2 G.

We will now show that there exist u 2 G for which dim(Vy(1)) = 6. For this, consider
X-,(1) 2 G. First, we note that (X-,(1))o, = 1. Secondly, by Lemma 4.3.3 and Table 4.3.2,
we have dim((L, (*3))x_,@) (1)) =3 and so dim(Vx_,1)(1)) = 6.

In conclusion, we showed that dim(V,(1)) 6 for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bound is attained, for example u = x_,(1).
This provelg)that there exist non-identity unipotent elements u 2 G for which dim(V,(1))
dim(V) dim(V). O

Proposition 5.3.12. Assume “ = 3 and let V = Lg(2%;3). Then for all non-identity
unipotent elements u 2 G we have

dim(Vu(1)) 21

where there exist u 2 G for which the bound is attaipgd.
In particular, we have dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. To begin, we recall the Decomposition (5.23) from Proposition 5.2.10, which states:
Vijpeg= L, (2%3) L, (2%s) L (%2) L, (2%3):

Let u 2 G be a non-identity unipotent element. Then, by Inequality (5.35) and Decomposition
(5.23), we have:

dim(Vu(1))  3maxfdim((L,(243))y; (1))g + maxfdim((Lc, (¥2))v (1)g;

where the maximum is taken over all non-identity unipotent class representatives v’ in Table
5.3.2. By Corollary 4.3.8, as p & 2, we have maxvodim((L._l(!z))VnLl(l)) = 3, while, by
Proposition 4.3.12, we have max,s dim((LLl(Zig))\,oLl (1)) = 6. It follows that dim(V,(1))
21 for all non-identity unipotent elements u 2 G.

We will now show that there exist u 2 G for which dim(Vy(1)) = 21. For this,
consider x-,(1) 2 G. First, we note that (X-,(1))o, = 1. Secondly, by Table 4.3.2,
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Corollary 4.3.8 and Proposition 4.3.12, respectively, we have dim((L.,(¥2))x_,@(1)) =3
and dim((L., (2%3))x_,1)(1)) = 6, therefore dim(Vx_,1)(1)) = 21.

In conclusion, we have shown that dim(V,(1)) 21 for all non-identity unipotent elements
u 2 G and that there exist u 2 Géor which the bound is attained, for example x_,(1). Lastly,
we have dim(Vy (1)) < dim(V) dim(V) for all non-identity unipotent elementsu 2 G. [

Proposition 5.3.13. Let k be an algebraically closed field of characteristic p = 7. Assume
‘=3 andletV = Lg(*; + *¥3). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) 22;

where there exist u 2 G for which the bound is attaiped.
In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. To begin, we recall Decomposition (5.24) of Proposition 5.2.11, which states:
Vo= L (d3) L (B2+43) L (B2+43) L, ()

Let u 2 G be a non-identity unipotent element. Then, by Inequality (5.35) and Decomposition
(5.24), we have:

dim(vu(1))  2maxfdim((L,(¥s))y; (1))g +2maxfdim((L, (¥2 + ¥3))v (1))9;

where the maximum is taken over all non-identity unipotent class representatives V' in Table
5.3.2. By Lemma 4.3.3, we have maxvodim((L._l(!g))voLl(l)) = 3, while, by Proposition

4.3.14, as p = 7, we have max,» dim((L_, (%, + !3))\,0Ll (1)) = 8. It follows that dim(Vy(1))

22 for all non-identity unipotent elements u 2 G.

We will now show that there exist unipotent elements u 2 G for which dim(V,(1)) = 22.
For this, we consider x-,(1) 2 G and note that (x-,(1))o, = 1. Now, using Table 4.3.2,
we determine that dim((L.,(¥3))x_,@(1)) = 3, by Lemma 4.3.3, while, by the proof of
Proposition 4.3.14, we have dim((L., (%2 + #3))x_,1y(1)) = 8. Thus, dim(Vx_,1)(1)) = 22.

In conclusion, we have shown that dim(V,(1)) 22 for all non-identity unipotent elements
u 2 G and that there exist u 2 Ggpr which the bound is attained, for example x-,(1). Lastly,
we have dim(Vy (1)) < dim(V) dim(V ) for all non-identity unipotent elementsu 2 G. [

Proposition 5.3.14. Let k be an algebraically closed field of characteristic p & 2;7. Assume
“=3andletV = Lg(*; + *¥3). Then for all non-identity unipotent elements u 2 G we have

dim(Vy(1)) 28;

where there exist u 2 G for which the bound is attaiped.
In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.
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Proof. To begin, we recall the decomposition of V jj ;.. ,; from Proposition 5.2.12, which
states:

\% j[L1:L1]: LLl(!'S) vi oy I—Ll(!'S);

where, if p & 5, V1 and V 2 each have two composition factors: one isomorphic to L, (¥,+%3)
and one isomorphic to L, (*3); while, if p = 5, V! and V2 each have three composition
factors: one isomorphic to L, (¥, + %3) and two isomorphic to L, (¥3).

First, assume that p & 5. Then, by [Jan07, 11.2.14], we have V' = L, (¥,+%3) L, (¥3),
1=1;2, and so

Vijgeg= L, (d3) Lo (F2+43)  Li(%)3) Li,(F2+%3) Li(¥3) Li,(¥3): (5.36)

Let u 2 G be a non-identity unipotent element. Then, by Inequality (5.35) and Decomposition
(5.36), we have:

dim(Vu(1))  4maxfdim((L.,(¥s))v; (1))g + 2maxfdim((L, (¥2 + ¥3))w (1))9;

where the maximum is taken over all non-identity unipotent class representatives v’ in Table
5.3.2. Now, by Lemma 4.3.3, we have maxyc dim((L._l(!g))\,oLl (1)) = 3, while, by Proposition

4.3.14, as p & 5, we have max,» dim((L, (¥, + !3))\,0Ll (1)) = 8. It follows that dim(V,(1))

28 for all non-identity unipotent elements u 2 G.

We will now show that there exists u 2 G for which dim(V,(1)) = 28. For this consider
X-,(1) 2 G. First, we note that (x-,(1))o, = 1. Secondly, using Table 4.3.2, we determine
that dim((L, (¥3))x_,0)(1)) = 3, by Lemma 4.3.3, while, by the proof of Proposition 4.3.14,
we have dim((L, (¥2 + ¥3))x_,1)(1)) = 8. Therefore, dim(Vyx_,1)(1)) = 28.

We can now assume that p = 5. We first determine an upper-bound for dim(Vyx__(1)(1)).
Afterwards, we will assume that the unipotent element u 2 G, u & 1, is not conjugate to
X-,(1) and we will bound dim(V,(1)). Recall that, when p =5, V! and V 2 each have three
composition factors: one isomorphic to L, , (%, + *3) and two isomorphic to L ,(*3). Now,
by Table 4.3.2, it follows that dim((L., (*3))x_,)(1)) = 2, while, by Proposition 4.3.13, we
have dim((L.,(¥2 + ¥3))x_,1)(1)) 5. Therefore, dim(Vx_ 1)(1)) 22, by Lemma 2.4.9.

Let u 2 G be a non-identity unipotent element that does not belong to the conjugacy
class of x-,(1). In what follows, we will determine an upper-bound for dim(V,(1)). Let L3 be
the Levi subgroup of the maximal parabolic subgroup Ps of G given in Section 2.4. We note
that [Ls; L3] is a simple simply connected linear algebraic group of type A, with maximal
torus T = T\ [L3; L3]. Set ~ = %, + %; and note that dim(V) = 48, as p & 7. By Lemma
2.4.6, we have e3(7) =5 and so:

\% j[Ls:L3]= VO V5;

_ M
where V' = Vo, ~forall0 i 5. Now, by [Smi82, Proposition], we have VO =
~2N~3
L..(*1) and so, by Lemma 2.4.3, we also have V° = L ,(*;). The weight (T ~3) jro= *;+1%,
admits a maximal vector in V 1, therefore V! has a composition factor isomorphic to L, ,(*;+

+,). Moreover, we note that the dominant weight (* ~; ~, ~3) jro= 0, which occurs with
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multiplicity 3in V1, as p & 3, has multiplicity 2 in the composition factor of V ! isomorphic to
Lo ,(*;+%,). Therefore, dim(V?) 9andsodim(V%) 9,asV*=(V!), by Lemma 2.4.3.
This gives dim(V2) =dim(V3) 12. Now, inV 2, the dominant weight (7 ~, 2~3) jro=2%;
admits a maximal vector and so V 2 has a composition factor isomorphic to L ,(2%;). We also
note that the dominant weight (~ ~; ~, 2~3) jre= %,, which occurs with multiplicity
3in V2 asp & 7, is a sub-dominant weight in the composition factor of V?2 isomorphic
to L, ,(2%,), in which it has multiplicity 1. Thus, as dim(V?2) dim(L_,(2%;)) 6 and
dim(L_,(*,)) = 3, it follows that V2 has exactly three composition factors: one isomorphic
to L ,(2%;) and two isomorphic to L ,(*;). Moreover, as p & 2, using [Jan07, 11.2.12 and
2.14], we determine that V2 = L ,(2%;) L. .(*2) L. .(%2). Then, by Lemma 2.4.3, we also
have V3 =1L, ,(2%) Li,(¥) Ly, (%), since V3= (V?2). This gives dim(V!) =9 and so
V! has exactly two composition factors: one isomorphic to L ,(*; + *,) and one isomorphic
to L. ,(0). We use [Jan07, 11.2.14] once more, to show that V! = L (¥ + ;) L. ,(0).
Lastly, by Lemma 2.4.3, we have V4 =L ,(¥; + ¥,) L.,(0) and so:

Vijsita= Les(F1)  Lis(F1+ %) Li,(0) Li,(2%1) Li(Y2) Lis(F2) Li(2%)

Lis(#2) Lis(¥2) Lig(B1+%) L0 Lig(%):
(5.37)

Let u’ be the representative listed in Table 5.3.2 of the unipotent G-conjugacy class of
u. Now, as u and x-,(1) are not conjugate, it follows that u’ and x-,(1) are not conjugate.
Using Table 5.3.2, we determine that u?_3 & 1. Then, by Decomposition (5.37) and Inequality
(2.7), it follows that:

dim(Vu(1)) 2+ 2dim((L;(*2))u (1)) + 2dim((Li; (Y1 + 42))u (1))+
+4dim((L;(*2))yy (1)) + 2dim((Li;(241))y (1)

By Lemma 3.3.3, we have dim((L._3(!1))uoL3 (1)) 2and dim((L._3(!2))uoL3(1)) 2, while, by
Proposition 3.3.5 and Corollary 3.3.9, we have dim((LLS(Zh))uoL3 (1)) 3anddim((L_,(¥.+
!2))uoL3 (1)) 4, respectively. It follows that dim(V,(1)) 28.

We will now show that there exists u 2 G for which dim(V(1)) = 28. For this, we consider
X-,(1) 2 G. First, we note that (Xx-,(1))o, = 1, where Q3 = Ry(P3). Secondly, by Table
4.3.2, we have dim((L,(#1))x_,@)(1)) =2 and dim((LLS(!z))X?(l) (1)) = 2, see Lemma 3.3.3;
dim((Li,(241))x_, (1)) = 3, see Proposition 3.3.5; and dim((L.,(*1 + ¥2))x_, (1)) = 4,
see Corollary 3.3.9. Therefore, dim(Vx_,1)(1)) = 28, by Identity (2.8).

In conclusion, we have shown that dim(V,(1)) 28 for all non-identity unipotent elements
u 2 G and that there exist u 2 Gr_f)or which the bound is attained, for example x_,(1). Lastly,
we have dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent elementsu 2 G. [

At this point, we have determined 2r(131a>§ dim(Vy(1)) for all the irreducible modules

u2Gynfilg
V of G of type Bs with highest weights featured in Table 2.7.4. In order to determine
these maximums, we used the fact that all nontrivial unipotent G-conjugacy classes admit
a representative u’ such that u | & 1. We can now assume that © 4. Let L, be the Levi

subgroup of the maximal parabolic subgroup P, of G given in Section 2.4. In Proposition
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5.3.18 we will show that each non-identity unipotent G-conjugacy class has a representative
&’ such that u?_l 6 1. To achieve this, we will use the algorithm presented in [Korl8,
Subsection 2.8.5], which constructs unipotent class representatives in G, gad we will show

that each unipotent G-conjugacy class admits a representatives u’, u’ = x (c ), where
2S,0

Sw *, the product respects the order on , see Section 1.3, andc 2 k forall 2 Sy,

such that Sp \f ,;:::; -g & ;, see Proposition 5.3.17. We describe the algorithm below.

For the moment, we focus on G = SO(W), the simple adjoint group of type B-, * 4.
By Theorem 2.9.2, since p & 2, we know that the Jordan normal form completely determines
unipotent conjugacy classes in G. We also know that even sized Jordan blocks occur with
even multiplicity, thus, since dim(W) is odd, we deduce that the number of odd sized Jordan
blocks is odd. Now, let u be a non-identity unipotent elementin Gand letV;,1 i ord(u),
be the unique, up to isomorphism, indecomposable k[u]-module with dim(V;) = i and on
which u acts as the full Jordan block of size i. To u we associate the (possibly empty)
sequences (€i)1 i t (0i)t+1 i t+s+1 and (0))t+1 i t+s Such that

(\V%| [AV5
w jk[u]: V62| V20j +1 VZO% +1 V20t+s+1+l; (538)
i=1 j=t+1
where 2 e ecareevenand 0 0pg  OL,,g Ot+s Olys  Oprs+1 are such
X >
that e+ (0j + o% +1) +0trs+1 = “. We note that the above decomposition of W' jyy;
i=1 j=t+1

completely determines the conjugacy class of u in G.

In [Korl8, p.46], it is explained how to construct subspaces W; and W, of W with the
property that W = W; W, is an orthogonal direct sum. Furthermore, it is shown that u; u,
is a representative of the unipotent conjugacy class determined by the Decomposition (5.38),

M V3
where u; 2 SO(W;) and Wy jyu,1= Ve (Vaoj+1  Vaog+1) and where u 2 SO(W,)
i=1 j=t+1
and Wy juu,)= Voowsi+1. The construction of u, is given in [Korl8, p.47]. For uy, if
dim(W,) = 2, we choose u; = 1, while, if dim(W,) > 2, we use Lemma 6.3.17, a correction
of [Kor18, Lemma 2.8.17], and [Korl18, Tables 2.7 and 2.8] to determine that u; is as in the
lemma below.

Lemma 5.3.15. Let 2 ¢ e. be even and let 0 0wy Ol Ot+s
X =
0l,c  Ors+1 be such that e + (0 + 02 + 1) + Oprsvr = . Sete; = 0; + 0! + 1,
i=1 j=t+1
forallt+1 i t+s, and, moreover, set ky =l and ki =1+ e¢e; + +e; 4, for all
2 i t+s+1 Forallt+1 i t+ s witho; >0, define:
ki-ﬁqf 2
Wi = X J(l) X kKi+oj 1t F Kkjyy 2(1) X ki+oj 1+ *+ kg 2+2 Kipq 1+ 2 ‘(1):
J=ki
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Forallt+1 i t+swithol >0, define:

kiyz
Wi = X J(l) X K1 2+2 K1 1+ +2 ( 1)
J=ki+o;

Foralll i1 t+s, define:

1; ift+1 i t+sando; =0 =0;

X (1) Xy, o2 4y o+ +2 (i ift+1 i t+sando;=0; o >0;

-~wiwd; ift+1 i t+sand o0l >0:
8
31, if Otes+1 =0
— - Y
Setu; =V;  Viss and up, = > X (1); if Oprses > O:
-j:ks+1
N1 [V
Then u = uyu, satisfies W jk[u]: Vezi V20j +1 V20%+1 V20t+s+1+1-
i=1 j=t+1

Remark 5.3.16. Let C be a non-identity unipotent conjugacy class in G. The goal of this

remark is to establish S, for the representative u 2 C, u = u; U with Uy = Vi Vi,
[\ V3
constructed in Lemma 5.3.15. For this, let W ji= V,ezi V2o;+1 Vzog+1
i=1 j=t+l
Voorsesa+1 D€ the corresponding decomposition of W as a k[u]-module. We distinguish the
following cases:

X
Case 1: t=0. Then  (0j+0j+1)+0sr1 = With0 07 0} 0s O  Os+i.
=1
Y
Now, as u is nontrivial, it follows that 041 > 0 and so u, = X ;(1). With u, identified,
J=Ks+1
we will now determine u;. We have the following sub-cases:
Sub-case 1:1: If o} = 0, theno; = ol =0forall1 i s and, in this case, we have
up =1, thereforeu=u,and S, =F ,,;:::; -0.

Sub-case 1:2: Ifof >0, let1 j shbesuchthato} ; =0ando} >0. Then, o; =0} =0
forall0O 1 j 1, hencev;i=1,forall0O 1 j 1. Moreover,forall j+1 i s,
since 0;;0! > 0, we have:

ki'ﬁq{ 2
— 0 —
Vi = WiW; = X 1(1) X ki+oj 1+ 7 Kkiyg 2(1) X kitoj 1 F kv 2¥2 Kkjyq 1T *2 (1)
J=ki
kiVZ
X J(l) X Kiep 272 kg 1F 2 ( 1)
j=ki+oj
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Now, forall j+1 1 s, set
i:: Kj+0j 1+ + Ki+1 2
= o 1t Tt g 22 g, 1 2
i “= Kiw 2+ 2 kies 1T +2 -

We apply the commutator relations [MT11, Theorem 11.8] and use [Cav10, Lemma 2.5.4] to
determine that:

1 x ;). ki+oi j ki1 3, commutes with both x (1) and x ,;(1);

() x(1):x ., ,]=x,( 1), where

i= ko 1t o 3 T2 g, 2+ F 2
Moreover, X ;( 1) commutes with both x .~ (1) and X ;(1);
(3) x ,,, ,(1) commutes with x ;(1);

(4) x,( 1) commutes with both x ,(1) and x ,( 1).

Thus, forall j+1 i s, we have:
ki-??{ 2 kin
Vi = X J(l) X J(l) X .(1) X i( 1) Xi(l) Xi( 1)
J=ki J=ki+o;

We use the commutator relations, [MT11, Theorem 11.8] once more, and obtain:

U =Vp Vs =Vj Vjn Vg

N kinNf 2 Kingr 2
=Vj X r(l) X r(l) X i(l) X i( 1) X i(l) X i( 1)
i=j+1 r=Kki r=Kk;j+oj
Yoo kingr 2 Kingr 2 Y Y Y Y
=V x (1) X (1) x (1) x,( 1) x (1) x,( 1)
i=j+1  r=k r=ki+0; i=j+1 i=j+1 i=j+1 1=j+1
If 0; =0, then, by [MT11, Theorem 11.8], it follows that:
ki 2 Yo kw2 kiny 2 Y Y
u=  x,Q) x (1) x (1) x (1) x (1) x,( 1)
r=Kkj i=j+1 r=k; r=Kk;+oj i=j+1 i=j+1
Y Y
X (D) x,( 1)
i=j+1 i=j+1
Similarly, if o; > 0, then
Yo kingr 2 Kinge 2 Y Y Y Y
up = x (1) x (1) x,(D)  x, (1) x, @ x,( 1)
i=j r=k; r=k;+0j i=j i=j i=j i=j
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Y
Lastly, recalling that u, = X ;(1), by [MT11, Theorem 11.8], we determine that, if

J=Ks+1
0j = 0, then:
ki 2 Y o kinr2 king 2 Y Y
u= x,(1) X (1) X (1) X (1) X (1) x,(1)
r=k; i=j+1 r=kj r=k;+o; i=j+1 j=Ks+1
Y Y Y
x, (1) ox,@  x,( 1
i=j+1 i=j+1 i=j+1
(5.39)
Similarly, if o; > 0, then:
Y kine? King 2 Y Y Y Y
u= x (1) x, 1) x,Q0 x,0  x, (1D x,@  x,( 1
r=Kki-+0i i=j J=Ks+1 i=j i=j i=j
(5.40)

i=j r=k;

In both cases we see that - 2 S,.
1. We distinguish the following sub-cases:

Case 2. t
Sub-case 2:1: s=0. If 0r+1 =0, thenu, =1, u; =v; VvV and we have:
Y kiy?
u= x ;) ;
i=1 =k
thereby Su =T 1i110 k20 keiiil) ke 200105 ke iili ke 20, @S kg = 1. On the other
hand, if 0;+7 > 0, we have u, = X ;(1) and so:
J=kt+1
Y key? Y
u= x ;1) x ;(1):
i=1 i=ki J=Ke+1
Inthiscase, Sy =T 151115 K, 207000 kit ) kiss 20 keess oo <0
If Otss+1 = O, then 0 = 0f,; = 0, forall1 j s, and

Sub-case 2:2: s 1.
Vi and so S, =

o U; = 1 and vy = 1, for all 1 In this case, u = v,

] S.

T il e 2 kil ke 2000 ke
Y
U, = X ;(1). It follows that
j=kt+1

Y ky?
u=v Vi Vi Vivs U2 = X J(l) Vi1 Vi+s U2, (541)

i=1  j=k
where Vir1  Virs Up is as in (5.39), or (5.40), depending on whether o; = 0 or o; > 0,
where 1 j s+ 1issuchthato} ;, =0and o} > 0. Now, since all 2S,, , and all
, we determine that the product in (5.41) respects the

are such that

. Lastly, we note that, in both cases, -2 S,.

2 SVt+1 Vt+s U2

total order on
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Proposition 5.3.17. Each non-identity unipotent G-conjugacy class, admits a representative
u’ with the property that
Se\Tf 50 g6&;:

Proof. Let C be a non-identity unipotent G-conjugacy class and let u 2 C, u = u; u, with
U =Vi  Viss, De the representative of C constructed in Lemma 5.3.15. Let

oM ™
Wikw= Ve Vaoe1 Vaoer  Vaousrs+t
i=1 j=t+1

be the corresponding decomposition of W as a k[u]-module.

If O¢+s+1 = 0, then, by Case 1 and (5.41) of Remark 5.3.16, we have that - 2 S,. We
can thus assume that ows+1 = 0, in which case 0; = 02 =Q0forallt+1 j t+s.
As u is nontrivial, it follows that t 1. Then, by Case 2 of Remark 5.3.16, we have
Su =T 1,100 ke 20 keriihr ke 20000 ke iiih ke 200 I T 2, then |, 2 S, where
k, = 1+¢e; 3. We can thus assume that t = 1. If e; 4, then , » 2 S, where
ke 2=e; 1 3. Lastly,ife; =2 thenu=x (1) andW jix ,ay= V5 V2" 3. However,
by [LS12, Subsection 3.3.2], x ,(1) is another unipotent element of G with corresponding
decomposition W jix ,ay=V# Vi °. Therefore, x ,(1) and x ,(1) are G-conjugate and
we choose X (1) as representative of the unipotent class of u.

Having considered all possible cases, we conclude that all nontrivial unipotent conjugacy
classes of G admit a representative u’ with the property that S \f ,;:::; g€ ;. O

We can now state the analog of Proposition 5.3.17 for the simple simply connected linear
algebraic group G of type B, © 4.

Proposition 5.3.18. Each non-identity unipotent G-conjugacy class admits a representative

C such that for all &’ 2 C we have Sqo \ f~5;:::;~g=;. Now,as :G ¥ G is a central
isogeny and (U.) = U, for all ~ 2 =, by Lemma 2.9.1, it follows that the unipotent
conjugacy class C of G given by C = (C) has the property that Sie \ T ,;:::; g = ;
for all u’ 2 C. However, this contradicts Proposition 5.3.17. We conclude that all non-
identity unipotent G-conjugacy classes admit a representative &' with the property that
Sw \f~y 1 ~06 ;. O

Proposition 5.3.19. Assume * 4 and letV = Lg(%*-). Then for all non-identity unipotent
elements u 2 G we have
dim(Vu(1)) 3 2" %

where there exist u 2 G for which the bound is attained.

In particular, for * 54 there exist non-identity unipotent elements u 2 G for which
dim(Vu(l)b dim(V) dim(V). On the other hand, for * 5, we have dim(V,(1)) <
dim(V) dim(V) for all non-identity unipotent elements u 2 G
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Proof. To begin, we recall Decomposition (5.22) of Proposition 5.2.9, which states:
Vi = L, (3) L (3):

Let u 2 G be a non-identity unipotent element and let u' be a representative of the
unipotent G-conjugacy class of u with u°Ll & 1. Note that, by Proposition 5.3.18, such a
representative always exists. Then, by Inequality (2.7) and Decomposition (5.22), we have:

dim(Vy(1))  dim(Vyg (1)) = 2dim((Ly, (¥))u; (1)):

Now, for © = 4, by Proposition 5.3.11, we have dim((L._l(!4))uoLl(1) 3 2, therefore

dim(Vy(1)) 3 22 for all non-identity unipotent elements u 2 G. Moreover, by [LS12,
Subsection 3.3.2] and by the proof of Proposition 5.3.11, it follows that dim((L., (¥4))x_,1)(1))
=3 2, therefore dim(Vx_ 1)(1)) =3 2°. Recursively, one shows that dim(V,(1)) 3 2" 2
for all ©* 4 and all non-identity unipotent elements u 2 G and that there exist u 2 G for
which equality is attained, for example x-. (1).

In conclusion, we showed that dim(Vy(1)) 3 2" 2, forall ©* 4 and all non-identity
unipotent elements u 2 G, and that there exist u 2 G for which equality holds, for example
X-. ,(1). Nqw, if * = 4, it follows that there exist non-identity u 2 G for which dim(V,(1))
dimg) dim(V). However, for ¢ 5, the inequality 1 < 2" # holds, therefore 3 2" 2 <
2 2" forall © 5, and so dim(Vy(1)) < dim(V) dim(V ) for all non-identity unipotent
elements u 2 G. ]

We conclude this subsection by noting that Propositions 5.3.11, 5.3.12, 5.3.13, 5.3.14
and 5.3.19 complete the proof of Theorems 5.3.1 and 5.3.2, as they cover all the irreducible
kG-modules correspon-ding to p-restricted dominant weights featured in Table 2.7.4.

5.4 Results

In this section, we collect the results proven in this chapter. In Proposition 5.4.1 we give the

values of max fdim(Vs( ))j 2 kg, max dim(Vy(1)) and (V) for all kG-modules
s2TnZ(G) u2Gynflg

V belonging to one of the families we had to consider. Similarly, Proposition 5.4.2 records
the same data for the particular kG-modules treated in this chapter.

Proposition 5.4.1. Let k be an algebraically closed field of characteristic p & 2 and let G be
a simple simply connected linear algebraic group of type B-, © 3. Let T be a fixed maximal
torus T in G and let V = Lg(7), where ~ 2 FB . Then the value of (V) is given in the
table below:
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Vv Char. max fdim(Vs( ))] 2kg max dim(Vy(1)) | (V)
s2TnzZ(G) u2Gynflg
Ls(%1) p6E2 2° 2 1 1
Ls(%2) p6E2 22 ¢ 22 3“+4 2°
p6&2,p-2-+1 22 + ¢ 22 ¢ 2°
1
Le(2) p6&E2,pj2-+1 22+ 1 22 ¢ 1 2°

Table 5.4.1: The value of (V) for the families of modules of groups of type B-.

Proof. The result follows by Proposition 2.2.3, using Lemmas 5.2.3 and 5.3.3 for V. = L(%1);
Propositions 5.2.4 and 5.3.4 for V = L;(%;); and Corollaries 5.2.6 and 5.3.9, in the case of
p - 2°+ 1, respectively Corollary 5.2.7 and Proposition 5.3.10, in the case of p j 2° + 1, for
V = Lg(2%).

]

Proposition 5.4.2. Let k be an algebraically closed field of characteristic p & 2 and let G be
a simple simply connected linear algebraic group of type B-, *
torus in G and let V = Lg(7), where ~ is featured in Table 2:7:4. The value of (V) is
given in the table below:

3. Let T be a fixed maximal

Rank - Char. max fdim(Vs( ))j 2kg| max dim(Vu(1) | (V)
s2TnZ(G) u2Gynflg
‘= 2% pE?2 20 21 14
‘= L+ | p=7 20 22 18
‘= L+  p&E27 24 28 20
3 “ 8 1. p62 21 3 2° 2" 2

Table 5.4.2: The value of (V) for the particular modules of groups of type B-.

Proof. The result follows by Proposition 2.2.3, using the detailed results of Subsections 5.2.2

and 5.3.2.
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Chapter 6

Groups of type D-

In this chapter we prove Theorems 1.1.1 and 1.1.3 for the simple simply connected linear
algebraic groups of type D-, * 4. To begin, we fix k, an algebraically closed field of
characteristic p 0, and we let W be a 2°-dimensional k-vector space, for some * 4,
equipped with a nondegenerate quadratic form Q. The structure of this chapter is as follows:
in the first section we construct the simple linear algebraic group G = SO(W) of type D- and
exhibit some properties of its semisimple and unipotent elements. In Section 6.2 we determine

max fdim(Vs( ))j 2k g, where G is a simple simply connected linear algebraic group
s2TnZ(G)

of type D- with maximal torus T and V runs through the list of kG-modules we identified

in Subsection 2.7.4. Similarly, in Section 6.3, we determine max dim(V(1)) for the same
u2Gynflg

kG-modules V. Lastly, Section 6.4 records all the results of this chapter.

We will now fix some notation which will be used throughout the chapter. We let G be a
simple linear algebraic group of type D-, ©* 4, and we let G be the simple simply connected
linear algebraic group of the same type as G. We also fix : G ¥ G, a central isogeny with
d &0andker( ) =2Z(G). InG,weletT, X(T), ,B, =7F q:::; «gand I;:::; 1.
be as usual. We also let T, respectively B, be a preimage of T, respectively of B, in G, and
note that T is a maximal torus of G contained in the Borel subgroup B of G. As for G, we

system of G determined by T, the set of simple roots in ~ given by B, and the fundamental
dominant weights of G corresponding to ~

6.1 Construction of linear algebraic groups of type D-

Let W be a 2°-dimensional k-vector space, where 4, equipped with a nondegenerate

quadratic form Q. We fix Bw = fug;uy;:::;u-; v :::;Vp;vi0 to be an ordered basis in
M

W with the property that W = hui; vil is an orthogonal direct sum, where fu;;vig is a
i=1

hyperbolic pair forall 1 i *, see Corollary 2.1.4, in the case of p & 2, or Theorem 2.1.1,

in the case of p = 2. We denote by D the set of diagonal matrices and by U the set of
upper-triangular matrices in GL(W). Set G = SO(W) and note that G is a simple linear
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algebraic group of type D-, see [Car89, Theorem 11.3.2]. Set T =D\ G and B = U \ G,
and note that T is a maximal torus in G and B is a Borel subgroup of G with the property
that T B.

Remark 6.1.1. We recall from Subsection 2:7:4 that FP-, the set of p-restricted dominant
weights ~ 2 X(T’) with the property that the associated irreducible kG-module L(™) satisfies
the dimensional criteria (2.18) for all ¢ 4, is given by FP- = f4,;24,; ¥,9. As for groups
of type B-, see Remark 5:1:1, we note that for all = 2 f¥,;2%,; ¥,0, there exists 2 X(T)
such that ~ is the image of when viewed as an element of X(T), see Subsection 2:3:3. In
particular, for *; 2 X(T), we have 1; 2 X(T), for 2%, 2 X(T), we have 21, 2 X(T) and for
¥, 2 X(T), we have 1, 2 X(T). In all cases, by Lemma 2:3:10, we determine that:

(1) Ms= max )fdim(l—e(~)s(~))j ~2kg= Szrpnég((G)fdim(Le( ()] 2kg=Ms.

s2TnzZ(G

(2) My = max dim(Lg(T)s(1)) = max dim(Ls( )u(1)) = My, where G, is the set
u2Gyunflg u2Gynflg
of unipotent elements in G.

) s = kel )

6.1.1 Semisimple elements

In the previous subsection, we took W to be a 2°-dimensional k-vector space equipped with
a nondegenerate quadratic form Q. We fixed the basis By in W and we built the subgroup
G = SO(W; Q) of GL(W). We now take W and equip it with a nondegenerate alternating
bilinear form a. We fix a basis B}, as in Theorem 2.1.1, in W and we set H = Sp(W; a).
We note that T4 = D \ H, where D is the set of diagonal matrices in GL(W), is a maximal
torus in H. Moreover, recall from Subsection 4.1.1 that an element sy 2 Ty has the form
st =diag( 1 Imy 2 Imosii ¢ Img o8 Imoiiis 27 dmes 1 b Imy), where & j for all
X
1 1<j t, m;="°“and *° my my 1.
i=1
Lets2 T. Then s = diag(a;;a,;:::;a:;a. 1;:::;azl;all) with a; 2k forall1 i
Letf 1; 2:::; m0, where m 1, be the set of distinct ;s and letn;, 1 i m, be the
XX
multiplicity of each ; in's. Then n; = “ and we can assume, without loss of generality,

i=1

that* n; ny nn 1. By conjugating s by an element of Ng(T), we have that

s=diag( 1 In;; 2 Iniiiis m by mt dnes oo 21 In,; 11 In,). Thus, any elements 2 T

has the the forms =diag( 1 In;; 2 i m I mb Doesiios 25 Inas 1% Iny), Where
XX

i& jforalll i<j m, nf=“and“ n; n nm 1. Consequently,

we see that T = Ty, since ever'yls 2 T is an element in Ty, see the previous paragraph,
and, analogously, every sy 2 Ty is an element in T. Moreover, we also have Z(G) = Z(H).
Therefore, if s 2 T nZ(G), then s 2 Ty n Z(H) and vice versa.

Lastly, let s 2 T. Then, in particular s 2 Ty and, by Lemma 4.1.1, s is conjugate
in H to an element sy 2 Ty with the property that sy = diag( 1 Imy; 2 Imyiiiis ¢
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Img i35 20 dmps 17 Imy) with ;& ;*tforalll i<j m; = “ and

6.1.2 Unipotent elements

First, we suppose that the algebraically closed field k has characteristic p & 2. Now, by

Theorem 2.9.2, we know that two unipotent elements u; u’ 2 O(W; Q) are O(W; Q)-conjugate

if and only if they have the same Jordan normal form on W. Furthermore, by the same
M

result, we have that a unipotent element u 2 SL(W) with Jordan form Jii is an element

i=1
in O(W;Q) if and only if r; 1 is even for all even n;. Lastly, we recall that the unipotent
class uPW:Q splits into two G-classes if and only if n; is even for all i. Thus, if u is a
(\Vg

unipotent element of G, then u has Jordan form Jnion W, wherem landr; 1

i=1
is even for all even n;. Furthermore, if there exists 1 i m such that n; is odd, then
the Jordan form of u on W completely characterizes its unipotent conjugacy class in G.
However, if nj iseven forall 1 i m, then there are two unipotent classes associated to
M

that Jordan form. Lastly, for u 2 G unipotent with Jordan form Jni, we can assume

without loss of generality that 2 1 n;>n, > >n, 1 andliflu &1, thatn; 2.
Having established a characterization of unipotent conjugacy classes in G over fields of
characteristic p & 2, we now consider the case when p = 2. In this case, the classification
of unipotent conjugacy classes in G is given by Proposition 2.9.20. To make this section
more self-contained, we recall the aforementioned result. As p = 2, we have that G <
Sp(W;a), where a is the nondegenerate alternating bilinear form on W with the property
that a(wy; wy) = Q(wy) + Q(wy) + Q(wy +ws,) for all wy;w, 2 W. Let u 2 G be a unipotent
element. Then, in particular, u is a unipotent element of Sp(W; a) and, therefore, by Theorem
2.9.11, we know that the unipotent class of u in Sp(W;a) is completely determined by the
Hesselink normal form of u. Let (n[;; i n{;; n[ﬁjfl; :::nim) be the Hesselink normal form
X
of u, see Theorem 2.9.15. Now, since u 2 G, by Proposition 2.9.20, we have that ri is
i=t+1
even. Moreover, the conjugacy class of u in Sp(W;a) splits into two G-classes if and only
if forall1 i m we have that n; is even and t = m. Therefore, the Hesselink normal
form of a unipotent element, (n3:;:::;ng; n[ﬁ:fl; :oonin), completely characterizes unipotent

conjugacy classes in G over fields of characteristic p = 2, unless t = m and n; is even for all
1 i m, in which case there exist two classes associated to that Hesselink normal form.

6.2 Eigenspace dimensions for semisimple elements

Theorem 6.2.1. Let k be an algebraically closed field of characteristicp 0 and let G be a
simple simply connected linear algebraic group of type D, © 4. Let T be a fixed maximal
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torus in G and let V = L(7), where = 2 FP*, or ~ is given in Table 2:7:5. Then there exist
s2TnZ(G)and 2k, an eigenvalue of s on V, such that

dim(Vs( )) dim(V) Iodim(V)
if and only if =~ = ¥;.

Theorem 6.2.2. Let k be an algebraically closed field of characteristic p 0 and let G be
a simple simply connected linear algebraic group of type D, * 4. Let T and V be as in
Theorem 6:2:1. Then the value of max fdim(Vs( ))j 2k g is given in the table below:

s2TnZ(G)
\% Char. Rank max fdim(Vs( ))j] 2k g
s2TnZ(G)
Ls(%1) p 0 ‘4 2 2
p&E2 ‘4 22 5°+4
YL (%
Lo(t2) p=2 4 27 5°+4 gcd(2)
p&2andp-* C 4 2 3°+3
y 1
LG(2'1) p&Zandpj‘ 3 4 2‘2 3°+2
YLg(¥s+ 1) p 0 ‘=4 34 6 2
YLs(%3) p=2 ‘=5 58
YLg(% 1) p O 5 ° 9 52 4
Table 6.2.1: The value of max fdim(Vs( ))j 2k g.
s2TnzZ(G)

In particular, for each YV in Table 6.2.1, we have dim(Vs( )) <dim(V) Iodim(V) for
all s2 TnZ(G) and all eigenvalues 2k ofsonV.

We will give the proofs of Theorems 6.2.1 and 6.2.2 in a series of results, each treating

one of the candidate-modules. In Subsection 6.2.1, we determine 2rTnaZ>((G)fdim(VS( i 2
S n

k g, see Remark 6.1.1, where V belongs to one of the families of kG-modules we have to
consider, i.e. V is an irreducible KG-module Lg( ) with p-restricted dominant highest weight

2 T14;214;1,9. In Subsection 6.2.2, we establish max fdim(Vs( ))j 2 k g for the
s2TnZ(G)

irreducible kG-modules L5 (™) with highest weight ~ featured in Table 2.7.5.

6.2.1 The families of modules

Lemma 6.2.3. Let V = Lg(!;). Then for all s2 T nZ(G) and all eigenvalues 2 k of s
on V we have
dim(vs( )) 2° 2
where equality holds if and only if = 1 and, up to conjugation, s =diag( 1;:::; 1; 2
1 Dwith , & 1
In particular, there eigst s 2 T nZ(G) that aloi an eigenvalue 2 k on V for which
dim(Vs( )) dim(V) dim(V).
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Proof. We first remark that V = W as kG-modules. Now, since T = Ty and Z(G) = Z(H),
by Lemma 4.2.3, we determine that dim(Vs( )) 2 2foralls 2 TnZ(G) and all
eigenvalues 2 k of son V. Moreover, by the same result, equality holds if and only if, up
to conjugation, s =diag( 1;:::; 1; o; 21; 1;:::; 1), where ,6& 1,and = 1.

To conclude, we showed that dim(Vs( )) 2° 2forall s2 T nZ(G) and all eigenvalues

2 k of sonV and that there exist pairs (s; ) 2 TnZ(G) k for which the bound
is attained. In particulabthis shows that there exist s 2 T n Z(G) with the property that
dim(Vs( )) dim(V) dim(V) for some eigenvalue 2k onV. O

Proposition 6.2.4. Let k be an algebraically closed field of characteristic p & 2 and let
V' =S2(W). Then, for all s 2 T nZ(G) and all eigenvalues 2k of s on V we have

dimV,( ) 22 3 +4;
where equality holds if and only if = 1 and, up to conjugation, s = diag(l;:::;1; 1,
1;1;::0;0).
Proof. Now, since T =Ty and Z(G) = Z(H), by Lemma 2.8.2 and by Proposition 4.2.4, we
determine that dim(Vs( )) 22 3“+4 foralls2 T nZ(G) and all eigenvalues 2 k
of s on V. Moreover, by the same result, we have equality if and only if =1 and, up to
conjugation, s = diag(l;:::;1; 1, 1;1;:::;1). ]
Corollary 6.2.5. Let k be an algebraically closed field of characteristic p & 2 and let V =
Ls(2Y;). Then, for all s2 T nZ(G) and all eigenvalues 2 k of s onV we have

dimVe( ) 22 3°+3 ™

where " =01ifp-“ and " =1if pj“. Moreover, equality holds if and only if =1 and, up
to conjugation, s = diag(1;:::;1; 1; 1;1;:::;1)

In particular, we have dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. LetV’ = S2(W). By Lemma2.8.4,ifp - “, we havethat V' =V Lg(0), while, ifpj *,
then V' = Lg(0) j V j Lg(0). Thus, dim(V) =dim(V’) 1 ", dim(Vs( )) = dim(V,( )),
for all eigenvalues & 1of s2 T nZ(G) on V, and dim(Vs(1)) = dim(VSO(l)) 1"

Let s2 TnZ(G) and let 2k be an eigenvalue of son V. If =1, then Proposition
6.2.4 gives the result. If & 1. then, since, in particular, s 2 Ty n Z(H), we have
dim(Vs( )) ‘2, by Inequality (4.2). Thus, since * 4, we determine that dim(Vs( ))
“2< 22 3*+3 " foralleigenvalues & !ofsonV. Therefore, to complete the proof,

we only need to treat the case of = 1.
Now, ass 2 TynZ(H), we have s =diag( 1 Im;;: 25 ¢ Ime; ¢ Imeiio) 1 ° Imy), Where
X
i & jforalll i<j t mi=*‘andm; m, me 1.If ; ;& 1forall

i=1
1 i<j t then, by Inequality (4.5), we have that dim(Vs( 1)) “?+°<2‘? 3“+3 ",
since * 4. Similarly, if thereexist 1 i<]j tsuchthat ; ;j = 1, then, by Inequality
(4.6), we have:

dimVs( 1)) 22+ md om(mi+1) my(m;+1) 2m+m)¢ m my):
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Assume that dim(Vs( 1)) 2?2 3“+3 ". Then

X
4+ 3+ m? mi(m; +1) mj(m; +1) 2(mi+m)¢ m; m;) O
r=1

We proceed as in the proof for V_,f( 1), see (4.7), and arrive at

X

‘4 mp mj) 3+ mZ (m m)? (Mm+m)(“+1 m m;) 0 (6.1)

réi;j

As “ +1 > m; + m;, by (6.1), it follows that m; + m; < 4 and so, as m; m;, we have
(mj; m;) 2 £(1;1); (2, 1)g. If (mi;m;) =(1;1), then, as © 4, we have
>
1+" m2 0
réi;j

Ifp-“ i.e. "™ =0, we see that the above inequality does not hold, while, ifpj “, i.e. " =1, by
the above, it follows that t = 2, contradicting * 4. On the other hand, if (m;; m;) = (2;1),
then we have >
2°+2+" m
réi;j
which clearly does not hold. Therefore, dim(Vs( 1)) <22 3“+3 "foralls2 T nZ(G).
In conclusion, we have shown that dim(Vs( )) 22 3“+3 " foralls 2 T nZ(G)
and all eigenvalues 2 k of s on V. As the mequahﬁy 0 < 14‘2 33‘ +17+" holds for

r 0

all © 4, we have 22 . 3*+3 "<2?+° 1 1 "forall*“ , thus
dim(Vs( )) <dim(V) dim(V) for all s 2 T nZ(G) and aII eigenvalues 2k of S on V.
]

Corollary 6.2.6. Let k be an algebraically closed field of characteristic p & 2 and let V =
Ls(!2). Then for all s2 T nZ(G) and all eigenvalues 2k of s onV we have

dim(Vs( )) 22 5°+4;

where we have equality if and only if one of the following holds:

(1) * =4, =1and, up to conjugation, s = diag( 1, 1; 1; 1, 1% 15 1% 1Y) with
16 1.
(2) “=4, = 1 and, upto conjugation, s=diag(1;1; 1, 1, 1; 1;1;1).

(3) * 4, =1land, uptoconjugation, s= diag(1;:::;1; 2; 51 1) with , & 1.

In particular, we have dim(Vs( )) < dim(V) Iodim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. To begin, we remark that, as p & 2, by Lemma 2.8.4, we have V = ~2(W). Now, as
T = Ty, the result follows by Proposition 4.2.5. O

212



Corollary 6.2.7. Let k be an algebraically closed field of characteristic p =2 and let V =
Ls(Y,). Then for all s2 T nZ(G) and all eigenvalues 2 k of sonV we have

dim(Vs( )) 2% 5°+4 gcd(2;°);
where we have equality if and only if one of the following holds:

(1) =4, =1and, up to conjugation, s =diag( 1, 1; 1; 1, 1% 15 1% 1Y) with
1 6 1.

(2) © 4, =1 and, up to conjugation, s =diag(1;:::;1; 2; ,%1;:::;1) with , & 1.

In particular, we have dim(Vs( )) < dim(V) Iodim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV.

Proof. Set V' = ~2(W). We first remark that, since p = 2, by Lemma 2.8.5, we have that
either V' =V  Lg(0), or V' has three composition factors: one isomorphic to V and two
isomorphic to Lg(0), depending on whether 2 - “, or 2 j . Thus, we determine that dim(V) =
dim(V") ged(2; ©), dim(Vs(1)) = dim(V, (1)) ged(2; “) and dim(Vs( )) = dim(V,( )) for
all eigenvalues &1o0fs2TnZ(G)onV.

Now, lets2 TnZ(G) and let 2 k be an eigenvalue of s on V. Since, in particular, s 2
TunZ(H), by Proposition 4.2.5, we have dim(Vs(1)) 2“2 5+4 gcd(2; ), where equality
holds if and only if s is as in the statement of the result. Having resolved the case of =1,
we can now assume that the eigenvalue is such that & 1. Then, we use Inequality
(4.10) and the fact that © 4, to determine that dim(Vs( )) ‘2 ‘<22 5°44 gcd(2;°).

In conclusion, we have shown that dim(Vs( )) 22 5°+4 gcd(2; ) foralls 2 TnZ(G)
and all eigenvalues 2 k of s on V. Therefore, as the inequality 0 < 142  31‘ + 16 +

d(2; ) holds for all * 4, it follows that 2> 5° -b4 ged(2; ) <22 ¢ ged(2;9)
22 ¢ gcd(2; ‘) and so dim(Vs( )) < dim(V) dim(V) for all s 2 T nZ(G) and all
eigenvalues 2k ofsonV. O

To conclude this subsection, we remark that Lemma 6.2.3 and Corollaries 6.2.5, 6.2.6 and
6.2.7 give the proof of Theorems 6.2.1 and 6.2.2 for the families of kG-modules corresponding
to p-restricted dominant weights 2 f1,;1,;21,9. Therefore, in view of Remark 6.1.1, they
prove Theorems 6.2.1 and 6.2.2 for the families of kG-modules with p-restricted dominant
weights ~ 2 FB,

6.2.2 The particular modules

As previously mentioned, in this subsection we will give an upper-bound for dim(Vs( )),
where (s; ) 2 TnZ(G) k andV isan irreducible kG-module with associated highest weight
featured in Table 2.7.5. In order to achieve our goal, we will use the inductive algorithm of
Subsection 2.4.3. To begin, let L; be the Levi subgroup of the maximal parabolic subgroup
P, of G constructed in Section 2.4. We recall that L; = Z(L,) [Li; L], where Z(L;) is a
one-dimensional torus and [L1; L] is a simply connected linear algebraic group of type D-
with maximal torus T" = T\ [L; L;]. We note that, although we do not mention the result
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explicitly, we make great use of the data in [LUO0lb] when discussing weights and weight
multiplicities in this subsection.
Lets 2 T. Thens =z h, where z 2 Z(L;) and h 2 [L;;L;]. Asz 2 Z(L,),

Y
we have z = h..i(c"i), where ¢ 2 k and k; 2 Z for all 1 i ‘. Moreover, as
i=1

\ﬂ
~j(z(c)) =1forall2 j *, it follows that z = h-,(c®) h-. ,(c)h-.(c) withc 2 k .
i=1
Y
As h 2 [Ly;L4], we have h = h_,(aj) with a; 2 k for all 2 i ‘, and therefore
i=2

\ﬂ
s=h_,(c? h-,(c’a;) h..  (ca- 1)h-.(ca:) withc2k anda; 2k forall2 i
i=2
Let V be an irreducible kG-module with p-restricted dominant highest weight ~ 2 X(T),
X

T = di% with0 di p 1foralll i *. We consider the decomposition:
i=1
\ JiLswg= V!
i=0
_ M
where V' = Voo, _forall0 i e(7). Lets2T and write s =z h, as above.
~2N71

Then, by (2.5), we have:

. h g h g .
sii=(C i~ )@ =(C i~) h.,(¢® h.. ,(©h-.(c) = ¢4 ¢d a2
=1 =1
Therefore, z actson VI, 0 i ey(7), as the scalar s} = ¢21*+ *2d- 2+d- a%d- 21 Now, let
Liin Loti 1, be the distinct eigenvaluesof hon Vi, 0 i ey (7), and let nj;:::;n be
their respective multiplicities. Then, by Lemma 2.4.8, it follows that the distinct eigenvalues
ofsonV'iares) i;:::;sh i, with respective multiplicities n};:::;n}.

Proposition 6.2.8. Let k be an algebraically closed field of characteristic p = 2. Assume
‘=4 andletV = Lg(¥; + %4). Then for all s2 T nZ(G) and all eigenvalues ~ 2 k of s
on V we have
dim(Vs(~)) 28:
In particular, we have dim(Vs(~)) < dim(V) pdim(V) for all s 2 T nZ(G) and all
eigenvalues ~2 k of sonV.

Proof. First, we consider the weight = 13+ 1, 2 X(T) and its associated irreducible
kG-module Lg( ). We have seen in Subsection 2.3.3 that Lg( ) is also a simple kG-module
and, as a kG-module, it is isomorphic to L5(™), where = = #; + %, denotes when viewed
as a weight in X(T). Moreover, by Lemma 2.3.10, we have

dim((Le(Ns() _max_Fdim(vs( )] 2k g
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for all s2 T nZ(G) and all eigenvalues ~2 k of sonV.

Secondly, let H = Sp(W; a), where a is the nondegenerate alternating bilinear form on
W given by a(wq; wp) = Q(wy + wy) + Q(wy) + Q(wy), for all wi;w, 2 W. Note that H is a
simple simply connected linear algebraic group of type C4. Let Ty denote the maximal torus
in H obtained by intersecting the set of diagonal matrices in SL(W) with H. Now, consider
the irreducible kH-module Ly (%) of highest weight 15, where 1} is the fundamental
dominant weight of H corresponding to the simple root . As p =2, G is a subgroup in
H, and, by [Sei87, Table 1], the following isomorphism of kG-modules holds:

Lu(1) jo= Lo(1s + La):
In particular, for all s 2 T nZ(G) and all eigenvalues 2 k of son Lg(!3+ !4), we have

dim((La(Ts + 14))s( )) max H)fdim((LH(!?))sH( W) n2kg:

SHZTHHZ(
Now, 2rTna>§(H)fdim((LH(!Q"))SH( H)) ] n 2kg 28, by the second to last paragraph
SH HN

of the proof of Proposition 4.2.20. We determine that dim((Lg(¥s + 14))s( )) 28 for all
s 2T nZ(G) and all eigenvalues 2 k of son Lg(¥s+ 14). This gives dim(Vs(~)) 28 for
all s 2 TnZ(G) and all eigenvalues ~2 k of son V. P

In conclusion, we have shown that dim(Vs(~)) 28 < dim(V) dim(V) for all s 2
T nZ(G) and all eigenvalues ~2 k of son V. O

Proposition 6.2.9. Let k be an algebraically closed field of characteristic p & 2. Assume
“=4andletV = Lg(¥;+ %4). Then for all s 2 T nZ(G) and all eigenvalues 2 k of s
on V we have

dim(Vs( )) 34

In particular, we have dim(Vs( )) < dim(V) Iodim(V) for all s 2 T nZ(G) and all
eigenvalues of sonV.

Proof. Set = = #; + %,. Then, as p & 2, we have dim(V) = 56 and, by Lemma 2.4.7, we
have e;(7) = 2, therefore:
™ Viag=V? VoV
where V' = Vo, - fori=0;1and i =2 By [Smi82, Proposition], it follows that
~2N71
VO =1L, (*+%,)andso, by Lemma2.4.3, wealso have V2 = (L, (¥3+%;)) = L, (¥3+%,).

This gives dim(V?!) = 26. Now, in V1, both the weight " ~; ~, ~3) jro= 2%, and

the weight (¢ ~;  ~2 ~;) jpo= 2%; admit a maximal vector. Therefore V! has at
least two compositions factors: one isomorphic to L, (2%3) and one isomorphic to L, (2%,).
Moreover, since p & 2, the dominant weight (*~ ~; ~, ~3 ~4) jpo= *%,, occurring

with multiplicity 3 in V!, is a sub-dominant weight in both the composition factor of V?!
isomorphic to L, (2%3) and the one isomorphic to L, (2%,), and it has multiplicity 1 in each.
By comparing dimensions, we deduce that V! admits exactly three composition factors: the
two previously mentioned and a third isomorphic to L, (*;). Moreover, since p & 2, we use
[Jan07, 11.2.14] to determine that V! =L, ,(2%3) L.,(2%;) L.,(*;), and so

Vo= L (3 + %) L (2%3) L, (%) L, (F2) L, (s + 1) (6.2)
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If dim(VJ( )) = dim(V") for some eigenvalue 2 k of sonV, where i =0;1ori =2,
thens 2 Z(L,) nZ(G) and so s = z with c®2 & 1. Inthiscase, assactsoneachV', 0 i 2,
as the scalar ¢ 2, it follows that the eigenvalues of s on V, not necessarily distinct, are:

8

>c? with dim(Vs(c?))  dim(V?) = 15;
_1 with dim(Vs(1)) = dim(v %) = 26;

= ¢ 2 with dim(Vs(c 2)) dim(V?) = 15:

Since ¢® & 1, we have dim(Vs( )) 30 for all eigenvalues 2k ofsonV.

We can now assume that dim(VJ( )) < dim(V') for all eigenvalues 2 k of s on
Vand all 0 i 2. Recall that VO = L, (#}3+ %4), V2 = L ,(#33+ #;) and V! =
L|_1(2!'3) L|_1(2!'4) L|_1('!'2). We write s = z h, where z 2 Z(Ll) and h 2 [Ll, L]_]
Since z acts by scalar multiplication on each V', it follows that dim(V/( n)) < dim(V"') for
all0 i 2,where , 2k isany eigenvalue of h on V'. Now, by Corollary 3.2.7, as p & 2,
we have dim(V°( )) 9 for all eigenvalues 1, of h on V° Assume that dim(V,2( 1)) = 9.
Then, by Corollary 3.2.7, we have ,=1andh=h ,( 1)h ,( Hh ,( 3) with & 1. We
will now determine the eigenvalues of h on V . Using (3.1), we determine that the eigenvalues
of h, not necessarily distinct, on the composition factor of V! isomorphic to L, ,(2%3) are 2
with multiplicity at least 6, ,® with multiplicity at least 1, and , ? with multiplicity at least
3. Therefore, as L, (2%,) = (L., (2%3)) , it follows that the eigenvalues of h, not necessarily
distinct, on the composition factor of V * isomorphic to L, (2%,) are ,  with multiplicity at
least 6, $ with multiplicity at least 1, and 2 with multiplicity at least 3. Lastly, by (3.7),
we determine that the distinct eigenvalues of h, as 1 & 1, on the composition factor of V!
isomorphic to L (%,;) are 2 and ,?, both with multiplicity 3. Since ¢ & 1, it follows
that dim(V,}( 1)) 14 for all eigenvalues 1 of h on V. Therefore, as dim(V,’( 1)) 9
for all eigenvalues p of h on V2, see Corollary 3.2.7, it follows that dim(Vn( 1)) 32 for
all eigenvalues 1, of h on V, thereby dim(Vs( )) 32 for all eigenvalues 2k ofsonV.
We now consider the case when dim(V,°( »)) 8 for all eigenvalues  of h on V°. Then,
dim(V,2( 1)) 8 for all eigenvalues 1, of hon V2 asV?2 = (VP . Lastly, since p & 2, by
Propositions 3.2.4 and 3.2.5, it follows that dim(V,}( »)) 18 for all eigenvalues 1 of h on
V1. Therefore, dim(V,( 1)) 34 for all eigenvalues |, of h on V and so dim(Vs( )) 34
for all eigenvalues 2k ofsonV. P

In conclusion, we have shown that dim(Vs( )) 34 < dim(V) dim(V) for all s 2

T nZ(G) and all eigenvalues 2k ofsonV. O

Proposition 6.2.10. Assume * 5 and letV = Lg(%* 1). Then for all s2 T nZ(G) and
all eigenvalues 2 k of sonV we have

dim(Vs( )) 5 2 “

In particular, for all * 5, we have dim(Vs( )) < dim(V) IOdim(V) for all s 2 Tnz(G)
and all eigenvalues 2k ofsonV.

Proof. Set ~ = *. ;. We have dim(V) = 2" ! and, by Lemma 2.4.7, we have e,(7) = 1,
therefore:
\ j[Ll;Ll]: Ve Vl;
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. M
where V' = Vo ;. - fori=0andi=1 By [Smi82, Proposition], it follows that
~2N~1
VO =1L, (1 1). Therefore, we have dim(V?!) = 2" 2. Now, since the weight (~ ~;
~. 1) jppo= *. admits a maximal vector in V1, it follows that V! has a composition factor

isomorphic to L, ,(*-). We deduce V! =L, (*:) and:
Vo= L (B 1) L () (6.3)

If dim(VJ( )) =dim(VT) for some eigenvalue 2 k of sonV, wherei=0ori=1, then
s 2Z(L;) nZ(G) and so s = z with ¢? & 1. In this case, as s acts as scalar multiplication
by ¢t 2 on V' i=0;1, it follows that the distinct eigenvalues of s on V are:

¢ with dim(Vs(c)) = dim(V?) =2 2;
¢ L with dim(Vs(c 1)) = dim(v) =2" 2

We can now assume that dim(VJ( )) < dim(V ') for all eigenvalues 2k of sonV and
for bothi=0and i =1 We writes=2z h, wherez 2 Z(L;) and h 2 [L;L;]. Since z
acts by scalar multiplication on each V', it follows that dim(V,/( 1)) < dim(V') for i =0; 1,
where 1, 2 k is any eigenvalue of h on V.

First, consider the case of * =5. Let °: ~; ¥ ~; be the triality graph automorphism
of T = f"2;~3;"‘4; ~50 given by ~ b~y ~3 0~~~ and ~5 T ~5 Then,
by [Stel6, Corollary (b) of Theorem 29] and [Car89, Lemma 6.4.4 (ii),(iii)], there exists an
automorphism @ [Li;L4] ¥ [Li;L4] such that (h-,(c)) = ho-y(c), where2 i 5
and ¢ 2 k. Now, since ¥, = (%,) and %5 = '(%,), by Lemma 6.2.3, it follows that
dim((L,(*2))n( n)) 6and dim((L.,(¥s))n( 1)) 6 for all eigenvalues  of hon L, (%4)
and L, (*s), respectively. Therefore, asV° = L, (*4) and V! = L, (*5), we determine that
dim(Vh( n)) 12 for all eigenvalues 1, of h on V, hence dim(Vs( )) 12 for all eigenvalues

2 k of son V. However, we will show that dim(Vs( )) 10 for all eigenvalues 2 k of
sonV.

Assume there exist (s; ) 2 TnZ(G) k for which dim(Vs( )) = 12. We write s =2z h,
where z 2 Z(L1) and h = h_,(az)h-,(as)h-,(as)h-,(as) 2 [Ly; L] witha; 2k ,2 j 5.
Note that we have dim(V,!( !)) < dim(V") for both i =0 and i = 1 and all eigenvalues | of
honV' Let |,i=0;1, be the eigenvalue of h on V' with the property that =c! 2' I,
Since dim(Vs( )) = 12, we have dim(V( |)) = 6 for both i = 0 and i = 1. Moreover, using
Lemma 6.2.3, one can check that for any h’ 2 [L; L], we have dim((L,(*2))n( w)) = 6
if and only if either » = 1 and, up to conjugacy, h® = h_,(as)h-.(a,*) with aZ & 1; or

n = 1 and, up to conjugacy, h’ = h_,( 1)h_,(as)h-.( a,') with a3 & 1. Therefore,
dim(Vo( }))=6ifandonlyifh= ‘(h)and | = o, ie. dim(V,°( 1)) =6 if and only if
either h =h_,(a,")h_,(as), withaZ & 1,and | =1;orh=h_( a,})h_,( 1)h_.(as), with
az6&1,and [ = 1. However, since the weights in L (¥s) are ¥5, ¥5 ~5, ¥5 ~3 =5,
5 ~ ~3 ~5,% -~3 -~ -~5% -~ ~3 -~ -~5% -~ 2~3 ~; -~sand
s ~, 2~3 ~, 2~5, we determine that, in both cases, the distinct eigenvalues of h on
V1! are as and a, !, each with multiplicity 4. We have arrived at a contradiction.

Similarly, assume there exist (s; ) 2 TnZ(G) k for which dim(Vg( )) = 11. We
write s =z h, where z 2 Z(L;) and h 2 [L;;L;]. As in the previous case, we have that
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dim(V{i( 1)) < dim(V'), i = 0;1, for all eigenvalues | of hon V' Let [, i=0;1, be the
eigenvalue of h on V' with the property that = ¢t 2" 1. Now, since dim(Vs( )) = 11,
it follows that either dim(V,°( 9)) = 6 and dim(V,}( %)) = 5, or dim(V,°( 2)) = 5 and
dim(Vi( 1)) = 6. We have seen that if dim(V,2( 2)) = 6, then dim(Vs( )) 10 for all
eigenvalues of s on V. Therefore, we must have dim(V,2( ?)) =5 and dim(V,}( 1)) = 6.
However, if dim(V,2( 1)) = 6, then, arguing exactly as in the case of dim(V,%( 2)) = 6, one
shows that dim(Vs( )) 10 for all eigenvalues of s on V. Once more, we have arrived at
a contradiction.

In the case of * =5, we have shown that dim(Vs( )) 10forall(s; )2TnzZ(G) k.
We now consider the case of * 6. By recurrence and using the result for * = 5 as base
case, one shows that dim(V,°( v)) 5 2" %and dim(V,}( n)) 5 2" ° for all eigenvalues

h of hon V?and V1 respectively. Therefore, dim(Vn( 1)) 5 2° 4 for all eigenvalues
of honV and thus dim(Vs( )) 5 2" “for all eigenvalues 2k ofsonV.

In conclusion, we have shown that dim(Vs( )) 5 2" 4 foralls 2 T nZ(G) and all
eigenvalues 2k ofsonV. IE!}/Iﬂover, as the inequality 1 <9 2" 7 holds for alls 5, it
follows that 5 2" 4 <2 ! 2" 1forall © 5, andsodim(Vs( )) <dim(V) dim(V)
forall (s; )2TnzZ(G) k. m

Proposition 6.2.11. Let k be an algebraically closed field of characteristic p = 2. Assume
“=5and letV = Lg(%*3). Then for all s2 T nZ(G) and all eigenvalues ~ 2 k of s onV
we have

dim(Vs(~)) 58:

In particular, dim(Vs(~)) < dim(V) Iodim(V) for all s 2 T nZ(G) and all eigenvalues
~2k ofsonV.

Proof. First, we consider the weight 1; 2 X(T) and its associated irreducible kG-module
Las(Y3). We have seen in Subsection 2.3.3 that Lg(!3) is also a simple kG-module and, as a
kG-module, it is isomorphic to Ls(*3), where ¥3 2 X(T). Moreover, by Lemma 2.3.10, for
all s2 TnZ(G) and all eigenvalues ~ 2 k of s, we have

dim((Le(¥s))s(~))  _max fdim((Le(ts))s( ))] 2k g:

Secondly, let H = Sp(W;a), where a is the nondegenerate alternating bilinear form on
W given by a(wy;w,) = Q(wy +w,) + Q(w;) + Q(w,) for all wy;w, 2 W. Note that H is a
simple simply connected linear algebraic group of type Cs. Let Ty denote the maximal torus
in H obtained by intersecting the set of diagonal matrices in SL(W) with H. Now, consider
the irreducible kH-module Ly ('}') of highest weight 15, where 1} is the fundamental
dominant weight of H corresponding to the simple root . As p =2, G is a subgroup in
H, and, by [Sei87, Table 1], we have the following isomorphism of kG-modules:

Lu(15) jo= Lo(13):
In particular, for all s 2 T nZ(G) and all eigenvalues 2 k of s on Lg(!3), we have

dim((Lc(?3))s( )) max )fdim((LH(!?))sH( )] w2k

SH2TH nZ(H
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and, as  max Fdim((Lu(* s, (1) ] w 2 kg 58, by Proposition 4.2.22, we

sy2TynZ(H)
determine that dim((Lg(3))s( )) 58 for all s 2 T nZ(G) and all eigenvalues 2 k
of son Lg(!3). This gives dim(Vs(~)) 58 for all s 2 T nZ(G) and all eigenvalues ~ 2 k
ofsonV. P
In conclusion, we have shown that dim(Vs(~)) 58 < dim(V) dim(V) for all s 2
T nZ(G) and all eigenvalues ~2 k of son V. O

We conclude this subsection by noting that Propositions 6.2.8 through 6.2.11 complete
the proofs of Theorems 6.2.1 and 6.2.2, as they cover all the particular kG-modules we had
to consider, i.e. all the irreducible kG-modules L(™) with p-restricted dominant highest
weight ~ listed in Table 2.7.5.

6.3 Eigenspace dimensions for unipotent elements

This section is dedicated to the proofs of the following two theorems, analogs of Theorems
6.2.1 and 6.2.2 in the case of the unipotent elements. Similar to the semisimple case, the
proofs will be given in a series of results, each treating one of the candidate-modules. In

Subsection 6.3.1, we determine Jmax dim(Vy(1)), see Remark 6.1.1, where V belongs
u2Gynfig

to one of the families of modules, i.e. V is an irreducible kG-module Lg( ) with 2
f1,;21,;1,0. We complete the proofs of these two results in Subsection 6.3.2, where

we establish max dim(Vy(1)) for the irreducible kG-modules L;(™) with p-restricted
u2Gynflg

dominant weight ~ listed in Table 2.7.5.

Theorem 6.3.1. Let k be an algebraically closed field of characteristicp 0 and let G be a
simple simply connected linear algebraic group of type D, © 4. Let T be a fixed maximal
torus in G and let V. = Lg(7), where either ~ 2 FP-, or ~ is listed in Table 2:7:5. Then
there exist non-identity unipotent elements u 2 G for which

dim(Vu(1)) dim(V) pdim—(\/)
if and only if “ and ~ appear in the following list:
(1) © 4and " =y
(2 “=5andV = Lg(* 1).

Theorem 6.3.2. Let k be an algebraically closed field of characteristic p 0 and let G be
a simple simply connected linear algebraic group of type D, * 4. Let T and V be as in

Theorem 6:3:1. Then the value of max dim(Vy(1)) is given in the table below:
u2Gynflg
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\Y Char. Rank max dim(Vy(1))
u2Gynflg
Lo(*1) p 0 4 27 2
p &2 ‘4 22 5°+6
YL (¥
Le(*2) p=2 T4 |27 5°+6 gcd(2)")
p&2andp-* © 4 22 3°+1
"Le(24) p&2andpj | - 4 27 3°
Lo (; + £)) p 0 =4 34 6
YL (%3) p=2 ‘=5 60
2o (F 1) p 0 5 © 9 3 273

Table 6.3.1: The value of max dim(Vy(1)).
u2Gunflg

In particular, for each V in Tage 6.3.1 labeled as YV, respectively as ?V with *
have that dim(V,(1)) < dim(V)

6, we
dim(V) for all non-identity unipotent elements u 2 G.

6.3.1 The families of modules

Before we begin, we recall that over fields of characteristic p & 2, the Jordan normal form
M

Jnion W of a unipotent element u 2 G completely determines the unipotent conjugacy
i=1
class of u in G, unless n; is even for all i, in which case there exist two classes corresponding
to that Jordan form. Thus, when the field k has characteristic p & 2, we fix the following

hypothesis on unipotent elements u 2 G:

(YHy) : every u 2 G, n f1g has Jordan normal form on W given by Jn; where
i=1
>
niri =2%% r; lisevenforallevenn;; 2 1 ni>n,> >n, 1
i=1
and n; > 1:

Lemma 6.3.3. Let k be an algebraically closed field of characteristic p & 2 and let V =
Ls(Y;). Then for all non-identity unipotent elements u 2 G we have

dim(Vy(1)) 2¢ 2
where equality holds if and only if the Jordan form of u on W is one of J2 JZ “ and
NN LS
In partiﬁular, there exist non-identity unipotent elements u 2 G for which dim(V,(1))
dim(V) dim(V).

Proof. To begin, we note that V = W as kG-modules. Now, let u be a unipotent element
of G as in hypothesis (YH). Let uy denote the action of u on W. Then:
1)ri:

dim(Vu(1)) = dim(Wy,, (1)) = (6.4)



Assume that dim(Vy(1)) 2° 2. Then, by (6.4), it follows that

X
2 (ni  r; (6.5)
i=1
and, in particular, that2 (n; 1)r;y n; 1, hence3 nj.
XX
If n; = 3, then by (6.5), we have r; =1 and (ni ri=0,hence2 m. Since * 4,
i=2
we deduce that m=2,n, =1and r, =2° 3. Thus, u has Jordan form J;  J2 3on W.
Conversely, let u be a unipotent element of G whose Jordan form on W is J;  JZ° 2. Then,
by (6.4), we have dim(V,(1)) =2° 2.
XX
Similarly, if n; = 2, then ry is even and, by (6.5), it follows thatr; =2and (n; 1)rj =

i=2
0. We argue as before to deduce that the Jordan form of u on W is 32 JZ “. Conversely,
let u be a unipotent element of G whose Jordan form on W is J2 JZ° *. Then, by (6.4),
we have dim(Vy(1)) =2¢ 2.

We conclude that dim(Vy(1)) 2° 2 for all non-identity unipotent elements u 2 G.
Moreover, we have shown that equality holds if and only if the Jordan form of u on W is
one of 33 JZ “and J; JZ 3. Lastly, let u be such an element g§ G. Then, since the
inequality ' 2° 2 holds for all © 4.4t follows that 2 2 2 ~ 2“forall * 4 and,
consequently, dim(Vy(1)) dim(V) dim(V). ]

Lemma 6.3.4. Let k be an algebraically closed field of characteristic p = 2 and let V =
Ls(Y1). Then for all non-identity unipotent elements u 2 G we have

dim(Vy(1)) 2¢ 2

where equality holds if and only if the Jordan form of uon W is J2 JZ *, i.e. the Hesselink
normal form of u is one of (23;13" *) and (13" *;22).

In partigular, there exist non-identity unipotent elements u 2 G for which dim(V,(1))
dim(v) = dim(v).

Proof. First, we note that V = W as kG-modules. Secondly, as p = 2, we have that G <
Sp(W; a), where a is the nondegenerate alternating bilinear form on W given by a(wy;w;) =
Q(wy +w,) + Q(wy) + Q(wy) for all wy;w, 2 W. Thus, in particular, we have u 2 Sp(W; a)
and, by Lemma 4.3.3, we determine that dim(Vy(1)) 2° 1 for all non-identity unipotent
elements u 2 G.

Let u 2 Sp(W; a) be a unipotent element whose Jordan formon W is J, JZ 2. Then the
Hesselink normal form of u is (13" %;2;) and, by Proposition 2.9.20, we deduce that u 2 G.
Consequently, by Corollary 4.3.4, we determine dim(Vy(1)) 2° 2 for all non-identity
unipotent elements u 2 G.

Now, let u 2 Sp(W;a) be a unipotent element whose Jordan form on W is J3  JZ *.
Then the Hesselink normal form of u is one of (23;13" %) and (13" %;22). In both cases we
use Proposition 2.9.20 to determine that u 2 G. We conclude, by Corollary 4.3.4, that
dim(Vy(1)) 2°¢ 2 for all non-identity unipotent elements u 2 G, where equality holds if
and only if the Jordan form of uon W is 32 JZ" *.
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Lastly, as in the proof of Lemma 6.3.3, there exist non-identity unipotent elements u 2 G,
for example,those whose Jordan form on W is given by J2 JZ * for which dim(Vy(1))
dim(V) dim(V). O

Proposition 6.3.5. Let k be an algebraically closed field of characteristic p & 2 and let
V = Lg(1,). Then for all non-identity unipotent elements u 2 G we have

dim(Vy(1)) 22 5°+6;

where equality holds if and only if the Jordan form g u on W is J2 34
In particular, we have dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. First, note that, by Lemma 2.8.4, as p & 2, we have the following isomorphism of
kG-modules: V = ~2(W). Now, let u be a unipotent element of G as in hypothesis (YHy,).
As r; is even for all even n;, it follows that the Jordan form of u on W consists of at least
two blocks. We first consider the case when exactly one of these blocks, Jy,, is nontrivial.
Then the Jordan form of u on W is Jy, Jf‘ M where, since r; = 1, n; is odd, thus
3 n 2° 1. Wewrite W =W; W,, where dim(W;) = n; and u acts as J,, on Wy,
and dim(W,) =2° n; and u acts trivially on W,. Then, as k[u]-modules, we have

=N (W1)  (Wp Wo)  N(Wy)

and so
dim(Vy(2)) = dim(("?(W1))u(1)) + dim((W1  Wa2)u(1)) + dim((M*(W2))u(1)):  (6.6)
Jn k
Now, by Lemma 2.9.4, as p & 2, we have dim(("“*(W1)).(1)) = % = n12 L and,

moreover, as u acts as J,, JZ " onW; W,, we also have dim((W; W), (1)) =2° n,.
Lastly, as u acts trivially on WS, it also acts trivially on ~2(W,), and so dim(("~?(W,))u(1)) =
2 ng 1@ ny)

5 . It follows that:

Ny (2° n. D@ ny)

2

dim(V, (1)) = +2° N+

42 4 +ni+2 1

2
_ ge2 5‘+6+n§ 4°ny +12° 13

2
One checks that the inequality
n? 4'n;+12¢ 13<0 (6.7)
c p#. c p# ‘ : c
Eglds forall ny 2 (2 D (2° 3)2+4; 2+ (2 +4) and all 1. Since 2

2 3)2+4<2° (2° 3)2 =3 andsince 2+ (2° 3)2+4>2° 1, it follows
that, in particular, Inequality (6.7) holds forall 3 n; 2 1andall * 4. Therefore,
dim(Vy(1)) <22 5°+6 for all u 2 G unipotent with Jordan form J,,, J% ™ on W.
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We now consider the second case, when the Jordan form of u on W admits at least two
nontrivial blocks. Then2 n; 2° 3. We write W = W,; W,, where dim(W,) = n;
M

and u acts as Jn, on Wy, and dim(W,) = 2° n; and u acts as J[* * Jion W,

i=2
Now, by (6.6), in order to determine dim(Vu(l)) we only need to know dim((’\z(Wf))u(l)),
dlm((W1 Wz)u(l)) and dlm((’\z(Wz)) (2)). jAs | acts as a single Jordan block on Wf, by

+
Lemma 2.9.4, we have dlm((’\z(Wl)) ) = 71 =M , where = 0 if ny is even, or
= if ny is odd. Now, since u acts as (Jn n n n) ' on , We

1 if ny is odd. Now, si Jn, It Jn, Jn)oOnW, W,
i=2
again use Lemma 2.9.4 to deduce: I
. 0 0 X .

dim((W; W,)u1)=(r1 I)n + niri =2 nq: (6.8)

i=2

Furthermore, since the Jordan form of u on W admits at least two nontrivial blocks, it follows
that u acts nontrivially on WZ0 and so, by Proposition 3.3.4, we have dim((’\z(Wzo))u(l))
@2 n. 12 2 n 1D+

2 : : :
, Where equality holds if and only if u acts on W2° as one of

2
J2and J, JZ ™ 2 However, we note that u cannot act on W, as J2, since if it did, then u
would act on W as J,- 4 J2, which contradicts the fact that even sized Jordan blocks occur

[ 2 [
with even multiplicity. Therefore dim((A2(W.))u(1)) = &1t 2(2 N D+2

and only if u acts on W, as J, JZ ™ 2. Now, by (6.6) and keeping in mind that 0,
we have:

+ ‘ 2 ‘ +

dimve) Mmoo e & M D 2(2 o 1)+2

_4‘2 4‘n1+n%+2n1 2+ 4 +

- 2

42 4'ng+n+2n; 2°+4
2
—22 gape AT +22n1+8‘ 8
:252 5‘+6+(nl 2)(nl+4 4)

2

Since2 n; 2° 3, it follows that (n; 2)(ny+4 4°) Oforall © 4, and thus
dim(Vy(1)) 2° 5°“+6forall ©* 4 and all unipotent elements u of G whose Jordan
form on W admits at least two nontrivial blocks. Moreover, equalit;z/ holds if and only if

. 2° 1 2° 1)+2
(m D(u+s 49=0, =0anddim(PWy), )= &M DFE
hence, if and only if n; = 2and u actsas J, J> ™ 2on W,. We deduce that, in this case,

u has Jordan form J2 J% “on W.
Having considered all possible cases, we conclude that dim(V,(1)) 2‘¢ 5°+6 for
all non-identity unipotent elements u 2 G. Moreover, we have shown that equality holds
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if and only if the Jordan form of u on W is J2 JZ° 4. In particular, as tl}g mequallty

0 <142 47°+36 holds for all © 4, we have thag,2‘2 5°+6 <22 * “ for
all 4 and, consequently, dim(Vy(1)) < dim(V) dim(V) for all non- |dent|ty unipotent
elements u 2 G. ]

Proposition 6.3.6. Let k be an algebraically closed field of characteristic p = 2 and let
V' =A~2(W).

(1) Then, for all non-identity unipotent elements u 2 G we have
dim(V (1)) 22 5°+6;

where equality holds if and only if the Jordan form of u on W is J2 JZ 4 i.e. the
Hesselink normal form is one of (2%;12° %) and (13 *;22).

(2) If u 2 G is a non-identity unipotent element whose Jordan form on W is di [erknt than
J2 JZ 4 then
dim(V (1)) 2 5°+4;

where equality holds if and only if * = 4 and the Hesselink normal form of u is one of
(23) and (27).

Proof. (1) First, we note that, as p = 2, we have that G < Sp(W;a), where a is the
nondegenerate alternating bilinear form on W that satisfies a(w; w,) = Q(wy+w,)+Q(wq)+
Q(wy) for all wy; w, 2 W. Now, by Proposition 4.3.7, it follows that dim(VLf(l)) 22 342
for all non-identity unipotent elements u 2 Sp(W; a), therefore dim(VLf(l)) 22 3+ 2 for
all non-identity unipotent elements u 2 G. However, we have seen in the second paragraph
of the proof of Lemma 6.3.4 that if v 2 Sp(W; a) is unipotent with Jordan form J, JZ" 2
on W, then v 2 G. Thus, by Lemma 4.3.9, we deduce that dim(V, (1)) 22 5+ 6 for
all non-identity unipotent elements u 2 G. Let v 2 Sp(W;a) be such that its Jordan form
on W is J2 JZ “ Then the Hesselink normal form of v is either (13 %;22) or (23;13" 2).
In both cases we apply Proposition 2.9.20 to determine that v 2 G. Therefore, by Lemma
4.3.9, it follows that dim(V (1)) 2> 5°+6 for all non-identity unipotent elements u 2 G,
where equality holds if and only if the Jordan form of u on W is J3 JZ° 4.

(2) We now assume that u 2 G, n flg, has Jordan form on W dilerent than J2 JZ “
As p = 2, we have that, in particular, u 2 Sp(W; a) and thus, by Proposition 4.3.11, it follows
that dim(VLf(l)) 22 5+ 4. Moreover, by the same result, we have that dim(VVO(l)) =
22 5°+ 4 for v 2 Sp(W; a) is unipotent, if and only if * = 4 and the Jordan form of v on
W is one of J and J3  J2.

Let v 2 Sp(W;a) be unipotent with Jordan form J3 on W. Then the Hesselink normal
form of v is either (23) or (21). In both cases we apply Proposition 2.9.20 to deduce that
v 2 G. On the other hand, let v’ 2 Sp(W; a) be unipotent with Jordan form J3 JZonWw.
Then the Hesselink normal form of v’ is (12; 23), thus v’ 2 G, by Proposition 2.9.20.

By Proposition 4.3.11, we conclude that dim(VLf(l)) 22 5° + 4 for all non-identity
unipotent elements u 2 G whose Jordan form on W is di [erent than J2 JZ° . Furthermore,
equality holds if and only if the Hesselink normal form of u is one of (23) and 2. ]
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Corollary 6.3.7. Let k be an algebraically closed field of characteristic p = 2. Assume that
2-°andletV = Lg(Y,). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) 22 5°+5;

where equality holds if and only if the Jordan form of uon W is 32 JZ" 4, i.e. the Hesselink
normal form of u is one of (23;15" %) and (15" *; 22

In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. Set V' = ~2(W) and note that, by Lemma 2.8.5, since p = 2 and p - “, we have
V' =V  Lg(0), as kG-modules. Therefore dim(Vu(1)) = dim(Vlj(l)) 1. We apply
Proposition 6.3.6.(1), to deduce that dim(V,(1)) 22 5°+5 for all non-identity unipotent
elements u 2 G, and that equality holds if and only if dim(V°(l)) =2‘?2 5°+6, hence, if
and only if the Jordan form of u on W is J2 JZ" “. Lastly, we note that aéthe inequality

0 < 14‘?2 47+37holdsforall ¢ 4, we have that 2‘2 5'+5 <22 ¢ ¢ 1for
all 4 and, consequently, dim(Vy(1)) < dim(V) dim(V) for all non-ldentlty unipotent
elements u 2 G. ]

Proposition 6.3.8. Let k be an algebraically closed field of characteristic p = 2. Assume
that 2j “ and let V = Lg(1,). Then for all non-identity unipotent elements u 2 G we have

dim(Vy(1)) 2% 5°+4:
Furthermore, we have equality if and only if one of the following holds:
(1) © =4 and the Hesselink normal form of u is (23 )

(2) * 4 and the Jordan form of uon W is J3 J# *, i.e. the Hesselink normal form of
u is one of (23;13" %) and (13" *;22).

In particular, we have dim(V,(1)) < dim(V) pdim(V) for all non-identity unipotent
elements u 2 G.

Proof. To begin, we note that, as p = 2, we have G < Sp(W; a), where a is the nondegenerate
alternating bilinear form on W that satisfies a(wy; w;) = Q(w; + wy) + Q(wy) + Q(w,) for
all wi;w, 2 W. Set V' = ~2(W) and let u 2 G be a non-identity unipotent element. Then,
in particular, u is a unipotent element of Sp(W;a). Let u’ denote the action of u on V' and
let uy denote the action of u on V. Then, by Theorem 4.3.6, we know we can determine the
Jordan form of uy from that of u'.

Let (n3;:::;n{2n;01;2nfm) be the Hesselink normal form of u, where m 1,
>
t Oandr; 1foralll i m. Moreover, as u 2 G, we have that r; is even. Set
i=t+1
= 2(ged(ng; i1 N Newgs 2005 Nim)).
First, assume that = 0. Then, by Theorem 4.3.6.(b), as 2 j “, it follows that

dim(Vy(1)) = dim(VLf(l)) 2. Now, by Proposition 6.3.6.(1), we deduce that dim(V(1))
22 5°+4 for all non-identity unipotent elements u 2 G, and that equality holds if and only
if dim(V,,(1)) =22 5+ 6, hence, if and only if the Jordan form of uon W is J2 JZ 4
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We can now assume that > 0. Then, by Theorem 4.3.6.(c), it follows that dim(V,(1))
dim(V,(1)). As > 0, the Jordan form of u on W is dilerent than J2 JZ * and thus, by
Proposition 6.3.6.(2), we have dim(V (1)) 22 5°+ 4, hence dim(V, (1)) 22 5°+4
for all non-identity unipotent elements u 2 G. Now, as > 0, by Proposition 6.3.6.(2), we
have that dim(VJ(l)) =22 5°+4ifand only if * =4 and the Hesselink normal form of u
is (23). In this case, we have =1, thus 2 j 2— and, by Theorem 4.3.6.(c.1), it follows that
dim(Vu(1)) = dim(V, (1)) =22 5°+4.

In conclusion, we have shown that dim(V,(1)) 22 5‘+4 for all non-identity unipotent

elements u 2 G. In particular, as the mequalty 0 < 142 47° + 38 holds for all © 4,
we have that 22 5 +4 <22 ¢ 2 “ 2forall © 4, and, consequently,
dim(Vy(1)) <dim(V) dim(V) for all non-ldentlty unipotent elements u 2 G. O

We now consider the irreducible kG-module Lg(2!;). We have seen in Lemma 2.8.4 that
Lc(21,) is a composition factor of the kG-module S?2(W). As for groups of type B-, see
Subsection 5.3, we first determine dim((S?(W))u(1)), where u 2 G is a unipotent element,
and then apply Theorem 5.3.5 to deduce dim(Lg(271)u(1)).

Proposition 6.3.9. Let k be an algebraically closed field of characteristic p & 2 and let
V' = $2(W). Then for all non-identity unipotent elements u 2 G we have

dim(V (1)) 22 3°+2;

where equality holds if and only if the Jordan form of u on W is one of J; JZ * and

2 2° 4
SRS

Proof. Let u be a unipotent element of G as in hypothesis (YHy). Since r; is even for all even
n;, it follows that the Jordan form of u on W admits at least two blocks. We first consider
the case when exactly one of these blocks, Jn,, is nontrivial. Then u has Jordan form
Jn, JZ ™ wherengisodd, sincer; =1,thus3 n; 2° 1. Wewrite W =W,; W,
where dim(W;) = n; and u acts as J,, on Wy, and dim(W;) = 2° n; and u acts trivially
on W,. Then, as k[u]-modules, we have

Vi=S2(Wi) Wy W) SE(W,)
and so

dim(V, (1)) = dim((SA(W1))u(1)) + dim((W1  W,)u(1)) + dim((S*(W2))u(1)):  (6.9)
Jn K
Now, since p & 2, we apply Lemma 2.9.4, which gives dim((S?>(W1))u(1)) = n; L

+1 2
n ‘ :
! and, moreover, as u acts as J,, JZ "™ on W; W,, we also have dim((W,

W,)u(1)) =2¢ n,. Lastly, as u acts trivially on W,, it also acts trivially on S?(W,), and so
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2 n)@° np+1)

dim((S2(W,))u(1)) = . It follows that:

2
. +1 2° 2° +1
dim(Va(D) = L= 420 ng+ ( ”1)(2 Mt 1)
42 4'np+ni+6° 2n;+1
B 2
c c (6'10)
_ ge2 3‘+2+n§ 4n, §n1+12 3
(ng 3)(n +1 4%,

=2 342+

2

Since3 n; 2° 1, wehave (ny 3)(ny+1 4°) Oforall © 4, and therefore
dim(V,(1)) 22 3°+ 2 for all unipotent elements u of G with Jordan form J,, J2" ™.
Moreover, equality holds if and only if (n; 3)(n; +1 4°) =0, hence, if and only if the
Jordan form of uon W is J;  JZ 3.
We now consider the second case when the Jordan form of u on W admits at least two
nontrivial blocks. Then 2 n; 2° 3. We write W = W, W, where dim(W,;) = n;
(\Vg

and u acts as Jn, on Wy, and dim(W,) = 2° n; and u acts as J[* * JIon W,

i=2
Now, by (6.9), in order to determine dim(VLf(l)), we only need to know dim((Sz(Wf))u(l)),
dim((W,  W,)u(1)) and dim((S2(W,))u(1)). As u acts as a sjnglg Jordan block on W, by

. n n

Lemma 2.9.4, as p & 2, we have dlm((SZ(Wf))u(l)) =m 71 = 12 , Where =0
M

if ny is even, or = 1if ny is odd. Since u acts as (J,, Jn,)™ ! Jn, Jn)" on

i=2
W, W,, by (6.8), we have dim((W; W,),(1)) =2¢ n;. Furthermore, since the Jordan
form of u on W admits at least two nontrivial blocks, it follows that u acts nontrivially on

Wg. Thus, by Proposition 3.3.5, it follows that dim((Sz(W;))u(l)) (" 21)(2 n1)1
where equality holds if and only if u acts as J, J> ™ 2on W,. Thus, by (6.9), we have:
2° ng 1D@° )

2

dim(v. (1)) ”12 +2° g+
42 4*'ng +nj +2°
2

=2 342+

nZ 4‘n,+8° 4
2

nZ2 4‘n,+8° 4

= 0 and, consequently, dim(VLf(l)) 22

2
3¢+ 2. Now, equality holds if and only if dim((S*(W.))u(1)) = & 3)2(2 2)

and only ifuactsas J, JZ° “on W,. It follows that, in this case, the Jordan form of u on
W is J2 JZ “ We now assume that n; 3. One checks that the inequality

If np =2, then =0,

, hence if

n? 4'n;+8 4 <0 (6.11)
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holdsdor all np 2 (2° I04‘2 8“+4+ ; 2+ I04‘2 8“+4+ )and all © 2. Since

2° 42 8°+4+ <3,as5 <4 forall * 2,andsince 2+ 42 8 +4+ >
2¢ 3, it follows that, in particular, Inequality (6.11) holds for all 3 n; 2° 3 and all
4. Therefore dim(V, (1)) <22 3¢+ 2 for all unipotent elements u of G whose Jordan
form on W admits at least two nontrivial blocks and n; 3.

Having considered all possible cases, we conclude that dim(VLf(l)) 22 3“+ 2 for all
non-identity unipotent elements u 2 G. Moreover, we have shown that equality holds if and
only if the Jordan form of u on W is one of J;  J?" *and J3 JZ * u

Corollary 6.3.10. Let k be an algebraically closed field of characteristic p & 2. Assume
p-°“andletV = Lg(2Y;). Then for all non-identity unipotent elements u 2 G we have

dim(Vy(1)) 22 3°+1;

where equality holds if and only if the Jordan form of u on W is one of J; JZ * and
NEEEN LS

In particular, we have dim(V,(1)) < dim(V) IDdim(V) for all non-identity unipotent
elements u 2 G.

Proof. To begin, set V' = S2(W). Asp & 2 and p - *, by Lemma 2.8.4, it follows that
V' =V  Lg(0), as kG-modules, and therefore dim(V,(1)) = dim(Vu°(1)) 1. We now
apply Proposition 6.3.9, to see that dim(V (1)) 22 3+ 1 for all non-identity unipotent
elements u 2 G. Moreover, we have equality if and only if dim(VLf(l)) =22 3“+2, hence,
if and only if the Jordan form of u on W is one of J;  JZ" 3 and NN ERS

Lastly, asl:'r,he inequality 142 17+5 > 0 holds for all * 4, it follows that 2“2 p3 +1<
224 ¢ 22+ 1forall © 4, and, consequently, dlm(V (1) <dim(V) dim(V)
for all non-ldentlty unipotent elements u 2 G. ]

We will require the following result in the proof of Corollary 6.3.12.

Lemma 6.3.11. Let k be an algebraically closed field of characteristic p & 2 and let V' =
S?(W). Let u 2 G be a non-identity unipotent element whose Jordan form on W is di Cerent
than J; JZ %and JZ JZ “. Then

dim(v_ (1)) <2 3~

Proof. Let u be a unipotent element of G as in hypothesis (YH,). As r; is even for all even
n;, it follows that the Jordan form of u on W admits at least two blocks. We first consider
the case when exactly one of these blocks, Jy,, is nontrivial. We remark that since r; =1, n;
is odd and, since the Jordan form of u is dilerent than J;  J? %, we have5 n; 2° 1.
Now, by (6.10), it follows that

42 4°ng +n? +6° 2n1+1:2‘2 3‘+n§ 4°ng 2N +12°+1
2 2

dim(V,(1)) =
One checks that the inequality
n? 4'n; 2n;+12°+1<0
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hgds foralln, 2 (2° +1 p‘2 B 2+ 1+ 2p 2y and all * 2. Since 2° +1+

2 2°>2° land2°+1 2 2°<5b,as4 <2 forall © 4, it follows that,
in particular, the inequality holds for al5 n; 2 landall © 4. We deduce that
dim(Vlj(l)) < 22 3 for all unipotent elements u of G with Jordan form J,, JZ ™ on
W, where5 n; 2° 1.

We now consider the second case when the Jordan form of u on W admits at least two
nontrivial blocks. Then2 n; 2° 3 and, once again, we distinguish two cases.

First, if n, = 2, then the Jordan form of u on W is Jj*  JZ?° 2" where, by hypothesis,
ri 4 is even. For the moment, assume that “* = 4. Then the Jordan form of u on W
is J7. Using Lemma 2.9.4, as p & 2, one determines that dim(V,(1)) = 16 < 20. We
can now assume that * 5 and we write W = W; W,, where dim(W;) = 4 and u
acts as JZ on Wy, and dim(W,) = 2° 4 and u acts as J;* 2 JZ 2" on W,. Now, by
Proposition 3.3.5, we have dim((S?(W,)),(1)) 6 and dlm((Sz(Wz))u(l)) 22 9° + 10,
respectively. Furthermore, as u acts on Wy, W, as (J,  Jp)? 4 (3,  J)* *m, by
Lemma 2.9.4, we have dim((W; W5)u,(1)) =2(2r; 4)+4° 4rp =4 8. We use (6.9) to
determine that dim(VLf(l)) 22 5°+ 8 and therefore, as 8 < 2 for all © 5, we showed
that dim(VLf(l)) < 22 3* for all unipotent elements u of G whose Jordan form on W is
Jiv o JF % wherer; 4.

Secondly, if n; 3, then we proceed as in the proof of Proposition 6.3.9, see the second
to last paragraph, and write W = W, W, where dim(W,;) = n; and u acts as Jn, on

(\Vg

W,, and dim(W,) = 2 n; and u acts as Ji* * J'on W,. By Lemma 2.9.4, we
i=2
=0if nyiseven,or = 1ifngisodd, and

have dim((S2(Wp))u(D) = =

that dim((Wf Wzo)u(l)) = 2° n;. Moreover, as n; 3 and as r; is even for even n;,
it follows that u does not act on W, as J, J? * and so, by Proposition 3.3.5, we have

dim((SZ(Wg))u(l)) < (° m DHE nl). Therefore, by (6.9), it follows that

2
2° 1)(2*
n, + ( ny 2)( n;)
42 4*ng +nj +2°
B 2
— 92 g n? 4‘n; + 8
2
One checks that the inequality
nf 4'n+8 <0 (6.12)
P—n—— P

Eplds for all n; 2 (2° 42 8+ ; 2+ 42 8“+ )and all * 3. Since 2° +

42 8+ >2° 3andsince 2° 42 8+ <3,as9 <4 forall“ 4, itfollows
that, in particular, Inequality (6.12) holds forall 3 n; 2° 3andall © 4. Therefore
dim(VLf(l)) < 22 3 for all unipotent elements u of G whose Jordan form on W admits at
least two nontrivial blocks and n; 3.
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Having considered all possible cases, we conclude that dim(VLf(l)) <22 3¢ for all non-
identity unipotent elements u 2 G whose Jordan form on W is di[efent than J;  J?* 3 and
Jz J# 4 O

Corollary 6.3.12. Let k be an algebraically closed field of characteristic p & 2. Assume
pj“andletV =Lg(2Y;). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) 2% 3%

where equality holds if and only if the Jordan form of u on W is one of J; JZ 3 and
NEEEN LS P

In particular, we have dim(V,(1)) < dim(V) dim(V) for all non-identity unipotent
elements u 2 G.

Proof. To begin, set V' = S2(W) and let u be a unipotent element of G as in hypothesis
(YHy). If we denote by u’, respectively by uy, the action of u on V', respectively on V, then,
as p & 2, using Theorem 5.3.5 we can determine the Jordan form of uy from that of u'.

Set = IO(gcd(nl;::"nm)) If = 0, we apply Theorem 5.3.5.(b) to deduce that
dim(Vy(1)) = dim(V,, (1)) 2. By Proposition 6.3.9, it follows that dim(Vy(1)) 22 3 for
all non-identity unipotent elements u 2 G, where equality holds if and only if dim(VLf(l)) =
22 3* + 2, hence, if and only if the Jordan form of u on W is one of J; JZ 2 and
J2 JF 4

If >0, we apply Theorem 5.3.5.(c) to deduce that dim(V,(1)) = dim(V, (1)) Now
since > 0, it follows that the Jordan form of u on W is dilerknt than J; Jl 3 and
J2  J¥ “* We use Lemma 6.3.11 to deduce that d|m(Vu(1)) <22 3*and, consequently,
dim(Vy(1)) <22 3¢ for all unipotent elements u 2 G with > 0.

In conclusion, we have shown that dim(V,(1)) 22 3¢ for all non-identity unipotent
elements u 2 G, and that equality holds if and only if the Jordan form of u on W is one of
J; J¥ %andJZ JZ Y In partlcular since {ge lnequallty 0 <142 17*+6 holds for all
“ 4, it follows that 22 3 <2+ 2 22+ 2forall © 4 and, consequently,
dim(Vy(1)) < dim(V) dim(V) for all non-identity unipotent elements u 2 G. O

To conclude this subsection, we remark that Lemmas 6.3.3 and 6.3.4, Propositions 6.3.5
and 6.3.8, and Corollaries 6.3.7, 6.3.10 and 6.3.12 give the proof of Theorems 6.3.1 and
6.3.2 for the families of kG-modules corresponding to p-restricted dominant weights 2
f1,;1,;21,9. Therefore, in view of Remark 6.1.1, they prove Theorems 6.3.1 and 6.3.2 for
the families of kG-modules with p-restricted dominant weights ~ 2 FB-.

6.3.2 The particular modules

As previously mentioned, this subsection is devoted to the proofs of Theorems 6.3.1 and 6.3.2
for the particular kG-modules, i.e. the irreducible kG-modules L(™) with corresponding
p-restricted dominant highest weight ~ listed in Table 2.7.5. For each such kG-module V we

will establish max dim(Vy(1)), see Propositions 6.3.13, 6.3.14, 6.3.26 and 6.3.27. In order
u2Gynflg

to achieve this goal, we will use the same inductive algorithm we used for groups of type A-,
C. and B-. For a description of this algorithm, we refer the reader to Subsection 2.4.4.
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Now, let & 2 G be a unipotent element. We write o = x-(c-), where the product

~2~+

respects the total order on ~, see Section 1.3, anqe- 2 k for all ~2 ~*. To u we associate

the subset Sy, ~* with the property that o = X-(c-), where the product respects
~2Sy

and c. 2 k forall ~2S,. Similarly, tqthe unipotent element u 2 G we associate the subset

Sy * with the property that u = x (¢ ), where the product respects the total order

2Sy
on andc 2k forall 28S,.

When p & 2, Theorem 2.9.2 and Lemma 2.9.1 tell us that unipotent conjugacy classes in
G are completely determined by the Jordan form, Jni, on W of a class representative,

unless n; is even for all i, in which case there exlis%s two classes corresponding to that
Jordan form. Similarly, when p = 2, we have seen that unipotent conjugacy classes in G
are completely determined by the Hesselink normal form, (ng;:::;n;!; ntrijfl; iongn), of a
class representative, see Theorem 2.9.11, Proposition 2.9.20 and Lemma 2.9.1, unless n; is
even forall1l 1 mandt= m, in which case there exist two classes corresponding to
that Hesselink form.

We end this introductory part by recalling some notation from Section 2.4. Let P; be
the maximal parabolic subgroup of G corresponding to ™y = f~,;:::; ~g and let L, be a
Levi subgroup of P;. We have L, = Z(L1) [Lq;L1], where Z(L,) is a one-dimensional torus
and [Ly; L] is a simply connected linear algebraic group of type D- ; with maximal torus
T'=T\ [Ll, I—l]

We first consider the case of ©* = 4. In Table 6.3.2, respectively in Table 6.3.3, we list
all unipotent conjugacy classes in G when p & 2, respectively when p = 2, and we give a
representative for each class. Note that each chosen non-identity class representative u’ has
the property that uj | & 1.

[MKT21, Table 12][LS12, Subsection 3:3:2]

Class representative Jordan form
1 J8
X-,(1) 3 3
X, (D)X, (1) 3
X, (Dx-, (1) N
X5 ()X, (1) J; J?
X, (D)X, (D)X, (1) NN N
X, ()X, (1) 3 Jf
X, (D)X, (D)X (1) 3z
X, (DX, (D)X, (1) J;
X, (DX (D)X, (1) Js 33
X“l(1)X~2(1)X~3(1)X~1+~2+~4(1) JS JS
X~1(1)X~2(1)X~3(1)X*4(1) J7

Table 6.3.2: Unipotent class representatives in D4 when p & 2.
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