




Abstract
Let k be an algebraically closed field of characteristic p � 0, let G be a simple simply
connected linear algebraic group of rank ‘ � 1 over k and let V be a rational irreducible
tensor-indecomposable finite-dimensional kG-module. For g 2 G, let Vg(�) denote the
eigenspace corresponding to the eigenvalue � 2 k� of g on V . We set

�G(V ) = minfdim(V )� dim(Vg(�)) j g 2 G n Z(G); � 2 k�g:

In this thesis we will find all pairs (G; V ) with the property that �G(V ) �
p

dim(V ). This
problem is an extension of the classification result obtained by Guralnick and Saxl for the

condition �G(V ) � max

�
2;

p
dim(V )

2

�
. Moreover, for all the candidate pairs (G; V ) we had

to consider in our classification, we will determine the value of �G(V ).
Key words: Representation theory, algebraic groups, semisimple elements, unipotent elements.

Résumé
Soit k un corps algébriquement clos de caractéristique p � 0, soit G un groupe linéaire
algébrique simple simplement connexe de rang ‘ � 1 sur k et soit V un kG-module rationnel,
irréductible, tenseur-indécomposable de dimension finie. Pour g 2 G, on désigne par Vg(�)
l’espace propre correspondant à la valeur propre � 2 k� de g sur V . Nous définissons

�G(V ) = minfdim(V )� dim(Vg(�)) j g 2 G n Z(G); � 2 k�g:

Dans cette thèse, nous trouverons toutes les paires (G; V ) ayant la propriété que �G(V ) �p
dim(V ). Ce problème est une extension du résultat de classification obtenu par Guralnick

et Saxl pour la condition �G(V ) � max

�
2;

p
dim(V )

2

�
. De plus, pour toutes les paires

candidats (G; V ) que nous avons dû considérer dans notre classification, nous allons déterminer
la valeur de �G(V ).
Mots clés : Théorie des représentations, groupes algébriques, éléments semisimples, éléments
unipotents.
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Chapter 1

Introduction

The term algebraic group is believed to have first appeared in the late 1800s in the work of
Émile Picard on the Galois theory of linear differential equations, where the Galois groups he
was studying were in fact complex algebraic groups. The Galois theory of linear differential
equations was also the starting point for the work of Ellis Kolchin on algebraic groups in
[Kol48a] and [Kol48b]. Those results were taken and built upon by Armand Borel in his
fundamental paper Groupes lineaires algebriques of 1956, [Bor56], where he explores the
analogy between linear algebraic groups and Lie groups. This paper played an essential
role in Claude Chevalley’s classification of semisimple linear algebraic groups, which was
announced during the Séminaire sur la classification des groupes de Lie algébriques, 1956-
1958. This classification is one of the most crucial and important results in the theory
of algebraic groups, as it allowed for a lot of progress to be made on topics such as the
subgroup structure, conjugacy classes and representation theory of linear algebraic groups.
In this thesis we consider such a question in the representation theory of linear algebraic
groups.

Let k be an algebraically closed field of characteristic p � 0, let V be a finite-dimensional
k-vector space and let H be a group acting linearly, irreducibly and primitively on V . For
h 2 H denote by Vh(�) the eigenspace corresponding to the eigenvalue � 2 k� of h on V .
Set �H(V ) = minfdim(V ) � dim(Vh(�)) j h 2 H n Z(H) and � 2 k�g. In 1991, Gordeev,
[Gor91], set out to classify groups H acting linearly, irreducibly and primitively on a vector
space V (over a field of characteristic zero) that contain an element h for which �H(V )
is small when compared to dim(V ). The following year, Hall, Liebeck and Seitz, [HLS92,
Theorems 4 and 5], expanded on Gordeev’s result by working over algebraically closed fields
of arbitrary characteristic. In [HLS92, Theorem 5] they proved that, in the case of linear
algebraic groups, if H is classical, we have �H(V ) � n

8(2‘+1)
, where ‘ is the rank of H and V is

a faithful rational irreducible kH-module of dimension n; while, if H is not of classical type,
then �H(V ) >

p
n

12
. Now, with the lower-bounds for �H(V ) known, the following natural step

was to start the classification of pairs (H;V ) with bounded �H(V ) from above, in particular
the pairs (H; V ) with �H(V ) = 1 or �H(V ) = 2 have been of great interest, see for example
[KW82], [KM97] and [Ver99]. In 2001, Guralnick and Saxl classified irreducible subgroups
H of GL(V ), where V is a finite-dimensional k-vector space of dimension n > 1, which act
primitively and tensor-indecomposably on V and �H(V ) � maxf2;

p
n

2
g, see [GS03, Theorem

7.1 and 8.3].
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In this thesis we classify simple simply connected linear algebraic groups G and rational
irreducible tensor-indecomposable finite-dimensional kG-modules V for which

�G(V ) <
p

dim(V ):

We also determine the value of �G(V ) for all the aforementioned pairs (G; V ).

1.1 Statement of results
We begin this section by setting up the notation needed to state the main results of this
thesis, see Theorems 1.1.1 and 1.1.3. The theory will be expanded upon in Chapter 2. With
this, let k be an algebraically closed field of characteristic p � 0 and let G be a simple, simply
connected linear algebraic group of rank ‘ � 1. Let T be a maximal torus in G and let X(T )
be its rational character group. Let V be a nontrivial rational finite-dimensional kG-module
and, for g 2 G, let Vg(�) := fv 2 V j g � v = � � vg be the eigenspace corresponding to the
eigenvalue � 2 k� of g on V . We define

�G(V ) := minfdim(V )� dim(Vg(�)) j g 2 G n Z(G); � 2 k�g:

In Theorem 1.1.1 we classify pairs (G; V ), where V is a nontrivial rational irreducible
tensor-indecomposable finite-dimensional kG-module, for which �G(V ) �

p
dim(V ). The

result follows from Theorem 1.1.3, in which the value of �G(V ) for all candidate pairs (G; V )
is given.

Theorem 1.1.1. Let k be an algebraically closed field of characteristic p � 0 and let G be
a simple simply connected linear algebraic group of rank ‘ � 1. Let T be a maximal torus
in G and let X(T ) be its rational character group. Let � 2 X(T ) be a nonzero p-restricted
dominant weight and let V = LG(�). Then

�G(V ) �
p

dim(V )

if and only if G, ‘, � and p are featured in the following list:

(1) G = A‘, ‘ � 1, � 2 f!1; !‘g and p � 0;

(2) G = B‘, ‘ � 2, � = !1 and p � 0;

(3) G = C‘, ‘ � 2, � = !1 and p � 0;

(4) G = D‘, ‘ � 4, � = !1 and p � 0;

(5) G = A‘, ‘ � 3, � 2 f2!1; 2!‘g and p 6= 2;

(6) G = A‘, ‘ = 3; 4, � 2 f!2; !‘�1g and p � 0;

(7) G = A1, � 2 f3!1; 4!1g and p 6= 2; 3;

(8) G = C2, � = !2 and p � 0;

2



(9) G = D4, � 2 f!3; !4g and p � 0;

(10) G = B‘, ‘ = 3; 4, � = !‘ and p � 0;

(11) G = C‘, ‘ = 3; 4, � = !‘ and p = 2;

(12) G = D5, � 2 f!4; !5g and p � 0;

(13) G = G2, � = !1 and p � 0;

(14) G = G2, � = !2 and p = 3.

We compare our result with the result of Guralnick and Saxl, Theorem 8:3 of [GS03], for
the case of simple simply connected linear algebraic groups and their respective irreducible
tensor-indecomposable modules.

Theorem 1.1.2. Let k be an algebraically closed field of characteristic p � 0 and let G be
a simple, simply connected linear algebraic group of rank ‘ � 1. Let T be a maximal torus
in G and let X(T ) be its rational character group. Let � 2 X(T ) be a nonzero p-restricted
dominant weight and let V = LG(�). Then

maxf2;
p

dim(V )

2
g < �G(V ) �

p
dim(V )

if and only if G, ‘, � and p are featured in the following list:

(1) G = A3, � 2 f2!1; 2!‘g and p 6= 2;

(2) G = A‘, ‘ = 3; 4, � 2 f!2; !‘�1g and p � 0;

(3) G = C2, � = !2 and p � 0;

(4) G = B4, � = !‘ and p � 0;

(5) G = C4, � = !‘ and p = 2;

(6) G = D5, � 2 f!4; !5g and p � 0.

In Section 2.7 we determine the list of nontrivial rational irreducible tensor-indecomposable
kG-modules V which are candidates for the classification of Theorem 1.1.1. For classical
groups, we will group these modules into two classes: one class will contain the families of
kG-modules, while the other will consist of the particular kG-modules.

3



Theorem 1.1.3. Let k be an algebraically closed field of characteristic p � 0 and let G, T
and LG(�) be as in Theorem 1.1.1. Then, the value of �G(LG(�)) is given in the tables below:

Group � Characteristic Rank �G(LG(�))
p

dim(LG(�))

A‘

!1, !‘ p � 0 ‘ � 1 1
p
‘+ 1

2!1, 2!‘ p 6= 2 ‘ � 1 ‘
q

(‘+1)(‘+2)
2

!2, !‘�1 p � 0 ‘ � 3 ‘� 1
q

‘(‘+1)
2

!1 +!‘

p - ‘+ 1 ‘ � 2 2‘
p
‘2 + 2‘

p j ‘+ 1
‘ = 2 3

p
7

‘ � 3 2‘
p
‘2 + 2‘� 1

C‘

!1 p � 0 ‘ � 2 1
p

2‘

2!1 p 6= 2 ‘ � 2 2‘
p

2‘2 + ‘

!2 p � 0
‘ = 2 1

p
5� �p;2

‘ � 3 2‘� 2
p

2‘2 � ‘� 1� �p;‘

B‘

!1 p � 0 ‘ � 2 1
p

2‘+ 1� �p;2
2!1 p 6= 2 ‘ � 2 2‘

p
2‘2 + 3‘� �p;2‘+1

!2

p � 0 ‘ = 2 1
p

5� �p;2
p 6= 2

‘ � 3
2‘

p
2‘2 + ‘

p = 2 2‘� 2
p

2‘2 + ‘� 1� �‘;2

D‘

!1 p � 0 ‘ � 4 2
p

2‘

2!1 p 6= 2 ‘ � 4 4‘� 4
p

2‘2 + ‘� 1� �p;‘
!2 p � 0 ‘ � 4 4‘� 6

p
2‘2 � ‘� �p;2 gcd(2; ‘)

Table 1.1.1: The value of �G(LG(�)) for simple classical groups and their respective families
of modules.
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Group � Characteristic �G(LG(�))
p

dim(LG(�))

A1 m!1, 3 � m � 8 p = 0, or p > m m�
�
m
2

� p
m+ 1

A3 !1 + !2 p = 3 6 4

A5; A6; A7 !3, !‘�2 p � 0 (‘�2)(‘�1)
2

q
(‘�1)‘(‘+1)

6

C2

!1 + !2 p � 0 8� 2�p;5
p

16� 4�p;5
2!2 p 6= 2 4

p
14� �p;5

3!1 p 6= 2; 3 10
p

20

!1 + 2!2 p = 7 12
p

24
3!2 p = 7 9 5

2!1 + !2 p = 3 9 5

C3; : : : ; C8 !‘ p = 2 2‘�2
p

2‘

C3
!3 p 6= 2 4

p
14

!1 + !3 p = 2 20
p

48

C4
!3 p � 0 14� �p;3

p
48� 8�p;3

!4 p 6= 2 14� �p;3
p

42� �p;3
C5 !3 p = 2 26 10

B3
2!3 p 6= 2 14

p
35

!1 + !3 p � 0 20� 2�p;7
p

48� 8�p;7
B3; : : : ; B8 !‘ p � 0 2‘�2

p
2‘

D4

!3, !4 p � 0 2
p

8
!3 + !4

!1 + !3 p � 0 22� 2�p;2
p

56� 8�p;2
!1 + !4

D5 !3 p = 2 40 10

D5; : : : ; D9 !‘�1, !‘ p � 0 2‘�3
p

2‘�1

Table 1.1.2: The value of �G(LG(�)) for simple classical groups and their respective particular
modules.

Group � Characteristic �G(LG(�))
p

dim(LG(�))

G2
!1 p � 0 2

p
7� �p;2

!2 p � 0 6� 4�p;3
p

14� 7�p;3

F4
!4 p � 0 6

p
26� �p;3

!1 p � 0 16� 10�p;2
p

52� 26�p;2

E6
!1 , !6 p � 0 6

p
27

!2 p � 0 22
p

78� �p;3
E7 !7 p � 0 12

p
56

Table 1.1.3: The value of �G(LG(�)) for simple exceptional groups and their respective
modules.
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1.2 The structure of the thesis
This introductory chapter will end with Section 1.3, in which we fix the notation and
terminology we will use throughout the thesis. In Chapter 2, we set the theoretical groundwork
we require to prove Theorems 1.1.1 and 1.1.3. The main goal of this chapter is to determine
the kG-modules V , where G is a simple simply connected linear algebraic group, that are
candidates for the classification in Theorem 1.1.1. Chapters 3 through 6 contain the proof
of Theorem 1.1.1 in the case of the classical linear algebraic groups. In view of Proposition
2.2.3, the first part of each chapter will investigate eigenspace dimensions corresponding to
semisimple elements, while the second will focus on eigenspace dimensions of unipotent
elements. The final section of each of these chapters contains the proof of the results
presented in Tables 1.1.1 and 1.1.2 for the respective group. Lastly, Chapter 7 completes
the proof of Theorem 1.1.1, as it deals with the exceptional linear algebraic groups and their
respective modules. The structure of the chapter is similar to the previous ones: in the fist
part we study eigenspace dimensions corresponding to semisimple elements, in the second
we study eigenspace dimensions of unipotent elements while in the last section we establish
Table 1.1.3.

1.3 Notation and terminology
Throughout the thesis, unless otherwise mentioned, k is an algebraically closed field of
characteristic p � 0 with additive group Ga and multiplicative group Gm. Note that
when we write p 6= p0, for some prime p0, we allow p = 0. We let G be a simple linear
algebraic group of rank ‘ � 1. We fix T a maximal torus in G and let X(T ) := Hom(T;Gm)
be its group of rational characters. Let NG(T ) be the normalizer of T in G and set W :=
NG(T )=T . The groupW is called the Weyl group of G corresponding to T . Now, let � be the
root system of G corresponding to T and let � = f�1; : : : ; �‘g be a set of simple roots in �,
where we use the standard Bourbaki labeling as given in [Hum72, 11.4, p.58]. All roots � 2 �

can be written as � =
‘X
i=1

ai�i with coefficients ai 2 Z all nonnegative, or all nonpositive.

The subset �+ :=

� ‘X
i=1

ai�i j ai � 0 for all 1 � i � ‘

�
of � is the set of positive roots of G.

Following [Car89, Section 2.1], we fix a total order � on �: for �; � 2 � we have � � � if

and only if � = �, or � � � =
rX
i=1

ai�i with 1 � r � ‘, ai 2 Z, 1 � i � r, and ar > 0.

Now, for each � 2 �, there exists a morphism x� : Ga ! G of linear algebraic groups,
which induces an isomorphism x� : Ga ! im(x�) with the property that tx�(c)t�1 =
x�(�(t)c) for all t 2 T and all c 2 Ga. Such a morphism is unique up to multiplication by
a scalar in k�. Set U� := im(x�) = fx�(c) j c 2 kg and call this one-dimensional subgroup
the root subgroup of G, relative to T , associated to the root � 2 �. An important property
of root subgroups is that they generate the group G, i.e. we have that G = hU� j � 2 �i.
Lastly, we fix B to be the positive Borel subgroup of G, i.e. B = hT; U� j � 2 �+i.

Set Y(T ) := Hom(Gm; T ) to be the group of rational cocharacters of T . For any � 2
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X(T ) and any � 2 Y(T ) there exists a unique integer h�; �i such that the composition
map � � � : Gm ! Gm is given by c ! ch�;�i, where c 2 Gm. The pairing h�;�i on
X(T )�Y(T ) induces an isomorphism X(T ) �= Hom(Y(T );Z). For any � 2 �, there exists a
homomorphism �� : SL2(k)! G given by:

��

�
1 c
0 1

�
= x�(c) and ��

�
1 0
c 1

�
= x��(c)

for all c 2 k�. We define the elements n�(c) := x�(c)x��(�c�1)x�(c) = ��

�
0 c
�c�1 0

�
2

NG(T ) and h�(c) := n�(c)n�(�1) = ��

�
c 0
0 c�1

�
2 T , for all c 2 k�. Clearly, we have

h� 2 Y(T ) and we call h� the coroot, or dual root, corresponding to �. The set �_ = fh� j
� 2 �g is called the dual root system of �.

The elements of X(T ) are called the weights ofG. The subset X(T )+ := f� 2 X(T )j h�; h�ii
� 0 for all 1 � i � ‘g of X(T ) is called the set of dominant weights of G and an element
� 2 X(T )+ is called a dominant weight. Moreover, we call a weight � 2 X(T )+ p-restricted
if 0 � h�; h�ii � p � 1, for all 1 � i � ‘. We adopt the usual convention that when
char(k) = 0, all weights are p-restricted. As G is simple, we have that � is a basis of
X(T )Q := X(T )
Z Q. Consequently, fh�i j �i 2 �g is a basis of Y(T )Q := Y(T )
Z Q and
so there exist !�i 2 X(T )Q with h!�i ; h�ji = �i;j, for all �i; �j 2 �. We call !i := !�i the
fundamental dominant weight of G corresponding to the simple root �i, 1 � i � ‘.

Set X(T )R := X(T ) 
Z R. Recall that �, the set of roots of G with respect to T , is
the set of nonzero weights of T in the action of G on its Lie algebra. These roots form an
abstract root system, in the sense of [Hum72, Chapter 3], in an appropriate euclidean space
X(T )R. Let E be a fixed euclidean space. We call a root system � in E indecomposable if
its base � cannot be partitioned into two proper mutually orthogonal subsets. Now, if � is
an indecomposable root system, then, up to isomorphism, � is of one of the following types:

A‘ (‘ � 1); C‘ (‘ � 2); B‘ (‘ � 3); D‘ (‘ � 4); E6; E7; E8; F4; G2:

The algebraic groups with root systems of types A‘, C‘, B‘, or D‘ are called classical, while
the ones with root systems of type E6, E7, E8, F4, or G2 are called exceptional. A surjective
homomorphism of algebraic groups � : ~G! G with finite kernel is called an isogeny and the
two groups ~G and G are called isogenous. The various types of simple algebraic groups with
the same root system � are called the isogeny types of �. We remark that simple algebraic
groups have indecomposable root systems and each indecomposable root system corresponds
to an isogeny class of simple algebraic groups. We say that G is of adjoint type if X(T ) = Z�
and we say that G is of simply connected type if Y(T ) = Z�_. Table 9:2 of [MT11] lists the
various isogeny types of simple algebraic groups.

Suppose that G is simply connected. Then, in particular, !i 2 X(T ), for all 1 � i � ‘,
and, in this case, f!i j 1 � i � ‘g is a base of X(T ). Consequently, we can write each weight

� 2 X(T ) as � =
‘X
i=1

di!i with di 2 Z. We have that � 2 X(T )+ if and only if di � 0, for all

1 � i � ‘. Moreover, if char(k) = p > 0, then � is p-restricted if and only if 0 � di � p� 1,
for all 1 � i � ‘.
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For � 2 �, let s� 2 W be the reflection corresponding to �, i.e. s� : X(T )R ! X(T )R

is given by s�(�) = �� h�; h�i� for � 2 X(T )R. Now, W is a finite group and is generated
by fs�1 ; : : : ; s�‘g. The element w0 2 W with the property that w0(�) = �� is called the
longest element of W with respect to �. Note that w0 = � idX(T ) when the root system �
is of type A1, B‘, C‘, D‘ with ‘ even, E7, E8, F4 and G2.

Let V be a finite-dimensional k-vector space. A morphism � : G ! GL(V ) of algebraic
groups is called a rational representation of G. Similarly, we call the kG-module V rational if
its corresponding representation is rational. From this point onward, all representations and
all modules of a linear algebraic group are assumed to be rational. For a nontrivial kG-module
V we will use the notation V = W1 j W2 j � � � j Wm to express that V has a composition series
V = V1 � V2 � � � � � Vm � Vm+1 = 0 with composition factors Wi

�= Vi=Vi+1, 1 � i � m.
Another notation we will use is V m for the direct sum V �� � ��V , in which V occurs m � 2
times.

We summarize the presentation of the notation used in this thesis in the following list.
A more complete list can be found on page 270.

• G is a simple linear algebraic group of rank ‘ � 1 over the algebraically closed field k.

• T is a maximal torus of G and X(T ) is its group of rational characters.

• � is the root system of G given by T and, for � 2 �, U� is the root subgroup of G
corresponding to the root �.

• B is a Borel subgroup of G containing the maximal torus T , � = f�1; : : : ; �‘g is
the set of simple roots in � determined by B and �+ is the set of positive roots in
� with respect to �. We usually choose B to be the positive Borel subgroup, i.e.
B = hT; U� j � 2 �+i.

• W = NG(T )=T is the Weyl group of G with respect to T and s� 2 W is the reflection
corresponding to � 2 �. Moreover, w0 2 W is the longest element.

• Y(T ) is the set of rational cocharacters of T and �_ = fh� j � 2 �g is the dual root
system of �.

• X(T )+ � X(T ) is the set of dominant weights.

• !1; : : : ; !‘ 2 X(T )Q are the fundamental dominant weights of G with respect to � and
we label them with the standard Bourbaki labeling, as given in [Hum72, p.58].

• For � 2 X(T )+, we denote by LG(�), respectively by VG(�), the irreducible, respectively
the Weyl, kG-module with highest weight �. Moreover, we let radVG(�) be the unique
maximal submodule of VG(�).
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Chapter 2

Theoretical background and preliminary
results

The main goal of this introductory chapter is to establish for a simple simply connected linear
algebraic group the list of irreducible tensor-indecomposable modules that are candidates
for the classification in Theorem 1.1.1. Along the way we establish some preliminary
results required in the proofs of Theorems 1.1.1 and 1.1.3, respectively. We begin with
a discussion on nondegenerate bilinear forms and we present the way linear algebraic groups
of classical type arise as algebraic groups of automorphisms of a vector space, [Bor56]. Now,
to understand linear algebraic groups, it is only natural to start their study at the level
of individual elements. In Section 2.2, we do just this, with emphasis on the classes of
semisimple and unipotent elements. Afterwards, in Section 2.3, we discuss the representation
theory of linear algebraic groups. Here we recall that, up to isomorphism, irreducible tensor-
indecomposable modules of an algebraic group are parametrized by the p-restricted dominant
weights of that group. In Section 2.4, we outline two algorithms, one for semisimple elements
and one for unipotent elements, which will be used to calculate eigenspace dimensions.
This is followed by a brief presentation of Gurlanick and Saxl’s generation results for linear
algebraic groups, [GS03]. These generation results will be used to establish a dimensional
criteria, Section 2.6, which, in turn, will be used to determine the complete list of candidate
modules, see Section 2.7. The chapter ends with a section on unipotent elements, in which
we present, using various methods, the classification of unipotent conjugacy classes in the
classical linear algebraic groups.

2.1 Bilinear forms and isometry groups
Throughout this section k is an algebraically closed field of characteristic p � 0 and V is an
n-dimensional k-vector space, for some n � 1. Following [Gro02], we will present the simple
classical algebraic groups as algebraic groups of automorphisms of a vector space, [Bor56],
and show how they arise as closed subgroups of GL(V ).
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2.1.1 The special linear group

The general linear group of V , denoted GL(V ), is the group of all invertible linear transforma-
tions on V . Fixing a basis in V establishes a group isomorphism GL(V ) �= GLn(k),
where GLn(k) is the group of invertible n � n matrices with coefficients in k. Now, the
determinant det : GL(V ) ! k� is a group homomorphism with ker(det) = SL(V ), the
special linear group. Therefore, by definition, we have:

SL(V ) := f� 2 GL(V )j det(�) = 1g:

We remark that Z(SL(V )) = fc � idV j c 2 k�; cn = 1g. Let PGL(V ) = GL(V )=Z(GL(V )),
where Z(GL(V )) is the subgroup of GL(V ) consisting of all scalar transformations of V .
Now, PGL(V ) is isomorphic to the simple adjoint linear algebraic group of type An�1, see
[Car89, Theorem 11.3.2], while SL(V ) is isomorphic to the simple simply connected linear
algebraic group of type An�1, see [Car89, p.184].

2.1.2 Bilinear forms

A bilinear form on V is a function b : V � V ! k which satisfies:

b(v1 + v2; u) = b(v1; u) + b(v2; u) and b(cv; u) = cb(v; u)

b(v; u1 + u2) = b(v; u1) + b(v; u2) and b(v; cu) = cb(v; u)

for all v; v1; v2; u; u1; u2 2 V and all c 2 k. Let fv1; : : : ; vng be a fixed basis in V and let b
be a bilinear form on V . The matrix B = (bi;j)i;j 2 Mn(k) given by bi;j = b(vi; vj), for all
1 � i; j � n, is called the representing matrix of b relative to fv1; : : : ; vng.

We say that the bilinear form b on V is symmetric if b(v1; v2) = b(v2; v1), for all v1; v2 2 V .
We remark that b is symmetric if and only if its representing matrix B is symmetric, i.e.
Btr = B. We say that b is alternating if b(v; v) = 0, for all v 2 V . Hence, if b is an alternating
form, then b(v1; v2) = �b(v2; v1), for all v1; v2 2 V . We note that when char(k) = 2, an
alternating form is, in particular, symmetric.

Let v1; v2 2 V . We say that v1 is orthogonal to v2 and write v1 ? v2 if b(v1; v2) = 0. We
call b reflexive if orthogonality is a reflexive relation on V , i.e. v1 ? v2 ) v2 ? v1. Note
that a bilinear form is reflexive if and only if it is either symmetric or alternating, [Gro02,
Proposition 2.7]. From this point onward, all the forms we consider will be reflexive.

For a subspace W of V , the set W? = fv 2 V j b(v; u) = 0 for all u 2 Wg is called the
orthogonal complement of W in V . We define the radical of W as Rad(W ) = W \W?. In
particular, for W = V , the set Rad(V ) := V ? = fv 2 V j b(v; u) = 0 for all u 2 V g is called
the radical of V with respect to b. We call the bilinear form b nondegenerate if Rad(V ) = 0.
Now, if Rad(W ) = 0, then we call W a nondegenerate subspace relative to b and we note
that Rad(W ) = 0 if and only if the restriction of b to W , b jW�W , is a nondegenerate form
on W .

The dual space of V is defined to be the k-vector space V � := Hom(V; k). Now, as V is
a finite-dimensional k-vector space, it follows that V � is also finite-dimensional, where the
set fv�1; : : : ; v�ng � V � with the property that v�i (vj) = �ij, for all 1 � i; j � n, is a basis of
V �. This basis is called the dual basis. We note that the bilineat form b is nondegenerate if
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for all f 2 V �, there exist v1; v2 2 V such that f(u) = b(v1; u) = b(u; v2) for all u 2 V , see
[Gro02, Corollary 2.2].

Let V1, V2 be two k-vector spaces equipped with bilinear forms b1 and b2, respectively. A
k-isomorphism � : V1 ! V2 is an isometry with respect to b1 and b2 if

b2(�(v1); �(v2)) = b1(v1; v2); for all v1; v2 2 V1:

If an isometry exists, then the two forms are called equivalent.

Alternating bilinear forms: We assume that b is an alternating bilinear form on the
k-vector space V . If v; u 2 V are such that b(v; u) 6= 0, then the set fv; ug is linearly
independent. We call the pair (v; u) 2 V � V a hyperbolic pair if b(v; u) = 1 and we call the

subspace hv; ui a hyperbolic plane. We note that b jhv;ui has representing matrix
�

0 1
�1 0

�
relative to the basis fv; ug .

For ‘ � 1, set K‘ to be the ‘� ‘ matrix given by K‘ :=

0B@0 � � � 1
...

1 � � � 0

1CA.

Theorem 2.1.1. [Gro02, Theorem 2:10] Let V be a finite-dimensional k-vector space equipped
with an alternating bilinear form b. If dim(V ) = n, then V has a basis fv1; : : : ; v‘; w1; : : : ;
wn�2‘; u‘; : : : ; u1g with the property that fvi; uig is a hyperbolic pair for all 1 � i � ‘,
fw1; : : : ; wn�2‘g is a basis of Rad(V ) and

V =
‘M
i=1

hvi; uii � Rad(V )

is an orthogonal direct sum. In particular, with respect to this basis, the representing matrix

of b has the form B =

0@ K‘

0n�2‘

�K‘

1A.

Assume that the alternating form b on V is nondegenerate. Then, in particular, we
have that dim(V ) = n = 2‘ is even, where ‘ � 1. An ordered basis fv1; : : : ; v‘; u‘; : : : ; u1g
of V , where fvi; uig is a hyperbolic pair for all 1 � i � ‘, as in Theorem 2.1.1, is called a
symplectic basis for V and V is called a symplectic space. An invertible linear transformation
� of V is called symplectic if b(�(v1); �(v2)) = b(v1; v2), for all v1; v2 2 V . We define
the symplectic group on V , denoted by Sp(V ), as the subgroup of GL(V ) consisting of all
symplectic transformations on V .

Remark 2.1.2. [Gro02, Corollary 2:12] The symplectic group Sp(V ) does not depend in a
significant way on the choice of b, as any nondegenerate alternating bilinear form leads to
the same group, up to conjugacy, in GL(V ).

We finish this paragraph by making a few remarks. Note that Sp(V ) � SL(V ), [Gro02,
Corollary 3:5]. Moreover, if dim(V ) = 2, then Sp(V ) = SL(V ), [Gro02, Proposition 3:1]. We
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fix a basis in V and we let CSp(V ) be the conformal symplectic group, i.e.

CSp(V ) = f� 2 GL(V ) j T tr
�

�
0 K‘

�K‘ 0

�
T� = c

�
0 K‘

�K‘ 0

�
; for some c 2 k�g;

where T� is the matrix representing � with respect to the basis we fixed in V . Moreover, let
PCSp(V ) := CSp(V )=Z(CSp(V )). Now, by [Car89, Theorem 11.3.2], PCSp(V ) is isomorphic
to the simple adjoint linear algebraic group of type C‘, while Sp(V ) is isomorphic to the
simple simply connected linear algebraic group of type C‘, see [Car89, p.184].

Symmetric and quadratic forms in characteristic 6= 2: For the moment, we assume
that char(k) 6= 2. We let V be a finite-dimensional k-vector space equipped with a symmetric
bilinear form b. We define the associated quadratic form to be the map Q : V ! k given
by Q(v) = b(v; v), for v 2 V . We note that b is completely determined by its associated
quadratic form Q as:

b(v1; v2) =
1

2

�
Q(v1 + v2)�Q(v1)�Q(v2)

�
for all v1; v2 2 V:

Theorem 2.1.3. [Gro02, Theorem 4.2] Let V be a finite-dimensional vector space over the
algebraically closed field k with char(k) 6= 2. Let dim(V ) = n and assume that V is equipped
with a symmetric bilinear form b. Then V admits an orthogonal basis fv1; : : : ; vr; vr+1; : : : ; vng

with the property that the representing matrix of b has the form B =

0BBBBBBB@

b1 0 0

0
. . .

br
0

. . .
0 0

1CCCCCCCA
,

where bi 6= 0 for all 1 � i � r and fvr+1; : : : ; vng is a basis of Rad(V ).

A nonzero vector v 2 V is called isotropic if b(v; v) = 0 and anisotropic if b(v; v) 6= 0. If
V contains an isotropic vector, then b (respectively Q) and V are called isotropic. Le W be
a subspace of V . If b(w;w) = 0 for all w 2 W , then W is a totally isotropic subspace of V .
Similarly, if b(v; v) = 0 for all v 2 V , then we call V totally isotropic. Lastly, we call the
pair of isotropic vectors (v; u) 2 V � V a hyperbolic pair if b(v; u) = 1. The subspace hv; ui
is called a hyperbolic plane and the restriction of b to hv; ui, b jhv;ui, has representing matrix�

0 1
1 0

�
with respect to the basis fv; ug.

Corollary 2.1.4. Let V be a finite-dimensional vector space over the algebraically closed field
k with char(k) 6= 2. Let dim(V ) = n and assume that V is equipped with a nondegenerate
symmetric bilinear form b. Let Q be the associated quadratic form. Then one of the following
holds:

(1) We have n = 2‘ and V admits a basis fv1; : : : ; v‘; u‘; : : : ; u1g, where (vi; ui) is a
hyperbolic pair, for all 1 � i � ‘, with the property that

V =
‘M
i=1

hvi; uii
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is an orthogonal direct sum of hyperbolic planes. Moreover, the representing matrix of

b has the form B =

�
K‘

K‘

�
, where K‘ =

0B@0 � � � 1
...

1 � � � 0

1CA.

(2) We have n = 2‘ + 1 and V admits a basis fv1; : : : ; v‘; w; u‘; : : : ; u1g, where w is such
that Q(w) = 1 and (vi; ui) is a hyperbolic pair, for all 1 � i � ‘, with the property that

V =
‘M
i=1

hvi; uii � hwi

is an orthogonal direct sum. Moreover, the representing matrix of b has the form

B =

0@ K‘

1
K‘

1A.

Proof. Let fw1; : : : ; wng be the orthogonal basis of V given in Theorem 2.1.3. Then, the

representing matrix of b has the form B =

0B@b1 0
. . .

0 bn

1CA, where bi 6= 0 for all 1 � i � n.

We first consider the case when n = 2‘. For every 1 � i � ‘, set vi := wi + cwn+1�i 2 V and
ui := 1

2bi
(wi� cwn+1�i) 2 V , where c 2 k is such that c2 = � bi

bn+1�i
. In what follows we show

that (vi; ui) is a hyperbolic pair.
For all 1 � i � ‘, we see that Q(vi) = Q(wi + cwn+1�i) = Q(wi) + c2Q(wn+1�i) =

bi + c2bn+1�i = 0 and Q(ui) = Q( 1
2bi

(wi � cwn+1�i)) = 1
4b2
i
[Q(wi) + c2Q(wn+1�i)] = 0, as

b(wi; wn+1�i) = 0. Secondly, we have b((wi+cwn+1�i);
1

2bi
(wi�cwn+1�i)) = 1

2bi
[bi�c2bn+1�i] =

1, as �c2bn+1�i = bi, for all 1 � i � ‘. Thereby, (vi; ui) is a hyperbolic pair for all 1 � i � ‘.

Therefore, we have V =
‘M
i=1

hvi; uii. Moreover, as fw1; : : : ; wng are orthogonal, it follows

from the definition of vi and ui that b(vi; vj) = b(ui; uj) = 0 for all 1 � i; j � ‘ and that
b(vi; uj) = 0 for all 1 � i; j � ‘ with i 6= j. Thus, any two hyperbolic planes hvi; uii and
hvj; uji, 1 � i; j � ‘, are mutually orthogonal. Lastly, we note that the representing matrix

of b has the form B =

�
K‘

K‘

�
, with respect to the basis fv1; : : : ; v‘; u‘; : : : ; u1g of V .

The case of n = 2‘ + 1 is similar to that of n = 2‘: we set w = 1p
b‘+1

w‘+1 and, for all

1 � i � ‘, we set vi := wi + cwn+1�i and ui := 1
2bi

(wi� cwn+1�i). Now (vi; ui) is a hyperbolic
pair and the hyperbolic planes hvi; uii are mutually orthogonal. Moreover, we have that
Q(w) = Q( 1p

b‘+1

w‘+1) = 1
b‘+1

Q(w‘+1) = 1 and b(w; vi) = b(w; ui) = 0 for all 1 � i � ‘, as

b(w‘+1; wi) = 0 for all 1 � i � n, i 6= ‘+ 1. Therefore, V =
‘M
i=1

hvi; uii�hwi is an orthogonal

direct sum of mutually orthogonal subspaces and the representing matrix of b has the form

B =

0@ K‘

1
K‘

1A, with respect to the basis fv1; : : : ; v‘; w; u‘; : : : ; u1g of V .
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A vector space V equipped with a nondegenerate symmetric bilinear form b is called
a quadratic space. An isometry of V is called an orthogonal linear transformation and we
define O(V ) to be the group of isometries of V , i.e.

O(V ) = f� 2 GL(V )j b(�(v1); �(v2)) = b(v1; v2) for all v1; v2 2 V g � GL(V ):

We note that � 2 O(V ) if and only if Q(�(v)) = Q(v) for all v 2 V .
We fix a basis in V as in Corollary 2.1.4 and let � 2 GL(V ). Then � 2 O(V ) if and only

if T tr
� BT� = B, where B is given in Corollary 2.1.4 and T� is the matrix representing � with

respect to the given basis. Assume that � 2 O(V ). Then, det(T�) = �1. We define the
special orthogonal group SO(V ) to be the subgroup of O(V ) given by

SO(V ) := f� 2 O(V ) j det(T�) = 1g:

Let 0 6= v 2 V be an anisotropic vector and define the linear transformation �v, called
the reflection along v through the hyperplane v?, by:

�v(u) = u� 2
b(u; v)

Q(v)
v; for all u 2 V:

Note that a quadratic space admits anisotropic vectors, [Gro02, Proposition 4.1]. One checks
that �v 2 O(V ) and that �v =2 SO(V ) for all v 2 V . Now, assume that the vector space
V is such that dim(V ) = 2. Then, by [Gro02, Proposition 6:1], we have that SO(V ) �= k�

and O(V ) = SO(V )o < �v > for any reflection �v 2 O(V ). Therefore, we will assume that
dim(V ) = n � 3. Let 
(V ) = O

0
(V ) denote the derived group of O(V ). The following

results exhibits some of the properties of the group 
(V ). Proofs for these can be found in
[Gro02, Section 6].

Proposition 2.1.5. Let V be a finite-dimensional k-vector space of dimension n � 3
equipped with a nondegenerate symmetric bilinear form. Then:

(a) 
(V ) = O
0
(V ) = SO

0
(V ).

(b) If dim(V ) � 5, then 

0
(V ) = 
(V ).

(c) Z(O(V )) = f� idV g and � idV 2 SO(V ) if and only if n is even.

(d) (Dickson-Dieudonné Theorem) Assume that dim(V ) � 5. Then, the projective group
P
(V ) := 
(V )=(
(V ) \ f� idV g) is simple.

Lastly, if n = 2‘ + 1, then P
(V ) is the simple adjoint linear algebraic group of type
B‘ and if n = 2‘, then P
(V ) is the simple adjoint linear algebraic group of type D‘, see
[Car89, Theorem 11.3.2].
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Symmetric and quadratic forms in characteristic 2: Assume that k is an algebraically
closed field of characteristic 2 and let V be a finite-dimensional k-vector space. A quadratic form
Q on V is a map Q : V ! k such that

Q(cv) = c2Q(v); for all c 2 k� and all v 2 V ;

and the map b : V � V ! k given by

b(v1; v2) = Q(v1 + v2) +Q(v1) +Q(v2); for all v1; v2 2 V

is a bilinear form. Note that the bilinear form b is uniquely determined by Q and that

b(v; v) = 0 for all v 2 V;

i.e the bilinear form b is alternating and, therefore, symmetric, since char(k) = 2.
Let dim(V ) = n. Since the bilinear form b is alternating, by Theorem 2.1.1, it follows

that V admits an ordered basis fv1; : : : ; v‘; w1; : : : ; wn�2‘; u‘; : : : ; u1g, where ‘ � 0, fvi; uig
is a b-hyperbolic pair for all 1 � i � ‘, and fw1; : : : ; wn�2‘g is a basis of Rad(V ), with the
property that

V =
‘M
i=1

hvi; uii � Rad(V )

is an orthogonal direct sum. Let B be the representing matrix of b with respect to the basis

fv1; : : : ; v‘; w1; : : : ; wn�2‘; u‘; : : : ; u1g. Then, by Theorem 2.1.1, B =

0@ K‘

0n�2‘

K‘

1A,

thereby rank(B) = 2‘ and dim(Rad(V )) = n� 2‘.
We call V defective if Rad(V ) 6= 0 and nondefective if Rad(V ) = 0. We note that all

vectors 0 6= v 2 V are isotropic, since b(v; v) = 0, however this does not generally imply that
Q(v) = 0. We call 0 6= v 2 V singular if Q(v) = 0 and, similarly, we call a subspace W � V
singular if W contains a singular vector. Moreover, we call W totally singular if all vectors
in W are singular and we note that if W is a totally singular subspace, then W is totally
isotropic with respect to b, as:

b(w;w
0
) = Q(w + w

0
) +Q(w) +Q(w

0
) = 0 for all w;w

0 2 W:

We call the quadratic form Q nondegenerate if for all nonzero v 2 Rad(V ) we have Q(v) 6= 0.
Moreover, if Q is nondegenerate, then dim(Rad(V )) = 0 or 1, see [Gro02, p.114].

We define a quadratic space to be a k-vector space V equipped with a nondegenerate
quadratic form Q. Note that this definition allows the possibility for V to be defective.

Theorem 2.1.6. [Gro02, Theorem 12:9] Let (V;Q) be a quadratic space over the algebraically
closed field k of characteristic 2. Then V has an ordered basis fv1; : : : ; vng, where n =
dim(V ), with respect to which Q has one of the following forms:

(a) Q(
nX
i=1

civi) = c1c2‘+1 + c2c2‘ + � � �+ c‘c‘+2 + c2
‘+1, if n = 2‘+ 1.
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(b) Q(
nX
i=1

civi) = c1c2‘ + c2c2‘�1 + � � �+ c‘c‘+1, if n = 2‘.

We call the ordered pair of singular vectors (v; u) 2 V �V a hyperbolic pair relative to Q
if b(v; u) = 1 and we call the subspace hv; ui a hyperbolic plane. By Theorem 2.1.6, it follows
that V is an orthogonal direct sum of one of these types:

Type 1 : V = H1 � � � � �H‘ � hwi; where Q(w) = 1 and n = 2‘+ 1

and
Type 2 : V = H1 � � � � �H‘; where n = 2‘

and each Hi is a hyperbolic plane. Therefore, if dim(V ) is odd, then dim(Rad(V )) = 1 and
so V is a defective space, while, if dim(V ) is even, then V is nondefective space.

Let (V;Q) and (V
0
; Q
0
) be two quadratic spaces and define an isometry from V to V 0 to

be an isomorphism � : V ! V
0 with the property that Q0(�(v)) = Q(v) for all v 2 V . The

orthogonal group O(V ) is defined to be the group of all isometries of V . We note that:

O(V ) � SL(V );

therefore det(�) = 1, for all � 2 O(V ).

Theorem 2.1.7. [Gro02, Theorem 14:2] Let (V;Q) be a quadratic space over the algebraically
closed field k of characteristic 2. Let dim(V ) = 2‘ + 1, for some ‘ � 1. Then O(V ) �=
Sp(2‘; k) as abstract groups.

We now focus on the case when V is even-dimensional. We define the special orthogonal
group, SO(V ), to be ker(�), where � : O(V ) ! F2 is the Dickson pseudodeterminant, see
[Gro02, Theorem 13:13 and Corollary 14:4]. We note that [O(V ) : SO(V )] = 2. Let 
(V ) =
O
0
(V ) denote the derived group of O(V ). The following result exhibits some of the properties

of the group 
(V ). Proofs for these can be found in [Gro02, Section 14].

Proposition 2.1.8. Let (V;Q) be a quadratic space over the algebraically closed field k of
characteristic 2. Let dim(V ) = 2‘, for some ‘ � 2. Then

(a) 
(V ) = O
0
(V ) = SO

0
(V ).

(b) 

0
(V ) = 
(V ).

(c) 
(V ) is simple, unless dim(V ) = 4 and V has Witt index 2.

Lastly, [Car89, Theorem 11.3.2] identifies 
(V ) with the simple adjoint linear algebraic
group of type D‘.
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2.2 Elements of linear algebraic groups
A first natural step towards understanding linear algebraic groups is to understand properties
of individual elements. This section presents some basic structural properties of elements of
a linear algebraic group G. In the first subsection we discuss the Jordan decomposition of
elements in G with the goal of proving that to determine �G(V ), where V is an irreducible
kG-module, it suffices to calculate maxfdim(Vs(�)) j s 2 G n Z(G) semisimple, � 2 k�g
and maxfdim(Vu(1)) j u 2 G n f1g unipotentg, see Proposition 2.2.3. In Subsection 2.2.2
we reintroduce the elements h�(c), c 2 k�, and x�(c0), c0 2 k, of G, where � is an element
in the root system � of G. We give a presentation of semisimple, respectively unipotent,
elements of G as ordered products

Y
�2�

h�(c�), where c� 2 k� and � is a set of simple roots

in �, respectively
Y
�2�+

x�(c0�), where c0� 2 k and �+ is the set of positive roots in �.

2.2.1 The Jordan decomposition

Let k be an algebraically closed field of characteristic p � 0 and let V be a finite-dimensional
k-vector space. An endomorphism s 2 End(V ) is called semisimple if s is diagonalizable
over k. An endomorphism n 2 End(V ) is called nilpotent if 0 is the sole eigenvalue of n
on V . We note that if x 2 End(V ) is both semisimple and nilpotent, then x = 0. Now,
any x 2 End(V ) admits a so called additive Jordan decomposition, i.e. there exist unique
commuting endomorphisms xs; xn 2 End(V ) with the property that xs is semisimple, xn is
nilpotent and x = xs + xn = xn + xs, [Hum75, Lemma A of Section 15.1]. An invertible
endomorphism u 2 GL(V ) is called unipotent if u� idV is nilpotent, or equivalently, if 1 is
its sole eigenvalue on V . We also note that if x 2 GL(V ) is both semisimple and unipotent,
then x = idV .

We now consider the case when x 2 GL(V ). Then its eigenvalues are nonzero, therefore
xs 2 GL(V ). We set xu := 1 + x�1

s xn and note that xu 2 GL(V ) is unipotent. Moreover, we
see that x = xsxu = xuxs with xs 2 GL(V ) semisimple and xu 2 GL(V ) unipotent. We call
this decomposition of x 2 GL(V ) the multiplicative Jordan decomposition. The uniqueness
of xs and xn in the additive Jordan decomposition of x 2 GL(V ) gives the uniqueness of
xs and xu in the multiplicative Jordan decomposition of x, i.e. for any x 2 GL(V ), there
exists a unique semisimple endomorphism xs 2 GL(V ), called the semisimple part of x, and
a unique unipotent endomorphism xu 2 GL(V ), called the unipotent part of x, with the
property that x = xsxu = xuxs.

Remark 2.2.1. Semisimple elements behave almost the same in both characteristic 0 and
positive characteristic. However, this is not the case for unipotent elements. If char(k) = 0,
then a unipotent element u 6= 1 has infinite order. On the other hand, if char(k) = p > 0,
then u is unipotent if and only if its order is a power of p.

We now state the Jordan decomposition theorem for arbitrary linear algebraic groups, as
it is given in [MT11, Theorem 2.5].

Theorem 2.2.2. [Jordan decomposition] Let G be a linear algebraic group.
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(a) For any embedding � of G into some GLn(k) and for any g 2 G, there exist unique
gs; gu 2 G such that g = gsgu = gugs, where �(gs) is semisimple and �(gu) is unipotent.

(b) The decomposition g = gsgu = gugs is independent of the chosen embedding.

(c) Let � : G1 ! G2 be a morphism of algebraic groups. Then, for g 2 G1 with g = gsgu,
as in (a), we have �(gs) = �(g)s and �(gu) = �(g)u, i.e.

�(g) = �(gs)�(gu) = �(g)s�(g)u

is the Jordan decomposition of �(g) in G2.

Let G be a simple linear algebraic group and let g 2 G. The decomposition g = gsgu =
gugs of Theorem 2.2.2 is called the multiplicative Jordan decomposition of g 2 G. We call
g 2 G semisimple if g = gs and, similarly, we call g 2 G unipotent if g = gu. Now, let
Gs be the set of semisimple elements of G and let Gu be the set of unipotent elements of
G. Theorem 2.2.2 shows that Gs and Gu are well-defined and that, for any � : G ! G0

morphism of algebraic groups, we have �(Gs) = �(G)s and �(Gu) = �(G)u.
Let V be an irreducible kG-module. Recall from Section 1.1 that �G(V ) = minfdim(V )�

dim(Vg(�)) j g 2 G n Z(G); � 2 k�g. We remark that to determine �G(V ) it is enough to
determine

MV := maxfdim(Vg(�)) j g 2 G n Z(G); � 2 k�g:
In what follows, we investigate the invariant MV . Before we begin, we remind the reader
that the center of G, Z(G), consists of semisimple elements, i.e. the only unipotent element
in Z(G) is the identity. Now, let � : G! GL(V ) be the associated representation of G into
GL(V ) and let g 2 G n Z(G). We write down the Jordan decomposition of g:

g = gsgu = gugs;

where gs 2 Gs and gu 2 Gu. Theorem 2.2.2 gives us the Jordan decomposition of �(g) in
GL(V ):

�(g) = �(gs)�(gu) = �(g)s�(g)u:

We choose a basis of V with the property that �(g) is written in its Jordan normal form.
Then, with respect to this basis, �(g)s is the diagonal matrix whose entries are just the
diagonal entries of �(g), while �(g)u is the unipotent matrix obtained from the Jordan normal
form of �(g) by dividing all entries of each Jordan block by the diagonal element. We
distinguish the following two cases:

Case 1: Assume that gs 2 Z(G). First, we remark that gu 6= 1, as g =2 Z(G). Secondly,
as gs 2 Z(G), it follows that �(g)s = diag(c; c; : : : ; c) for some c 2 k�. Thereby, c is the sole
eigenvalue of �(g) on V and we have:

dim(Vg(c)) = dim(Vgu(1)) � max
u2Gunf1g

dim(Vu(1)): (2.1)

Case 2: Assume that gs =2 Z(G). Then, since �(g)s is a diagonal matrix with entries the
diagonal entries of �(g), we determine that �(g) and �(g)s have the same eigenvalues on V
and, for any eigenvalue c 2 k� of �(g) on V , we have:

dim(Vg(c)) � dim(Vgs(c)) � max
s2GsnZ(G)

fdim(Vs(�)) j � 2 k�g: (2.2)
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Therefore, for any g 2 G n Z(G) and any eigenvalue c 2 k� of �(g) on V , by (2.1) and (2.2),
it follows that

dim(Vg(c)) � maxf max
u2Gunf1g

dim(Vu(1)); max
s2GsnZ(G)

fdim(Vs(�)) j � 2 k�gg:

We fix a maximal torus T in G. Let s 2 Gs be semisimple. Now, as any semisimple element
of G lies in a maximal torus, [MT11, Corollary 4.5], and, as maximal tori are conjugate in
G, [MT11, Theorem 4.4], there exists s0 2 T such that s and s0 are G-conjugate. It follows
that

max
s2GsnZ(G)

fdim(Vs(�)) j � 2 k�g = max
s02TnZ(G)

fdim(Vs0(�
0)) j �0 2 k�g:

We summarize the above discussion in the following result:

Proposition 2.2.3. Let G be a simple linear algebraic group and let V be an irreducible
kG-module. We define

Ms := max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g and Mu := max
u2Gunf1g

dim(Vu(1)):

Then MV = maxfMs;Mug and �G(V ) = dim(V )�maxfMs;Mug.

Remark 2.2.4. Proposition 2:2:3 is one of the essential results of this thesis, as it gives a
strategy on how to calculate �G(V ). It explains the structure of Chapters 3 through 7, where
the first part of each chapter is dedicated to the calculation of max

s2TnZ(G)
fdim(Vs(�)) j � 2 k�g,

while the second part is concerned with max
u2Gunf1g

dim(Vu(1)).

2.2.2 The presentation of semisimple and unipotent elements of a
linear algebraic group

As in the previous subsection, let k be an algebraically closed field of characteristic p � 0.
Let G be a simple simply connected algebraic group of rank ‘ � 1, let T be a maximal
torus in G and let X(T ) be its group of rational characters. Moreover, let � be the root
system of G determined by T . Recall that Ga, respectively Gm, is the additive, respectively
multiplicative, group of k. Now, for each � 2 �, we have seen that there exists a unique, up
to scalar multiplication, morphism x� : Ga ! G of linear algebraic groups, which induces an
isomorphism x� : Ga ! im(x�) with the property that tx�(c)t�1 = x�(�(t)c) for all t 2 T
and all c 2 Ga, see Subsection 1.3. Moreover, for each � 2 �, U� = im(x�) = fx�(c) j c 2 kg
is the root subgroup of G, relative to T , associated to the root �.

Let B be the positive Borel subgroup of G which contains T and let � = f�1; : : : ; �‘g
be the corresponding base in �. Then B = T �

Y
�2�+

U�, where the product respects the

total order � on � fixed in Section 1.3. Let u 2 G be a unipotent element. Now, we can
assume, without loss of generality, that u 2 B, see [MT11, Corollary 6.11]. There exist
c� 2 k such that u =

Y
�2�+

x�(c�), where the product respects �. To u we associate the
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subset Su � �+ with the property that u =
Y
�2Su

x�(c�), where the product respects � and

c� 2 k� for all � 2 Su. Note that Su is well-defined, as with the order � fixed on �, the
expression u =

Y
�2�+

x�(c�) is unique.

Having dealt with the unipotent elements of G, we now focus on the semisimple elements.
Let � 2 � and c 2 k� and recall the elements n�(c) := x�(c)x��(�c�1)x�(c) 2 NG(T ),
respectively h�(c) := n�(c)n�(�1) 2 T , of G. As fh�i j �i 2 �g is a basis of Y(T ), the
group of cocharacters of T , we determine that T = him(h�i) j �i 2 �i. Therefore, for any
semisimple element s 2 G, we will write s =

Y
�i2�

h�i(c�i), where c�i 2 k�.

2.3 Representation theory of linear algebraic groups
In this section some well-known results of the representation theory of algebraic groups will
be presented. As these classical results can be found in most books covering this subject,
we will not include their proofs, only references for further reading. We will be following
[MT11], but other sources are [Jan07] and [Hum75]. The goal is to understand the irreducible
tensor-indecomposable modules of a simple linear algebraic group G. We present the classical
results of Chevalley, Theorem 2.3.3, and Steinberg, Theorem 2.3.8, which tell us that, up
to isomorphism, irreducible tensor-indecomposable kG-modules are parametrized by the p-
restricted dominant weights of G. Lastly, we discuss isogenous groups and the connection
between their respective irreducible modules.

2.3.1 Irreducible kG-modules

To begin, recall from Section 1.3 that k is an algebraically closed field of characteristic p � 0;
G is a simple simply-connected linear algebraic group of rank ‘; B is a Borel subgroup in
G which contains T , a fixed maximal torus of G; X(T ) is the rational character group of T ;
� = f�1; : : : ; �‘g is the set of simple roots determined by B in �; and � is the root system
of G associated to T .

Let � : G ! GL(V ) be a representation of G. As T consists of commuting semisimple
elements, by Theorem 2.2.2, we have that �(T ) is a subgroup of commuting semisimple
elements in GL(V ), hence �(T ) is diagonalizable. Consequently, the vector space V can be
decomposed into a direct sum:

V =
M

�2X(T )

V�; where V� = fv 2 V j t � v = �(t)v for all t 2 Tg:

The elements � 2 X(T ) for which V� 6= f0g are called the weights of V with respect to the
maximal torus T . We will denote by �(V ) the set of weights of a kG-module V . The spaces
V�, where � 2 �(V ), are called T -weight spaces of V , and, for a weight � 2 �(V ) we define
the multiplicity of � as dim(V�).

We will now describe how certain subgroups of G act on the weight spaces V� of the
kG-module V . First, recall thatW is the Weyl group of G associated to T . Now, by [MT11,
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Section 8:1], the action of W on X(T ) is given by

(w � �)(t) = �( _w�1t _w);

where t 2 T , � 2 X(T ) and _w 2 NG(T ) is an arbitrary preimage of w 2 W . Therefore,
weights in the sameW-orbit have the same multiplicity, see [MT11, Lemma 15:3]. For every
� 2 X(T ) there exists a unique dominant weight �0 2 X(T ) such that � 2 W � �0 . Moreover,
if � 2 X(T ) is dominant, then for all w 2 W we have w � � � �, see [MT11, Proposition 15:8
and Lemma B.4]. We now focus our attention on the root subgroups U� of G, where � 2 �,
and their action on the weight spaces V� of V .

Lemma 2.3.1. [MT11, Lemma 15:4] Let � 2 �(V ) and let V� be its corresponding weight
space. Moreover, let � 2 �. Then, for all v 2 V�, we have:

U� � v � v +
X
j2Z>0

V�+j�:

We call a vector v+ 2 V a maximal vector with respect to B if B �hv+i = hv+i. Note that,
by the classical Lie-Kolchin theorem, [MT11, Theorem 4:1], maximal vectors always exist.
We call a kG-module V a highest weight module if V is generated by a maximal vector
v+ 2 V , with respect to B. Let V be a highest weight kG-module with maximal vector
v+ 2 V . Since, in particular, hv+i is stabilized by T , there exists a dominant weight � 2 �(V )
such that v+ 2 V�, see [MT11, Proposition 15:9]. The dominant weight � 2 X(T ) with the
property that v+ 2 V� is called the highest weight of V . Now, if V is irreducible, then,
by [MT11, Corollary 15:10], all maximal vectors in V have the same weight �. Moreover,
dim(V�) = 1 and all weights in �(V ) are of the form � �

X
�i2�

c�i�i with c�i 2 N�0 for all

�i 2 �.

Proposition 2.3.2. [Jan07, II.2:13] Let VG(�) be the Weyl kG-module. Then VG(�) is a
highest weight kG-module and any highest weight kG-module of highest weight � 2 X(T ) is
a homomorphic image of VG(�).

Theorem 2.3.3 (Chevalley). [MT11, Theorem 15.17] Let G be a simple linear algebraic
group.

(a) There exists an irreducible kG-module, denoted by LG(�), of highest weight � for all
dominant weights � 2 X(T ).

(b) The two irreducible kG-modules LG(�1) and LG(�2) of respective highest weights �1

and �2 are isomorphic if and only if �1 = �2.

In particular, the set fLG(�) j � 2 X(T ) dominantg is a set of representatives for the
isomorphism classes of irreducible kG-modules.

We end this subsection with two results, courtesy of [Jan07, II.2:14] and [Pre88, Theorem
1], respectively, which give the relationship between the irreducible kG-module LG(�) and
the Weyl kG-module VG(�) and their respective set of weights �(LG(�)) and �(VG(�)). They
will be used extensively in the proofs of the results in Chapters 3 through 7.
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Proposition 2.3.4. [Jan07, II.2:14] Let � 2 X(T ) be a dominant weight. Then:

VG(�)=Rad(VG(�)) �= LG(�):

Set e(�) = 1, if � is of type A‘, D‘, E6, E7 or E8; e(�) = 2 if � is of type B‘, C‘ or

F4; and e(�) = 3 if � is of type G2. Now, recall that a weight � 2 X(T ), � =
‘X
i=1

di!i, is

p-restricted if 0 � di � p� 1 for all 1 � i � ‘.

Remark 2.3.5. [MT11, Section 16, p.137] For a fixed simple simply connected linear algebraic
group G and a fixed prime p, there exist only finitely many p-restricted weights.

Theorem 2.3.6. [Pre88, Theorem 1] Let k be an algebraically closed field of characteristic
p > 0, let G be a simple linear algebraic group and let T be a fixed maximal torus in G. Let
� 2 X(T ) be a p-restricted dominant weight. If p > e(�), then

�(LG(�)) = �(VG(�)):

2.3.2 Steinberg’s Tensor Product Theorem

Let k be an algebraically closed field of characteristic p > 0. Let Fp : k ! k be the
Frobenius automorphism, i.e. Fp(c) = cp for c 2 k. By [MT11, Proposition 16.5], we know
that Fp induces an endomorphism of algebraic groups F : G! G given by

F (x�(c)) = x�(cp); for all � 2 � and all c 2 k:

Now, let V be a kG-module and let the action of G on V be given by g � v, where g 2 G and
v 2 V . Now, for all i � 1, we can define a new action of G on V in the following way:

g �(pi) v := F i(g) � v; for all g 2 G and all v 2 V:

We denote this new kG-module by V (pi).

Proposition 2.3.7. [MT11, Proposition 16.6] Let k be an algebraically closed field of character-
istic p > 0 and let G be a simple linear algebraic group. Let T be a maximal torus in G and let
� 2 X(T ) be a dominant weight. Then, we have the following isomorphism of kG-modules:

LG(�)(p) �= LG(p�):

Let � 2 X(T ) be a dominant weight. We can express � uniquely as

� = �0 + p�1 + � � �+ pr�r; (2.3)

where r 2 Z�0 and �i 2 X(T ) is a p-restricted dominant weight for all 0 � i � r. The
following result, due to Steinberg, shows that there exists a decomposition of the associated
irreducible kG-module LG(�) analogous to (2.3).
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Theorem 2.3.8 (Steinberg). Let G be a simple simply connected linear algebraic group over
the algebraically closed field k of characteristic p > 0. We fix a maximal torus T in G and we
let � 2 X(T ) be a dominant weight. We write � = �0 + p�1 + � � �+ pr�r, where r 2 Z�0 and
�i 2 X(T ) is a p-restricted dominant weight for all 0 � i � r. Then we have the following
isomorphism of kG-modules:

LG(�) �= LG(�0)
 LG(�1)(p) 
 � � � 
 LG(�r)
(pr):

Remark 2.3.9. For p-restricted dominant weights, the associated irreducible kG-modules
are called p-restricted. Theorem 2:3:8 allows us to restrict many questions in the study of all
rational irreducible kG-modules to the finitely many p-restricted ones.

2.3.3 Group isogenies and irreducible modules

Let k be an algebraically closed field of characteristic p � 0 and assume that the simple
algebraic group G is not simply connected. Let ~G be the simple simply connected linear
algebraic group of the same type as G. Fix a central isogeny � : ~G! G with ker(�) � Z( ~G)
and d� 6= 0. Let ~T be a maximal torus in ~G with the property that �( ~T ) = T and,
similarly, let ~B be the Borel subgroup of ~G given by �( ~B) = B. Note that ~T � ~B. By
[Jan07, II.2.10], we know that each simple kG-module is also a simple k ~G-module. With
this in mind, we consider the simple kG-module LG(�), where � 2 X(T ) is a dominant
weight. Since X(T ) � X( ~T ), we will denote by ~� the weight � when viewing it as an
element of X( ~T ). Moreover, by [Jan07, II.2.10], as � 2 X(T ) is dominant, it follows that
~� 2 X( ~T ) is also dominant. Now, since LG(�) is a simple k ~G-module, it follows that there
exists ~ 2 X( ~T ) dominant such that LG(�) �= L ~G(~) as k ~G-modules. We now use [Jan07,
II.2.10] to determine that ~ = ~�, i.e. LG(�) �= L ~G(~�) as k ~G-modules. In what follows
we show that ML ~G(~�) := maxfdim((L ~G(~�))~g(~�)) j ~g 2 ~G n Z( ~G); ~� 2 k�g and MLG(�) :=

maxfdim((LG(�)g(�)) j g 2 G n Z(G); � 2 k�g are equal.
Let ~g 2 ~G n Z( ~G) and let ~� 2 k� be an eigenvalue of ~g on L ~G(~�). Let g = �(~g) and note

that g 2 G n Z(G). Since LG(�) �= L ~G(~�) as k ~G-modules, we have that:

dim((L ~G(~�))~g(~�)) = dim((LG(�))~g(�));

where � 2 k� is the eigenvalue of ~g on LG(�) corresponding to ~� under the k ~G-module
isomorphism LG(�) �= L ~G(~�). Moreover, as dim((LG(�))~g(�)) = dim((LG(�))�(~g)(�)), it
follows that

dim((L ~G(~�))~g(~�)) = dim((LG(�))�(~g)(�)) = dim((LG(�))g(�)):

Now, since the map � : ~G! G is surjective, it follows that:

dim((L ~G(~�))~g(~�)) � max
g02GnZ(G)

fdim((LG(�))g0(�
0)) j �0 2 k�g = MLG(�); (2.4)

for all ~g 2 ~G n Z( ~G). Lastly, let (g; �) 2 G n Z(G) � k� be such that dim((LG(�))g(�)) =
max

g02GnZ(G)
fdim((LG(�))g0(�

0)) j �0 2 k�g. Then:

dim((L ~G(~�))~g(~�)) = max
g02GnZ(G)

fdim((LG(�))g0(�
0)) j �0 2 k�g;
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where ~g is an arbitrary preimage of g in ~G and ~� 2 k� is the eigenvalue of ~g on L ~G(~�)
corresponding to � under the isomorphism LG(�) �= L ~G(~�). This shows that there exist
pairs (~g; ~�) 2 ~GnZ( ~G)�k� for which the bound in (2.4) is attained and thus, we have shown
that ML ~G(~�) = MLG(�).

Lastly, we set ~Ms := max
~s2 ~TnZ( ~G)

fdim((L ~G(~�))~s(~�)) j ~� 2 k�g. Arguing as above, see

Inequality (2.4), we establish that:

~Ms = max
s02TnZ(G)

fdim((LG(�))s0(�
0)) j �0 2 k�g = Ms:

Similarly, we set ~Mu := max
~u2 ~Gunf1g

dim((L ~G(~�))~u(1)), where ~Gu is the set of unipotent elements

in ~G. Then, arguing as for Inequality (2.4), one shows that:

~Mu = max
u02Gunf1g

dim((LG(�))u0(1)) = Mu:

We recall that, by Proposition 2.2.3, we have �G(V ) = dim(V ) � MV , where MV =
maxfMs;Mug, for any irreducible kG-module V , respectively � ~G( ~V ) = dim( ~V )�M ~V , where
M ~V = maxf ~Ms; ~Mug, for any irreducible k ~G-module ~V . We summarize the discussion above
in the following lemma:

Lemma 2.3.10. Let k be an algebraically closed field of arbitrary characteristic, let G be
a simple algebraic group and let ~G be the simple simply connected algebraic group of the
same type as G. Let V be an irreducible kG-module and let ~V denote V when viewing
it as an irreducible k ~G-module. Set ~Ms = max

~s2 ~TnZ( ~G)
fdim( ~V~s(~�)) j ~� 2 k�g, respectively

Ms = max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g, and ~Mu = max
~u2 ~Gunf1g

dim( ~V~u(1)), where ~Gu is the set

of unipotent elements in ~G, respectively Mu = max
u2Gunf1g

dim(Vu(1)), where Gu is the set of

unipotent elements in G. Then

~Ms = Ms and ~Mu = Mu:

In particular, we have MV = M ~V and �G(V ) = � ~G( ~V ).

We end this subsection with the following remark, which justifies why we will treat
algebraic groups of type B‘, and their respective modules, only over fields of characteristic
different than 2.

Remark 2.3.11. Let k be an algebraically closed field of characteristic 2. For C, a simple
simply connected linear algebraic group of type C‘, and B, a simple simply connected linear
algebraic group of type B‘, there exists an exceptional isogeny � : C ! B between the two
groups, see [Ste16, Theorem 28]. A consequence of this fact is that we can induce irreducible
kC-modules from irreducible kB-modules by twisting with the isogeny �. More specifically,

for any 2-restricted dominant weight � =
‘X
i=1

di!
B
i , where the !Bi ’s are the fundamental
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dominant weights of B, we have that:

LB(�) �= LC(2
‘�1X
i=1

di!
C
i + d‘!

C
‘ ) �= LC(

‘�1X
i=1

di!
C
i )(2) 
 LC(d‘!

C
‘ );

in view of Theorem 2.3.8, where the !Ci ’s are the fundamental dominant weights of C.

Thus, for any 2-restricted dominant weight � =
‘�1X
i=1

di!
B
i of B, we have �B(LB(�)) =

�C(LC(2�)) = �C(LC(�)(2)) = �C(LC(�)), where � =
‘�1X
i=1

di!
C
i . Similarly, for the weight

!B‘ , we have �B(LB(!B‘ )) = �C(LC(!C‘ )). Lastly, in the case of the weights of the form

� =
‘X
i=1

di!
B
i , where there exists 1 � i � ‘� 1 such that di = 1 and d‘ = 1, we will calculate

�C(LC(
‘�1X
i=1

di!
C
i )2 
 LC(!‘)) to determine �B(LB(�)).

2.4 Parabolic subgroups
In this section we introduce a family of subgroups of the simple linear algebraic group G
called parabolic subgroups. They will play an important role in this thesis, as their structure
as a semidirect product of a reductive subgroup and a unipotent normal subgroup allows us
to use inductive algorithms to prove certain parts of Theorem 1.1.1, see Subsections 2.4.3
and 2.4.4, respectively.

A subgroup P of G which contains a Borel subgroup is called parabolic. In what
follows, we will describe these subgroups and present their construction. Fix a proper subset
I � f1; : : : ; ‘g and set �I := f�i 2 � j i 2 Ig and �I := �\

X
�i2�I

Z�i. The subgroup PI :=

hT; U� j � 2 �+[�Ii is a parabolic subgroup inG, called the standard parabolic subgroup of
G corresponding to �I . Let QI := Ru(PI) be the unipotent radical of PI . We have that
QI = hU� j � 2 �+ n �Ii, and that LI := hT; U� j � 2 �Ii is a complement of QI in PI , see
[MT11, Subsection 12.2]. Now, PI admits a decomposition

PI = QI o LI ;

called the Levi decomposition, where the subgroup LI , called the standard Levi complement
of PI , is reductive and has �I as root system, [MT11, Proposition 12.6]. Therefore, by
[MT11, Corollary 8.22], we have that LI = Z(LI)

�[LI ; LI ], where Z(LI)
� is a torus and, since

G is simply connected, the derived subgroup [LI ; LI ] is also of simply connected type and is
of rank strictly smaller than rank(G), [MT11, Proposition 12.14].

We now turn our attention to a specific family of parabolic subgroups, called maximal para-
bolic subgroups. These are the standard parabolic subgroups which correspond to �i :=
� n f�ig, 1 � i � ‘. Therefore, for each 1 � i � ‘, set Pi to be the maximal parabolic
subgroup of G corresponding to �i = f�1 : : : ; �i�1; �i+1; : : : ; �‘g. Set Li = hT; U��1 ; : : : ;
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U��i�1
; U��i+1

; : : : ; U��‘i to be a Levi subgroup of Pi. We have seen earlier that Li has root
system �i = � \ (Z�1 + � � � + Z�i�1 + Z�i+1 + � � � + Z�‘), in which �i is a set of simple

roots. Now, we have that Li = Z(Li)
�[Li; Li], where Z(Li)

� =

�\
j 6=i

ker(�j)

��
is a one-

dimensional subtorus of G and [Li; Li] is a simply connected linear algebraic group of rank
‘� 1. Lastly, we have that T 0 = T \ [Li; Li] is a maximal torus in [Li; Li], contained in the
Borel subgroup B0 = B \ [Li; Li]. Let !1; : : : ; !‘ denote the fundamental dominant weights
of G corresponding to �. We will abuse notation and denote the fundamental dominant
weights of Li corresponding to �i by !1; : : : ; !i�1; !i+1; : : : ; !‘.

2.4.1 Restriction to Levi subgroups

Let W be the Weyl group of G corrsponding to T . Let � 2 X(T ) be a dominant weight and

write � =
‘X
i=1

di!i, where di � 0 for all 1 � i � ‘. Let LG(�) be the associated irreducible

kG-module.

Definition 2.4.1. Fix some 1 � i � ‘. We say that a weight � in LG(�) has �i-level j � 0

if � = � � j�i �
X
r 6=i

cr�r, where cr 2 Z�0. The maximum �i-level of weights in LG(�) will

be denoted by ei(�).

Remark 2.4.2. By definition, ei(�) is equal to the �i-level of the lowest weight in LG(�),
which, by [Jan07, II, Proposition 2.4(b)], is w0(�), where w0 2 W is the longest word.

Let V = LG(�). Fix 1 � i � ‘ and let Li be a Levi subgroup of Pi, the maximal parabolic
subgroup of G corresponding to �i = f�1; : : : ; �i�1; �i+1; : : : ; �‘g, see Subsection 2.4. For
each 0 � j � ei(�), define the subspace V j :=

M
2N�i

V��j�i� of V and note that V j is

invariant under Li. Then, as a k[Li; Li]-module, V admits the following decomposition:

V j[Li;Li]=
ei(�)M
j=0

V j:

We note that, by [Jan07, II.2.11], V 0 =
M
2N�i

V�� is the irreducible k[Li; Li]-module of

highest weight � jT 0 , where T 0 = T \ [Li; Li] is a maximal torus in [Li; Li].

Lemma 2.4.3. [Duality Lemma] Let k be an algebraically closed field of characteristic p � 0
and let G be a simple simply connected linear algebraic group. Let T be a maximal torus in G
and let V = LG(�), where � 2 X(T ) is dominant. Assume that V is a self-dual kG-module.
Fix 1 � i � ‘ and let Li be a Levi subgroup of the maximal parabolic subgroup Pi of G.
Moreover, for all 0 � j � ei(�), let V j =

X
2N�i

V��j�i�. Then, for all 0 � j �
j
ei(�)

2

k
, we

have the following isomorphism of k[Li; Li]-modules:

V ei(�)�j �= (V j)�:
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Proof. We note that, as V is self-dual, we have that w0(�) = �� and V is equipped with
a nondegenerate bilinear form, which will be denoted by (�;�). Let �; �0 2 �(V ) be such
that �0 6= ��. We will show that V�0 � V ?� . For this, let v 2 V� and v0 2 V�0 . We have that:

(v; v
0
) = (t � v; t � v0) = (�(t)v; �

0
(t)v

0
) = (�+ �

0
)(t)(v; v

0
); for all t 2 T:

Therefore (v; v
0
) = 0, as �0 6= ��. Moreover, we note that if �� =2 �(V ), then V = V ?� ,

contradicting the fact that (�;�) is nondegenerate. Therefore �� 2 �(V ) for all � 2 �(V ).
Secondly, let � 2 �(V ) be a weight of �i-level j, where 0 � j � ei(�). We will show that

�� has �i-level ei(�)� j. On one hand, we know that ei(�) is equal to the �i-level of w0(�),
see Remark 2.4.2, therefore we have:

w0(�) = �� = �� ei(�)�i �
X
r 6=i

ar�r;

where ar 2 Z�0. On the other hand, since � = �� j�i �
X
r 6=i

cr�r, for cr 2 Z�0, we have:

�� = ��+ j�i +
X
r 6=i

cr�r = �� (ei(�)� j)�i �
X
r 6=i

br�r;

where br 2 Z�0 for all r 6= i. Therefore, �� has �i-level equal to ei(�)� j. In particular, as
V�0 � (V�)? for all �0 6= ��, it follows that (V j)? �

M
r 6=ei(�)�j

V r.

Lastly, as V j[Li;Li]=
ei(�)M
j=0

V j is self-dual, it follows that V j[Li;Li]�=
ei(�)M
j=0

(V j)�. Furthermore,

as V is equipped with a nondegenerate bilinear form, we have that (V j)� �= V=(V j)?, for all
0 � j � ei(�). As (V j)? �

M
r 6=ei(�)�j

V r, it follows that dim((V j)�) � dim(V ei(�)�j). By the

same argument, this time applied to V ei(�)�j, we determine that dim((V ei(�)�j)�) � dim(V j).
Therefore, dim((V j)�) = dim(V ei(�)�j), thus (V j)? =

M
r 6=ei(�)�j

V r, and we conclude that

(V j)� �= V ei(�)�j:

2.4.2 Maximum �i-levels of weights in LG(�)

In this subsection, we exhibit formulas for the maximum �i-levels of weights in LG(�), for

all 1 � i � ‘ and all types of simple classical linear algebraic groups. Now, as � =
‘X
i=1

di!i,

where di � 0 for all 1 � i � ‘, we will use [Hum72, Table 1, p.69], which allows us to write
the fundamental dominant weights !i in terms of the simple roots �i. Before we begin, we
recall that w0(�) is the lowest weight in LG(�), where w0 2 W denotes the longest word in
the Weyl group W of G.
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Lemma 2.4.4. Let G be of type A‘, ‘ � 1 and let � 2 X(T ), � =
‘X
i=1

di!i, be a dominant

weight. Then, for all 1 � i �
�
‘
2

�
, the maximum �i-level and the maximum �‘�i+1-level of

weights in LG(�) are equal. Moreover, one of the following holds:

(1) for ‘ even, we have ei(�) = e‘�i+1(�) =
X
j<i

j(dj +d‘�j+1) + i
‘�i+1X
j=i

dj, for all 1 � i � ‘
2
;

(2) for ‘ odd, we have

8>>>>><>>>>>:
e ‘+1

2
(�) =

‘+ 1

2
d ‘+1

2
+

‘�1
2X
j=1

j(dj + d‘�j+1);

ei(�) = e‘�i+1(�) =
X
j<i

j(dj + d‘�j+1) + i
‘�i+1X
j=i

dj; for all 1 � i � ‘� 1

2
:

Proof. In order to determine ei(�), 1 � i � ‘, we have to calculate the �i-level of w0(�).
Using [Hum72, Table 1, p.69], we write the !i’s, 1 � i � ‘, in terms of the simple roots �j,
1 � j � ‘, and we see that:

w0(�) = �� (�� w0(�)) = ��
‘X

r=1

dr(!r � w0(!r)) = ��
‘X

r=1

dr(!r + !‘�r+1):

Let 1 � r �
�
‘
2

�
. Then:

!r + !‘�r+1 =
r�1X
j=1

j�j + r
‘�r+1X
j=r

�j +
‘X

j=‘�r+2

(‘+ 1� j)�j:

We now assume that ‘ is even. Then:

w0(�) = ��
‘
2X

r=1

(dr + d‘�r+1)(!r + !‘�r+1)

= ��
‘
2X

r=1

(dr + d‘�r+1)

� r�1X
j=1

j�j + r
‘�r+1X
j=r

�j +
‘X

j=‘�r+2

(‘+ 1� j)�j
�

= �� (d1 + d‘)(�1 + � � �+ �‘)� (d2 + d‘�1)(�1 + 2�2 + 2�3 + � � �+ 2�‘�1 + �‘)� � � ��

� (d ‘
2

+ d ‘
2

+1)

�
�1 + � � �+

�
‘

2
� 1

�
� ‘

2
�1 +

‘

2
� � ‘

2
+
‘

2
� � ‘

2
+1 +

�
‘

2
� 1

�
� ‘

2
+1 + � � �+ �‘

�

= ��
‘
2X

r=1

�X
j<r

j(dj + d‘�j+1) + r

‘
2X
j=r

(dj + d‘�j+1)

�
(�r + �‘�r+1)

= ��
‘
2X

r=1

�X
j<r

j(dj + d‘�j+1) + r
‘�r+1X
j=r

dj

�
(�r + �‘�r+1):
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Therefore, we have proven that, for all 1 � i � ‘
2
, we have ei(�) = e‘�i+1(�), where

ei(�) =
X
j<i

j(dj + d‘�j+1) + i

‘�i+1X
j=i

dj:

We can now assume that ‘ is odd. Then:

! ‘+1
2

=
1

2

�
�1 + 2�2 + � � �+ ‘� 1

2
� � ‘�1

2
+
‘+ 1

2
� � ‘+1

2
+
‘� 1

2
� � ‘+1

2
+1 + � � �+ �‘

�
:

This gives:

w0(�) = ��
‘�1

2X
r=1

�
(dr + d‘�r+1)(!r + !‘�r+1)

�
� d ‘+1

2

�
! ‘+1

2
+ ! ‘+1

2

�

= ��
‘�1

2X
r=1

�
(dr + d‘�r+1)

� r�1X
j=1

j�j + r
‘�r+1X
j=r

�j +
‘X

j=‘�r+2

(‘+ 1� j)�j
��
�

� d ‘+1
2

� ‘�1
2X
j=1

j�j +
‘+ 1

2
� � ‘+1

2
+

‘X
j= ‘+1

2
+1

(‘� j + 1)�j

�

= ��
‘�1

2X
r=1

�X
j<r

j(dj + d‘�j+1) + r

‘
2X
j=r

(dj + d‘�j+1) + rd ‘+1
2

�
(�r + �‘�r+1)�

�
�
‘+ 1

2
d ‘+1

2
+

‘�1
2X
j=1

j(dj + d‘�j+1)

�
� ‘+1

2

= ��
‘�1

2X
r=1

�X
j<r

j(dj + d‘�j+1) + r
‘�r+1X
j=r

dj

�
(�r + �‘�r+1)�

�
�
‘+ 1

2
d ‘+1

2
+

‘�1
2X
j=1

j(dj + d‘�j+1)

�
� ‘+1

2
:

We conclude that e ‘+1
2

(�) =
‘+ 1

2
d ‘+1

2
+

‘�1
2X
j=1

j(dj + d‘�j+1) and, for all 1 � i � ‘�1
2
, we have

ei(�) = e‘�i+1(�) =
X
j<i

j(dj + d‘�j+1) + i

‘�i+1X
j=i

dj.

Lemma 2.4.5. Let G be of type C‘, ‘ � 2, and let � 2 X(T ), � =
‘X
i=1

di!i, be a dominant
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weight. Then the maximum �i-level of weights in LG(�) is:

ei(�) =

8>>>><>>>>:
2

� i�1X
j=1

jdj + i

‘X
j=i

dj

�
; for 1 � i � ‘� 1;

‘X
j=1

jdj; for i = ‘:

Proof. Note that, as G is a group of type C‘, ‘ � 2, we have w0 = �1, hence w0(�) = ��.
We write the !i’s, 1 � i � ‘, in terms of the simple roots �j, 1 � j � ‘, and we see that:

w0(�) = �� = �� 2� =�� 2(d1 + � � �+ d‘)�1 � 2

�
d1 + 2

‘X
j=2

dj

�
�2 � � � ��

� 2

� i�1X
j=1

jdj + i
‘X
j=i

dj

�
�i � � � � �

� ‘X
j=1

jdj

�
�‘:

We remark that the coefficient of each �i, 1 � i � ‘, in the above, is a nonnegative integer
and the result follows.

Lemma 2.4.6. Let G be of type B‘, ‘ � 3, and let � 2 X(T ), � =
‘X
i=1

di!i, be a dominant

weight. Then the maximum �i-level of weights in LG(�) is:

ei(�) = 2

� i�1X
j=1

jdj + i

� ‘�1X
j=i

dj +
1

2
d‘

��
; for all 1 � i � ‘:

Proof. Note that, asG is a group of type B‘, ‘ � 3, we have that w0 = �1, hence w0(�) = ��.
We write the fundamental dominant weights !i, 1 � i � ‘, in terms of the simple roots �j,
1 � j � ‘, and we determine that:

� =
‘X
i=1

� i�1X
j=1

jdj + i

� ‘�1X
j=i

dj +
1

2
d‘

��
�i:

Therefore

w0(�) = �� = �� 2� = �� 2
‘X
i=1

� i�1X
j=1

jdj + i

� ‘�1X
j=i

dj +
1

2
d‘

��
�i

and so ei(�) = 2

� i�1X
j=1

jdj + i

� ‘�1X
j=i

dj +
1

2
d‘

��
, for all 1 � i � ‘.
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Lemma 2.4.7. Let G be of type D‘, ‘ � 4, and let � 2 X(T ), � =
‘X
i=1

di!i, be a dominant

weight. Then, for all 1 � i � ‘� 2, the maximum �i-level of weights in LG(�) is:

ei(�) = 2

� i�1X
j=1

jdj + i

‘�2X
j=i

dj +
1

2
i(d‘�1 + d‘)

�
:

Moreover, if ‘ is even, then:

e‘�1(�) =
‘�2X
j=1

jdj +
1

2

�
‘d‘�1 + (‘� 2)d‘

�
and e‘(�) =

‘�2X
j=1

jdj +
1

2

�
(‘� 2)d‘�1 + ‘d‘

�
;

while, if ‘ is odd, then:

e‘�1(�) = e‘(�) =
‘�2X
j=1

jdj +
1

2
(‘� 1)(d‘�1 + d‘):

Proof. We first assume that ‘ is even. Then w0 = �1 and we have:

w0(�) = �� = �� 2� = �� 2
‘�2X
j=1

dj!j � 2d‘�1!‘�1 � 2d‘!‘;

therefore
‘�2X
j=1

dj!j =
‘�2X
r=1

� r�1X
j=1

jdj + r
‘�2X
j=r

dj

�
�r +

1

2

� ‘�2X
j=1

jdj

�
�‘�1 +

1

2

� ‘�2X
j=1

jdj

�
�‘

and

d‘�1!‘�1 + d‘!‘ =
1

2
(d‘�1 + d‘)

‘�2X
j=1

j�j +
1

4

�
‘d‘�1 + (‘� 2)d‘

�
�‘�1 +

1

4

�
(‘� 2)d‘�1 + ‘d‘

�
�‘:

This gives

w0(�) = ��
‘�2X
r=1

2

� r�1X
j=1

jdj + r

‘�2X
j=r

dj +
1

2
r(d‘�1 + d‘)

�
�r �

� ‘�2X
j=1

jdj +
1

2
(‘d‘�1 + (‘� 2)d‘)

�
�‘�1�

�
� ‘�2X
j=1

jdj +
1

2
((‘� 2)d‘�1 + ‘d‘)

�
�‘;

thus ei(�) = 2

� i�1X
j=1

jdj + i

‘�2X
j=i

dj +
1

2
i(d‘�1 + d‘)

�
, for all 1 � i � ‘� 2, e‘�1(�) =

‘�2X
j=1

jdj +

1

2

�
‘d‘�1 + (‘� 2)d‘

�
and e‘(�) =

‘�2X
j=1

jdj +
1

2

�
(‘� 2)d‘�1 + ‘d‘

�
.
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We now assume that ‘ is odd. We note that w0(!j) = �!j, for all 1 � j � ‘ � 2,
w0(!‘�1) = �!‘ and w0(!‘) = �!‘�1. It follows that:

w0(�) = �
‘�2X
j=1

dj!j � d‘�1!‘ � d‘!‘�1 = ��+ d‘�1!‘�1 + d‘!‘ � d‘�1!‘ � d‘!‘�1

= �� 2�+ (d‘�1 � d‘)!‘�1 + (d‘ � d‘�1)!‘

= �� 2
‘�2X
j=1

dj!j � 2d‘�1!‘�1 � 2d‘!‘ + (d‘�1 � d‘)!‘�1 + (d‘ � d‘�1)!‘

= �� 2
‘�2X
j=1

dj!j � (d‘�1 + d‘)(!‘�1 + !‘):

Now, we determine that

‘�2X
j=1

dj!j =
‘�2X
r=1

� r�1X
j=1

jdj + r
‘�2X
j=r

dj

�
�r +

1

2

� ‘�2X
j=1

jdj

�
�‘�1 +

1

2

� ‘�2X
j=1

jdj

�
�‘

and that

(d‘�1 + d‘)(!‘�1 + !‘) = (d‘�1 + d‘)

� ‘�2X
j=1

j�j

�
+
‘� 1

2
(d‘�1 + d‘)�‘�1 +

‘� 1

2
(d‘�1 + d‘)�‘:

Therefore, we have:

w0(�) = ��
‘�2X
r=1

2

� r�1X
j=1

jdj + r

‘�2X
j=r

dj +
1

2
r(d‘�1 + d‘)

�
�r �

� ‘�2X
j=1

jdj +
1

2
(‘� 1)(d‘�1 + d‘)

�
(�‘�1 + �‘)

and thus ei(�) = 2

� i�1X
j=1

jdj + i
‘�2X
j=i

dj +
1

2
i(d‘�1 + d‘)

�
, for all 1 � i � ‘ � 2, and e‘�1(�) =

e‘(�) =
‘�2X
j=1

jdj +
1

2
(‘� 1)(d‘�1 + d‘).

2.4.3 The algorithm for semisimple elements

Recall that k is an algebraically closed field of characteristic p � 0; G is a simple simply
connected linear algebraic group of rank ‘ � 1; T is a fixed maximal torus in G with
rational character group X(T ); � is the root system of G determined by T ; � is a set
of simple roots in �; and B is the positive Borel subgroup of G. Let � 2 X(T ) be a
nonzero p-restricted dominant weight and let V = LG(�) be the corresponding irreducible
kG-module. Fix 1 � i � ‘ and let Pi be the maximal parabolic subgroup of G given by
�i = f�1; : : : ; �i�1; �i+1; : : : ; �‘g. Let Li be a Levi subgroup of Pi. In this subsection, we
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outline an inductive algorithm which calculates max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g. For this, we

consider the restriction:

V j[Li;Li]=
ei(�)M
j=0

V j;

where ei(�) is the maximum �i-level of weights in V and, for all 0 � j � ei(�), we have
V j =

M
2N�i

V��j�i�. Now, let s 2 T n Z(G). Then, in particular, s 2 Li and so s = z � h,

where z 2 Z(Li)
� and h 2 [Li; Li]. As z 2 Z(Li)

� and Z(Li)
� is a one-dimensional torus, there

exists c 2 k� and kr 2 Z, 1 � r � ‘, such that z =
‘Y

r=1

h�r(c
kr). Moreover, we have �j(z) = 1

for all 1 � j � ‘, j 6= i. On the other hand, as h 2 [Li; Li], we have h =
Y

1�r�‘
r 6=i

h�r(ar), where

ar 2 k� for all 1 � r � ‘, r 6= i. We write � as � =
‘X
i=1

di!i, where 0 � di � p � 1 for all

1 � i � ‘. Now, z acts on each V j, 0 � j � ei(�), as scalar multiplication by

sjz := (�� j�i � )(z) = (�� j�i � )(
‘Y

r=1

h�r(c
kr)) = (�� j�i)(

‘Y
r=1

h�r(c
kr))

=
‘Y

r=1

�
ckrh�;�ri

�
�

‘Y
r=1

c�jkrh�i;�ri

=
‘Y

r=1

�
ckrdr

�
�

‘Y
r=1

c�jkrh�i;�ri;

(2.5)

where we used the fact that (z) = 1, as  2 N�i and �j(z) = 1 for all �j 2 �i. Now, let
�j1; : : : ; �

j
tj , tj � 1, be the distinct eigenvalues of h on V j, 0 � j � ei(�), and let nj1; : : : ; n

j
tj

be their respective multiplicities. Then, as s = z � h and z acts on V j as the scalar sjz, it
follows that the eigenvalues of s on V j are sjz�

j
1; : : : ; s

j
z�

j
tj and they are distinct, as the �jr’s

are, with respective multiplicities nj1; : : : ; n
j
tj . This discussion yields the following lemma:

Lemma 2.4.8. Let s 2 T n Z(G) and write s = z � h with z 2 Z(Li)
� and h 2 [Li; Li]. Let

�j1; : : : ; �
j
tj , tj � 1, be the distinct eigenvalues of h on V j, 0 � j � ei(�), and let nj1; : : : ; n

j
tj

be their respective multiplicities. Then:

(1) z acts on each V j, 0 � j � ei(�), as scalar multiplication by sjz, where sjz is given in
(2.5);

(2) the distinct eigenvalues of s on V j, 0 � j � ei(�), are sjz�
j
1; : : : ; s

j
z�

j
tj , with respective

multiplicities nj1; : : : ; n
j
tj ;

(3) the eigenvalues of s on V are sjz�
j
1; : : : ; s

j
z�

j
tj , 0 � j � ei(�), with respective multiplicities

at least nj1; : : : ; n
j
tj .

33



2.4.4 The algorithm for unipotent elements

In this subsection, we shift the focus to the unipotent elements of G and outline an inductive
algorithm to calculate max

u2Gunf1g
dim(Vu(1)). We will denote by k[u] the group algebra of hui

over k. The rest of the notation is the same as in Subsection 2.4.3. We begin with a lemma
which will be used extensively in the chapters that follow.

Lemma 2.4.9. Let u 2 G be a unipotent element and let V be a finite-dimensional kG-
module. Let V = Mt � Mt�1 � � � � � M1 � M0 = 0, where t � 1, be a filtration of
k[u]-submodules of V . Then:

dim(Vu(1)) �
tX
i=1

dim((Mi=Mi�1)u(1)):

Moreover, suppose that for each i, we have a u-invariant decomposition Mi = Mi�1 �M 0
i�1

with M 0
i�1
�= Mi=Mi�1 as k[u]-modules. Then

dim(Vu(1)) =
tX
i=1

dim((Mi=Mi�1)u(1)):

Proof. We start by noting that

Vu(1) = fv 2 V j u � v = vg = fv 2 V j u � v � v = 0g
= fv 2 V j (u� idV ) � v = 0g = ker(u� idV ):

(2.6)

Now, for each 1 � i � t, we fix a basis inMi with the property that the matrix (u)Mi=Mi�1

associated to the action of u on Mi=Mi�1 is upper-triangular. Then, the matrix (u)V of the
action of u on V is the block upper-triangular matrix:

(u)V =

0BBBBB@
(u)M1 ? ? � � � ?

0 (u)M2=M1 ? � � � ?
0 0 (u)M3=M2 � � � ?

...
... . . . ...

0 0 0 � � � (u)Mt=Mt�1

1CCCCCA :

Using (u)V , we calculate the matrix of the action of u� idV on V :

(u� idV )V =

0BBBBB@
(u� idM1)M1 ? ? � � � ?

0 (u� idM2=M1)M2=M1 ? � � � ?

0 0
. . . � � � ?

...
...

... . . . ...
0 0 0 � � � (u� idMt=Mt�1)Mt=Mt�1

1CCCCCA ;

where (u�idMi=Mi�1
)Mi=Mi�1

is the matrix of the action of u�idMi=Mi�1
onMi=Mi�1, 1 � i � t,

with respect to the basis of Mi we have previously fixed. It follows that:

rank(u� idV ) �
tX
i=1

rank((u� idMi=Mi�1
)Mi=Mi�1

)
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and, consequently, we have

dim(ker(u� idV )) �
tX
i=1

dim(ker((u� idV ) jMi=Mi�1
)):

Using (2.6), we determine that:

dim(Vu(1)) �
tX
i=1

dim((Mi=Mi�1)u(1)):

Lastly, for all 1 � i � t, assume that there exists a k[u]-submodule, M 0
i�1, of Mi such

that Mi = Mi�1 �M 0
i�1. Then V jk[u]= M 0

0 � � � � �M 0
t�1
�= M1 �M2=M1 � � � � �Mt=Mt�1,

and so there exists a basis of V with the property that:

(u� idV )V =

0BBBBB@
(u� idM1)M1 0 0 � � � 0

0 (u� idM2=M1)M2=M1 0 � � � 0

0 0
. . . � � � 0

...
...

... . . . ...
0 0 0 � � � (u� idMt=Mt�1)Mt=Mt�1

1CCCCCA ;

thereby rank(u � idV ) =
tX
i=1

rank((u � idMi=Mi�1
)Mi=Mi�1

). Arguing as above, we establish

that

dim(Vu(1)) =
tX
i=1

dim((Mi=Mi�1)u(1)):

We have set Pi to be the maximal parabolic subgroup ofG associated to �i = f�1; : : : ; �i�1;
�i+1; : : : ; �‘g. We write the Levi decomposition of Pi:

Pi = Li �Qi = hT; U� j � 2 �ii � hU� j � 2 �+ n �ii;

where �i = �\ (Z�1 + � � �+ Z�i�1 + Z�i+1 + � � �+ Z�‘). Let u 2 G, u =
Y
�2�+

x�(c�), where

the product respects the total order � on �, see Section 1.3, and c� 2 k. Now, as u 2 B
and B � Pi, it follows that u admits a decomposition:

u =
Y
�2�i

x�(c0�) �
Y

�2�+n�i

x�(c0�);

where each of the products respects � and c0� 2 k, for all � 2 �+. We set uLi =
Y
�2�i

x�(c0�)

and uQi =
Y

�2�+n�i

x�(c0�), and we note that uLi 2 Li and uQi 2 Qi.
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Let V be an irreducible kG-module of highest weight � 2 X(T ). We consider the
restriction:

V j[Li;Li]=
ei(�)M
j=0

V j;

where ei(�) is the maximum �i-level of weights in V , and V j =
M
2N�i

V��j�i�, for all

0 � j � ei(�). Let � 2 �(V ), with corresponding weight space V�, and let � 2 �. As

U�V� �
M
r2Z�0

V�+r�;

see Lemma 2.3.1, we determine that

uLi � V j � V j; uQi � V j �
jM
r=0

V r and (uQi � 1)V j �
j�1M
r=0

V r; for all 0 � j � ei(�):

Therefore, V admits a filtration V = Mei(�) � Mei(�)�1 � � � � � M1 � M0 � 0 of k[u]-

submodules, whereMj =

jM
r=0

V r for all 0 � j � ei(�). We see that u acts on eachM j=M j�1,

1 � j � ei(�), as uLi and so, by Lemma 2.4.9, we determine that:

dim(Vu(1)) �
ei(�)X
j=0

dim(V j
uLi

(1)) = dim(VuLi (1)): (2.7)

Lastly, we remark that if u = uLi , i.e. uQi = 1, then u � V j � V j, for all 0 � j � ei(�), and
thus, by Lemma 2.4.9, it follows that:

dim(Vu(1)) = dim(VuLi (1)): (2.8)

The algorithm: The first step is to identify all unipotent conjugacy classes in G. For
simple linear algebraic groups of classical type this is done by Theorem 2.9.2, or Theorem
2.9.11, depending on whether p 6= 2 or p = 2, while, for exceptional groups, we use [Sim13,
Tables 3.1-3.9]. We choose a representative u0 for each unipotent conjugacy class in G. Since,
in particular, u0 2 Pi, we write u0 = u

0
Li
� u0Qi , where u

0
Li
2 Li and u

0
Qi
2 Qi. Now, as a

k[Li; Li]-module, V admits the following decomposition:

V j[Li;Li]=
ei(�)M
j=0

V j;

where V j =
X
2N�i

V��j�i� for all 0 � j � ei(�). The next step of the algorithm is to identify

the kLi-composition factors of each V j, 0 � j � ei(�). Afterwards, we use Lemma 2.4.9 and
already proven results to determine an upper-bound for each dim(V j

u
0
Li

(1)), 0 � j � ei(�).
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Now, assuming that u0Li 6= 1, as dim(Vu0Li
(1)) =

ei(�)X
j=0

dim(V j

u
0
Li

(1)), we established an upper-

bound for dim(Vu0Li
(1)), hence for dim(Vu0 (1)), as dim(Vu0 (1)) � dim(Vu0Li

(1)) by Inequality
(2.7). Lastly, we take u 2 G to be a non-identity unipotent element. Then u is conjugate
to exactly one non-identity unipotent class representative u0 . Therefore, since dim(Vu(1)) =
dim(Vu0 (1)), we have determined an upper-bound for dim(Vu(1)). To end, we note that if we
choose 1 � i � ‘ such that Li has the property that each non-identity unipotent conjugacy
class of G admits a representative u0 with u0Li 6= 1, then the upper-bound for dim(Vu(1)),
where u 2 G is a nontrivial unipotent element, given by the algorithm is strictly smaller
than dim(V ).

2.5 Generation of linear algebraic groups
In this section we present the generation results for linear algebraic groups established by
Guralnick and Saxl in [GS03, Section 8]. For this, let F be an algebraically closed field of
characteristic p � 0 and let G be a simple linear algebraic group. It is said that a subset S of
G topologically generates G, in the Zariski topology, if the closure of the subgroup generated
by S is the whole of G, i.e. hSi = G. When it is understood from the context, we will delete
topological and just say that G is generated.

Remark 2.5.1. If the field F is algebraic over a finite field, then G will be a locally finite
group. Thereby, we assume, for now, that F is an algebraically closed field of characteristic
p � 0 which is not algebraic over a finite field.

Definition 2.5.2. For g 2 G n Z(G), let �(g) be the minimal number of G-conjugates of g
necessary to (topologically) generate G. We define:

�(G) := maxf�(g)j g 2 G n Z(G)g:

Theorem 2.5.3. [GS03, Theorem 8:1] Let F be an algebraically closed field of characteristic
p � 0 which is not algebraic over a finite field. Let G be a simple classical linear algebraic
group with natural module of dimension n. Then �(G) = n, unless one of the following
holds:

(a) G is of type A1, in which case �(G) = 3;

(b) G is of type C‘ and p = 2, in which case �(G) = 2‘+ 1;

(c) G is of type C2, in which case �(G) = 5.

Theorem 2.5.4. [GS03, Theorem 8:2] Let F be an algebraically closed field of characteristic
p � 0 which is not algebraic over a finite field. Let G be a simple exceptional linear algebraic
group of rank ‘. Then �(G) = ‘+ 3, unless G is of type F4, in which case �(G) = 8.
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2.6 The dimensional criteria
Let F be an algebraically closed field of characteristic p � 0 which is not algebraic over a
finite field and let G be a simple simply connected linear algebraic group. Following [GS03],
we will establish a dimensional criteria for irreducible tensor-indecomposable FG-modules
to satisfy in order to be candidates for the classification of Theorem 1.1.1. With that, let V
be an irreducible tensor-indecomposable FG-module and recall that �G(V ) = minfdim(V )�
dim(Vg(�)) j g 2 G n Z(G); � 2 F �g. Let g 2 G n Z(G) have the property that it realizes
�G(V ), i.e. g affords an eigenvalue � 2 F � on V such that �G(V ) = dim(V ) � dim(Vg(�)).
Let �(g) = n, where n 2 Z�2, and note that n � �(G). Let g1; : : : ; gn 2 G be G-conjugates
of g which generate G. Note that each gi affords � as an eigenvalue on V , since g does, and
we set Vi := Vgi(�), for each 1 � i � n. Moreover, we have dim(Vi) = dim(Vg(�)), 1 � i � n.

Now, V1 +
n\
i=2

Vi is a subspace of V , hence dim(V1 +
n\
i=2

Vi) � dim(V ). This gives

dim(V1 +
n\
i=2

Vi) = dim(V1) + dim(
n\
i=2

Vi)� dim(
n\
i=1

Vi) � dim(V ): (2.9)

Assume
n\
i=1

Vi 6= f0g and fix 0 6= v 2
n\
i=1

Vi. Set � = fx 2 G j x � v =2 hvig and note

that � is an open subset of G. Since hg1; : : : ; gni = G, every nonempty open subset of
G intersects hg1; : : : ; gni nontrivially. We deduce that � = ;, therefore hvi is a G-stable

subspace of V , contradicting the fact that V is irreducible. Thus, we have
n\
i=1

Vi = f0g and

so dim(
n\
i=1

Vi) = 0. We come back to Inequality (2.9) and see that

dim(V1) + dim(
n\
i=2

Vi) � dim(V ): (2.10)

Now, dim(
n\
i=2

Vi) = dim(V2)+dim(
n\
i=3

Vi)�dim(V2 +
n\
i=3

Vi), dim(V2) = dim(V1) and dim(V2 +

n\
i=3

Vi) � dim(V ), therefore, by Inequality (2.10), we have:

2 dim(V1) + dim(
n\
i=3

Vi) � 2 dim(V ):

Since, for all 3 � j � n, we have dim(Vi) = dim(V1), while, for all 3 � j � n � 1, we have

dim(
n\
i=j

Vi) = dim(Vj) + dim(
n\

i=j+1

Vi)� dim(Vj +
n\

i=j+1

Vi) and dim(Vj +
n\

i=j+1

Vi) � dim(V ),

recursively, we deduce that:

n � dim(V1) � (n� 1) � dim(V ):
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As dim(V1) = dim(Vg(�)) and dim(Vg(�)) = dim(V )� �G(V ), the above gives:

dim(V ) � n � �G(V ) � �(G) � �G(V ): (2.11)

Lastly, as we are interested in identifying the irreducible tensor-indecomposable FG-
modules V for which �G(V ) �

p
dim(V ), Inequality (2.11) establishes the following dimensio-

nal criteria:
dim(V ) � �(G)2: (2.12)

To end this section, we will show that the representation theoretic results for algebraic
groups over k0 = Fp, the algebraic closure of Fp, follow from the results over F , where F is our
fixed algebraically closed field which is not algebraic over Fp. We may assume that k0 � F
and we let � : k0 ! F denote this injective homomorphism. Let Vk0 be a finite-dimensional
k0-vector space with dim(Vk0) = r and let VF := Vk0
k0F be the vector space over F obtained
from Vk0 by extension of the ground field via �. Let G be a group and let � : G ! GL(Vk0)
be a representation of G. Then �� : G ! GL(VF ) given by g ! �(g) 
 1, where g 2 G,
is a representation of G into GL(VF ). If we identify Vk0 with (k

0
)r, then VF is canonically

identified with F r, i.e. VF is a finite-dimensional F -vector space with dimF (VF ) = dimk0(Vk0).
We also remark that for g 2 G, the coefficients of the matrix ��(g) are obtained by applying
� to the coefficients of �(g). Hence, if � 2 (k0)� is an eigenvalue of g 2 G on Vk0 , then �(�) is
an eigenvalue of g on VF and, moreover, we have dimk0((Vk0)g(�)) = dimF ((VF )g(�(�))).

We write Gk0 for G, when G is a simply connected linear algebraic group over k0, and we
let GF denote the simply connected linear algebraic group G over F . We want to establish
a dimensional criteria similar to (2.12) for irreducible tensor-indecomposable k0Gk0-modules.
For this, we will require the following result:

Theorem 2.6.1. [Jan07, II, Corollary 2.9] Let Vk0 be an irreducible tensor-indecomposable
k0Gk0-module. Then, the FGF -module Vk0 
k0 F is irreducible and tensor-indecomposable.

In view of the above theorem, let Vk0 be an irreducible tensor-indecomposable k0Gk0-
module and assume that �Gk0 (Vk0) �

p
dim(Vk0). Then, VF = Vk0 
k0 F is an irreducible

tensor-indecomposable FGF -module. Since dimF (VF ) = dimk0(Vk0) and dimF ((VF )g(�(�))) =
dimk0((Vk0)g(�)) for all g 2 Gk0 , it follows that �GF (VF ) � �Gk0 (Vk0). In particular, we have
�GF (VF ) �

p
dimF (VF ) and, consequently, dim(VF ) � �(GF )2, hence dim(Vk0) � �(GF )2.

In conclusion, we have shown that if G is a simply connected linear algebraic group over
k0 = Fp and V is an irreducible tensor-indecomposable k0G-module with �G(V ) �

p
dim(V ),

then V has to satisfy the following dimensional criteria:

dim(V ) � �(GF )2;

where GF is the simply connected linear algebraic group G over F , an algebraically closed
field which is not algebraic over Fp.

From this point onward, unless stated explicitly, the ground field k will be an arbitrary
algebraically closed field of arbitrary characteristic.

39



2.7 The list of modules
In this section we will identify the nontrivial irreducible tensor-indecomposable kG-modules
V which satisfy the dimensional criteria (2.12). Now, by Chevalley’s classical result, Theorem
2.3.3, Proposition 2.3.7 and by Steinberg’s tensor product theorem, Theorem 2.3.8, we may
assume that V = LG(�), where � 2 X(T ) is a nonzero p-restricted dominant weight.

2.7.1 G of type A‘, ‘ � 1

First, let ‘ = 1 and let V = LG(m!1), where m 2 Z�1. As V is p-restricted, we have p = 0,
or p > m. Now, by Theorem 2.5.3, we have �(G) = 3 and, by substituting in the dimensional
criteria (2.12), we deduce that

m+ 1 = dim(V ) � 9: (2.13)

Therefore, V = LG(m!1) with 1 � m � 8.
We can now assume that ‘ � 2. Let V = LG(�) for some nonzero p-restricted dominant

weight � 2 X(T ). By Theorem 2.5.3 we have �(G) = ‘ + 1 and, substituting in the
dimensional criteria (2.12), gives

dim(V ) � (‘+ 1)2: (2.14)

We define FA‘ to be the set of all nonzero p-restricted dominant weights � 2 X(T ), up
to duality of the associated irreducible module, with the property that LG(�) satisfies the
dimensional criteria (2.13) for ‘ = 1 and (2.14) for all ‘ � 2. Using [Lü01a, Theorems 5.1
and 4.4], we determine that FA‘ := f!1; !2; 2!1; !1 + !‘g. Moreover, for ‘ � 8 we see that
the only kG-modules V that satisfy (2.14) are the ones corresponding to highest weights
� 2 FA‘ . Lastly, for 2 � ‘ � 7 there exist additional kG-modules which satisfy (2.14) and
we list their corresponding highest weights in Table 2.7.1.

Rank � p dim(LG(�))
‘ = 3 !1 + !2 p = 3 16
‘ = 5 !3 all 20
‘ = 6 !3 all 35
‘ = 7 !3 all 56

Table 2.7.1: The particular highest weight modules for groups of type A‘ that satisfy (2.14).

2.7.2 G of type C‘, ‘ � 2

First, let ‘ = 2 and V = LG(�), where � 2 X(T ) is nonzero p-restricted and dominant. By
Theorem 2.5.3, we have �(G) = 5 and, substituting in the dimensional criteria (2.12), gives:

dim(V ) � 25: (2.15)

We now use [Lü01a, Theorem 4.4] to determine the kG-modules LG(�) which satisfy (2.15)
and we list their corresponding highest weights in Table 2.7.2.
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� p dim(LG(�))
!1 all 4
!2 all 5� �p;2
2!1 p 6= 2 10

!1 + !2 all 16� 4�p;5
2!2 p 6= 2 14� �p;5
3!1 p 6= 2; 3 20

!1 + 2!2 p = 7 24
3!2 p = 7 25

2!1 + !2 p = 3 25

Table 2.7.2: The particular highest weight modules for groups of type C2 that satisfy (2.15).

We can now assume that ‘ � 3. By Theorem 2.5.3, we have �(G) = 2‘, if p 6= 2,
respectively �(G) = 2‘ + 1, if p = 2. Substituting in the dimensional criteria (2.12), we
deduce that:

dim(V ) �

(
4‘2; if p 6= 2;

(2‘+ 1)2; if p = 2:
(2.16)

We define FC‘ to be the set of all nonzero p-restricted dominant weights � 2 X(T ) with
the property that the associated irreducible module LG(�) satisfies the dimensional criteria
(2.15), for ‘ = 2, and the dimensional criteria (2.16), for all ‘ � 3. Once more, using
[Lü01a, Theorems 5.1 and 4.4], we determine that FC‘ := f!1; !2; 2!1g. We note that for
‘ � 9, the only kG-modules LG(�) that satisfy (2.16) are the ones corresponding to highest
weights � 2 FC‘ . Lastly, for 3 � ‘ � 8 the additional kG-modules which satisfy (2.16) have
corresponding highest weights listed in Table 2.7.3.

Rank � p dim(LG(�))

‘ = 3

!3 p = 2 8
!3 p 6= 2 14

!1 + !3 p = 2 48
2!1 + !3 p = 2 48

‘ = 4

!4 p = 2 16
!4 p = 3 41
!4 p 6= 2; 3 42
!3 p = 3 40
!3 p 6= 3 48

‘ = 5
!5 p = 2 32
!3 p = 2 100

‘ = 6; 7; 8 !‘ p = 2 2‘

Table 2.7.3: The particular highest weight modules for groups of type C‘ that satisfy (2.16).

Remark 2.7.1. We see that in Table 2.7.3, for the group C3, we listed the weight 2!1 + !3.
We added this module to the list, as we made the choice to not treat groups of type B‘ in
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characteristic 2, and, in view of Remark 2.3.11, this is the only module for groups of type
B‘ which satisfies the dimensional criteria (2.17) and which, when viewed as a module for
the group of type C‘, is not isomorphic to (a twist of) a module already listed.

2.7.3 G of type B‘, ‘ � 3

Recall that for groups of type B‘ we are assuming that the characteristic of k is different
than 2. Let V = LG(�), where � 2 X(T ) is nonzero p-restricted and dominant. By Theorem
2.5.3, we have �(G) = 2‘+ 1 and substituting in the dimensional criteria (2.12) gives

dim(V ) � (2‘+ 1)2: (2.17)

We define FB‘ to be the set of all nonzero p-restricted dominant weights � 2 X(T ) with
the property that the associated irreducible module LG(�) satisfies the dimensional criteria
(2.17), for all ‘ � 3. Using [Lü01a, Theorems 5.1 and 4.4], we determine that FB‘ :=
f!1; !2; 2!1g. Furthermore, for ‘ � 9 we see that the only kG-modules V that satisfy (2.17)
are the ones corresponding to highest weights � 2 FB‘ . Lastly, for 3 � ‘ � 8, the additional
kG-modules which satisfy (2.17) correspond to highest weights given in Table 2.7.4.

Rank � p dim(LG(�))

‘ = 3

!3 p 6= 2 8
2!3 p 6= 2 35

!1 + !3 p = 7 40
!1 + !3 p 6= 2; 7 48

‘ = 4; 5; 6; 7; 8 !‘ p 6= 2 2‘

Table 2.7.4: The particular highest weight modules for groups of type B‘ that satisfy (2.17).

2.7.4 G of type D‘, ‘ � 4

Let V = LG(�), where � 2 X(T ) is nonzero p-restricted and dominant. By Theorem 2.5.3,
we have �(G) = 2‘ and substituting in the dimensional criteria (2.12) gives

dim(V ) � 4‘2: (2.18)

We define FD‘ to be the set of all nonzero p-restricted dominant weights � 2 X(T ) with the
property that the associated irreducible module LG(�) satisfies the dimensional criteria (2.18)
for all ‘ � 4. Using [Lü01a, Theorems 5.1 and 4.4], we determine that FD‘ := f!1; !2; 2!1g.
Moreover, for ‘ � 10 we see that the only kG-modules V that satisfy (2.18) are the ones
corresponding to highest weights � 2 FD‘ . Lastly, for 4 � ‘ � 9, the additional kG-modules
which satisfy (2.18) have highest weights given in Table 2.7.5.
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Rank � p dim(LG(�))

‘ = 4

!3, !4 all 8
2!3, 2!4 p 6= 2 35

!3 + !4, !1 + !3, !1 + !4 p = 2 48
!3 + !4, !1 + !3, !1 + !4 p 6= 2 56

‘ = 5
!4, !5 all 16
!3 p = 2 100

‘ = 6; 7; 8; 9 !‘�1, !‘ all 2‘�1

Table 2.7.5: The particular highest weight modules for groups of type D‘ that satisfy (2.18).

Remark 2.7.2. (1) Assume that ‘ = 4. Let � : � ! � be the triality automorphism of
� given by �1 ! �3, �2 ! �2, �3 ! �4 and �4 ! �1. Now, using [Hum72, Table 1,
p.69], we see that �(r!1) = r!3 and �(r!3) = r!4, where r = 1; 2. Therefore, we have
LG(r!3) = LG(�(r!1)) and LG(r!4) = LG(�2(r!1)), where r = 1; 2, thus the result for
LG(r!3) and LG(r!4) will follows from that for LG(r!1), where r = 1; 2.

Similarly, we see that LG(!1 + !3) = LG(�2(!3 + !4)) and LG(!1 + !4) = LG(�(!3 +
!4)), therefore, the result for LG(!1 + !3) and LG(!1 + !4) will follow from that for
LG(!3 + !4).

(2) Consider the case when ‘ � 5. Let �0 : � ! � be the automorphism of � given by
�i ! �i, for all 1 � i � ‘� 2, �‘�1 ! �‘ and �‘ ! �‘�1. Once more, using [Hum72,
Table 1, p.69], we see that LG(!‘) = LG(�0(!‘�1)). Therefore, the result for LG(!‘)
will follow from the result for LG(!‘�1).

2.8 Identifying irreducible modules as composition factors
of certain tensor products

Recall that if the simple simply connected linear algebraic group G is of type B‘, we assume
that p 6= 2, where p is the characteristic of the algebraically closed field k. The following
lemmas will enable us to identify the irreducible kG-modules LG(�) corresponding to p-
restricted dominant weights � 2 FG as composition factors of either W 
W or W 
W �,
where W is the natural module of G, i.e. W �= LG(!1). Before, we state these results, we
remind the reader that we use the notation V = W1 j W2 j � � � j Wm, m � 2, to express that
V has a composition series V = V1 � V2 � � � � � Vm � Vm+1 = f0g with composition factors
Wi
�= Vi=Vi+1, 1 � i � m.

Lemma 2.8.1. [McN98, Propositions 4:2:2 and 4:6:10] Let k be an algebraically closed field
of characteristic p � 0 and let W be an ‘ + 1-dimensional k-vector space, where ‘ � 1. Set
G = SL(W ). Then as kG-modules, we have S2(W ) �= LG(2!1) (if p 6= 2), ^2(W ) �= LG(!2)
(if ‘ > 1) and

W 
W � �=

(
LG(!1 + !‘)� LG(0); if p - ‘+ 1;

LG(0) j LG(!1 + !‘) j LG(0); if p j ‘+ 1:
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Lemma 2.8.2. [McN98, Proposition 4:2:2 and Lemma 4:8:2] Let k be an algebraically closed
field of characteristic p � 0 and let W be a 2‘-dimensional k-vector space, where ‘ � 2,
equipped with a nondegenerate alternating bilinear form. Set G = Sp(W ). Then, as kG-
modules, we have

^2(W ) �=

(
LG(!2)� LG(0); if p - ‘;
LG(0) j LG(!2) j LG(0); if p j ‘:

Moreover, if p 6= 2, then S2(W ) �= LG(2!1).

Remark 2.8.3. In the setting of Lemma 2.8.2, first, consider the case when p - ‘. Then,
since ^2(W ) �= LG(!2)� LG(0) and since both LG(!2) and LG(0) are self-dual kG-modules,
see [MT11, Proposition 16.1], we deduce that ^2(W ) is a self-dual kG-module. Now, in the
case of p j ‘, we use [Kor17, Lemma 4.2 and Table 1], to determine that ^2(W ) is a self-dual
kG-module.

Lemma 2.8.4. [McN98, Propositions 4:2:2 and 4:7:3] Let k be an algebraically closed field
of characteristic p 6= 2 and let W be a finite-dimensional k-vector space equipped with a
nondegenerate symmetric bilinear form. Set G = SO(W ). Then as kG-modules, we have
^2(W ) �= LG(!2) and

S2(W ) �=

(
LG(2!1)� LG(0); if p - dim(W );

LG(0) j LG(2!1) j LG(0); if p j dim(W ):

Lemma 2.8.5. Let k be an algebraically closed field of characteristic p = 2 and let W be a
2‘-dimensional k-vector space, where ‘ � 4, equipped with a nondegenerate quadratic form
Q. Set G = SO(W;Q). Then, one of the following holds:

(a) ‘ is odd and ^2(W ) �= LG(!2)� LG(0) as kG-modules.

(b) ‘ is even and, as a kG-module, ^2(W ) has three composition factors: one isomorphic
to LG(!2) and two isomorphic to LG(0).

Proof. By [Sei87, 1.15], we know that, as a kG-module, ^2(W ) admits a unique nontrivial
composition factor with corresponding highest weight !2. Since dim(LG(!2)) = 2‘2 � ‘ �
gcd(2; ‘), see [Lü01a, Table 2], we determine that, if ‘ is odd, then ^2(W ) has two composition
factors: one isomorphic to LG(!2) and one isomorphic to LG(0), while, if ‘ is even, then
^2(W ) has three composition factors: one isomorphic to LG(!2) and two isomorphic to
LG(0). Lastly, we focus on the case of ‘ odd. Let a be the nondegenerate alternating bilinear
form on W given by a(w1; w2) = Q(w1) + Q(w2) + Q(w1 + w2), for all w1; w2 2 W . Set
H = Sp(W;a) and note that G < H. Now, as ^2(W ) is a self-dual kH-module, see Remark
2.8.4, by [Sch19, Lemma 1.4.1], we have that, in particular, ^2(W ) is a self-dual kG-module
and so, we apply [Sch19, Lemma 1.4.3], to conclude that ^2(W ) �= LG(!2)� LG(0).

2.9 Unipotent elements
This section is devoted to the study of unipotent elements of simple classical linear algebraic
groups. In the first two subsections, we will present basic facts concerning unipotent conjugacy
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classes. In Subsection 2.9.1 we discuss the Jordan normal form of a unipotent element and
show that over fields of good characteristic, i.e. p 6= 2 for groups of type B‘; C‘ and D‘,
with a few exceptions in groups of type D‘, this form completely determines unipotent
conjugacy classes. However, when p = 2, this is no longer the case and we will use
a different tool to realize this classification. In Subsections 2.9.3 and 2.9.4, respectively,
we introduce the Hesselink normal form, respectively the distinguished normal form, of a
unipotent element. We will show that each of these forms gives a complete characterization
of unipotent conjugacy classes over fields of characteristic 2 and moreover, we will give a
method to translate between the two.

2.9.1 The Jordan normal form

We begin this subsection with the following basic lemma, whose proof quickly follows from
[Car93, Proposition 5.1.1].

Lemma 2.9.1. [Kor18, Lemma 2.1.2] Let � : G1 ! G2 be an isogeny between two simple
algebraic groups G1 and G2. Then the map � restricts to a bijection between the unipotent
varieties of G1 and G2 and � induces a bijection between the unipotent conjugacy classes of
G1 and G2.

In light of Lemma 2.9.1, it is enough to describe unipotent conjugacy classes in simple
algebraic groups for some fixed isogeny type. In what follows, we will give this description
for the classical groups SL(V ), Sp(V ) and SO(V ).

We let k be an algebraically closed field of characteristic p � 0 and G be a simple classical
linear algebraic group. Recall that, when G is of type B‘, we assume that p 6= 2. Let T ,
�, B, � and !1; : : : ; !‘ be as usual. Let u be a unipotent element of G and let k[u] be the
group algebra of hui over k. For each i � 0, we will denote by Vi the indecomposable k[u]-
module with dim(Vi) = i and on which u acts as the full Jordan block Ji of size i. We note
that fVi j i � 0g is a set of representatives of the isomorphisms classes of indecomposable
k[u]-modules.

Let W be the natural module for G, i.e. W �= LG(!1), as p 6= 2 when G is of type
B‘. Moreover, let dim(W ) = n. Then, in particular, W is a k[u]-module and so admits a
decomposition W jk[u]

�= V r1
n1
� � � � � V rm

nm , where m � 1, n1 > � � � > nm � 1, ri � 1 for all

1 � i � m and
mX
i=1

niri = n. As u acts as Ji on each Vi, we determine that the action of u

on W is given by
mM
i=1

Jrini . We call
mM
i=1

Jrini the Jordan normal form of u on W . We will see

in Theorem 2.9.2 that the Jordan normal form of a unipotent element plays an essential role
in determining unipotent conjugacy classes in G.

Theorem 2.9.2. [LS12, Theorem 3:1, Corollary 3:6, Lemma 3:11] Let k be an algebraically
closed field of characteristic p � 0 and let G = SLn(k), Spn(k), or On(k). Assume that p 6= 2
when G is symplectic or orthogonal. Moreover, let W be the natural module for G and let
dim(W ) = n.
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(1) Two unipotent elements of G are G-conjugate if and only if they are GLn(k)-conjugate,
hence if and only if they have the same Jordan form on W .

(2) Let u 2 GLn(k) be a unipotent element with Jordan form
mM
i=1

Jrini. Then

(2.1) u 2 Spn(k) if and only if ri is even for each odd ni;

(2.2) u 2 On(k) if and only if ri is even for each even ni.

(3) The class uOn(k) splits into two SOn(k)-classes if and only if ni is even for all 1 � i � m.

In view of Theorem 2.9.2, we make a few remarks.

Remark 2.9.3. (1) When G is a simple group of type A‘, the Jordan normal form of a
unipotent element on W completely determines its conjugacy class in G.

(2) When p 6= 2 and G is a simple group of type C‘, the Jordan normal form of a unipotent
element on W completely determines its conjugacy class in G. However, when p =
2, this is no longer the case. For example, in G = Sp4(k) there are two unipotent
conjugacy classes whose Jordan form on W is J2

2 , however elements in one class act
on LG(!2) as J2

2 , while elements of the other class act on LG(!2) as J2 � J2
1 , see the

proof of Proposition 4:3:10. Therefore, we will require a different tool to distinguish
between unipotent conjugacy classes in G, see Subsection 2:9:3.

(3) As we only consider algebraic groups of type B‘ over fields k with char(k) 6= 2, Theorem
2:9:2 gives a complete characterization of unipotent conjugacy classes in simple groups
of type B‘.

(4) When G is a simple group of type D‘ and p 6= 2, we see that there exist two unipotent

conjugacy classes whose Jordan form on W is
mM
i=1

Jrini, where ni is even for all 1 � i �

m. We will refer to these classes as split. Furthermore, as in the case of groups of type
C‘ when p = 2, the Jordan normal form no longer suffices to characterize conjugacy
classes.

We end this subsection with two results which we will use extensively in the chapters to
come. We have seen in Section 2.8 that the families of kG-modules of a simple simply
connected classical linear algebraic group G can be identified with certain composition
factors of various tensor products. Therefore, it will prove extremely useful to know how the
unipotent elements of G act on tensor products and on their composition factors. Luckily,
the following result due to Liebeck and Seitz, see [LS12, Lemma 3:4], gives us an almost
complete answer:

Lemma 2.9.4. [LS12, Lemma 3:4] Let Vi, Vj be vector spaces of dimensions i, j over k
and let ui, uj denote unipotent elements acting as a single Jordan block in GL(Vi), GL(Vj),
respectively.

(a) Then dim((Vi 
 Vj)ui
uj(1)) = minfi; jg.
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(b) Suppose p 6= 2. Then:

(b.1) dim((^2(Vi))ui(1)) =
�
i
2

�
;

(b.2) dim((S2(Vi))ui(1)) = i�
�
i
2

�
.

The only case we need, which is not covered by Lemma 2.9.4, is the case of ^2(Vi) in
characteristic p = 2. We treat it in the result below:

Lemma 2.9.5. Let k be a field of characteristic p = 2 and let V be a vector space of
dimension i � 1 over k. Let u be a unipotent element acting as a single Jordan block in
GL(V ). Then

dim((^2(V ))u(1)) =

�
i

2

�
:

Proof. We will prove the result by induction on i � 1. First, we note that both cases i = 1
and i = 2 follow directly from the structure of ^2(V ). Hence, we assume that i � 3 and that
the result holds for all 1 � r < i.

Let m be the unique nonnegative integer for which 2m�1 < i � 2m and set q = 2m. Now,
up to isomorphism, there exist exactly q indecomposable k[u]-modules: V1; V2; : : : ; Vq, where
dim(Vj) = j and u acts on Vj as the full Jordan block of size j. Therefore, as k[u]-modules,
we have V �= Vi. We now use [GL06, Theorem 2], by which, the following isomorphism of
k[u]-modules holds:

^2(Vi) = ^2(Vq�i)� (i� q

2
� 1)Vq � V3 q

2
�i:

This gives

dim((^2(Vi))u(1)) = dim((^2(Vq�i))u(1)) + (i� q

2
� 1) dim((Vq)u(1)) + dim((V3 q

2
�i)u(1)):

(2.19)
As 3 q

2
� i < q and as u acts as a single Jordan block on Vq and V3 q

2
�i, respectively, it follows

that dim((Vq)u(1)) = 1 and dim((V3 q
2
�i)u(1)) = 1. Furthermore, we note that, as q

2
< i, we

have q � i < i and, by applying induction, it follows that dim((^2(Vq�i))u(1)) =

�
q � i

2

�
.

Substituting in (2.19) we obtain:

dim((^2(Vi))u(1)) =

�
q � i

2

�
+ i� q

2
� 1 + 1 =

�
i

2

�
:

This concludes the proof of the lemma.

2.9.2 Paired modules

We have noted in Remark 2.9.3, that when G is of type C‘ or D‘ and the field k has
characteristic p = 2, the Jordan normal form no longer suffices to distinguish between
unipotent conjugacy classes in G. Therefore, when p = 2, we require new methods of
realizing the classification of unipotent classes. To begin, we give a brief overview, following
[Kor20, Section 5], on bilinear kG-modules. We require this theoretic part to introduce
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the Hesselink, respectively, the distinguished, normal form of a unipotent element in the
subsections that follow.

For the remainder of this subsection, we assume that the algebraically closed field k has
characteristic p = 2. Let V be a finite-dimensional k-vector space and let b : V � V ! k
be a nondegenerate bilinear form on V . We recall, from Subsection 2.1.2, that we call a
nondegenerate bilinear form symmetric if b(v1; v2) = b(v2; v1) for all v1; v2 2 V , respectively
alternating if b(v; v) = 0 for all v 2 V . We also recall that over fields of characteristic 2 any
alternating bilinear form is, in particular, symmetric.

Let H be a group and assume that V is a finite-dimensional kH-module equipped with
a bilinear form b. We say that b is H-invariant if b(h � v1; h � v2) = b(v1; v2) for all v1; v2 2 V
and all h 2 H. A bilinear kH-module (V; b) is a kH-module V equipped with a H-invariant
bilinear form b. Two bilinear kH-modules (V; b) and (V

0
; b
0
) are isomorphic if there exists an

isomorphism of kH-modules � : V ! V
0 with the property that b0(�(v1); �(v2)) = b(v1; v2)

for all v1; v2 2 V . We call the bilinear kH-module (V; b) nondegenerate if b is nondegenerate
and, assuming that b is nondegenerate, we call the bilinear kH-module (V; b) symmetric,
respectively, alternating, if b is symmetric, respectively alternating.

Let (V; b) and (V
0
; b
0
) be two bilinear kH-modules. We define the orthogonal direct sum

of (V; b) and (V
0
; b
0
) to be the bilinear kH-module (V �V 0 ; b ? b

0
), where (b ? b

0
)(v1+v

0
1; v2+

v
0
2) = b(v1; v2) + b

0
(v
0
1; v

0
2) for all v1; v2 2 V and all v01; v

0
2 2 V

0 . We denote (V � V 0 ; b ? b
0
)

by (V; b) ? (V
0
; b
0
). A nonzero bilinear kH-module (V; b) is orthogonally indecomposable if

whenever V = V1 ? V2, where V1 and V2 are kH-submodules of V , we have V1 = 0, or V2 = 0.
Lastly, any bilinear kH-module decomposes into an orthogonal direct sum of orthogonally
indecomposable bilinear kH-modules. However, in this setting, we do not have an analog of
the Krull-Schmidt Theorem, see [Mur16, Example 2:1] .

Definition 2.9.6. Let V be a kH-module. The paired module associated to V is the bilinear
kH-module (V � V �; a), where

a(v1 + f1; v2 + f2) = f1(v2) + f2(v1); for all v1; v2 2 V and all f1; f2 2 V �:

In [Mur16, Section 3:2], Murray showed that for any kH-module V , the associated paired
module (V �V �; a) is always an alternating bilinear kH-module. The following result tells us
when the converse is true. Before we state it, we recall from Subsection 2.1.2 that over fields
of characteristic 2, we call a subspace W 0 of (W; b), where b is a nondegenerate alternating
bilinear form, totally isotropic if b(w;w0) = 0 for all w;w0 2 W . Now, we say that W admits
a totally isotropic decompositionW = W 0�W 00 wheneverW 0 andW 00 are two proper totally
isotropic subspaces of W .

Lemma 2.9.7. [Kor20, Lemma 5:12] Let (V; a) be a nondegenerate alternating bilinear
kH-module. Then (V; a) is a paired module if and only if there exists a totally isotropic
decomposition V = W �W 0, where W and W 0 are kH-submodules of V . In this case (V; a)
is the paired module associated to W .

We finish this summary on bilinear kH-modules with the following two lemmas, which
will be required in the sequel.
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Lemma 2.9.8. [PM18, Section 2:3] Let V be an indecomposable kH-module. Then the paired
module (V � V �; a) associated to V is indecomposable.

Lemma 2.9.9. [Kor20, Lemma 5:15] Let (V; b) be a bilinear kH-module and let (V � V �; a)
be the paired module associated to V . Then, as bilinear kH-modules, we have:

(V; b) ? (V; b) ? (V; b) �= (V; b) ? (V � V �; a):

2.9.3 The Hesselink normal form

Let k be an algebraically closed field of characteristic p = 2 and let V be a finite-dimensional
k-vector space equipped with a quadratic form Q. Let b be the nondegenerate alternating
bilinear form on V given by b(v1; v2) = Q(v1 + v2) + Q(v1) + Q(v2) for all v1; v2 2 V . Set
G = Sp(V; b) = fg 2 GL(V ) j b(g � v1; g � v2) = b(v1; v2); for all v1; v2 2 V g. Now, over fields
of characteristic 2, we always have O(V;Q) < G. The following theorem shows that if we
classify the unipotent conjugacy classes in G, we also classify the ones in O(V;Q):

Theorem 2.9.10. [Dye79, Theorems 4 and 5]

(a) Each conjugacy class of G contains one conjugacy class of O(V;Q).

(b) Two elements g; g0 2 O(V;Q) are conjugate in O(V;Q) if and only if they are conjugate
in G.

Let u be a unipotent element in G. As char(k) = 2, the order of u is q = 2t, for some
t � 0. Recall that we have denoted by V1; : : : ; Vq the q nonisomorphic indecomposable
k[u]-modules, where dim(Vi) = i and on which u acts as the full Jordan block of size i. In
[Hes79, Section 2:1], Hesselink proves that there exists a one-to-one correspondence between
unipotent conjugacy classes in G and decompositions of V jk[u] into orthogonal direct sums
of orthogonally indecomposable k[u]-modules. Furthermore, he identifies the two unique
families of orthogonally indecomposable summands that can occur and he denotes them by
V (d), where d � 2 is even, and W (d), where d � 1, see [Hes79, Proposition 3:5]. In what
follows we give the definitions of V (d) and W (d), as they appear in [Kor20, Definitions 6:1
and 6:2], and afterwards we describe the Hesselink normal form of a unipotent element of G.

Let d � 2 be an even integer, d = 2f for some f � 1, and consider the indecomposable
k[u]-module Vd. Fix a basis Be = fe1; : : : ; edg of Vd with the property that

(2.20)

8><>:
u � e1 = e1;

u � ei = ei + ei�1 + � � �+ e1; for all 2 � i � f + 1;

u � ei = ei + ei�1; for all f + 2 � i � d:

We define V (d) to be the bilinear k[u]-module (Vd; bd), where bd(ei; ej) = 1, if i+ j = d+ 1,
and 0, otherwise. We remark that dim(V (d)) = d and that u acts on V (d) as a single Jordan
block of size d. Furthermore, V (d) is orthogonally indecomposable, as Vd is indecomposable
as a k[u]-module.

Now, let d � 1 and define W (d) to be the paired module (Vd � V �d ; a) associated to Vd.
We remark that dim(W (d)) = 2d and that u acts on W (d) as J2

d . Moreover, since Vd is
an indecomposable k[u]-module, it follows that W (d) is orthogonally indecomposable, see
Lemma 2.9.8.
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Theorem 2.9.11. [Kor20, Theorem 6:4] Let k be an algebraically closed field of characteristic
2, let V be a finite-dimensional k-vector space equipped with a nondegenerate alternating
bilinear form b and let G = Sp(V; b). Let u 2 G be a unipotent element and let V jk[u]

�=
V r1
n1
� � � � � V rm

nm , where m � 1, n1 > � � � > nm � 1 and ri � 1.
There exists a unique sequence W1; : : : ;Wm of nondegenerate alternating bilinear k[u]-

modules such that V jk[u]
�= W1 ? � � � ? Wm and the following hold for all 1 � i � m:

(a) if ni is odd, then ri is even and Wi
�= W (ni)

ri
2 ;

(b) if ni is even, then either ri is even and Wi
�= W (ni)

ri
2 , or Wi

�= V (ni)
ri.

The decomposition V jk[u]
�= W1 ? � � � ? Wm of Theorem 2.9.11 is called the Hesselink nor-

mal form of u on V . In [Hes79, Section 3:7], Hesselink proved that this form completely
determines the unipotent conjugacy class of u in G.

Remark 2.9.12. The number of distinct Jordan block sizes occurring in the Jordan decomposi-
tion of u on V is equal to the number of nondegenerate alternating bilinear k[u]-modules Wi

that occur in the Hesselink normal form of u on V . Thus, for distinct odd block sizes d, with
respective multiplicities rd, occurring in the Jordan form of u on V , there exists a unique
1 � i � m such that Wi

�= W (d)
rd
2 . Similarly, for distinct even block sizes d, with respective

multiplicities rd, occurring in the Jordan form of u on V , there exists a unique 1 � i � m
such that either Wi

�= W (d)
rd
2 , or Wi

�= V (d)rd, i.e. there do not exist i 6= j such that

Wi
�= W (d)

r0d
2 and Wj

�= V (d)r
00
d with r0d; r

00

d > 0.

We define "V;b : Z�1 ! f0; 1g by:

"V;b(d) =

(
0; if b((u� 1)d�1 � v; v) = 0 for all v 2 V such that (u� 1)d � v = 0;

1; otherwise:

Lemma 2.9.13. [Kor20, Lemmas 6.9 and 6.10] Let u 2 Sp(V; b) be a unipotent element and
let V jk[u]

�= V r1
n1
� � � � � V rm

nm , where m � 1, n1 > � � � > nm � 1 and ri � 1.

(a) If ni is odd, then "V;b(ni) = 0.

(b) The following statements are equivalent:

(b.1) "V;b(ni) = 1.

(b.2) ni is even and V (ni) occurs as an orthogonal direct summand of V .

(b.3) ni is even and V (ni) is isomorphic to an orthogonal direct summand of any
decomposition of V into a direct sum of orthogonally indecomposable k[u]-submo-
dules.

In what follows we will see that the Hesselink normal form of u on V , hence its conjugacy
class in Sp(V; b), is completely determined by the Jordan form of u on V and the values of
"V;b on the Jordan block sizes of u.
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Remark 2.9.14. Let u 2 Sp(V; b) be a unipotent element and let V jk[u]
�= V r1

n1
� � � � � V rm

nm ,
where m � 1, n1 > � � � > nm � 1 and ri � 1. Furthermore, let V jk[u]

�= W1 ? � � � ? Wm

be the Hesselink normal form of u on V , as given in Theorem 2:9:11. First, assume that
there exists 1 � i � m such that Wi

�= W (ni)
ri
2 . If ni is odd, then by Lemma 2:9:13 (a),

we have that "V;b(ni) = 0. Similarly, if ni is even, then by Lemma 2:9:13 (b), it follows that
"V;b(ni) = 0, since, otherwise, there would exist 1 � j � m, j 6= i, such that Wj

�= V (ni)
ri,

contradicting Remark 2.9.12. Conversely, if "V;b(ni) = 0 for some 1 � i � m, then, by
Lemma 2:9:13 and Theorem 2:9:11, it follows that Wi

�= W (ni)
ri
2 . We have just proven that

"V;b(ni) = 0 if and only if Wi
�= W (ni)

ri
2 . Similarly, one shows that "V;b(ni) = 1 if and only

if Wi
�= V (ni)

ri.

Theorem 2.9.15. [Remark 2:9:14 and [Kor20, Theorem 6.7]] Let u 2 Sp(V; b) be a unipotent
element and set " = "V;b. Let V jk[u]

�= V r1
n1
�� � ��V rm

nm , where m � 1, n1 > � � � > nm � 1 and

ri � 1, i.e. u has Jordan normal form on V given by
mM
i=1

Jrini. Moreover, let V jk[u]
�= W1 ?

� � � ? Wm be the Hesselink normal form of u on V , as given in Theorem 2:9:11. Then for
all 1 � i � m, we have Wi

�= W (ni)
ri
2 if and only if "(ni) = 0 and Wi

�= V (ni)
ri if and only

if "(ni) = 1.
In particular, the Hesselink normal form of u on V is uniquely determined by the tuple

(nr1
1"(n1)

; : : : ; nrmm"(nm)
).

Let u 2 G be a unipotent element. From this point onward, we will abuse notation and
call the tuple

(nr1
10
; : : : ; nrtt0 ; n

rt+1

t+11
; : : : ; nrmm1

)

the Hesselink normal form of u on V , where m � 1, t � 0 n1 > � � � > nt � 1, nt+1 > � � � >
nm � 1 and ri � 1 for all 1 � i � m.

We end this subsection by returning to the example in item (2) of Remark 2.9.3, where
we noted that, over fields of characteristic 2, there exist two unipotent conjugacy classes in
Sp4(k) whose Jordan form on W is J2

2 . Now, using Theorem 2.9.15, we can actually identify
these two classes by their Hesselink normal form. Let u and u0 be representatives of each
of these classes. Then the Hesselink normal form of u is (22

0), i.e. W jk[u]
�= W (2), and the

Hesselink normal form of u0 is (22
1), i.e. W jk[u0]

�= V (2)� V (2).

2.9.4 The distinguished normal form

Let k be an algebraically closed field of characteristic 2, let V be a finite-dimensional k-
vector space equipped with a nondegenerate quadratic form Q. Let b be the nondegenerate
alternating bilinear form on V given by b(v1; v2) = Q(v1 + v2) + Q(v1) + Q(v2), for all
v1; v2 2 V . Set G = Sp(V; b). In the previous subsection, we saw that the Hesselink normal
form completely determines unipotent conjugacy classes in G. Moreover, by Theorem 2.9.10,
we know that each conjugacy class of G contains one conjugacy class of O(V;Q) and that
two elements of O(V;Q) are conjugate in O(V;Q) if and only if they are conjugate in G. We
now consider the subgroup H = SO(V;Q) of G. In this subsection, we will give a criteria,
in terms of the Hesselink normal form, to determine when unipotent conjugacy classes of
G intersect H. Moreover, we will also determine when unipotent conjugacy classes in G
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split into distinct unipotent classes in H. In order to achieve this, we will exhibit another
normal form which can be used to characterize unipotent conjugacy classes in G, called the
distinguished normal form. Lastly, we will present methods of translation between the two,
see Lemma 2.9.18 and Remark 2.9.19, respectively, and, using [LS12, Proposition 6:22], we
state the classification of unipotent conjugacy classes in SO(V;Q), see Proposition 2.9.20.

Let u be a unipotent element in G. According to [LS12, Table 4:1], viewed as a k[u]-
module, V decomposes into an orthogonal direct sum of orthogonally indecomposable bilinear
k[u]-modules of the form VD(m), where m � 2 is even, and WD(m), where m � 1, that we
define below.

Let m � 2 be an even integer, m = 2n for some n � 1. In [LS12, Section 6:1], the
orthogonally indecomposable k[u]-module VD(m) is defined to be them-dimensional k-vector
space equipped with a bilinear form b in which we fix a basis fx1; : : : ; xmg with the property
that b(xi; xj) = 1, if i + j = m + 1, and 0, otherwise; Q(xi) = 1, if i = n, and 0, otherwise;
and on which u acts as:

(2.21)

8><>:
u � x1 = x1;

u � xi = xi + xi�1; for 2 � i � n;

u � xn+i = xn+i + xn+i�1 + � � �+ xn; for 1 � i � n:

We note that the bilinear form b is nondegenerate and alternating and that u fixes both b
and Q. Therefore VD(m) is a nondegenerate alternating bilinear k[u]-module on which u
acts as a single Jordan block of size m, see [LS12, Table 4:1].

Now let m � 1. In [LS12, Section 6:1], the orthogonally indecomposable k[u]-module
WD(m) is defined to be the 2m-dimensional vector space equipped with a bilinear form b
in which we fix a basis fxm�1; xm�3; : : : ; x�(m�1); ym�1; ym�3; : : : ; y�(m�1)g with the property
that b(xi; y�i) = 1, for all �(m� 1) � i � m� 1, and all other inner products between basis
vectors are 0; Q(xi) = Q(yi) = 0, for all �(m� 1) � i � m� 1; and on which u acts as:8>>><>>>:

u � xm�1 = xm�1;

u � xi = xi + xi+2; for � (m� 1) � i � m� 3;

u � ym�1 = ym�1;

u � yi = yi + yi+2 + � � �+ ym�1; for � (m� 1) � i � m� 3:

We note that the bilinear form b is nondegenerate and alternating and that u fixes both b
and Q. Therefore, WD(m) is a nondegenerate alternating bilinear k[u]-module on which u
acts as J2

m, see [LS12, Table 4:1].
The following proposition shows that the decomposition of V into an orthogonal direct

sum of orthogonally indecomposable bilinear k[u]-modules of the form VD(m) and WD(m)
completely determines the unipotent conjugacy class of u in G:

Proposition 2.9.16. [LS12, Lemma 6:2 and Proposition 6:22]. Let u 2 G be a unipotent
element. Then, there exists an orthogonal decomposition

V jk[u]
�=

s

?
i=1

WD(ni)
ri ?

m

?
j=s+1

VD(nj)
rj ; (2.22)
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where m � 1 and 0 � s � m are such that the ni’s are distinct and ri � 1, for all 1 � i � s,
the nj’s are even and distinct and rj � 2, for all s + 1 � j � m. Moreover, the following
hold:

(a) The summands in (2.22) are unique and they completely determine the unipotent
conjugacy class of u in G.

(b) We have that u 2 SO(V;Q) if and only if
mX

j=s+1

rj is even.

(c) If u 2 SO(V;Q), then the conjugacy class of u in G splits into two SO(V;Q) classes if
and only if s = m and ni is even for all 1 � i � m.

Remark 2.9.17. We will refer to the two unipotent conjugacy classes of SO(V;Q) from item
(c) of Proposition 2.9.16 as split.

The decomposition in (2.22) is called the distinguished normal form of u on V . As this
form is different from the Hesselink normal form, for our purpose, it is useful to have a method
of translating between the two. For this, we first have to prove the following isomorphisms
of bilinear k[u]-modules:

(WD(d); b) �= (W (d); a); for all d � 1

and
(VD(d); b) �= (V (d); bd); for all d � 2 even:

Recall that for 1 � i � ord(u) we have denoted by Vi the indecomposable i-dimensional
k[u]-module on which u acts as the full Jordan block of size i. Let d � 1 and let N ,
respectively N

0 , be the k[u]-submodule of WD(d) generated by fxd�1; xd�3; : : : ; x�(d�1)g,
respectively by fyd�1; yd�3; : : : ; y�(d�1)g. As b(xi; xj) = 0 and b(yi; yj) = 0, for all �(d�1) �
i; j � d� 1, it follows that WD(d) = N �N 0 is a totally isotropic decomposition of WD(d).
Hence, by Lemma 2.9.7, we have thatWD(d) is the paired module associated toN . Moreover,
as dim(N) = d and as u acts as a single Jordan block of size d on N , it follows that N is
indecomposable as a k[u]-module and therefore N and Vd are isomorphic k[u]-modules. We
conclude that WD(d) is the paired module associated to Vd.

Now, recall that in Subsection 2.9.3, W (d) has been defined as the paired module (Vd �
V �d ; a) associated to Vd. We apply Lemma 2.9.7 and deduce that W (d) = Vd�V �d is a totally
isotropic decomposition with respect to a. Let fvd�1; vd�3; : : : ; v�(d�1)g be a basis in Vd and
let fv�d�1; v

�
d�3; : : : ; v

�
�(d�1)g be the dual basis of V �d , i.e. , for all �(d�1) � i � d�1, we have

v�i (vj) = 1, if i = �j, and 0, otherwise. Then fvd�1; vd�3; : : : ; v�(d�1); v
�
d�1; v

�
d�3; : : : ; v

�
�(d�1)g

is a basis in W (d) with the property that, for all �(d� 1) � i � d� 1, we have a(vi; v
�
j ) = 1,

if j = �i, and 0, otherwise. Now, the action of u on fvd�1; vd�3; : : : ; v�(d�1)g is given by:(
u � vd�1 = vd�1;

u � vi = vi + vi+2; for all � (d� 1) � i � d� 3:
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Recursively, one shows that the action of u�1 on fvd�1; : : : ; v�(d�1)g is u�1 � vi = vi + vi+2 +
� � � + vd�1, for all �(d� 1) � i � d� 1, and, using this, determines that the action of u on
fv�d�1; : : : ; v

�
�(d�1)g is given by:(

u: � v�d�1 = v�d�1;

u � v�i = v�i + v�i+2 + � � �+ v�d�1; for all � (d� 1) � i � d� 3:

One checks that the map � : W (d) ! WD(d) defined by �(vi) = xi and �(v�i ) = yi, for
all �(d � 1) � i � d � 1, is a k[u]-module isomorphism and, furthermore, as a(w;w

0
) =

b(�(w); �(w
0
)), for all w;w0 2 fvd�1; vd�3; : : : ; v�(d�1); v

�
d�1; v

�
d�3; : : : ; v

�
�(d�1)g, we conclude

that (W (d); a) and (WD(d); b) are isomorphic bilinear k[u]-modules.
Let d � 2 be an even integer with d = 2f , for some f � 1. Recall that, in Subsection

2.9.3, we have fixed a basis Be = fe1; e2; : : : ; edg on Vd with the property that bd(ei; ej) = 1,
if i + j = d + 1, and 0, otherwise, and we have defined V (d) to be the bilinear k[u]-module
(Vd; bd). Moreover, recall that we have described the action of u on Be in (2.20). Set A to be

the block matrix
�
B 0
0 C

�
2 Md(k), where B = (bi;j)i;j 2 Mf (k) is such that bi;j =

�
f � i
f � j

�
,

for all i � j � f , and bi;j = 0, for all i > j; and C = (ci;j)i;j 2 Mf (k) is such that
ci;j = bf+1�j;f+1�i, for all i � j � f , and ci;j = 0, for all i > j. We see that A has the
following form:

A =

0BBBBBBBBBBBBBBBBBBB@

1 b1;2 b1;3 � � � b1;f�1 1 0 0 0 0 � � � 0 0
0 1 b2;3 � � � b2;f�1 1 0 0 0 0 � � � 0 0
...

...
... . . . ...

...
...

...
...

... . . . ...
...

0 0 0 � � � bf�2;f�1 1 0 0 0 0 � � � 0 0
0 0 0 � � � 1 1 0 0 0 0 � � � 0 0
0 0 0 � � � 0 1 0 0 0 0 � � � 0 0
0 0 0 � � � 0 0 1 1 1 1 � � � 1 1
0 0 0 � � � 0 0 0 1 bf�2;f�1 bf�3;f�1 � � � b2;f�1 b1;f�1

0 0 0 � � � 0 0 0 0 1 bf�3;f�2 � � � b2;f�2 b1;f�2
...

...
... . . . ...

...
...

...
...

... . . . ...
...

0 0 0 � � � 0 0 0 0 0 0 � � � 1 b1;2

0 0 0 � � � 0 0 0 0 0 0 � � � 0 1

1CCCCCCCCCCCCCCCCCCCA

:

Let Bx = fx1; x2; : : : xdg be the basis of V (d) with the property that A is the change of basis
matrix from Be to Bx, i.e. we have8>>>><>>>>:

xj =

jX
i=1

bi;jei; for 1 � j � f ;

xf+j =

fX
i=1

ci;jef+i =

jX
i=1

bf+1�j;f+1�ief+i; for 1 � j � f:

We will first show that the matrix A is symplectic, i.e. it preserves the form bd. As

A =

�
B 0
0 C

�
, we have that AtrSdA =

�
0 BtrKfC

(BtrKfC)tr 0

�
, where Sd =

�
0 Kf

Kf 0

�
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and (Kf )i;j = �j;f+1�i. Therefore, to show that A is symplectic, we only need to show that
BtrKfC = Kf . Let 1 � i; j � f . Then:

(BtrKfC)i;j =

fX
r=1

(BtrKf )i;r � cr;j =

fX
r=1

� fX
q=1

(Btr)i;q(Kf )q;r

�
� bf+1�j;f+1�r

=

fX
r=1

� fX
q=1

bq;i � �q;f+1�r

�
� bf+1�j;f+1�r =

fX
r=1

bf+1�r;i � bf+1�j;f+1�r

=

fX
q=1

bq;i � bf+1�j;q =
iX

q=1

bq;i � bf+1�j;q;

as bq;i = 0, for all q > i. Now, if f + 1� j > i, then (BtrKfC)i;j = 0. If f + 1� j = i, then

(BtrKfC)i;f+1�i =
iX

q=1

bq;i � bi;q = bi;i � bi;i =

�
f � i
f � i

�
�
�
f � i
f � i

�
= 1;

as bi;j = 0, for i > j, and bi;j =
�
f�i
f�j

�
, for i � j. We thus assume that f + 1� j < i. Then

(BtrKfC)i;j =

� iX
q=f+1�j

�
f � q
f � i

��
j � 1

f � q

��

=

�
(j � 1)!

(f � i)!

� iX
q=f+1�j

1

(i� q)!(q + j � f � 1)!

��

=

�
(j � 1)!

(f � i)!(i+ j � f � 1)!

� iX
q=f+1�j

�
i+ j � f � 1

i� q

���
=

�
(j � 1)!

(f � i)!(i+ j � f � 1)!
� 2i+j�f�1

�
= 0:

We conclude that BtrKfC = Kf and, consequently, AtrSdA = Sd. Therefore the matrix A
is symplectic.

We will now show that the action of u on fx1; : : : ; xdg is as in (2.21). Let 1 � j � f and,
using relations (2.20), we have that

u � xj = u � (
jX
i=1

bi;jei) =

jX
i=1

bi;j

� iX
r=1

er

�
= xj +

jX
i=2

i�1X
r=1

bi;jer = xj +

j�1X
r=1

� jX
i=r+1

bi;j
�
er

= xj +

j�1X
r=1

jX
i=r+1

�
f � i
f � j

�
er:
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Now, for all 0 < m < n, we have that
�
n� 1

m� 1

�
+

�
n� 1

m

�
=

�
n

m

�
. Thus, for all 1 � r �

j � 1, one can show that�
f � r

f � j + 1

�
=

�
f � r � 1

f � j

�
+

�
f � r � 1

f � j + 1

�
=

�
f � r � 1

f � j

�
+

��
f � r � 2

f � j

�
+

�
f � r � 2

f � j + 1

��
=

r+2X
i=r+1

��
f � i
f � j

��
+

��
f � r � 3

f � j

�
+

�
f � r � 3

f � j + 1

��
...

=

jX
i=r+1

�
f � i
f � j

�
:

(2.23)

It follows that

u � xj = xj +

j�1X
r=1

�
f � r

f � j + 1

�
er = xj +

j�1X
r=1

br;j�1er

and so
u � xj = xj + xj�1; for all 1 � j � f: (2.24)

Similarly, for 1 � j � f , we compute

u � xf+j = u � (
jX
i=1

bf+1�j;f+1�ief+i) = bf+1�j;f � (e1 + � � �+ ef+1) +

jX
i=2

bf+1�j;f+1�i(ef+i + ef+i�1)

= xf+j + bf+1�j;f � (e1 + � � �+ ef ) +

jX
i=2

bf+1�j;f+1�ief+i�1:

We remark that bf+1�j;f = 1, for all 1 � j � f , and, as bi;f = 1, for all 1 � i � f , we deduce
that xf = bf+1�j;f � (e1 + � � �+ ef ). Therefore, we have:

u � xf+j = xf+j + xf +

jX
i=2

bf+1�j;f+1�ief+i�1:

On the other hand:

xf+1 + � � �+ xf+j�1 =

j�1X
i=1

� iX
r=1

bf+1�i;f+1�ref+r

�
( we interchange the order of the sums)

=

j�1X
r=1

� j�1X
i=r

bf+1�i;f+1�ref+r

�
=

j�1X
r=1

� j�1X
i=r

bf+1�i;f+1�r

�
ef+r

=

j�1X
r=1

� j�1X
i=r

�
i� 1

r � 1

��
ef+r:
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For 1 � r � j � 1, we remark that
�
j � 1

r

�
=

�
f � (f � j + 1)

f � (f � r + 1) + 1

�
and so, by (2.23), it

follows that
�
j � 1

r

�
=

f+1�rX
q=f+2�j

�
f � q
r � 1

�
. We make the variable change i = f + 1 � q, i.e.

q = f + 1� i. Hence we have f � q = i� 1 and, for q = f + 2� j, we get i = j � 1, while,

for q = f + 1� r, we get i = r. Thus,
�
j � 1

r

�
=

j�1X
i=r

�
i� 1

r � 1

�
and so

xf+1 + � � �+ xf+j�1 =

j�1X
r=1

�
j � 1

r

�
ef+r =

j�1X
r=1

bf+1�j;f�ref+r

=

jX
i=2

bf+1�j;f+1�ief+i�1:

We have shown that

u � xf+j = xf+j + xf+j�1 + � � �+ xf ; for all 1 � j � f: (2.25)

Equations (2.24) and (2.25) show that the action of u on Bx is as in (2.21).
Using the fact that A is a symplectic matrix with respect to bd, one is able to show that

the map � : V (d)! VD(d) given by �(ei) = xi for all 1 � i � d is an isomorphism of bilinear
k[u]-modules.

Lemma 2.9.18. Let k be an algebraically closed field of characteristic 2 and let G = Sp(V; b).
Let u be a unipotent element of G whose Hesselink normal form on V is

(nr1
10
; : : : ; nrtt0 ; n

rt+1

t+11
; : : : ; nrmm1

);

where m � 1 and t � 0. For all t + 1 � i � m, write ri = xi + 2yi, where 1 � xi � 2 and
yi � 0. Then the distinguished normal form of u on V is:

V jk[u]
�=

t

?
i=1

W (ni)
ri
2 ?

m

?
i=t+1

W (ni)
yi ?

m

?
i=t+1

V (ni)
xi ;

where
t

?
i=1

W (ni)
ri
2 is empty if t = 0.

Proof. To begin, following Theorem 2.9.15, we write down the decomposition of V as an
orthogonal direct sum of indecomposable k[u]-modules:

V jk[u]
�=

t

?
i=1

W (ni)
ri
2 ?

m

?
i=t+1

V (ni)
ri :

If ri � 2 for all t+ 1 � i � m, we set xi = ri and yi = 0. Then:

V jk[u]
�=

t

?
i=1

W (ni)
ri
2 ?

m

?
i=t+1

V (ni)
xi
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is the distinguished normal form of u on V .
We can thus assume that there exists some t + 1 � j � m such that rj � 3. Then

rj = 3qj1 + pj1, where q
j
1 � 1 and 0 � pj1 � 2. By Lemma 2.9.9, it follows that

V (nj)
rj �= W (nj)

qj1 ? V (nj)
qj1+pj1 :

If qj1 + pj1 � 2, set xj = qj1 + pj1 and yj = qj1. We note that 1 � xj � 2, as qj1 � 1, and
that rj = xj + 2yj. On the other hand, if qj1 + pj1 � 3, we write qj1 + pj1 = 3qj2 + pj2, where
qj2 � 1 and 0 � pj2 � 2. Once more, by Lemma 2.9.9, it follows that:

V (nj)
rj �= W (nj)

qj1 ? V (nj)
qj1+pj1 �= W (nj)

qj1+qj2 ? V (nj)
qj2+pj2 :

If qj2 + pj2 � 2, set xj = qj2 + pj2 and yj = qj1 + qj2. We note that 1 � xj � 2, as qj2 � 1,
and that rj = 3qj1 + pj1 = 2qj1 + 3qj2 + pj2 = xj + 2yj. On the other hand, if qj2 + pj2 � 3, we
repeat the above procedure. Now, as rj is finite, it follows that there exists s � 1 with the
property that qjs + pjs � 2, where qjs � 1 and 0 � pjs � 2 are given by qjs�1 + pjs�1 = 3qjs + pjs.
Then, by Lemma 2.9.9, we have that

V (nj)
rj �= W (nj)

qj1+���+qjs�1 ? V (nj)
qjs�1+pjs�1 �= W (nj)

qj1+���+qjs ? V (nj)
qjs+pjs :

Set xj = qjs + pjs and yj = qj1 + � � � + qjs. We note that 1 � xj � 2, as qjs � 1. Lastly, as
rj = 3qj1 + pj1, we have that pj1 + qj1 = rj � 2qj2 and, as pj1 + qj1 = 3qj2 + pj2, we deduce that
pj2 + qj2 = rj � 2(qj1 + qj2). Recursively, we show that pji + qji = rj � 2(qj1 + � � � + qji ), for all
1 � i � s and thus, for i = s, we obtain xj = rj � 2yj.

In conclusion, the distinguished normal form of u on V is:

V jk[u]
�=

t

?
i=1

W (ni)
ri
2 ?

m

?
i=t+1

W (ni)
yi ?

m

?
i=t+1

V (ni)
xi ;

where, for all t+1 � i � m, the integers 1 � xi � 2 and yi � 0 are such that ri = xi+2yi.

Remark 2.9.19. Let k be an algebraically closed field of characteristic 2 and let G =
Sp(V; b). Let u be a unipotent element of G.

(a) If the distinguished normal form of u on V is

V jk[u]
�=

m

?
j=1

V (mj)
bj ;

where m � 1, the mj’s are even and distinct and bj � 2, for all 1 � j � m, then the
Hesselink normal form of u on V is (mb1

11
; : : : ;mbm

m1
).

(b) If the distinguished normal form of u on V is

V jk[u]
�=

m

?
i=1

W (ni)
ai ;

where m � 1, the ni’s are distinct and ai � 1, for all 1 � i � m, then the Hesselink
normal form of u on V is (n2a1

10
; : : : ; n2am

m0
).
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(c) Let the distinguished normal form of u on V be

V jk[u]
�=

s

?
i=1

W (ni)
ai ?

m

?
j=s+1

V (mj)
bj ;

where m � 2, 1 � s � m � 1, the ni’s are distinct and ai � 1, for all 1 � i � s, and
the mj’s are even and distinct and bj � 2 , for all s+ 1 � j � m.

Let 0 � d � s be the number of ni’s, 1 � i � s, with the property that ni 6= mj for all
s+ 1 � j � m. If d = 0, then we relabel the mj’s, s+ 1 � j � m, such that ni = ms+i

for all 1 � i � s. We rewrite the distinguished normal form of u on V as:

V jk[u]
�=

s

?
i=1

�
W (ni)

ai ? V (ms+i)
bs+i

�
?

m

?
j=2s+1

V (mj)
bj

and, keeping in mind that ni = ms+i for all 1 � i � s, we apply Lemma 2:9:9 to
determine that:

V jk[u]
�=

s

?
i=1

V (ni)
2ai+bs+i ?

m

?
j=2s+1

V (mj)
bj :

Hence, by Theorem 2:9:15, the Hesselink normal form of u on V is

(n
2a1+bs+1

11
; : : : ; n2as+b2s

s1
;m

b2s+1

2s+11
; : : : ;mbm

m1
):

If d = s, then the Hesselink normal form of u on V is

(n2a1
10
; : : : ; n2as

s0
;m

bs+1

s+11
; : : : ;mbm

m1
):

Lastly, if 1 � d � s � 1, we relabel the ni’s, 1 � i � s, and the mj’s, s + 1 � j � m,
in the following way:8><>:
n1; : : : ; nd are such that ni 6= mj for all s+ 1 � j � m;

nd+1; : : : ; ns and ms+1; : : : ;m2s�d are such that nd+r = ms+r for all 1 � r � s� d;

m2s�d+1; : : : ;mm are such that mj 6= ni for all 1 � i � s:

Moreover, we rewrite the distinguished normal form of u on V in the following way:

V jk[u]
�=

d

?
i=1

W (ni)
ai ?

s�d

?
r=1

�
W (nd+r)

ad+r ? V (ms+r)
bs+r

�
?

m

?
j=2s�d+1

V (mj)
bj :

Now, by Lemma 2:9:9 and keeping in mind that nd+r = ms+r for all 1 � r � s� d, we
have:

W (nd+r)
ad+r ? V (ms+r)

bs+r �= V (nd+r)
2ad+r+bs+r

It follows that the Hesselink normal form of u on V is

(n2a1
10
; : : : ; n2ad

d0
; n

2ad+1+bs+1

d+11
; : : : ; n2as+b2s�d

s1
;m

b2s�d+1

2s�d+11
; : : : ;mbm

m1
):
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We recall that we have fixed k to be an algebraically closed field of characteristic 2, V
to be a finite-dimensional k-vector space equipped with a nondegenerate quadratic form Q,
b to be the nondegenerate alternating bilinear form on V given by b(v1; v2) = Q(v1 + v2) +
Q(v1) +Q(v2) for all v1; v2 2 V , G = Sp(V; b) and H = SO(V;Q). Let u 2 G be a unipotent
element and let (nr1

10
; : : : ; nrtt0 ; n

rt+1

t+11
; : : : ; nrmm1

) be its Hesselink normal form on V . Then, by
Lemma 2.9.18, it follows that the distinguished normal form of u on V is:

V jk[u]
�=

t

?
i=1

W (ni)
ri
2 ?

m

?
i=t+1

W (ni)
yi ?

m

?
i=t+1

V (ni)
xi ;

where, for all t+ 1 � i � m, the integers 1 � xi � 2 and yi � 0 are such that ri = xi + 2yi.

Now, by Proposition 2.9.16 (b), it follows that u 2 H if and only if the sum
mX

i=t+1

xi is

even. Hence, we deduce that u 2 H if and only if
mX

i=t+1

ri is even, as xi and ri have the same

parity, for all t+ 1 � i � m.
Lastly, let u 2 H be a unipotent element. Then, in particular, u 2 G. By Proposition

2.9.16 (c), it follows that the conjugacy class of u in G splits into two H-classes if and only
if the distinguished normal form of u on V is

V jk[u]
�=

m

?
i=1

W (ni)
ri ;

where m � 1 and the ni’s are even and distinct for all 1 � i � m. We now use Remark 2.9.19
(b) to deduce that the Hesselink normal form of u on V is (n2r1

10
; : : : ; n2rm

m0
). Therefore, the

conjugacy class of u in G splits into two H-classes if and only if ni is even and "V;b(ni) = 0,
for all 1 � i � m. We have proven the following result:

Proposition 2.9.20. Let k be an algebraically closed field of characteristic 2, let V be a
finite-dimensional k-vector space equipped with a nondegenerate quadratic form Q and let
b be the nondegenerate alternating bilinear form on V given by b(v1; v2) = Q(v1 + v2) +
Q(v1) + Q(v2), for all v1; v2 2 V . Set G = Sp(V; b) and H = SO(V;Q). Let u 2 G be a
unipotent element and let (nr1

10
; : : : ; nrtt0 ; n

rt+1

t+11
; : : : ; nrmm1

) be its Hesselink normal form on V .
The following statements hold:

(a) u 2 H if and only if
mX

i=t+1

ri is even;

(b) for u 2 H, the conjugacy class of u in G splits into two H-classes if and only if, for all
1 � i � m, we have that ni is even and t = m, i.e. if and only if, for all 1 � i � m,
ni is even and "V;b(ni) = 0.
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Chapter 3

Groups of type A‘

In this chapter we prove Theorems 1.1.1 and 1.1.3 for the simple simply connected linear
algebraic groups of type A‘, ‘ � 1. The structure of the chapter is as follows: in the
first section we construct such a group and exhibit some properties of its semisimple and
unipotent elements. In Section 3.2 we determine max

s2TnZ(G)
fdim(Vs(�)) j � 2 k�g, where V

runs through the list of kG-modules we identified in Subsection 2.7.1. Similarly, in Section
3.3, we determine max

u2Gunf1g
dim(Vu(1)), where Gu denotes the set of unipotent elements of G,

for the same kG-modules V . Lastly, Section 3.4 records all the results of this chapter.
We now give some notation that will be used throughout the chapter. We fix k to be an

algebraically closed field of characteristic p � 0 and G to be a simple simply connected linear
algebraic group of type A‘, ‘ � 1. We will use the notation T , �, B, � = f�1; : : : ; �‘g and
!1; : : : ; !‘ to denote a fixed maximal torus of G, the root system of G determined by T , the
positive Borel subgroup of G, the set of simple roots in � given by B, and the fundamental
dominant weights of G corresponding to �i, 1 � i � ‘.

3.1 Construction of linear algebraic groups of type A‘

Let W be an ‘+ 1-dimensional k-vector space, for some ‘ � 1, and fix an ordered basis BW

in W . Set G = SL(W ) and note that G is a simple simply connected linear algebraic group
of type A‘, ‘ � 1, see Subsection 2.1.1. Let T be the set of diagonal matrices in G, and note
that T is a maximal torus in G. Further, let B be the set of upper-triangular matrices in G,
and note that B is a Borel subgroup of G with the property that T � B.

Let s 2 T , s = diag(a1; a2; : : : ; a‘+1) with ai 2 k� and
‘+1Y
i=1

ai = 1. Let m � 1 and let

�1; �2; : : : �m denote the distinct ai’s. For all 1 � i � m, let ni denote the multiplicity of

each �i in s. We have that
mX
i=1

ni = ‘+ 1 and we can assume, without loss of generality, that

n1 � n2 � � � � � nm � 1. Furthermore, by conjugating s by an element of NG(T ), we can

assume that s = diag(�1 � In1 ; �2 � In2 ; : : : ; �m � Inm). Lastly, we remark that, since
‘+1Y
i=1

ai = 1,
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we have
mY
i=1

�nii = 1. Moreover, if s =2 Z(G), then m � 2.

We now turn our attention to the unipotent elements of G. By Theorem 2.9.2, we know
that two unipotent elements of G are G-conjugate if and only if they are GL(W )-conjugate,

i.e. if and only if they have the same Jordan form onW . We write
mM
i=1

Jrini for the Jordan form

of a unipotent element of G on W , where ni � 1 and ri � 1, for all 1 � i � m, see Section
2.9.1. We can assume, without loss of generality, that ‘ + 1 � n1 > n2 > � � � > nm � 1.
Moreover, if u 6= 1, then n1 � 2.

3.2 Eigenspace dimensions for semisimple elements
Before we state the main results of this section, we recall that FA‘ = f!1; !2; 2!1; !1 + !‘g,
see Subsection 2.7.1.

Theorem 3.2.1. Let k be an algebraically closed field of characteristic p � 0 and let G be a
simple simply connected linear algebraic group of type A‘, ‘ � 1. Let T be a fixed maximal
torus in G. If ‘ = 1, let V = LG(m!1), where 1 � m � 8, and assume that p = 0 or
p > m. If ‘ � 2, let V = LG(�), where � 2 FA‘ or � appears in Table 2:7:1. Then there
exist s 2 T n Z(G) and � 2 k�, an eigenvalue of s on V , such that

dim(Vs(�)) � dim(V )�
p

dim(V );

if and only if ‘, � and p appear in the following list:

(1) ‘ � 1, � = !1 and p � 0;

(2) ‘ � 3, � = 2!1 and p 6= 2;

(3) ‘ � 3, � = !2 and p � 0;

(4) ‘ = 1, � 2 f3!1; 4!1g and p 6= 2; 3.

Theorem 3.2.2. Let k be an algebraically closed field of characteristic p � 0 and let G be
a simple simply connected linear algebraic group of type A‘, ‘ � 1. Let T and V be as in
Theorem 3:2:1. Then the value of max

s2TnZ(G)
fdim(Vs(�)) j � 2 k�g is given in the table below:
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V Char. Rank max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g

LG(!1) p � 0 ‘ � 1 ‘
?LG(2!1) p 6= 2 ‘ � 1 ‘2+‘+2

2

?LG(!2) p � 0
‘ = 3 4

‘ � 4 ‘(‘�1)
2

yLG(!1 + !‘) p - ‘+ 1 ‘ � 2 ‘2

yLG(!1 + !‘) p j ‘+ 1
‘ = 2 4
‘ � 3 ‘2 � 1

zLG(m!1), 3 � m � 8 p = 0, or p > m ‘ = 1 1 +
�
m
2

�
yLG(!1 + !2) p = 3 ‘ = 3 10
yLG(!3) p � 0 ‘ = 5 12
yLG(!3) p � 0 ‘ = 6 20
yLG(!3) p � 0 ‘ = 7 35

Table 3.2.1: The value of max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g.

In particular, for each V of Table 3.2.1 labeled as follows: yV ; ?V with ‘ � 4; and zV with
m � 5; we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and all eigenvalues

� 2 k� of s on V .

We will give the proof of Theorems 3.2.1 and 3.2.2 in a series of results, each treating
one of the candidate-modules. In Subsection 3.2.1, we focus on the irreducible kG-modules
LG(�) corresponding to p-restricted dominant weights � 2 FA‘ . As these modules need to
be considered for all ‘ � 1, we will refer to them as families of modules. In Subsection 3.2.2,
we will treat the irreducible kG-modules LG(m!1), where 3 � m � 8, of the simple simply
connected linear algebraic group G of type A1, as well as the irreducible kG-modules LG(�),
where G is a simple simply connected linear algebraic group of type A‘ of rank ‘ � 2 and
the p-restricted dominant weight � is featured in Table 2.7.1.

3.2.1 The families of modules

For the rest of this chapter, we fix the following hypothesis on semisimple elements in G:

(yHs) : any s 2 T n Z(G) is such that s = diag(�1 � In1 ; �2 � In2 ; : : : ; �m � Inm);

where m � 2; �i 6= �j for all 1 � i < j � m; ‘ � n1 � n2 � � � � � nm � 1 and
mY
i=1

�nii = 1:

Lemma 3.2.3. Let V = LG(!1). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s
on V we have

dim(Vs(�)) � ‘;

where equality holds if and only if, up to conjugation, s = diag(�1; �1; : : : ; �1; �
�‘
1 ) with

�‘+1
1 6= 1, and � = �1.
In particular, there exist s 2 T n Z(G) that afford an eigenvalue � 2 k� on V for which

dim(Vs(�)) � dim(V )�
p

dim(V ).
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Proof. We first note that V �= W as kG-modules, thus dim(V ) = ‘ + 1. As s =2 Z(G),
it follows that dim(Vs(�)) � dim(V ) � 1 = ‘. Now equality holds if and only if, up to
conjugation, s = diag(�1; : : : ; �1; �2), where �1 6= �2. Lastly, as �‘1�2 = 1 and �2 6= �1, we
have �2 = ��‘1 and �‘+1

1 6= 1.
To conclude, we have shown that dim(Vs(�)) � ‘ for all s 2 T n Z(G) and all eigenvalues

� 2 k� of s on V and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound is
attained. Now, as the inequality 1 �

p
‘+ 1 holds for all ‘ � 1, it follows that ‘+1�

p
‘+ 1 �

‘ holds for all ‘ � 1 and thus we have shown that there exist s 2 T n Z(G) that afford an
eigenvalue � 2 k� on V for which dim(Vs(�)) � dim(V )�

p
dim(V ).

Proposition 3.2.4. Let V = LG(2!1). Then for all s 2 T nZ(G) and all eigenvalues � 2 k�
of s on V we have

dim(Vs(�)) � ‘2 + ‘+ 2

2
;

where equality holds if and only if, up to conjugation, s = diag(�1; : : : ; �1; �
�‘
1 ), with �‘+1

1 =
�1, and � = �2

1.
In particular, for ‘ � 3, there exist s 2 T n Z(G) that afford an eigenvalue � 2 k� on

V for which dim(Vs(�)) � dim(V ) �
p

dim(V ). On the other hand, for ‘ � 4, we have
dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T nZ(G) and all eigenvalues � 2 k� of s on V .

Proof. Let s 2 T n Z(G) be as in hypothesis (yHs). By Lemma 2.8.1, since p 6= 2, we have
that V �= S2(W ) and so dim(V ) = (‘+1)(‘+2)

2
. Moreover, we deduce that the eigenvalues of s

on V , not necessarily distinct, are:

(3.1)

(
�2
i , 1 � i � m, with multiplicity at least ni(ni+1)

2
;

�i�j, 1 � i < j � m, with multiplicity at least ninj:

Fix some 1 � i � m and consider the eigenvalue �2
i of s on V . Since the �r’s are distinct,

it follows that �2
i 6= �i�j, for all i 6= j. Hence, by (3.1), we find at least ni(‘ + 1 � ni)

eigenvalues of s on V not equal to �2
i . It follows that:

dim(Vs(�
2
i )) �

(‘+ 1)(‘+ 2)

2
� ni(‘+ 1� ni): (3.2)

If dim(Vs(�
2
i )) �

‘2 + ‘+ 2

2
, then

‘� ni(‘+ 1� ni) � 0;

and so
(‘� ni)(1� ni) � 0: (3.3)

Since ‘ � ni � 1, it follows that (‘ � ni)(1 � ni) � 0 and so (3.3) holds if and only if

ni 2 f1; ‘g. In both cases, substituting in (3.2) yields dim(Vs(�
2
i )) �

‘2 + ‘+ 2

2
. Now, by

(3.1), equality holds if and only if �2
i = �2

j for all j 6= i. If �2
i = �2

j for all j 6= i, it follows that
m = 2, as the �r’s are distinct. Therefore, up to conjugation, s = diag(�1; : : : ; �1; �2), where
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�1 6= �2, �‘1�2 = 1 and �2
1 = �2

2. Then �2 = ��‘1 , hence �2
1 = ��2‘

1 and so �1 6= ��‘1 . It follows
that, up to conjugation, s = diag(�1; : : : ; �1; �

�‘
1 ) with �‘+1

1 = �1, as in the statement of the
result. Conversely, let s = diag(�1; : : : ; �1; �

�‘
1 ) 2 T with �‘+1

1 = �1. Then s =2 Z(G) and
dim(Vs(�

2
1)) = ‘2+‘+2

2
, by (3.1).

Fix some 1 � i < j � m and consider the eigenvalue �i�j of s on V . Since the �r’s are
distinct, we remark that:8><>:

�i�j 6= �2
i and �i�j 6= �2

j ;

�i�j 6= �i�r, for i < r � m and r 6= j, and �i�j 6= �r�i, for 1 � r < i;

�i�j 6= �r�j, for 1 � r < j and r 6= i, and �i�j 6= �j�r, for j < r � m:

By (3.1), all of the above account for at least
ni(ni + 1)

2
+
nj(nj + 1)

2
+(ni+nj)(‘+1�ni�nj)

eigenvalues of s on V which are different than �i�j. Hence, we have:

dim(Vs(�i�j)) �
(‘+ 1)(‘+ 2)

2
� ni(ni + 1)

2
� nj(nj + 1)

2
� (ni + nj)(‘+ 1� ni � nj):

Assume dim(Vs(�i�j)) �
‘2 + ‘+ 2

2
. It follows that:

‘� (ni + nj)(‘+ 1� ni � nj)�
ni(ni + 1) + nj(nj + 1)

2
� 0:

We rewrite the above as:

(‘� ni � nj)(1� ni � nj)�
ni(ni + 1) + nj(nj + 1)

2
� 0 (3.4)

and note that
ni(ni + 1) + nj(nj + 1)

2
� 2, as ni � nj � 1. Therefore, by (3.4), we have:

(‘� ni � nj)(1� ni � nj)� 2 � 0: (3.5)

If ni + nj � ‘, then (‘ � ni � nj)(1 � ni � nj) � 0 and Inequality (3.5) does not hold. If
ni + nj = ‘+ 1, then m = 2, n2 = ‘+ 1� n1 and substituting in Inequality (3.4) gives:

‘� n1(n1 + 1) + (‘+ 1� n1)(‘+ 2� n1)

2
� 0

and thus
�2n2

1 + 2n1‘� ‘2 + 2n1 � ‘� 2 � 0: (3.6)

But, �2n2
1 + 2n1‘� ‘2 + 2n1� ‘� 2 = �[(‘� n1)2 + (n1� 1)2 + ‘+ 1] < 0 and so Inequality

(3.6) does not hold. Therefore, dim(Vs(�i�j)) <
‘2 + ‘+ 2

2
for all 1 � i < j � m.

In conclusion, for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V , we have
shown that dim(Vs(�)) � ‘2+‘+2

2
, where equality holds if and only if, up to conjugation,

s = diag(�1; : : : ; �1; �
�‘
1 ) with �‘+1

1 = �1, and � = �2
1. In particular, as the inequality
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‘2 � 3‘� 2 � 0 holds for all ‘ � 3, it follows that
‘2 + 3‘+ 2

2
�
r
‘2 + 3‘+ 2

2
� ‘2 + ‘+ 2

2
for all ‘ � 3. This shows that there exist s 2 T nZ(G) which afford an eigenvalue � 2 k� on V ,
for example s = diag(�1; : : : ; �1; �

�‘
1 ) with �‘+1

1 = �1 and � = �2
1, such that dim(Vs(�)) �

dim(V ) �
p

dim(V ). On the other hand, for ‘ � 4 we have
‘2 + ‘+ 2

2
<

‘2 + 3‘+ 2

2
�r

‘2 + 3‘+ 2

2
and therefore dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 T n Z(G) and all

eigenvalues � 2 k� of s on V .

Proposition 3.2.5. Let ‘ � 3 and let V = LG(!2). Then for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V one of the following holds:

(1) ‘ = 3 and dim(Vs(�)) � 4, where equality holds if and only if, up to conjugation,
s = diag(�1; �1;���1

1 ;���1
1 ), with �2

1 6= �1, and � = �1.

(2) ‘ � 4 and dim(Vs(�)) � ‘(‘� 1)

2
, where we have equality if and only if one of the

following holds:

(2:1) ‘ = 4 and, up to conjugation, s = diag(�1; �1; �1; �2; �2), with �1 6= �2 and
�3

1 = ��2
2 , and � = �1�2.

(2:2) ‘ � 4 and, up to conjugation, s = diag(�1; : : : ; �1; �
�‘
1 ), with �‘+1

1 6= 1, and
� = �2

1.

In particular, for ‘ = 3 there exist s 2 T n Z(G) that afford an eigenvalue � 2 k� on
V for which dim(Vs(�)) � dim(V ) �

p
dim(V ). On the other hand, for ‘ � 4, we have

dim(Vs(�)) < dim(V )�
p

dim(V ) for all s 2 T nZ(G) and all eigenvalues � 2 k� of s on V .

Proof. Let s 2 T n Z(G) be as in hypothesis (yHs). By Lemma 2.8.1, since ‘ � 3, we have
that V �= ^2(W ) and so we deduce that dim(V ) = ‘(‘+1)

2
and that the eigenvalues of s on V ,

not necessarily distinct, are:

(3.7)

(
�2
i , 1 � i � m, with multiplicity at least ni(ni�1)

2
;

�i�j, 1 � i < j � m, with multiplicity at least ninj:

We note that if ni = 1, then �2
i does not occur as an eigenvalue of s on V . We thus

suppose that there exists some 1 � i � m such that ni � 2 and consider the eigenvalue �2
i

of s on V . Now, since the �r’s are distinct, it follows that �2
i 6= �i�j for all i 6= j, hence:

dim(Vs(�
2
i )) �

‘(‘+ 1)

2
� (‘+ 1� ni)ni:

Let ‘ = 3, and assume dim(Vs(�
2
i )) � 4. Then:

2� (4� ni)ni = (ni � 2)2 � 2 � 0

and so ni � 4, contradicting ni � ‘.
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We now let ‘ � 4 and assume dim(Vs(�
2
i )) �

‘(‘�1)
2

. It follows that:

‘� (‘+ 1� ni)ni � 0:

By the arguments following Inequality (3.3) and keeping in mind that ni � 2, it follows
that the above holds if and only if ni = ‘. Hence, m = 2, n1 = ‘, n2 = 1 and, as �1 6= �2

and �‘1�2 = 1, we have �2 = ��‘1 and �‘+1
1 6= 1. Moreover, we note that in this case we

have dim(Vs(�
2
1)) = ‘(‘�1)

2
. Thus, for ‘ � 4 we showed that dim(Vs(�

2
i )) �

‘(‘�1)
2

for all
s 2 T n Z(G) and all 1 � i � m and that equality holds if and only if i = 1 and, up to
conjugation, s = diag(�1; : : : ; �1; �

�‘
1 ), with �‘+1

1 6= 1, as in (2:2).
Fix some 1 � i < j � m and consider the eigenvalue �i�j of s on V . Since the �r’s are

distinct, we remark that:8><>:
�i�j 6= �2

i and �i�j 6= �2
j ;

�i�j 6= �i�r, for i < r � m and r 6= j, and �i�j 6= �r�i, for 1 � r < i;

�i�j 6= �r�j, for 1 � r < j and r 6= i, and �i�j 6= �j�r, for j < r � m:

By (3.7), all of the above account for at least
ni(ni � 1)

2
+
nj(nj � 1)

2
+(ni+nj)(‘+1�ni�nj)

eigenvalues of s on V different than �i�j. Hence, we have:

dim(Vs(�i�j)) �
‘(‘+ 1)

2
� ni(ni � 1)

2
� nj(nj � 1)

2
� (ni + nj)(‘+ 1� ni � nj):

Let ‘ = 3. Then, since 3 � ni � nj � 1 and ni + nj � 4, we deduce that (ni; nj) 2
f(3; 1); (2; 2); (2; 1); (1; 1)g. Assume that dim(Vs(�i�j)) � 4. It follows that:

2� ni(ni � 1)

2
� nj(nj � 1)

2
� (ni + nj)(4� ni � nj) � 0: (3.8)

Substituting all possible values for (ni; nj) in (3.8), we see that the inequality holds if and
only if ni = nj = 2. Assume that ni = nj = 2. Then m = 2, n1 = n2 = 2 and, as �2

1�
2
2 = 1,

we have �2 = ���1
1 . Now, if �2 = ��1

1 , then, up to conjugation, s = diag(�1; �1; �
�1
1 ; ��1

1 )
with �2

1 6= 1, as �1 6= �2. Conversely, for s = diag(�1; �1; �
�1
1 ; ��1

1 ) with �2
1 6= 1, we have

s 2 T nZ(G) and dim(Vs(1)) = 4, by (3.7). Similarly, if �2 = ���1
1 , then, up to conjugation,

s = diag(�1; �1;���1
1 ;���1

1 ) with �2
1 6= �1. Conversely, for s = diag(�1; �1;���1

1 ;���1
1 )

with �2
1 6= �1, we have s 2 T n Z(G) and dim(Vs(�1)) = 4, by (3.7).

In conclusion, for ‘ = 3, we have shown that dim(Vs(�)) � 4 for all s 2 T n Z(G)
and all eigenvalues � 2 k� of s on V , and that there exist elements s 2 T n Z(G) which
afford an eigenvalue � 2 k� on V for which the bound is achieved, for example s =
diag(�1; �1; �

�1
1 ; ��1

1 ), with �2
1 6= 1, and � = 1. Lastly, we note that, since 4 > dim(V ) �p

dim(V ), there exist s 2 T n Z(G) that afford an eigenvalue � 2 k� on V for which
dim(Vs(�)) � dim(V )�

p
dim(V ).

We now let ‘ � 4 and assume dim(Vs(�i�j)) � ‘(‘�1)
2

. Then

‘� ni(ni � 1)

2
� nj(nj � 1)

2
� (ni + nj)(‘+ 1� ni � nj) � 0:
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We rewrite the above as:

(‘� ni � nj)(1� ni � nj)�
ni(ni � 1)

2
� nj(nj � 1)

2
� 0: (3.9)

Since ni � nj � 1, we have
ni(ni � 1)

2
+
nj(nj � 1)

2
� 0 and 1 � ni � nj < 0, therefore, by

Inequality (3.9), we have
‘� ni � nj � 0:

Assume that ni+nj = ‘. Then, for Inequality (3.9) to hold, we need
ni(ni � 1)

2
+
nj(nj � 1)

2
=

0, hence ni = nj = 1, contradicting ‘ � 4. We can thus assume that ni + nj = ‘ + 1, hence
m = 2. By (3.9) we have:

n1 + n2 � 1� n1(n1 � 1) + n2(n2 � 1)

2
� 0;

which we rewrite as:
n1(3� n1)� (n2 � 1)(n2 � 2) � 0: (3.10)

Now, Inequality (3.10) holds if and only if n1 � 3 and n2 � 2, hence if and only if n1 = 3
and n2 = 2, as ‘ � 4. In this case, ‘ = 4 and so s = diag(�1; �1; �1; �2; �2) with �1 6= �2 and
�3

1 = ��2
2 . Therefore, dim(Vs(�i�j)) � ‘(‘�1)

2
for all s 2 T n Z(G) and all 1 � i < j � m,

where equality holds if and only if ‘ = 4, m = 2, �i�j = �1�2 and, up to conjugation,
s = diag(�1; �1; �1; �2; �2) with �1 6= �2 and �3

1 = ��2
2 .

In conclusion, for ‘ � 4, we have shown that dim(Vs(�)) � ‘(‘�1)
2

for all s 2 T n Z(G)
and all eigenvalues � 2 k� of s on V , and that there exist pairs (s; �) 2 T n Z(G) � k� for
which the bound is achieved. In particular, as the inequality 0 < ‘2� ‘ holds for all ‘ � 4, it

follows that ‘(‘�1)
2

< ‘(‘+1)
2
�
q

‘(‘+1)
2

for all ‘ � 4, and so dim(Vs(�)) < dim(V )�
p

dim(V )

for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V .

Proposition 3.2.6. Let ‘ � 2 and let V 0 = W 
W �. Then for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V 0 we have

dim(V
0

s (�)) � ‘2 + 1;

where equality holds if and only if � = 1 and, up to conjugation, s = diag(�1; : : : ; �1; �
�‘
1 )

with �‘+1
1 6= 1.

Proof. Let s 2 T n Z(G) be as in hypothesis (yHs). Since V 0 = W 
W �, we deduce that
dim(V

0
) = (‘+ 1)2 and that the eigenvalues of s on V 0 , not necessarily distinct, are:

(3.11)

8><>:1 with multiplicity at least
mX
i=1

n2
i ;

�i�
�1
j and ��1

i �j, where 1 � i < j � m, each with multiplicity at least ninj:
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We first consider the eigenvalue 1 of s on V 0 . Since the �i’s are distinct, it follows that
1 6= �i�

�1
j and 1 6= ��1

i �j for all 1 � i < j � m. Therefore:

dim(V
0

s (1)) =
mX
i=1

n2
i = (

mX
i=1

ni)
2 � 2

X
i<j

ninj = (‘+ 1)2 � 2
X
i<j

ninj:

Assume dim(V
0
s (1)) � ‘2 + 1. Then:

‘�
X
i<j

ninj � 0

and, since ‘ =
mX
i=1

ni � 1, we have that:

(1� n2)(n1 � 1) +
mX
i=3

ni(1�
i�1X
j=1

nj) � 0: (3.12)

But
mX
i=3

ni(1�
i�1X
j=1

nj) � 0 and (1� n2)(n1 � 1) � 0, since ni � 1 for all 1 � i � m, and so

(3.12) holds if and only if m = 2, n2 = 1 and n1 = ‘. Then s = diag(�1; : : : ; �1; �2), with
�1 6= �2 and �‘1�2 = 1, and dim(V

0
s (1)) = ‘2 + 1. We deduce that dim(V

0
s (1)) � ‘2 + 1 for all

s 2 TnZ(G) and that equality holds if and only if, up to conjugation, s = diag(�1; : : : ; �1; �
�‘
1 )

with �‘+1
1 6= 1, as in the statement of the proposition.

We now fix some 1 � i < j � m and consider the eigenvalue �i��1
j of s on V

0 . If
�i�

�1
j 6= ��1

i �j, then:

dim(V
0

s (�i�
�1
j )) � (‘+ 1)2 �

mX
r=1

n2
r � dim(V

0

s (��1
i �j)): (3.13)

Since nr � 1 for all 1 � r � m, we have that
mX
r=1

n2
r �

mX
r=1

nr = ‘ + 1. Furthermore, since

V
0 is a self-dual kG-module, we have dim(V

0
s (�i�

�1
j )) = dim(V

0
s (��1

i �j)) and so Inequality
(3.13) becomes:

dim(V
0

s (�i�
�1
j )) � (‘+ 1)2 � (‘+ 1)

2
=
‘(‘+ 1)

2
: (3.14)

Since 0 < ‘2 � ‘ + 2 for all ‘ � 2, we have dim(V
0
s (�i�

�1
j )) < ‘2 + 1 for all eigenvalues

�i�
�1
j 6= �1. We can thus assume that �i��1

j = ��1
i �j and so p 6= 2 and �i��1

j = �1. Since
the �r’s are distinct, we remark that:

(1) �1 6= �i�
�1
r , for i < r � m, r 6= j, and �1 6= ��1

r �i, for 1 � r < i, hence �1 6= ��1
i �r,

for i < r � m, r 6= j, and �1 6= �r�
�1
i , for 1 � r < i;

(2) �1 6= �r�
�1
j , for 1 � r < j, r 6= i, and �1 6= ��1

j �r, for j < r � m, hence �1 6= ��1
r �j,

for 1 � r < j, r 6= i, and �1 6= �j�
�1
r , for j < r � m.
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It follows that:

dim(V
0

s (�1)) � (‘+ 1)2 �
mX
r=1

n2
r � 2(ni + nj)(‘+ 1� ni � nj): (3.15)

Assume that dim(V
0
s (�1)) � ‘2 + 1. Then:

2‘�
mX
r=1

n2
r � 2(ni + nj)(‘+ 1� ni � nj) � 0;

which we rewrite as

2(‘� ni � nj)(1� ni � nj)�
mX
r=1

n2
r � 0: (3.16)

Since
mX
r=1

n2
r > 0, for Inequality (3.16) to hold, we must have (‘� ni � nj)(1� ni � nj) > 0.

But then, as ni � nj � 1, it follows that ‘� ni � nj < 0 and so m = 2 and n1 + n2 = ‘+ 1.
Substituting in Inequality (3.16) gives:

�2 + 2n1 + 2n2 � n2
1 � n2

2 � 0;

which we rewrite as
�(n1 � 1)2 � (n2 � 1)2 � 0

and deduce that n1 = n2 = 1, contradicting ‘ � 2. We conclude that dim(V 0s (�1)) < ‘2 + 1
for all s 2 T n Z(G). This completes the proof of the proposition.

Corollary 3.2.7. Let ‘ � 2, p - ‘ + 1 and let V = LG(!1 + !‘). Then for all s 2 T n Z(G)
and all eigenvalues � 2 k� of s on V we have

dim(Vs(�)) � ‘2:

Moreover, we have equality if and only if one of the following holds:

(1) p 6= 2, ‘ = 2, � = �1 and, up to conjugation, s = diag(�1; �1;��1) with �3
1 = �1.

(2) ‘ � 2, � = 1 and, up to conjugation, s = diag(�1; : : : ; �1; �
�‘
1 ) with �‘+1

1 6= 1.

In particular, we have dim(Vs(�)) < dim(V ) �
p

dim(V ) for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V .

Proof. Let s 2 T n Z(G) be as in hypothesis (yHs). Let V 0 = W 
W �. Then, by Lemma
2.8.1, since p - ‘+1, we have V 0 = V �LG(0). It follows that dim(V ) = ‘2 +2‘, dim(Vs(1)) =
dim(V

0
s (1))� 1 and dim(Vs(�)) = dim(V

0
s (�)) for all eigenvalues � 6= 1 of s on V .

For the eigenvalue 1 and any eigenvalue �, � 6= ��1, of s on V , Proposition 3.2.6 and
Inequality (3.14) give the result. Now assume p 6= 2 and let � = �1. By (3.15), we have:

dim(Vs(�1)) � (‘+ 1)2 �
mX
r=1

n2
r � 2(ni + nj)(‘+ 1� ni � nj):
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Assume dim(Vs(�1)) � ‘2. It follows that:

2‘+ 1�
mX
r=1

n2
r � 2(ni + nj)(‘+ 1� ni � nj) � 0:

We proceed as for V 0s (�1), see (3.16), and arrive at

2(‘� ni � nj)(1� ni � nj) + 1�
mX
r=1

n2
r � 0: (3.17)

We have that 1 �
mX
r=1

n2
r < 0, as m � 2 and nr � 1 for all 1 � r � m. Thus, for Inequality

(3.17) to hold, we must have (‘�ni�nj)(1�ni�nj) > 0 and so m = 2 and n1 +n2 = ‘+ 1.
Substituting in (3.17) gives:

�1 + 2n1 + 2n2 � n2
1 � n2

2 � 0;

which we rewrite as:
�(n2 � 1)2 + n1(2� n1) � 0: (3.18)

If n2 � 2, then n1 � 2, as n1 � n2, and we have �(n2 � 1)2 + n1(2 � n1) < 0. It follows
that n2 = 1, n1 = ‘, where ‘ � 2, and, by (3.18), we deduce that n1 = 2 and ‘ = 2. Then,
we also have that �2

1�2 = 1 and �1�
�1
2 = �1, hence, �2 = ��2

1 and �3
1 = �1. Therefore, we

have shown that dim(Vs(�1)) � ‘2 for all s 2 T n Z(G) and that equality holds if and only
if ‘ = 2 and, up to conjugation, s = diag(�1; �1; �

�2
1 ) with �3

1 = �1, as in (1).
We conclude that dim(Vs(�)) � ‘2, for all s 2 T n Z(G) and all eigenvalues � 2 k�

of s on V . In particular, since the inequality 0 < 3‘2 � 2‘ holds for all ‘ � 2, we have
‘2 < ‘2 + 2‘�

p
‘2 + 2‘ for all ‘ � 2, and therefore dim(Vs(�)) < dim(V )�

p
dim(V ) for all

s 2 T n Z(G) and all eigenvalues � 2 k� of s on V .

Corollary 3.2.8. Let ‘ � 2, p j ‘ + 1 and let V = LG(!1 + !‘). Then for all s 2 T n Z(G)
and all eigenvalues � 2 k� of s on V one of the following holds

(1) ‘ = 2 and dim(Vs(�)) � 4 with equality if and only if � = �1 and, up to conjugation,
s = diag(�1;�1; 1).

(2) ‘ � 3 and dim(Vs(�)) � ‘2�1 with equality if and only if � = 1 and, up to conjugation,
s = diag(�1; : : : ; �1; �

�‘
1 ) with �‘+1

1 6= 1.

In particular, we have dim(Vs(�)) < dim(V ) �
p

dim(V ) for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V .

Proof. Let s 2 T nZ(G) be as in hypothesis (yHs). Let V
0
= W
W �. Then, by Lemma 2.8.1,

since p j ‘+1, we have V 0 = LG(0) j V j LG(0). Therefore, dim(V ) = ‘2+2‘�1, dim(Vs(�)) =
dim(V

0
s (�)), for all eigenvalues � 6= 1 of s on V , and dim(Vs(1)) = dim(V

0
s (1))� 2.

For the eigenvalue 1 and any eigenvalue � with � 6= ��1 of s on V , Proposition 3.2.6 and
Inequality (3.14) give the result. So, we now assume that p 6= 2 and consider the eigenvalue
� = �1 of s on V .
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If ‘ = 2, the proof of Corollary 3.2.8 gives the result, see (3.17) and (3.18). We can thus
assume ‘ � 4, as p j ‘+ 1 and p 6= 2, and, by (3.15), we have:

dim(Vs(�1)) � (‘+ 1)2 �
mX
r=1

n2
r � 2(ni + nj)(‘+ 1� ni � nj):

Assume dim(Vs(�1)) � ‘2 � 1. Then

2‘+ 2�
mX
r=1

n2
r � 2(ni + nj)(‘+ 1� ni � nj) � 0:

We proceed as for V 0s (�1), see (3.16), and arrive at

2(‘� ni � nj)(1� ni � nj) + 2�
mX
r=1

n2
r � 0: (3.19)

Now, 2�
mX
r=1

n2
r � 0, as m � 2 and nr � 1 for all 1 � r � m. Thus, for Inequality (3.19) to

hold we must have:
(‘� ni � nj)(1� ni � nj) � 0: (3.20)

But 1� ni � nj < 0 and so, by (3.20), we have ‘� ni � nj � 0. If ni + nj = ‘, then m = 3,

n3 = 1 and 2(‘� ni � nj)(1� ni � nj) + 2�
mX
r=1

n2
r < 0. Similarly, if ni + nj = ‘ + 1, then

m = 2 and, by Inequality (3.19), it follows that:

n1(2� n1) + n2(2� n2) � 0: (3.21)

Since ‘ � 4 and n1 � n2, we have n1 � 3, therefore n1(2 � n1) < 0. Hence, by (3.21),
n2(2� n2) > 0 and so n2 = 1. Substituting in (3.21) gives:

�(n1 � 1)2 + 2 � 0;

contradicting n1 � 3. We deduce that dim(Vs(�1)) < ‘2 � 1 for all s 2 T n Z(G).
In conclusion, for ‘ = 2, we have shown that dim(Vs(�)) � 4 < dim(V ) �

p
dim(V ) for

all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V . Similarly, for ‘ � 3, we have shown
that dim(Vs(�)) � ‘2� 1 for all s 2 T nZ(G) and all eigenvalues � 2 k� of s on V . Since the
inequality 0 < 3‘2�2‘+1 holds for all ‘ � 3, it follows that ‘2�1 < ‘2 +2‘�1�

p
‘2 + 2‘� 1

for all ‘ � 3, and therefore dim(Vs(�)) < dim(V ) �
p

dim(V ) for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V . This completes the proof of the corollary.

To conclude this subsection, we remark that Lemma 3.2.3, Propositions 3.2.4 and 3.2.5,
and Corollaries 3.2.7 and 3.2.8 give the proof of Theorems 3.2.1 and 3.2.2 for the families of
kG-modules corresponding to p-restricted dominant weights � 2 FA‘ .
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3.2.2 The particular modules

First, for ‘ = 1, we will inspect the irreducible highest weight kG-module V = LG(m!1),
where 3 � m � 8, and determine whether there exist pairs (s; �) 2 T n Z(G) � k� for
which dim(Vs(�)) � dim(V )�

p
dim(V ). Afterwards, we will assume that ‘ � 2 and we will

focus on the irreducible kG-modules LG(�) corresponding to p-restricted dominant weights �
appearing in Table 2.7.1 and answer the same question. Lastly, although we do not mention
the result explicitly, we make great use of the data in [Lü01b], when discussing weights and
weight multiplicities in this subsection.

Proposition 3.2.9. Let k be an algebraically closed field of characteristic p = 0 or p > m.
Assume ‘ = 1 and let V = LG(m!1), where 3 � m � 8. Then for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V we have

dim(Vs(�)) � 1 +
jm

2

k
;

where there exist (s; �) 2 T n Z(G)� k� for which the bound is attained.
Moreover, for m = 3 and m = 4 there exist s 2 T nZ(G) that afford an eigenvalue � 2 k�

on V for which dim(Vs(�)) � dim(V ) �
p

dim(V ). On the other hand, for m � 5 we have
dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T nZ(G) and all eigenvalues � 2 k� of s on V .

Proof. First, we note that, as V = LG(m!1), we have dim(V ) = m+1. Now, the eigenvalues
of s = diag(�1; �

�1
1 ) with �1 6= �1, on V , not necessarily distinct, are �m1 ; �

m�2
1 ; : : : ; ��m+2

1 ;
��m1 . Since �2

1 6= 1, we have that �i1 6= �i�2
1 for all �m+ 2 � i � m.

We first assume that m is even. We remark that, in this case, 1 occurs as an eigenvalue
of s on V , with multiplicity at least 1. Now, let � be an eigenvalue of s on V . If � 6= ��1,
then dim(Vs(�)) = dim(Vs(�

�1)) and we have

dim(Vs(�)) � dim(V )� dim(Vs(1))

2
� m

2
:

We can now assume that the eigenvalue � is such that � = ��1. First, let � = 1. If �i1 = 1 for
some 2 � i � m, then we also have ��i1 = 1 and therefore we will focus on the m

2
eigenvalues

�m1 ; �
m�2
1 ; : : : ; �2

1. As �2
1 6= 1, at most m

2
� 1 of the eigenvalues �m1 ; �

m�2
1 ; : : : ; �4

1 can equal 1.
As �i1 6= �i�2

1 , for all 4 � i � m, it follows that at most
�
m�2

4

�
+ " of these eigenvalues can

equal 1, where " = 1 if 4 - m� 2 and " = 0 if 4 j m� 2. Therefore:

dim(Vs(1)) �

(
1 + 2(

�
m�2

4

�
+ 1), if 4 - m� 2

1 + m�2
2

, if 4 j m� 2
=

(
1 + m

2
; if 4 - m� 2

m
2
; if 4 j m� 2

� 1 +
jm

2

k
:

Now, let � = �1 and, again, we focus on the eigenvalues of the form �i1, where 2 � i � m.
As �i1 6= �i�2

1 for all 2 � i � m, it follows that at most
�
m
4

�
+ � of these eigenvalues can

equal �1, where � = 1 if 4 - m and � = 0 if 4 j m. Therefore:

dim(Vs(�1)) �

(
2(
�
m
4

�
+ 1), if 4 - m

m
2
, if 4 j m

=

(
1 + m

2
; if 4 - m

m
2
; if 4 j m

� 1 +
jm

2

k
:
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We now assume that m is odd. Let � 2 k� be an eigenvalue of s on V . If � 6= ��1, then,
arguing as in the case of m even, we deduce:

dim(Vs(�)) � dim(V )

2
= 1 +

m� 1

2
:

We can now assume that the eigenvalue � is such that � = ��1, i.e. � = �1. If �i1 = �1
for some 1 � i � m, then we also have ��i1 = �1 and therefore we will focus on the m+1

2

eigenvalues �m1 ; �
m�2
1 ; : : : ; �1. Since �1 6= �1, at most m�1

2
of these eigenvalues can equal �1

and, moreover, since �i1 6= �i�2
1 , for all 3 � i � m, we deduce that at most

�
m�1

4

�
+ � of

these eigenvalues can equal �1, where � = 1 if 4 - m� 1 and � = 0 if 4 j m� 1. Therefore:

dim(Vs(�1)) �

(
2(
�
m�1

4

�
+ 1), if 4 - m� 1

m�1
2

, if 4 j m� 1
=

(
1 + m�1

2
; if 4 - m� 1

m�1
2
; if 4 j m� 1

� 1 +
jm

2

k
:

We have shown that dim(Vs(�)) � 1+
�
m
2

�
for all s 2 T nZ(G) and all eigenvalues � 2 k�

of s on V . We will now show that there exist (s; �) 2 T n Z(G) � k� for which the bound
is attained. For this, let s = diag(�1; �

�1
1 ) 2 T be such that �2

1 = �1. First, we note that
s =2 Z(G). Now, the eigenvalues of s on V are �m1 ; �

m�2
1 ; : : : ; ��m+2

1 ; ��m1 . As �2
1 = �1, it

follows that �m1 = �m�4i
1 , for all 0 � i � m�1

2
if m is odd, respectively for all 0 � i � m

2
if m

even. It follows that dim(Vs(�
m
1 )) = 1 +

�
m
2

�
.

Lastly, in the cases of m = 3 and m = 4, one sees that there exist (s; �) 2 T n Z(G)� k�
for which dim(Vs(�)) � dim(V ) �

p
dim(V ), for example s = diag(�1; �

�1
1 ) with �2

1 = �1
and � = �m1 . On the other hand, for 5 � m � 8, we have 0 < m2 � 4m � 4, thereforep
m+ 1 < m� m

2
. Moreover, as

�
m
2

�
� m

2
for all m � 1, we have 1+

�
m
2

�
< m+1�

p
m+ 1,

for all 5 � m � 8. It follows that dim(Vs(�)) < dim(V )�
p

dim(V ) for all s 2 T nZ(G) and
all eigenvalues � 2 k� of s on V .

We now turn our attention to the irreducible kG-modules V with highest weights listed
in Table 2.7.1. To treat these modules, we will use the inductive algorithm for calculating

max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g presented in Subsection 2.4.3. To begin, we refer the reader

to the construction of the Levi subgroup L‘ of the maximal parabolic subgroup P‘ of G, as
given in Section 2.4. We recall that L‘ = Z(L‘)

�[L‘; L‘], where Z(L‘)
� is a one-dimensional

torus and [L‘; L‘] is a simple simply connected group of type A‘�1. We also recall that we
have denoted by T 0 the maximal torus T \ [L‘; L‘] of [L‘; L‘].

Let s 2 T . Then s = z � h, where z 2 Z(L‘)
� and h 2 [L‘; L‘]. As z 2 Z(L‘)

�, we have

z =
‘Y

j=1

h�j(c
kj), where c 2 k� and kj 2 Z for all 1 � j � ‘. Moreover, as �j(z) = 1 for

all 1 � j � ‘ � 1, it follows that z =
‘Y

j=1

h�j(c
j), where c 2 k�. As h 2 [L‘; L‘], we have

h =
‘�1Y
j=1

h�j(aj), where aj 2 k� for all 1 � j � ‘�1, and therefore s =

� ‘�1Y
j=1

h�j(c
jaj)

�
h�‘(c

‘)

with c 2 k� and aj 2 k� for all 1 � j � ‘� 1.
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Let V be an irreducible kG-module of p-restricted dominant highest weight � 2 X(T ),

where � =
‘X

r=1

dr!r with 0 � dr � p� 1 for all 1 � r � ‘. We consider the decomposition:

V j[L‘;L‘]=
e‘(�)M
i=0

V i;

where e‘(�) is the maximum �‘-level of weights in V , see Definition 2.4.1, and V i =M
2N�‘

V��i�‘� for all 0 � i � e‘(�). Let s 2 T and write s = z � h, as above. Then,

by (2.5), we have:

siz = (�� i�‘ � )(z) = (�� i�‘)(
‘Y

j=1

h�j(c
j)) =

‘Y
j=1

cjdj � c�(�i(‘�1)+2i‘) =
‘Y

j=1

cjdj � c�(‘+1)i:

Therefore, z acts on V i, 0 � i � e‘(�), as the scalar siz =
‘Y

j=1

cjdj �c�(‘+1)i. Now, let �i1; : : : ; �iti ,

ti � 1, be the distinct eigenvalues of h on V i, 0 � i � e‘(�), and let ni1; : : : ; niti be their
respective multiplicities. Then, by Lemma 2.4.8, we determine that the distinct eigenvalues
of s on V i are siz�i1; : : : ; siz�iti with respective multiplicities ni1; : : : ; niti .

Proposition 3.2.10. Let k be an algebraically closed field of characteristic p = 3. Assume
‘ = 3 and let V = LG(!1 + !2). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s
on V we have

dim(Vs(�)) � 10;

where there exist pairs (s; �) 2 T n Z(G)� k� for which the bound is attained.
In particular, dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and all eigenvalues

� 2 k� of s on V .

Proof. Let L = L3 and let � = !1 + !2. Then dim(V ) = 16 and, by Lemma 2.4.4, we have
e3(�) = 2, therefore:

V j[L;L]= V 0 � V 1 � V 2;

where V i =
M
2N�3

V��i�3� for all 0 � i � 2. By [Smi82, Proposition], we have V 0 �=

LL(!1 +!2). In V 1, the weight (���2��3) jT 0= 2!1 admits a maximal vector, therefore V 1

has a composition factor isomorphic to LL(2!1) and dim(V 1) � dim(LL(2!1)) = 6, as p = 3.
Similarly, the weight (���1� 2�2� 2�3) jT 0= !1 admits a maximal vector in V 2, therefore
V 2 has a composition factor isomorphic to LL(!1) and dim(V 2) � dim(LL(!1)) = 3. By
dimensional considerations, we deduce that V 1 �= LL(2!1), V 2 �= LL(!1) and:

V j[L;L]
�= LL(!1 + !2)� LL(2!1)� LL(!1): (3.22)
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If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0; 1 or i = 2,

then s 2 Z(L)�nZ(G), and so s = z with c4 6= 1. In this case, as s acts on each V i, i = 0; 1; 2,

as scalar multiplication by siz =
3Y
j=1

cjdj � c�4i = c3�4i, we determine that the eigenvalues of s

on V , not necessarily distinct are:8><>:
c3 with dim(Vs(c

3)) � dim(V 0) = 7;

c�1 with dim(Vs(c
�1)) � dim(V 1) = 6;

c�5 with dim(Vs(c
�5)) � dim(V 2) = 3:

As c4 6= 1, it follows that dim(Vs(�)) � 10 for all eigenvalues � 2 k� of s on V . Moreover,
for s 2 Z(L)� with c4 = �1, we have s =2 Z(G) and dim(Vs(c

3)) = 10.
We can now assume that dim(V i

s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V
and all 0 � i � 2. We write s = z � h, where z 2 Z(L)� and h 2 [L;L]. Since z acts
by scalar multiplication on V i, i = 0; 1; 2, it follows that dim(V i

h(�h)) < dim(V i) for all
i = 0; 1; 2, where �h is any eigenvalue of h on V i. Now, as p = 3, by Corollary 3.2.8,
we have dim(V 0

h (�h)) � 4 for all eigenvalues �h of h on V 0. Similarly, by Proposition 3.2.4,
respectively by Lemma 3.2.3, it follows that dim(V 1

h (�h)) � 4, respectively dim(V 2
h (�h)) � 2,

for all eigenvalues �h of h on V 1, respectively on V 2. This gives dim(Vh(�h)) � 10 for all
eigenvalues �h of h on V , therefore dim(Vs(�)) � 10 for all eigenvalues � of s on V .

In conclusion, we have shown that dim(Vs(�)) � 10 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V , and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound is
attained. In particular, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and

all eigenvalues � 2 k� of s on V .

Proposition 3.2.11. Let ‘ = 5 and let V = LG(!3). Then for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V we have

dim(Vs(�)) � 12:

In particular, dim(Vs(�)) < dim(V )�
p

dim(V ) for all s 2 T n Z(G) and all eigenvalues
� 2 k� of s on V .

Proof. We first note that the kG-module V is self-dual, as V � �= LG(�w0(!3)), see [MT11,
Proposition 16.1], and w0(!3) = �!3. Now, let L = L5 and let � = !3. Then dim(V ) = 20
and, by Lemma 2.4.4, we have e5(�) = 1, therefore

V j[L;L]= V 0 � V 1;

where V i =
M
2N�5

V��i�5� for i = 0 and i = 1. By [Smi82, Proposition], we have V 0 �=

LL(!3) and thus, by Lemma 2.4.3, we also have V 1 �= (LL(!3))� �= LL(!2). It follows that

V j[L;L]
�= LL(!3)� LL(!2): (3.23)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0 or i = 1,

then s 2 Z(L)� n Z(G) and so s = z with c6 6= 1. In this case, as s acts on V i as scalar
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multiplication by siz =
5Y
j=1

cjdj � c�6i = c3�6i and, as c6 6= 1, we determine that the distinct

eigenvalues of s on V are(
c3 with dim(Vs(c

3)) = dim(V 0) = 10;

c�3 with dim(Vs(c
�3)) = dim(V 1) = 10:

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V

and for both i = 0 and i = 1. We write s = z � h, where z 2 Z(L)� and h 2 [L;L]. Since
z acts by scalar multiplication on V i, i = 0; 1, it follows that dim(V i

h(�h)) < dim(V i) for
both i = 0 and i = 1, where �h is any eigenvalue of h on V i. Now, by Proposition 3.2.5, we
have dim(V 1

h (�h)) � 6, hence dim(V 0
h (�h)) � 6, as V 1 �= (V 0)�, for all eigenvalues �h of h

on V 1 and V 0, respectively. It follows that dim(Vh(�h)) � 12 for all eigenvalues �h of h on
V , therefore dim(Vs(�)) � 12 for all eigenvalues � 2 k� of s on V .

In conclusion, we have shown that dim(Vs(�)) � 12 < dim(V ) �
p

dim(V ) for all s 2
T n Z(G) and all eigenvalues � 2 k� of s on V .

We will require the following corollary in the proof of Proposition 3.2.13.

Corollary 3.2.12. Let ‘ = 5 and let V = LG(!3). If

dim(Vs(�)) = 12

for some (s; �) 2 T n Z(G)� k�, then one of the following holds:

(1) � = 1 and, up to conjugation, s = diag(d; d; d; d; d�2; d�2) with d3 6= 1.

(2) � = �1 and, up to conjugation, s = diag(d; d; d; d;�d�2; �d�2) with d3 6= �1.

Moreover, if (s; �) 2 T n Z(G)� k� are such that dim(Vs(�)) 6= 12, then dim(Vs(�)) � 10.

Proof. Let L = L5 and recall from Proposition 3.2.11 that V is a self-dual kG-module with
V j[L;L] = V 0�V 1, where V 0 �= LL(!3) and V 1 �= LL(!2). Moreover, we have dim(Vs(�)) � 12
for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V .

Let s 2 T n Z(G) be such that dim(Vs(�)) = 12 for some eigenvalue � 2 k� on V . Then,
as dim(V ) = 20 and V is self-dual, it follows that � = �1. Now, as V 1 �= (V 0)�, by the
proof of Proposition 3.2.11, we have dim(V 0

s (�1)) = 6 and dim(V 1
s (�1)) = 6. Secondly, by

Proposition 3.2.5, as dim(V 1
s (�)) = 6, one of the following holds:

(a) � = c�3�1�2 and, up to conjugation, s = diag(c�1; c�1; c�1; c�2; c�2; c
�5) with �1 6= �2

and �3
1 = ��2

2 .

(b) � = c�3�2
1 and, up to conjugation, s = diag(c�1; c�1; c�1; c�1; c�

�4
1 ; c�5) with �5

1 6= 1.

If s and � are as in (a), then c�3�1�2 = �1 and so �2 = �c3��1
1 . Moreover, since �2

2 = ��3
1

and �1 6= �2, we deduce that �1 = c�6 and �2 = �c9. Now, if �2 = c9, then c15 6= 1, as �1 6=
�2. Similarly, if �2 = �c9, then c15 6= �1. Let d = c�5. Then, up to conjugation, we have
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that s = diag(d; d; d; d; d�2; d�2) with d3 6= 1, respectively s = diag(d; d; d; d;�d�2;�d�2)
with d3 6= �1.

If s and � are as in (b), we have c�3�2
1 = �1. Set e = c�1�1. Now, if c�3�2

1 = 1, then
c = e2 and therefore �1 = e3, as �1 = ec. Since �5

1 6= 1, it follows that e15 6= 1. Set d = e5.
Then, up to conjugation, we have s = diag(d; d; d; d; d�2; d�2) with d3 6= 1. Analogously, one
shows that if c�3�2

1 = �1, then, up to conjugation, we have s = diag(d; d; d; d;�d�2;�d�2)
with d3 6= �1.

Therefore, we have shown that if (s; �) 2 T n Z(G) � k� are such that dim(Vs(�)) = 12,
then either � = 1 and, up to conjugation, s = diag(d; d; d; d; d�2; d�2) with d3 6= 1, or � = �1
and, up to conjugation, s = diag(d; d; d; d;�d�2;�d�2) with d3 6= �1.

To prove the last statement of the result, we assume by contradiction that there exist
(s; �) 2 T n Z(G)� k� such that dim(Vs(�)) = 11. First, we argue as in the previous case to
determine that � = �1. Secondly, for dim(Vs(�1)) = 11 to hold, by the proof of Proposition
3.2.11, we either have dim(V 0

s (�1)) = 6 and dim(V 1
s (�1)) = 5, or dim(V 0

s (�1)) = 5 and
dim(V 1

s (�1)) = 6. However, since V 1 �= (V 0)�, neither of the two cases holds. We conclude
that for (s; �) 2 T n Z(G)� k� with dim(Vs(�)) 6= 12, we have dim(Vs(�)) � 10.

Proposition 3.2.13. Let ‘ = 6 and let V = LG(!3). Then for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V we have

dim(Vs(�)) � 20;

where there exist (s; �) 2 T n Z(G)� k� for which equality holds.
In particular, dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and all eigenvalues

� 2 k� of s on V .

Proof. Let L = L6 and let � = !3. Then dim(V ) = 35 and, by Lemma 2.4.4, we have
e6(�) = 1, therefore:

V j[L;L]= V 0 � V 1;

where V i =
M
2N�6

V��i�6� for i = 0 and i = 1. By [Smi82, Proposition], we have V 0 �=

LL(!3). Since the weight (� � �3 � �4 � �5 � �6) jT 0= !2 admits a maximal vector in
V 1, it follows that V 1 has a composition factor isomorphic to LL(!2). By dimensional
considerations, we deduce V 1 �= LL(!2) and

V j[L;L]
�= LL(!3)� LL(!2): (3.24)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0 or i = 1,

then s 2 Z(L)� n Z(G), and so s = z with c7 6= 1. In this case, as s acts on V i as scalar

multiplication by siz =
6Y
j=1

cjdj � c�7i = c3�7i and, as c7 6= 1, we determine that the distinct

eigenvalues of s on V are(
c3 with dim(Vs(c

3)) = dim(V 0) = 20;

c�4 with dim(Vs(c
�4)) = dim(V 1) = 15:
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We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V and

for both i = 0 and i = 1. We write s = z �h, where z 2 Z(L)� and h 2 [L;L]. Since z acts by
scalar multiplication on V i, i = 0; 1, it follows that dim(V i

h(�h)) < dim(V i) for both i = 0
and i = 1, where �h is any eigenvalue of h on V i. Now, by Proposition 3.2.5, respectively
by Proposition 3.2.11, we have dim(V 1

h (�h)) � 10, respectively dim(V 0
h (�h)) � 12, for all

eigenvalues �h of h on V 1, respectively on V 0. It follows that dim(Vh(�h)) � 22 for all
eigenvalues �h of h on V , hence dim(Vs(�)) � 22 for all eigenvalues � 2 k� of s on V .

Assume there exists (s; �) 2 T nZ(G)�k� for which dim(Vs(�)) = 22. We write s = z �h,
where z 2 Z(L)� and h 2 [L;L]. Now, as dim(Vs(�)) = 22, we have dim(V 0

s (�)) = 12 and
dim(V 1

s (�)) = 10. Moreover, as dim(V 0
s (�)) = 12, it follows that h admits an eigenvalue

�h on V 0 with the property that � = c3�h, as z acts on V 0 as multiplication by c3, and
dim(V 0

h (�h)) = 12. Thus, by Corollary 3.2.12, we either have �h = 1 and, up to conjugation,
h = diag(d; d; d; d; d�2; d�2; 1) with d3 6= 1, or �h = �1 and, up to conjugation, h =
diag(d; d; d; d; �d�2;�d�2; 1) with d3 6= �1. We first consider the case when �h = 1 and
h = diag(d; d; d; d; d�2; d�2; 1) with d3 6= 1. We want to determine the eigenvalues of h on
V 1. To achieve this, we use (3.7) and we see that the eigenvalues of h on V 1, not necessarily
distinct, are d2, with multiplicity at least 6, d�4 with multiplicity at least 1, and d�1 with
multiplicity at least 8. As d3 6= 1, it follows that dim(V 1

h (�h)) � 8 for all eigenvalues �h of h
on V 1, thus dim(V

0
s (�)) � 8 for all eigenvalues � of s on V 1, contradicting our assumption.

Analogously, one shows that when �h = �1 and h = diag(d; d; d; d; �d�2;�d�2; 1) with
d3 6= �1, we also get dim(Vs(�)) � 20. Therefore, dim(Vs(�)) � 21 for all eigenvalues � 2 k�
of s on V .

Assume there exists s 2 T n Z(G) that admits an eigenvalue � 2 k� on V for which
dim(Vs(�)) = 21. Then, either dim(V 0

s (�)) = 12 and dim(V 1
s (�)) = 9, or dim(V 0

s (�)) = 11
and dim(V 1

s (�)) = 10. If dim(V 0
s (�)) = 12, we have seen earlier that dim(Vs(�)) � 20,

while, by Corollary 3.2.12, we know that the second case does not occur. It follows that
dim(Vs(�)) � 20 for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V .

In conclusion, we have shown that dim(Vs(�)) � 20 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V , and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound is
attained. In particular, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and

all eigenvalues � 2 k� of s on V .

Proposition 3.2.14. Let ‘ = 7 and let V = LG(!3). Then for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V we have

dim(Vs(�)) � 35;

where there exist (s; �) 2 T n Z(G)� k� for which equality holds.
In particular, dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and all eigenvalues

� 2 k� of s on V .

Proof. Let L = L7 and let � = !3. Then dim(V ) = 56 and, by Lemma 2.4.4, we have
e7(�) = 1, therefore:

V j[L;L]= V 0 � V 1;

where V i =
M
2N�7

V��i�7� for i = 0 and i = 1. By [Smi82, Proposition], we have V 0 �=

LL(!3). Since the weight (�� �3 � �4 � �5 � �6 � �7) jT 0= !2 admits a maximal vector in
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V 1, it follows that V 1 has a composition factor isomorphic to LL(!2) and therefore dim(V 1) �
dim(LL(!2)) = 21. By dimensional considerations, we deduce V 1 �= LL(!2) and

V j[L;L]
�= LL(!3)� LL(!2): (3.25)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0 or i = 1,

then s 2 Z(L)� n Z(G), and so s = z with c8 6= 1. In this case, as s acts on V i as scalar

multiplication by siz =
7Y
j=1

cjdj � c�8i = c3�8i and, as c8 6= 1, we determine that the distinct

eigenvalues of s on V are(
c3 with dim(Vs(c

3)) = dim(V 0) = 35;

c�5 with dim(Vs(c
�5)) = dim(V 1) = 21:

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V and

for both i = 0 and i = 1. We write s = z �h, where z 2 Z(L)� and h 2 [L;L]. Since z acts by
scalar multiplication on V i, i = 0; 1, it follows that dim(V i

h(�h)) < dim(V i) for both i = 0
and i = 1, where �h is any eigenvalue of h on V i. Now, by Proposition 3.2.13, respectively
by Proposition 3.2.5, we have dim(V 0

h (�h)) � 20, respectively dim(V 1
h (�h)) � 15, for all

eigenvalues �h of h on V 0, respectively on V 1. It follows that dim(Vh(�h)) � 35 for all
eigenvalues �h of h on V , therefore dim(Vs(�)) � 35 for all eigenvalues � 2 k� of s on V .

In conclusion, we have shown that dim(Vs(�)) � 35 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V , and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound is
attained. In particular, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and

all eigenvalues � 2 k� of s on V .

Although the following result is not required for the proof of Theorems 3.2.1 and 3.2.2,
it is a nice a generalization for all ‘ � 6 of Propositions 3.2.13 and 3.2.14.

Proposition 3.2.15. Let ‘ � 6 and let V = LG(!3). Then, for all (s; �) 2 T n Z(G) � k�
we have

dim(Vs(�)) � (‘� 2)(‘� 1)‘

6
;

where there exist pairs (s; �) 2 T n Z(G)� k� for which equality is attained.
In particular, we have dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 T n Z(G) and all

eigenvalues � 2 k� of s on V .

Proof. We will use induction to prove this result. The base step for ‘ = 6 is given by
Proposition 3.2.13. We thus assume that ‘ � 7 and that the statement holds for all r � ‘�1,
and we proceed to prove it for ‘.

Set � = !3 and note that dim(V ) = (‘�1)‘(‘+1)
6

. By Lemma 2.4.4, we have e‘(�) = 1,
therefore:

V j[L‘;L‘]= V 0 � V 1;

where V i =
M
2N�‘

V��i�‘� for i = 0 and i = 1. By [Smi82, Proposition], we have V 0 �=

LL‘(!3). Since the weight (� � �3 � � � � � �‘) jT 0= !2 admits a maximal vector in V 1, it
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follows that V 1 has a composition factor isomorphic to LL‘(!2) and therefore dim(V 1) �
dim(LL‘(!2)) = (‘�1)‘

2
. By dimensional considerations, we deduce V 1 �= LL‘(!2) and

V j[L‘;L‘]�= LL‘(!3)� LL‘(!2): (3.26)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0 or i = 1,

then s 2 Z(L‘)
� n Z(G), and so s = z with c‘+1 6= 1. In this case, as s acts on V i as scalar

multiplication by siz =
‘Y

j=1

cjdj � c�(‘+1)i = c3�(‘+1)i and, as c‘+1 6= 1, we determine that the

distinct eigenvalues of s on V are(
c3 with dim(Vs(c

3)) = dim(V 0) = (‘�2)(‘�1)‘
6

;

c2�‘ with dim(Vs(c
2�‘)) = dim(V 1) = (‘�1)‘

2
:

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V and

for both i = 0 and i = 1. We write s = z � h, where z 2 Z(L‘)
� and h 2 [L‘; L‘]. Since

z acts by scalar multiplication on V i, i = 0; 1, it follows that dim(V i
h(�h)) < dim(V i) for

both i = 0 and i = 1, where �h is any eigenvalue of h on V i. Now, by induction, we have
dim(V 0

h (�h)) � (‘�3)(‘�2)(‘�1)
6

, while, by Proposition 3.2.5, we have dim(V 1
h (�h)) � (‘�2)(‘�1)

2
,

for all eigenvalues �h of h on V 0, respectively on V 1. It follows that dim(Vh(�h)) � (‘�2)(‘�1)‘
6

for all eigenvalues �h of h on V , therefore dim(Vs(�)) � (‘�2)(‘�1)‘
6

for all eigenvalues � 2 k�
of s on V .

In conclusion, we have shown that dim(Vs(�)) � (‘�2)(‘�1)‘
6

for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V and that there exist pairs (s; �) 2 T n Z(G) � k� for which
the bound is attained. Moreover, as the inequality 0 < 3‘2 � 5‘ � 2 holds for all ‘ � 6,

it follows that (‘�2)(‘�1)‘
6

< (‘�1)‘(‘+1)
6

�
q

(‘�1)‘(‘+1)
6

for all ‘ � 6, therefore dim(Vs(�)) <

dim(V )�
p

dim(V ) for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V .

We conclude this subsection by noting that Proposition 3.2.9 completes the proof of
Theorems 3.2.1 and 3.2.2 for simple simply connected linear algebraic groups of type A1.
Furthermore, for G of type A‘, ‘ � 2, Propositions 3.2.10 through 3.2.14 cover all the
irreducible kG-modules corres-ponding to p-restricted dominant weights featured in Table
2.7.1. This completes the proof of Theorems 3.2.1 and 3.2.2, respectively.

3.3 Eigenspace dimensions for unipotent elements
In this section we prove the following two theorems, analogs of Theorems 3.2.1 and 3.2.2 in
the case of unipotent elements. As in the semisimple case, the proofs will be given in a series
of results, each treating one of the candidate-modules. In Subsection 3.3.1, we determine

max
u2Gunf1g

dim(Vu(1)) for the families of irreducible kG-modules V = LG(�) with � 2 FA‘ ,

where FA‘ = f!1; 2!1; !2; !1 + !‘g, see Subsection 2.7.1. For the irreducible kG-modules
V = LG(�), where either ‘ = 1 and � = m!1 with 3 � m � 8, or ‘ � 2 and � is featured in
Table 2.7.1, we determine max

u2Gunf1g
dim(Vu(1)) in Subsection 3.3.2.
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Theorem 3.3.1. Let k be an algebraically closed field of characteristic p � 0 and let G be a
simple simply connected linear algebraic group of type A‘, ‘ � 1. Let T be a fixed maximal
torus in G. If ‘ = 1, let V = LG(m!1), where 1 � m � 8, and assume that p = 0 or p > m.
If ‘ � 2, let V = LG(�), where � 2 FA‘ or � appears in Table 2:7:1. Then, there exist
non-identity unipotent elements u 2 G for which

dim(Vu(1)) � dim(V )�
p

dim(V );

if and only if ‘, � and p appear in the following list:

(1) ‘ � 1, � = !1 and p � 0;

(2) ‘ � 4, � = !2 and p � 0.

Theorem 3.3.2. Let k be an algebraically closed field of characteristic p � 0 and let G be
a simple simply connected linear algebraic group of type A‘, ‘ � 1. Let T and V be as in
Theorem 3:3:1. Then the value of max

u2Gunf1g
dim(Vu(1)) is given in the table below:

V Char. Rank max
u2Gunf1g

dim(Vu(1))

LG(!1) p � 0 ‘ � 1 ‘
yLG(2!1) p 6= 2 ‘ � 1 ‘(‘+1)

2
?LG(!2) p � 0 ‘ � 3 ‘2�‘+2

2
yLG(!1 + !‘) p - ‘+ 1 ‘ � 2 ‘2

yLG(!1 + !‘) p j ‘+ 1 ‘ � 2 ‘2 � 1
yLG(m!1), 3 � m � 8 p = 0, or p > m ‘ = 1 1

yLG(!1 + !2) p = 3 ‘ = 3 � 8
yLG(!3) p � 0 ‘ = 5; 6; 7 (‘�1)�(‘2�2‘+6)

6

Table 3.3.1: The value of max
u2Gunf1g

dim(Vu(1)).

In particular, for each V in Table 3.3.1 labeled as yV , respectively as ?V with ‘ � 5, we
have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 G.

3.3.1 The families of modules

For the rest of this chapter, we fix the following hypothesis on unipotent elements in G:

(yHu) : every u 2 Gu n f1g has Jordan form on W given by
mM
i=1

Jrini ; where
mX
i=1

niri = ‘+ 1;

ri � 1 for all 1 � i � m and n1 � 2:

Lemma 3.3.3. Let V = LG(!1). Then for all non-identity unipotent elements u 2 G we
have

dim(Vu(1)) � ‘;

where equality holds if and only if the Jordan form of u on W is J2 � J ‘�1
1 .

In particular, there exist non-identity unipotent elements u 2 G for which dim(Vu(1)) �
dim(V )�

p
dim(V ).
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Proof. To begin, we note that V �= W as kG-modules. Now, let the unipotent element u 2 G
be as in (yHu). Let uW denote the action of u on W . Then:

dim(Vu(1)) = dim(WuW (1)) =
mX
i=1

ri: (3.27)

As u 6= 1, it follows that dim(Vu(1)) � ‘, therefore, we have shown that dim(Vu(1)) � ‘
for all non-identity unipotent elements u 2 G. To complete the proof, we will identify the
unipotent classes in G for which equality holds. For this, we assume that dim(Vu(1)) = ‘.

Then, by (3.27) and keeping in mind that
mX
i=1

niri = ‘+ 1, we have:

1 =
mX
i=1

niri �
mX
i=1

ri =
mX
i=1

(ni � 1)ri (3.28)

and, in particular, 1 � (n1� 1)r1 � n1� 1, hence n1 = 2, as n1 � 2. Furthermore, by (3.28)

and keeping in mind that r1 � 1, we deduce that r1 = 1 and
mX
i=2

(ni � 1)ri = 0. It follows

that m � 2. If m = 1, then, as n1 = 2 and r1 = 1, we have ‘ = 1, in which case the Jordan
form of u on W is J2. If m = 2, then n2 = 1 and r2 = ‘� 1, in which case the Jordan form
of u on W is J2 � J ‘�1

1 . Conversely, let u be a unipotent element of G whose Jordan form
on W is J2 � J ‘�1

1 . Then, by (3.27), we have dim(Vu(1)) = ‘.
In conclusion, we have shown that dim(Vu(1)) � ‘ for all non-identity unipotent elements

u 2 G and that equality holds if and only if the Jordan form of u onW is J2�J ‘�1
1 . Now, let

u be such an element of G. Then, as
p
‘+ 1 � 1 for all ‘ � 1, it follows that ‘ � ‘+1�

p
‘+ 1

for all ‘ � 1 and, consequently, dim(Vu(1)) � dim(V )�
p

dim(V ).

Proposition 3.3.4. Let ‘ � 3 and let V = LG(!2). Then for all non-identity unipotent
elements u 2 G we have

dim(Vu(1)) � ‘2 � ‘+ 2

2
:

Moreover, we have equality if and only if one of the following holds:

(1) ‘ = 3 and the Jordan form of u on W is one of J2
2 and J2 � J2

1 .

(2) ‘ � 4 and the Jordan form of u on W is J2 � J ‘�1
1 .

In particular, in both cases ‘ = 3 and ‘ = 4 there exist non-identity unipotent elements
u 2 G for which dim(Vu(1)) � dim(V ) �

p
dim(V ). On the other hand, for ‘ � 5 we have

dim(Vu(1)) < dim(V )�
p

dim(V ) for all non-identity unipotent elements u 2 G.

Proof. To begin, we note that, by Lemma 2.8.1, we have the following kG-module isomorphism:
V �= ^2(W ). Now, let the unipotent element u 2 G be as in (yHu).

We first assume that the Jordan form of u onW is J‘+1. Then, by applying either Lemma

2.9.4 if p 6= 2, or Lemma 2.9.5 if p = 2, we have dim(Vu(1)) =

�
‘+ 1

2

�
=
‘+ 1 + �

2
, where
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� = 0 if ‘ is odd, or � = �1 if ‘ is even. Since 0 < (‘� 1)2 � � for all ‘ � 3, it follows that

dim(Vu(1)) <
‘2 � ‘+ 2

2
. We can now assume that the Jordan form of u on W consists of

at least two blocks.
Secondly, we consider the case when exactly one block, Jn1 , appearing in the Jordan form

of u on W , is nontrivial. Then 2 � n1 � ‘ and we write W = W1�W2, where dim(W1) = n1

and u acts as Jn1 onW1, and dim(W2) = ‘+1�n1 and u acts trivially onW2. As V �= ^2(W ),
we have the following k[u]-modules isomorphism:

V �= ^2(W1)� (W1 
W2)� ^2(W2);

which gives

dim(Vu(1)) = dim((^2(W1))u(1)) + dim((W1 
W2)u(1)) + dim((^2(W2))u(1)): (3.29)

As u acts as a single Jordan block on W1, by Lemma 2.9.4 if p 6= 2, or by Lemma 2.9.5
if p = 2, we have dim((^2(W1))u(1)) =

jn1

2

k
=

n1 + �

2
, where � = 0 if n1 is even, or

� = �1 if n1 is odd. As u acts trivially on W2, it also acts trivially on ^2(W2) and so

dim((^2(W2))u(1)) =
(‘� n1)(‘� n1 + 1)

2
. Lastly, as u acts as Jn1 
 J ‘+1�n1

1 on W1 
W2,
by Lemma 2.9.4, we have dim((W1 
W2)u(1)) = ‘+ 1� n1. Substituting in (3.29) gives

dim(Vu(1)) =
n1 + �

2
+ ‘+ 1� n1 +

(‘� n1)(‘� n1 + 1)

2

=
‘2 � 2‘n1 + 3‘� 2n1 + n2

1 + 2 + �

2

=
‘2 � ‘+ 2

2
+
n2

1 � 2‘n1 � 2n1 + 4‘+ �

2
:

One checks that the inequality

n2
1 � 2‘n1 � 2n1 + 4‘+ � � 0 (3.30)

holds for all n1 2 [‘ + 1 �
p

(‘� 1)2 � �; ‘ + 1 +
p

(‘� 1)2 � �] and all ‘ � 1. Since
‘ + 1 +

p
(‘� 1)2 � � > ‘ and ‘ + 1 �

p
(‘� 1)2 � � � ‘ + 1 �

p
(‘� 1)2 = 2, as � � 0,

it follows that, in particular, Inequality (3.30) holds for all 2 � n1 � ‘ and all ‘ � 3.

Therefore dim(Vu(1)) � ‘2 � ‘+ 2

2
for all unipotent elements u of G whose Jordan form on

W is Jn1 � J ‘+1�n1
1 , where 2 � n1 � ‘. Moreover, equality holds if and only if n1 = 2.

Lastly, we assume that the Jordan form of u on W admits at least two nontrivial blocks.
Then 2 � n1 � ‘ � 1 and we write W = W

0
1 �W

0
2, where dim(W

0
1) = n1 and u acts as Jn1

on W 0
1, and dim(W

0
2) = ‘ + 1� n1 and u acts as Jr1�1

n1
�

mM
i=2

Jrini on W
0
2. Now, by (3.29), to

determine dim(Vu(1)) comes down to determining dim((^2(W
0
1))u(1)), dim((W

0
1 
W

0
2)u(1))

and dim((^2(W
0
2))u(1)). Again, either by Lemma 2.9.4 if p 6= 2, or by Lemma 2.9.5 if p = 2,
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we have dim((^2(W
0

1))u(1)) =
jn1

2

k
=
n1 + &

2
, where & = 0 if n1 is even, or & = �1 if n1 is

odd. As u acts as (Jn1 
 Jn1)r1�1 �
mM
i=2

(Jn1 
 Jni)ri on W
0
1 
W

0
2, by Lemma 2.9.4, we have

dim((W
0

1 
W
0

2)u(1)) = (r1 � 1)n1 +
mX
i=2

niri = �n1 +
mX
i=1

niri = ‘+ 1� n1: (3.31)

Substituting in (3.29) gives:

dim(Vu(1)) =
n1 + &

2
+ ‘+ 1� n1 + dim((^2(W

0

2))u(1)): (3.32)

Using induction, we will show that dim((^2(W ))u(1)) � ‘2 � ‘+ 2

2
, where dim(W ) =

‘ + 1, for all ‘ � 3 and all unipotent elements u of G whose Jordan form on W admits at
least two nontrivial blocks . First, let ‘ = 3. Then u has Jordan form J2

2 and thus acts as a
single Jordan block on W 0

2. By Lemma 2.9.4 if p 6= 2, or by Lemma 2.9.5 if p = 2, we have
dim((^2(W

0
2))u(1)) = 1. Substituting in (3.32) gives dim((^2(W ))u(1)) = 4.

We now assume that ‘ � 4. If u acts onW 0
2 as a single Jordan block, we have shown earlier

that dim((^2(W
0

2))u(1)) <
(‘� n1)2 � (‘� n1) + 2

2
. If the Jordan form of the action of u on

W
0
2 consists of at least two blocks and if exactly one of these blocks is nontrivial, then we

have shown earlier that dim((^2(W
0

2))u(1)) � (‘� n1)2 � (‘� n1) + 2

2
. Lastly, if the Jordan

form of the action of u on W
0
2 admits at least two nontrivial blocks, then, by induction,

it follows that dim((^2(W
0

2))u(1)) � (‘� n1)2 � (‘� n1) + 2

2
. In all cases, substituting in

(3.32) gives:

dim(Vu(1)) � n1 + &

2
+ ‘+ 1� n1 +

(‘� n1)2 � (‘� n1) + 2

2

=
‘2 � 2‘n1 + n2

1 + ‘+ 4 + &

2

=
‘2 � ‘+ 2

2
+
n2

1 � 2‘n1 + 2‘+ 2 + &

2
:

One checks that the inequality

n2
1 � 2‘n1 + 2‘+ 2 + & < 0

holds for all n1 2 (‘ �
p
‘2 � 2‘� 2� &; ‘ +

p
‘2 � 2‘� 2� &) and all ‘ � 3. Since ‘ +p

‘2 � 2‘� 2� & > ‘ � 1 and since ‘ �
p
‘2 � 2‘� 2� & < 2, as 6 + & < 2‘ for all ‘ � 4,

it follows that, in particular, the inequality holds for all 2 � n1 � ‘ � 1 and all ‘ � 4. We

deduce that dim(Vu(1)) <
‘2 � ‘+ 2

2
for all ‘ � 4 and all unipotent elements u of G whose

Jordan form on W admits at least two nontrivial blocks. This completes the induction.
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Having treated all possible cases, we conclude that dim(Vu(1)) � ‘2 � ‘+ 2

2
, for all non-

identity unipotent elements u 2 G. Moreover, we have shown that for ‘ = 3 equality holds
if and only if the Jordan form of u on W is one of J2

2 and J2 � J2
1 ; while, for ‘ � 4,

equality holds if and only if the Jordan form of u on W is J2 � J ‘�1
1 . In particular, since

the inequality 0 < ‘2 � 5‘ + 2 holds for all ‘ � 5, it follows that in both cases ‘ = 3

and ‘ = 4 we have
‘2 � ‘+ 2

2
� ‘(‘+ 1)

2
�
r
‘(‘+ 1)

2
and thus there exist non-identity

unipotent elements u 2 G, for example those whose Jordan form on W is J2 � J ‘�1
1 , for

which dim(Vu(1)) � dim(V )�
p

dim(V ). On the other hand, for ‘ � 5 we have
‘2 � ‘+ 2

2
<

‘(‘+ 1)

2
�
r
‘(‘+ 1)

2
and we conclude that dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-

identity unipotent elements u 2 G.

Proposition 3.3.5. Let k be an algebraically closed field of characteristic p 6= 2. Let V =
LG(2!1). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � ‘(‘+ 1)

2
;

where equality holds if and only if the Jordan form of u on W is J2 � J ‘�1
1 .

In particular, we have dim(Vu(1)) < dim(V ) �
p

dim(V ) for all non-identity unipotent
elements u 2 G.

Proof. We first note that, as p 6= 2, by Lemma 2.8.1, we have V �= S2(W ), as kG-modules.
Let the unipotent element u 2 G be as in (yHu).

We first assume that the Jordan form of u onW is J‘+1. Then, by applying Lemma 2.9.4,

as p 6= 2, we get dim(Vu(1)) = ‘ + 1 �
�
‘+ 1

2

�
=
‘+ 1� �

2
, where � = �1 if ‘ is even, or

� = 0 if ‘ is odd. Since 0 � ‘2� 1 + � holds for all ‘ � 1, it follows that
‘+ 1� �

2
� ‘(‘+ 1)

2

and so dim(Vu(1)) � ‘(‘+ 1)

2
for all ‘ � 1 and all unipotent elements u of G whose Jordan

form on W is J‘+1. Moreover, we have equality if and only if ‘2 � 1 + � = 0, hence, if and
only if ‘ = 1 and u has Jordan form J2 on W . We can now assume that the Jordan form of
u on W admits at least two blocks and we note that, as u 6= 1, we then have ‘ � 2.

We consider the case when exactly one block, Jn1 , appearing in the Jordan form of u on
W , is nontrivial. Then u has Jordan form Jn1 � J ‘+1�n1

1 on W , where 2 � n1 � ‘, and we
writeW = W1�W2, where dim(W1) = n1 and u acts as Jn1 onW1, and dim(W2) = ‘+1�n1

and u acts trivially on W2. Then, as k[u]-modules, we have

V �= S2(W1)� (W1 
W2)� S2(W2)

and this gives:

dim(Vu(1)) = dim((S2(W1))u(1)) + dim((W1 
W2)u(1)) + dim((S2(W2))u(1)): (3.33)
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As u acts as a single Jordan block of size n1 on W1 and since p 6= 2, by Lemma 2.9.4, we
have dim((S2(W1))u(1)) = n1 �

jn1

2

k
=
n1 � �

2
, where � = �1 if n1 is odd, or � = 0 if n1 is

even. Furthermore, as u acts trivially on W2, it also acts trivially on S2(W2), and we have

dim((S2(W2))u(1)) =
(‘+ 1� n1)(‘+ 2� n1)

2
=

‘2 � 2‘n1 + n2
1 + 3‘� 3n1 + 2

2
. Lastly, u

acts as Jn1 
 J ‘+1�n1
1 on W1 
 W2 and so, by (3.31), dim((W1 
 W2)u(1)) = ‘ + 1 � n1.

Substituting in (3.33) gives:

dim(Vu(1)) =
n1 � �

2
+ ‘+ 1� n1 +

‘2 � 2‘n1 + n2
1 + 3‘� 3n1 + 2

2

=
‘(‘+ 1)

2
+
n2

1 � 2‘n1 + 4‘� 4n1 + 4� �
2

:

We write

n2
1 � 2‘n1 + 4‘� 4n1 + 4� �

2
=
n2

1 � 2‘n1 � 2n1 + 4‘+ �

2
+

4� 2n1 � 2�

2

and, by (3.30), which holds for all 2 � n1 � ‘ and all ‘ � 2, we have

n2
1 � 2‘n1 + 4‘� 4n1 + 4 + �

2
� 4� 2n1 � 2�

2
:

Now, since 2 � n1 and since � = �1 or � = 0 according to whether n1 is odd or even,

we have
4� 2n1 � 2�

2
� 0. Therefore

n2
1 � 2‘n1 + 4‘� 4n1 + 4� �

2
� 0 and, consequently,

dim(Vu(1)) � ‘(‘+ 1)

2
for all ‘ � 2 and all unipotent elements u of G whose Jordan form on

W is Jn1 � J ‘+1�n1
1 , where 2 � n1 � ‘. We note that equality holds if and only if we have

equality in (3.30) and
4� 2n1 � 2�

2
= 0, hence, if and only if n1 = 2, as in the statement of

the result.
Lastly, we consider the case when the Jordan form of u onW admits at least two nontrivial

blocks. We note that in this case we have ‘ � 3 and that 2 � n1 � ‘ � 1. We write
W = W

0
1�W

0
2, where dim(W

0
1) = n1 and u acts as Jn1 on W 0

1, and dim(W
0
2) = ‘+1�n1 and

u acts as Jr1�1
n1
�

mM
i=2

Jrini on W
0
2. By (3.33) it follows that in order to determine dim(Vu(1))

we only need to know dim((S2(W
0
1))u(1)), dim((W

0
1 
W

0
2)u(1)) and dim((S2(W

0
2))u(1)). We

can apply Lemma 2.9.4, as p 6= 2, to deduce that dim((S2(W
0

1))u(1)) = n1�
jn1

2

k
=
n1 � &

2
,

where & = �1 if n1 is odd, or & = 0 if n1 is even. Furthermore, by (3.31) we have dim((W
0
1


W
0
2)u(1)) = ‘+ 1� n1. It follows that:

dim(Vu(1)) =
n1 � &

2
+ ‘+ 1� n1 + dim((S2(W

0

2))u(1)): (3.34)

Inductively, we will show that dim((S2(W ))u(1)) <
‘(‘+ 1)

2
, where dim(W ) = ‘+ 1, for

all ‘ � 3 and all unipotent elements u of G whose Jordan form admits at least two nontrivial
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blocks on W . First, let ‘ = 3. Then u has Jordan form J2
2 and thus acts as a single Jordan

block on W
0
2. By applying Lemma 2.9.4, as p 6= 2, we have dim((S2(W

0
2))u(1)) = 1 and

substituting in (3.34) gives dim((S2(W ))u(1)) = 4.
We now assume that ‘ � 4. If u acts on W

0
2 as a single Jordan block, we have shown

earlier that dim((S2(W
0

2))u(1)) <
(‘� n1)(‘+ 1� n1)

2
. If the Jordan form of the action of

u on W 0
2 consists of at least two blocks and if exactly one of these blocks is nontrivial, then

we have shown earlier that dim((S2(W
0

2))u(1)) � (‘� n1)(‘� n1 + 1)

2
. Lastly, if the Jordan

form of the action of u on W 0
2 admits at least two nontrivial blocks, then, by induction, we

have dim((S2(W
0

2))u(1)) <
(‘� n1)(‘� n1 + 1)

2
. In all cases, substituting in (3.34) gives:

dim(Vu(1)) � n1 � &
2

+ ‘+ 1� n1 +
(‘� n1)(‘+ 1� n1)

2

=
‘2 + 3‘� 2‘n1 � 2n1 + n2

1 + 2� &
2

=
‘(‘+ 1)

2
+
n2

1 � 2‘n1 � 2n1 + 2‘+ 2� &
2

:

We write
n2

1 � 2‘n1 � 2n1 + 2‘+ 2� &
2

=
n2

1 � 2‘n1 � 2n1 + 4‘+ &

2
+

2� 2& � 2‘

2
. By (3.30),

which holds for all n1 2 [‘+1�
p

(‘� 1)2 � &; ‘+1+
p

(‘� 1)2 � &] and all ‘ � 1, hence, in

particular, holds for all 2 � n1 � ‘� 1 and all ‘ � 4, we have
n2

1 � 2‘n1 � 2n1 + 2‘+ 2� &
2

� 2� 2& � 2‘

2
. Furthermore, as ‘ � 4 and as & = 0 or & = �1 according to whether n1 is

even or odd, we have
2� 2& � 2‘

2
< 0. It follows that

n2
1 � 2‘n1 � 2n1 + 2‘+ 2� &

2
< 0 and,

consequently, dim(Vu(1)) <
‘(‘+ 1)

2
for all ‘ � 4 and all unipotent elements u of G whose

Jordan form on W admits at least two nontrivial blocks. This completes the induction.

Having treated all possible cases, we conclude that dim(Vu(1)) � ‘(‘+ 1)

2
for all non-

identity unipotent elements u 2 G. Moreover, we have shown that equality holds if and only
if the Jordan form of u on W is J2 � J ‘�1

1 . Since 0 < ‘2 + ‘ for all ‘ � 1, it follows that
‘(‘+ 1)

2
<

(‘+ 1)(‘+ 2)

2
�
r

(‘+ 1)(‘+ 2)

2
for all ‘ � 1 and, consequently, dim(Vu(1)) <

dim(V )�
p

dim(V ), for all non-identity unipotent elements u 2 G. This completes the proof
of the proposition.

Before we proceed with the proofs of Theorems 3.3.1 and 3.3.2, we recall that the
irreducible kG-module LG(!1 + !‘) is a composition factor of the kG-module W 
W �, see
Lemma 2.8.1. This is a relevant fact, since by Lemma 2.9.4, we can calculate the dimension
of the fixed point space of a unipotent element u 2 G onW
W �. Furthermore, Theorem 6:1
of [Kor19], shows how to deduce dim((LG(!1 + !‘))u(1)) from dim((W 
W �)u(1)). Before
we give this result, we remind the reader that rt(u), where u 2 G is a unipotent element and
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t � 1, is the number of Jordan blocks of size t appearing in the Jordan decomposition of u,
and that �p is the p-adic valuation on the integers.

Theorem 3.3.6. [Kor19, Theorem 6.1] Let u 2 G be a unipotent element and let
mM
i=1

Jrini

be the Jordan form of u on W , where m � 1, ni � 1 and ri � 1 for all 1 � i � m. Set
� = �p(gcd(n1; : : : ; nm)). Let u0 be the action of u on W 
W � and let uV be the action of u
on V := LG(!1 + !‘). Then the Jordan block sizes of uV are determined from those of u0 in
the following way:

(a) if p - ‘+ 1, then r1(uV ) = r1(u
0
)� 1 and rt(uV ) = rt(u

0
) for all t 6= 1.

(b) if p j ‘+ 1 and � = 0, then r1(uV ) = r1(u
0
)� 2 and rt(uV ) = rt(u

0
) for all t 6= 1.

(c) if p j ‘+ 1 and � > 0:

(c.1) if p j ‘+ 1

p�
, then rp�(uV ) = rp�(u

0
)� 2, rp��1(uV ) = 2 and rt(uV ) = rt(u

0
) for all

t 6= p�; p� � 1.

(c.2) if p -
‘+ 1

p�
and p� > 2, then rp�(uV ) = rp�(u

0
) � 1, rp��2(uV ) = 1 and rt(uV ) =

rt(u
0
) for all t 6= p�; p� � 2.

(c.3) if p -
‘+ 1

p�
and p� = 2, then r2(uV ) = r2(u

0
)� 1 and rt(uV ) = rt(u

0
) for all t 6= 2.

Remark 3.3.7. By Theorem 3:3:6, we determine that:

(1) if p - ‘+ 1, then dim(Vu(1)) = dim((W 
W �)u(1))� 1;

(2) if p j ‘+ 1 and � = 0, then dim(Vu(1)) = dim((W 
W �)u(1))� 2;

(3) if p j ‘+ 1, � > 0 and

(3.1) p j ‘+ 1

p�
, then dim(Vu(1)) = dim((W 
W �)u(1));

(3.2) p -
‘+ 1

p�
and p� > 2, then dim(Vu(1)) = dim((W 
W �)u(1));

(3.3) p -
‘+ 1

p�
and p� = 2, then dim(Vu(1)) = dim((W 
W �)u(1))� 1.

Proposition 3.3.8. Let ‘ � 2 and let V 0 = W 
W �. Then for all non-identity unipotent
elements u 2 G we have

dim(V
0

u(1)) � ‘2 + 1;

where equality holds if and only if the Jordan form of u on W is J2 � J ‘�1
1 .
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Proof. Let the unipotent element u 2 G be as in hypothesis (yHu). We first consider the
case when the Jordan form of u on W is J‘+1. Then, u acts on W � as J‘+1 and, by applying
Lemma 2.9.4 and keeping in mind that ‘ � 2, we deduce that

dim(V
0

u(1)) = ‘+ 1 < ‘2 + 1: (3.35)

We can now assume that the Jordan form of u on W admits at least two blocks.
Secondly, we consider the case when exactly one block, Jn1 , appearing in the Jordan form

of u on W , is nontrivial. Then u has Jordan form Jn1 � J ‘+1�n1
1 on W , where 2 � n1 � ‘,

and we write W = W1�W2, where dim(W1) = n1 and u acts as Jn1 on W1, and dim(W2) =
‘+ 1� n1 and u acts trivially on W2. Then, as k[u]-modules, we have:

V
0 �= (W1 
W �

1 )� (W1 
W �
2 )� (W2 
W �

1 )� (W2 
W �
2 ): (3.36)

Since W1
W �
2
�= (W �

1 
W2)� and since the action of u on (W �
1 
W2)� has the same Jordan

form as the action of u on W1 
W �
2 , it follows that

dim(V
0

u(1)) = dim((W1 
W �
1 )u(1)) + 2 dim((W1 
W �

2 )u(1)) + dim((W2 
W �
2 )u(1)): (3.37)

Since u acts as Jn1 on W1, it also acts as Jn1 on W �
1 and, by Lemma 2.9.4, we get dim((W1


W �
1 )u(1)) = n1. Moreover, as u acts as J ‘+1�n1

1 on W2, it also acts as J ‘+1�n1
1 on W �

2 , and
so dim((W2 
W �

2 )u(1)) = (‘+ 1� n1)2. Lastly, as u acts as Jn1 
 J ‘+1�n1
1 on W1 
W �

2 , we
have dim((W1 
W �

2 )u(1)) = ‘+ 1� n1. Substituting in (3.37) gives:

dim(V
0

u(1)) = n1 + 2(‘+ 1� n1) + (‘+ 1� n1)2

= ‘2 + 1 + n2
1 � 2‘n1 � 3n1 + 4‘+ 2

= ‘2 + 1 + (n1 � 2)(n1 � 2‘� 1):

(3.38)

As 2 � n1 � ‘, we have (n1 � 2)(n1 � 2‘ � 1) � 0 and therefore dim(V
0
u(1)) � ‘2 + 1 for

all ‘ � 2 and all unipotent elements u of G with Jordan form Jn1 � J ‘+1�n1
1 on W , where

2 � n1 � ‘. Moreover, equality holds if and only if (n1 � 2)(n1 � 2‘� 1) = 0, hence, if and
only if n1 = 2.

We can now assume that the Jordan form of u onW admits at least two nontrivial blocks.
We note that, in this case, we have ‘ � 3 and 2 � n1 � ‘�1. We writeW = W

0
1�W

0
2, where

dim(W
0
1) = n1 and u acts as Jn1 onW

0
1, and dim(W

0
2) = ‘+1�n1 and u acts as Jr1�1

n1
�

mM
i=2

Jrini

on W 0
2. By (3.37), to determine dim(V

0
u(1)) we only need to know dim((W

0
1 
 (W

0
1)�)u(1)),

dim((W
0
1
(W

0
2)�)u(1)) and dim((W

0
2
(W

0
2)�)u(1)). As u acts as Jn1 onW 0

1, by Lemma 2.9.4,

we have dim((W
0
1
 (W

0
1)�)u(1)) = n1. We note that since u acts as Jr1�1

n1
�

mM
i=2

Jrini on W
0
2, it

also acts as Jr1�1
n1
�

mM
i=2

Jrini on (W
0
2)�. Therefore, u acts as (Jn1 
 Jn1)r1�1�

mM
i=2

(Jn1 
 Jni)ri

on W 0
1
 (W

0
2)� and, by (3.31), we have dim((W

0
1
 (W

0
2)�)u(1)) = ‘+ 1�n1. Substituting in

(3.37) gives:

dim(V
0

u(1)) = n1 + 2(‘+ 1� n1) + dim((W
0

2 
 (W
0

2)�)u(1)): (3.39)
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Using induction, we will show that dim((W 
W �)u(1)) < ‘2 + 1, where dim(W ) = ‘+ 1,
for all ‘ � 3 and all unipotent elements u of G whose Jordan form on W admits at least two
nontrivial Jordan blocks.

First, assume that ‘ = 3. Then u has Jordan form J2
2 on W and thus acts as J2 on W 0

2

and (W
0
2)�, respectively. Thus, by Lemma 2.9.4, we have dim((W

0
2 
 (W

0
2)�)u(1)) = 2 and

substituting in (3.39) gives dim(V
0
u(1)) = 8.

We can now assume that ‘ � 4. If u acts on W
0
2 as a single Jordan block, we have

shown earlier that dim((W
0
2 
 (W

0
2)�)u(1)) < (‘� n1)2 + 1. If the action of u on W 0

2 consists
of at least two blocks and if exactly one of these blocks is nontrivial, then we have seen
earlier that dim((W

0
2 
 (W

0
2)�)u(1)) � (‘ � n1)2 + 1. Lastly, if the Jordan form of the

action of u on W 0
2 admits at least two nontrivial blocks, then, by induction, it follows that

dim((W
0
2 
 (W

0
2)�)u(1)) < (‘� n1)2 + 1. In all cases, substituting in (3.39) gives:

dim(V
0

u(1)) � n1 + 2(‘+ 1� n1) + (‘� n1)2 + 1

= ‘2 + 1 + (n2
1 � 2‘n1 + 2‘+ 2� n1)

= ‘2 + 1 + [n1(n1 � ‘) + (‘+ 1)(2� n1)]:

Since 2 � n1 � ‘ � 1, it follows that n1(n1 � ‘) < 0 and (‘ + 1)(2 � n1) � 0. Therefore
n1(n1 � ‘) + (‘ + 1)(2 � n1) < 0 for all ‘ � 4 and all 2 � n1 � ‘ � 1. We deduce that
dim(V

0
u(1)) < ‘2 + 1 for all ‘ � 4 and all unipotent elements u of G whose Jordan form on

W admits at least two nontrivial blocks. This completes the induction.
In conclusion, we have shown that dim(V

0
u(1)) � ‘2 + 1 for all ‘ � 2 and all non-identity

unipotent elements u 2 G, where equality holds if and only if the Jordan form of u on W is
J2 � J ‘�1

1 .

Corollary 3.3.9. Let ‘ � 2, p - ‘ + 1 and let V = LG(!1 + !‘). Then for all non-identity
unipotent elements u 2 G we have

dim(Vu(1)) � ‘2;

where equality holds if and only if the Jordan form of u on W is J2 � J ‘�1
1 .

In particular, we have dim(Vu(1)) < dim(V ) �
p

dim(V ) for all non-identity unipotent
elements u 2 G.

Proof. Set V 0 = W 
W � and note that, by Lemma 2.8.1, since p - ‘ + 1, we have V 0 =
V � LG(0) and, consequently, dim(Vu(1)) = dim(V

0
u(1)) � 1. We now use Proposition 3.3.8

to deduce that dim(Vu(1)) � ‘2 for all non-identity unipotent elements u 2 G. Moreover, we
achieve equality if and only if dim(V

0
u(1)) = ‘2 + 1, hence, again by Proposition 3.3.8, if and

only if the Jordan form of u on W is J2 � J ‘�1
1 .

In conclusion, we have shown that dim(Vu(1)) � ‘2 for all non-identity unipotent elements
u 2 G and that equality holds if and only if the Jordan form of u on W is J2 � J ‘�1

1 . In
particular, since 0 < 3‘2�2‘ for all ‘ � 2, it follows that the inequality ‘2 < ‘2+2‘�

p
‘2 + 2‘

holds for all ‘ � 2 and, consequently, dim(Vu(1)) < dim(V )�
p

dim(V ) for all non-identity
unipotent elements u 2 G.

We will require the following result in the proof of Corollary 3.3.11.
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Proposition 3.3.10. Let ‘ � 2 and let V 0 = W 
 W �. Let u be a nontrivial unipotent
element of G whose Jordan form on W is different than J2 � J ‘�1

1 . Then

dim(V
0

u(1)) � ‘2 � 1;

where we have equality if and only if one of the following holds

(1) ‘ = 2 and the Jordan form of u on W is J3.

(2) ‘ = 3 and the Jordan form of u on W is J2
2 .

Proof. Let the unipotent element u 2 G be as in hypothesis (yHu) and assume that its
Jordan form on W is different than J2 � J ‘�1

1 . Thus, if n1 = 2, then, r1 � 2. We first
consider the case when the Jordan form of u on W is J‘+1. We proceed as in the proof of
Proposition 3.3.8, see (3.35), to deduce that dim(V

0
u(1)) = ‘+ 1, hence dim(V

0
u(1)) � ‘2� 1,

as ‘ � 2. Moreover, equality holds if and only if ‘ = 2, in which case u has Jordan form J3

on W . We can now assume that the Jordan form of u on W consists of at least two blocks
and, since it is different than J2 � J ‘�1

1 and u 6= 1, we then have ‘ � 3.
We consider the case when exactly one block, Jn1 , appearing in the Jordan form of u on

W , is nontrivial. Then u has Jordan form Jn1 � J ‘+1�n1
1 , where 3 � n1 � ‘. We proceed as

in the proof of Proposition 3.3.8, see (3.36), (3.37) and (3.38), to deduce that

dim(V
0

u(1)) = ‘2 � 1 + n2
1 � 2‘n1 � 3n1 + 4‘+ 4:

One checks that the inequality

n2
1 � 2‘n1 � 3n1 + 4‘+ 4 < 0 (3.40)

holds for all n1 2
�2‘+ 3�

p
4‘2 � 4‘� 7

2
;
2‘+ 3 +

p
4‘2 � 4‘� 7

2

�
and all ‘ � 2. Since

2‘+ 3 +
p

4‘2 � 4‘� 7

2
> ‘ and since

2‘+ 3�
p

4‘2 � 4‘� 7

2
< 3, as 2 < 8‘, it follows that,

in particular, Inequality (3.40) holds for all 3 � n1 � ‘ and all ‘ � 3. We deduce that
dim(V

0
u(1)) < ‘2�1 for all unipotent elements u of G with Jordan form Jn1�J ‘+1�n1

1 , where
3 � n1 � ‘.

Lastly, we consider the case when the Jordan form of u onW admits at least two nontrivial
blocks. Then 2 � n1 � ‘� 1 and we write W = W

0
1 �W

0
2, where dim(W

0
1) = n1 and u acts

as Jn1 on W 0
1, and dim(W

0
2) = ‘+1�n1 and u acts as Jr1�1

n1
�

mM
i=2

Jrini on W
0
2. Now, by (3.39)

of Proposition 3.3.8, we have dim(V
0
u(1)) = n1 + 2(‘ + 1 � n1) + dim((W

0
2 
 (W

0
2)�)u(1)).

Furthermore, by the induction argument of same result, we have dim((W
0
2 
 (W

0
2)�)u(1)) �

(‘ � n1)2 + 1, where equality holds if and only if u acts as J2 � J ‘�n1�1
1 on W

0
2 
 (W

0
2)�.

Therefore

dim(V
0

u(1)) � n1 + 2(‘+ 1� n1) + (‘� n1)2 + 1

= ‘2 � 1 + n2
1 � 2‘n1 � n1 + 2‘+ 4:
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One checks that the inequality

n2
1 � 2‘n1 � n1 + 2‘+ 4 � 0 (3.41)

holds for all n1 2
�

2‘+ 1�
p

4‘2 � 4‘� 15

2
;
2‘+ 1 +

p
4‘2 � 4‘� 15

2

�
and all ‘ � 3. Since

2‘+ 1 +
p

4‘2 � 4‘� 15

2
> ‘ � 1 and since

2‘+ 1�
p

4‘2 � 4‘� 15

2
� 2, as 3 � ‘, it

follows that, in particular, Inequality (3.41) holds for all 2 � n1 � ‘ � 1 and all ‘ � 3.
Moreover, we achieve equality in (3.41) if and only if n1 = 2, in which case ‘ = 3, as
2‘+ 1�

p
4‘2 � 4‘� 15

2
= 2. We conclude that dim(V

0
u(1)) � ‘2 � 1 for all unipotent

elements u of G whose Jordan form onW admits at least two nontrivial blocks. Furthermore,
we have equality if and only if ‘ = 3 and the Jordan form of u on W is J2

2 . This completes
the proof of the proposition.

Corollary 3.3.11. Let ‘ � 2, p j ‘ + 1 and let V = LG(!1 + !‘). Then for all non-identity
unipotent elements u 2 G we have

dim(Vu(1)) � ‘2 � 1:

Moreover, we have equality if and only if one of the following holds:

(1) ‘ = 2 and the Jordan form of u on W is one of J3 and J2 � J1.

(2) ‘ = 3 and the Jordan form of u on W is one of J2
2 and J2 � J2

1 .

(3) ‘ � 4 and the Jordan form of u on W is J2 � J ‘�1
1 .

In particular, we have dim(Vu(1)) < dim(V ) �
p

dim(V ) for all non-identity unipotent
elements u 2 G.

Proof. To begin, set V 0 = W 
W � and let the unipotent element u 2 G be as in hypothesis
(yHu). If we denote by u0 , respectively by uV , the action of u on V 0 , respectively on V , then
by Theorem 3.3.6 we know that we can determine the Jordan form of uV from that of u0 .

Set � = �p(gcd(n1; : : : ; nm)). If � = 0, then, by item (2) of Remark 3.3.7, we have
dim(Vu(1)) = dim(V

0
u(1))�2. By Proposition 3.3.8, it then follows that dim(Vu(1)) � ‘2�1,

where equality holds if and only if dim(V
0
u(1)) = ‘2 + 1, hence, if and only if the Jordan form

of u on W is J2 � J ‘�1
1 .

We can assume that � > 0. Then, by item (3) of Remark 3.3.7, we have dim(Vu(1)) �
dim(V

0
u(1)). Moreover, since � > 0, the Jordan form of u on W is different than J2 � J ‘�1

1

and therefore, by Proposition 3.3.10, we have dim(V
0
u(1)) � ‘2�1, hence dim(Vu(1)) � ‘2�1.

Now, in order for dim(Vu(1)) = ‘2 � 1, we must have dim(V
0
u(1)) = ‘2 � 1.

Assume that dim(V
0
u(1)) = ‘2 � 1. Then, by Proposition 3.3.10, either ‘ = 2 and the

Jordan form of u on W is J3, or ‘ = 3 and the Jordan form of u on W is J2
2 . In the first

case, since p = 3, � = 1 and p - ‘+1
p�

, by item (3:2) of Remark 3.3.7, we determine that
dim(Vu(1)) = dim(V

0
u(1)) = 3. Similarly, in the second case, since p = 2 and � = 1, we have

p j ‘+1
p�

and so dim(Vu(1)) = dim(V
0
u(1)) = 8, by item (3:1) of Remark 3.3.7.
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In conclusion, we have shown that dim(Vu(1)) � ‘2 � 1 for all non-identity unipotent
elements u 2 G. In particular, since the inequality 0 < 3‘2 � 2‘ + 1 holds for all ‘ � 2, it
follows that ‘2�1 < ‘2 +2‘�1�

p
‘2 + 2‘� 1 for all ‘ � 2, and, consequently, dim(Vu(1)) <

dim(V )�
p

dim(V ) for all non-identity unipotent elements u 2 G.

To conclude this subsection, we remark that Lemma 3.3.3, Propositions 3.3.4 and 3.3.5,
and Corollaries 3.3.9 and 3.3.11 give the proof of Theorems 3.3.1 and 3.3.2 for the families
of kG-modules corresponding to p-restricted dominant weights � 2 FA‘ .

3.3.2 The particular modules

As previously mentioned, in this subsection, we will prove Theorems 3.3.1 and 3.3.2 in the
case of the particular kG-modules. In the first part, we determine dim(Vu(1)), where u 2 G
is a non-identity unipotent element, for the irreducible kG-module V = LG(m!1), where
3 � m � 8 and p = 0 or p > m, of the simple simply connected linear algebraic group G of
type A1, see Proposition 3.3.12. Afterwards, we assume that ‘ � 2 and we establish an upper-
bound for dim(Vu(1)), where u 2 G is a non-identity unipotent element and V = LG(�),
where the p-restricted dominant weight � appears in Table 2.7.1, see Propositions 3.3.16,
3.3.17, 3.3.18 and 3.3.19, respectively.

Proposition 3.3.12. Let k be an algebraically closed field of characteristic p = 0 or p > m.
Let ‘ = 1 and let V = LG(m!1), where 3 � m � 8. Lastly, let u 2 G be a non-identity
unipotent element. Then

dim(Vu(1)) = 1:

In particular, we have dim(Vu(1)) < dim(V ) �
p

dim(V ) for all 3 � m � 8 and for all
non-identity unipotent elements u 2 G.

Proof. The result is proven in [Sup95, Theorem 1.9].

We now assume that ‘ � 3 and we focus on the irreducible kG-modules V with highest
weights featured in Table 2.7.1. In order to determine max

u2Gunf1g
dim(Vu(1)), where Gu is the

set of unipotent elements of G, we will use the inductive algorithm presented in Subsection
2.4.4. Following this algorithm, we first determine the unipotent conjugacy classes of G and
for each non-identity class we identify a representative u0 with the property that u0L 6= 1,
where L := L‘ is the Levi subgroup of the maximal parabolic subgroup P‘ of G constructed in
Section 2.4. By Theorem 2.9.2 we know that two unipotent elements of G are conjugate if and
only if they have the same Jordan form on W . Therefore, we can label unipotent conjugacy

classes in G by symbols
mM
i=1

Jdi , where 1 � m, 1 � d1 � � � � � dm and
mX
i=1

di = ‘ + 1.

Now, in order to identify a representative for each class, we use [Kor18, Lemma 2.8.8], which

shows how to associate a unipotent element u to a given symbol
mM
i=1

Jdi . Before we state

this lemma, we recall that, to each unipotent element u 2 G, we have associated the subset
Su � �+ with the property that u =

Y
�2Su

x�(c�), where the product is taken with respect to

the total order � on �, see Section 1.3, and c� 2 k� for all � 2 Su.
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Lemma 3.3.13. [Kor18, Lemma 2.8.8] Let m � 1 and let d1 � � � � � dm be such that
mX
i=1

di = ‘ + 1. Set k1 = 1 and ki = 1 +
i�1X
j=1

dj for all 2 � i � m. Moreover, for all

1 � i � m, define:

ui =

8>><>>:
1; if di = 1;
ki+di�2Y
j=ki

x�j(1); if di > 1:

Then u = u1 � � �um lies in the unipotent G-conjugacy class labeled by
mM
i=1

Jdi.

In the following two results, Remark 3.3.14 and Proposition 3.3.15, we will show that
each non-identity unipotent conjugacy class admits a representative u0 with the property
that Su0 \ f�1; : : : ; �‘�1g 6= ;.

Remark 3.3.14. Let
mM
i=1

Jdi be the label of a nontrivial unipotent G-conjugacy class. Then,

there exists 1 � j � m such that dj�1 = 1 and dj > 1, where we set d0 := 1. Now,
by Lemma 3:3:13, this class admits a representative u = u1 � � �um, where ui = 1, for all

1 � i � j � 1, and ui =

ki+di�2Y
j=ki

x�j(1), for all j � i � m. Since Sui = f�ki ; : : : ; �ki+di�2g

for all j � i � m, it follows that for any �r 2 Sui and any �q 2 Suj , where 1 � i <
j � m, we have r < q and so Sui \ Suj = ; for all 1 � i < j � m. Therefore, Su =
f�kj ; : : : ; �kj+dj�2; �kj+dj ; : : : ; �kj+dj+dj+1�2; : : : ; �kj+dj+���+dm�1 ; : : : ; �‘g, where 1 � j � m is
such that dj�1 = 1 and dj > 1.

Proposition 3.3.15. Let ‘ � 2. Then, each nontrivial unipotent conjugacy class in G
admits a representative u0 with the property that Su0 \ f�1; : : : ; �‘�1g 6= ;.

Proof. Let
mM
i=1

Jdi , where 1 � m and 1 � d1 � � � � � dm are such that
mX
i=1

di = ‘+ 1, be the

label of a nontrivial unipotent conjugacy class in G. Let 1 � j � m be such that dj�1 = 1 and
dj > 1, where we set d0 := 1. Let u0 be the representative of this class given by Lemma 3.3.13.
We have seen in Remark 3.3.14 that Su0 = f�kj ; : : : ; �kj+dj�2; �kj+dj ; : : : ; �kj+dj+dj+1�2; : : : ;
�kj+dj+���+dm�1 ; : : : ; �‘g. If j < m, then �kj 2 Su0 , where kj < km � km + dm � 2 = ‘, as
dm � dj > 1, and so Su0 \ f�1; : : : ; �‘�1g 6= ;. We can thus assume that j = m. If dm > 2,
then km < km + dm � 2 = ‘, and, as �km 2 Su0 , we determine that Su0 \ f�1; : : : ; �‘�1g 6= ;.
Lastly, we consider the case when dm = 2. As di = 1 for all 1 � i � m � 1 and as
mX
i=1

di = ‘ + 1, it follows that m = ‘, thereby the label of the unipotent conjugacy class of

u0 = u‘ = x�‘(1) is J1 � � � � � J1| {z }
m�1

�J2. In this case, since u0 and x�1(1) are G-conjugate (they

have the same Jordan form on W ), we choose x�1(1) as representative of this class and note
that Sx�1 (1) \ f�1; : : : ; �‘�1g 6= ;. This completes the proof of the proposition.
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Having finalized the first step of the algorithm, we will now begin the process of determining
an upper-bound for dim(Vu(1)), where u 2 G is a non-identity unipotent element and
V = LG(�) with � a p-restricted dominant weight listed in Table 2.7.1. Recall that we
have denoted by L the Levi subgroup L‘ of the maximal parabolic subgroup P := P‘ of G
constructed in Section 2.4. Set Q := Ru(P‘). Note that, by Proposition 3.3.15, we know that
each non-identity unipotent G-conjugacy class admits a representative u0 with the property
that u0L 6= 1.

Proposition 3.3.16. Let k be an algebraically closed field of characteristic p = 3, let ‘ = 3
and let V = LG(!1 + !2). Then for all non-identity unipotent elements u 2 G, we have

dim(Vu(1)) � 8:

In particular, we have dim(Vu(1)) < dim(V ) �
p

dim(V ) for all non-identity unipotent
elements u 2 G.

Proof. To begin, we recall the Decomposition (3.22) of Proposition 3.2.10 which states:

V j[L;L]
�= LL(!1 + !2)� LL(2!1)� LL(!1):

Let u 2 G be a non-identity unipotent element and let u0 be a representative of the
unipotent G-conjugacy class of u with the property that u0L 6= 1, see Proposition 3.3.15.
Then, as dim(Vu(1)) = dim(Vu0(1)), by Inequality (2.7) and Decomposition (3.22), we
determine that

dim(Vu(1)) � dim(Vu0L(1)) = dim((LL(!1 + !2))u0L
(1)) + dim((LL(2!1))u0L

(1)) + dim((LL(!1))u0L
(1)):

Now, as p = 3, by Corollary 3.3.11, we have dim((LL(!1 + !2))u0L
(1)) � 3. Similarly, by

Proposition 3.3.5, we have dim((LL(2!1))u0L
(1)) � 3, while by Lemma 3.3.3, it follows that

dim((LL(!1))u0L
(1)) � 2. We determine that dim(Vu(1)) � 8.

In conclusion, we have shown that dim(Vu(1)) � 8 < dim(V ) �
p

dim(V ) for all non-
identity unipotent elements u 2 G.

Proposition 3.3.17. Let ‘ = 5 and let V = LG(!3). Then for all non-identity unipotent
elements u 2 G, we have

dim(Vu(1)) � 14;

where there exist u 2 G for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. To begin, we recall the Decomposition (3.23) of Proposition 3.2.11, which states:

V j[L;L]
�= LL(!3)� LL(!2):

Let u 2 G be a non-identity unipotent element and let u0 be a representative of the
unipotent G-conjugacy class of u with the property that u0L 6= 1, see Proposition 3.3.15.
Then, as dim(Vu(1)) = dim(Vu0(1)), by Inequality (2.7) and Decomposition (3.23), we get

dim(Vu(1)) � dim(Vu0L(1)) = dim((LL(!3))u0L
(1)) + dim((LL(!2))u0L

(1)):
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Now, using Proposition 3.3.4 and keeping in mind that LL(!3) �= LL(!2)�, we determine
that dim((LL(!2))u0L

(1)) � 7 and dim((LL(!3))u0L
(1)) � 7, therefore dim(Vu(1)) � 14.

Lastly, we consider the unipotent element x�1(1) 2 G. We first note that (x�1(1))L =
x�1(1) and (x�1(1))Q = 1. Therefore, by Equality (2.8) and Decomposition (3.23), we have
dim(Vx�1 (1)(1)) = dim((LL(!2))x�1 (1)(1))+dim((LL(!3))x�1 (1)(1)), thus dim(Vx�1 (1)(1)) = 14,
by [LS12, Subsection 3.3.2] and Proposition 3.3.4. This shows that there exist unipotent
elements u 2 G for which dim(Vu(1)) = 14.

In conclusion, we have shown that dim(Vu(1)) � 14 for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bound in attained, for example x�1(1). Lastly,
we have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 G.

Proposition 3.3.18. Let ‘ = 6 and let V = LG(!3). Then for all non-identity unipotent
elements u 2 G, we have

dim(Vu(1)) � 25;

where there exist u 2 G for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. To begin, we recall the Decomposition (3.24) of Proposition 3.2.13 which states:

V j[L;L]
�= LL(!3)� LL(!2):

Let u 2 G be a non-identity unipotent element and let u0 be a representative of the
unipotent G-conjugacy class of u with the property that u0L 6= 1, see Proposition 3.3.15.
Then, as dim(Vu(1)) = dim(Vu0(1)), by Inequality (2.7) and identity (3.24), we get

dim(Vu(1)) � dim(Vu0L(1)) = dim((LL(!3))u0L
(1)) + dim((LL(!2))u0L

(1)):

Now, by Proposition 3.3.4, we have dim((LL(!2))u0L
(1)) � 11 and, similarly, by Proposition

3.3.17, we have dim((LL(!3))u0L
(1)) � 14. It follows that dim(Vu(1)) � 25.

Lastly, we consider the unipotent element x�1(1) 2 G. We first note that (x�1(1))L =
x�1(1) and (x�1(1))Q = 1. Therefore, by Equality (2.8) and Decomposition (3.24), we have
dim(Vx�1 (1)(1)) = dim((LL(!2))x�1 (1)(1))+dim((LL(!3))x�1 (1)(1)), thus dim(Vx�1 (1)(1)) = 25,
by [LS12, Subsection 3.3.2] and Propositions 3.3.4 and 3.3.17. This shows that there exist
unipotent elements u 2 G for which dim(Vu(1)) = 25.

In conclusion, we have shown that dim(Vu(1)) � 25 for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bound in attained, for example x�1(1). Lastly,
we have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 G.

Proposition 3.3.19. Let ‘ = 7 and let V = LG(!3). Then for all non-identity unipotent
elements u 2 G, we have

dim(Vu(1)) � 41;

where there exist u 2 G for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.
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Proof. To begin, we recall the Decomposition (3.25) of Proposition 3.2.14 which states

V j[L;L]
�= LL(!3)� LL(!2):

Let u 2 G be a non-identity unipotent element and let u0 be a representative of the
unipotent G-conjugacy class of u with the property that u0L 6= 1, see Proposition 3.3.15.
Then, as dim(Vu(1)) = dim(Vu0(1)), by Inequality (2.7) and Identity (3.25), we get

dim(Vu(1)) � dim(Vu0L(1)) = dim((LL(!3))u0L
(1)) + dim((LL(!2))u0L

(1)):

Now, by Proposition 3.3.4, we have dim((LL(!2))u0L
(1)) � 16, while, by Proposition 3.3.18,

we have dim((LL(!3))u0L
(1)) � 25. It follows that dim(Vu(1)) � 41.

Lastly, we consider the unipotent element x�1(1) 2 G. We first note that (x�1(1))L =
x�1(1) and (x�1(1))Q = 1. Therefore, by Equality (2.8) and Decomposition (3.25), we have
dim(Vx�1 (1)(1)) = dim((LL(!2))x�1 (1)(1))+dim((LL(!3))x�1 (1)(1)), thus dim(Vx�1 (1)(1)) = 41,
by [LS12, Subsection 3.3.2] and Propositions 3.3.4 and 3.3.18. This shows that there exist
unipotent elements u 2 G for which dim(Vu(1)) = 41.

In conclusion, we have shown that dim(Vu(1)) � 41 for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bound in attained, for example x�1(1). Lastly,
we have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 G.

Although the following result is not required for the proof of Theorems 3.3.1 and 3.3.2,
it is a nice a generalization for all ‘ � 5 of Propositions 3.3.17, 3.3.18 and 3.3.19.

Proposition 3.3.20. Let ‘ � 5 and let V = LG(!3). Then, for all non-identity unipotent
elements u 2 G, we have

dim(Vu(1)) � (‘� 1)(‘2 � 2‘+ 6)

6
;

where there exist u 2 G for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. The base case for ‘ = 5 is given by Proposition 3.3.17. Thus, we assume that ‘ � 6
and that the result holds for all r < ‘. We proceed to prove it for ‘. For this, we recall the
Decomposition (3.26) of Proposition 3.2.15 which states

V j[L‘;L‘]�= LL‘(!3)� LL‘(!2):

Let u 2 G be a non-identity unipotent element and let u0 be a representative of the
unipotent G-conjugacy class of u with the property that u0L 6= 1, see Proposition 3.3.15.
Then, as dim(Vu(1)) = dim(Vu0(1)), by Inequality (2.7) and identity (3.26), we get

dim(Vu(1)) � dim(Vu0L‘
(1)) = dim((LL‘(!3))u0L‘

(1)) + dim((LL‘(!2))u0L‘
(1)):

Now, by Proposition 3.3.4, we have dim((LL‘(!2))u0L‘
(1)) � (‘�1)2�(‘�1)+2

2
, while, by induction,

we have dim((LL‘(!3))u0L‘
(1)) � (‘�2)[(‘�1)2�2(‘�1)+6]

6
. It follows that dim(Vu(1)) � (‘�1)(‘2�2‘+6)

6
.
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Lastly, we consider the unipotent element x�1(1) 2 G. We first note that (x�1(1))L‘ =
x�1(1) and (x�1(1))Q‘ = 1. Therefore, by Equality (2.8) and Decomposition (3.26), we have
dim(Vx�1 (1)(1)) = dim((LL‘(!2))x�1 (1)(1)) + dim((LL‘(!3))x�1 (1)(1)), thus dim(Vx�1 (1)(1)) =
(‘�1)(‘2�2‘+6)

6
, by [LS12, Subsection 3.3.2], Proposition 3.3.4 and induction. This shows that

there exist unipotent elements u 2 G for which dim(Vu(1)) = (‘�1)(‘2�2‘+6)
6

.
In conclusion, we have shown that dim(Vu(1)) � (‘�1)(‘2�2‘+6)

6
for all non-identity unipotent

elements u 2 G and that there exist u 2 G for which the bound in attained, for example
x�1(1). Moreover, as the inequality 0 < 3‘3�17‘2 +22‘�12 holds for all ‘ � 5, we have that
(‘�1)(‘2�2‘+6)

6
< (‘�1)‘(‘+1)

6
�
q

(‘�1)‘(‘+1)
6

for all ‘ � 5, and so dim(Vu(1)) < dim(V )�
p

dim(V )

for all non-identity unipotent elements u 2 G.

We conclude this subsection by noting that Proposition 3.3.12 completes the proof of
Theorems 3.3.1 and 3.3.2 for simple simply connected linear algebraic groups of type A1.
Furthermore, Propositions 3.3.16, 3.3.17, 3.3.18 and 3.3.19 treat all the irreducible kG-
modules, where G is of type A‘ with ‘ � 2, corresponding to p-restricted dominant weights
featured in Table 2.7.1. This completes the proofs of Theorems 3.3.1 and 3.3.2.

3.4 Results
In this section we collect the results proven in this chapter. In Proposition 3.4.1 we give the
values of max

s2TnZ(G)
fdim(Vs(�)) j � 2 k�g, max

u2Gunf1g
dim(Vu(1)) and �G(V ) for all kG-modules

V belonging to one of the families we had to consider.

Proposition 3.4.1. Let k be an algebraically closed field of characteristic p � 0 and let G be
a simple simply connected linear algebraic group of type A‘, ‘ � 1. Let T be a fixed maximal
torus in G and let V = LG(�), where � 2 FA‘. Then the value of �G(V ) is as given in the
table below:

V Char. Rank max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g max
u2Gunf1g

dim(Vu(1)) �G(V )

LG(!1) p � 0 ‘ � 1 ‘ ‘ 1

LG(2!1) p 6= 2 ‘ � 1 ‘2+‘+2
2

‘(‘+1)
2

‘

LG(!2) p � 0
‘ = 3 4 4 2

‘ � 4 ‘(‘�1)
2

‘2�‘+2
2

‘� 1
LG(!1 + !‘) p - ‘+ 1 ‘ � 2 ‘2 ‘2 2‘

LG(!1 +!‘) p j ‘+ 1
‘ = 2 4 3 3
‘ � 3 ‘2 � 1 ‘2 � 1 2‘

Table 3.4.1: The value of �G(V ) for the families of modules of groups of type A‘.

Proof. The result follows by Proposition 2.2.3 from Lemmas 3.2.3 and 3.3.3, for V = LG(!1);
Propositions 3.2.4 and 3.3.5, for V = LG(2!1); Propositions 3.2.5 and 3.3.4, for V = LG(!2);
and Corollaries 3.2.7, 3.2.8, 3.3.9 and 3.3.11, for V = LG(!1 + !‘).
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Similarly, Proposition 3.4.2 records the values of max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g,

max
u2Gunf1g

dim(Vu(1)) and �G(V ) for all the particular kG-modules treated in this chapter.

Proposition 3.4.2. Let k be an algebraically closed field of characteristic p � 0 and let G be
a simple simply connected linear algebraic group of type A‘, ‘ � 1. Let T be a fixed maximal
torus in G. If ‘ = 1, let V = LG(m!1) with 3 � m � 8 and p = 0 or p > m. If ‘ � 2, let
V = LG(�), where � is featured in Table 2:7:1. Then the value of �G(V ) is given in the table
below:

Group LG(�) Char. max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g max
u2Gunf1g

dim(Vu(1)) �G(V )

A1
LG(m!1)

3 � m � 8

p = 0, or
p > m

1 +
�
m
2

�
1 m�

�
m
2

�
A3 LG(!1 + !2) p = 3 10 � 8 6
A5 LG(!3) p � 0 12 14 6
A6 LG(!3) p � 0 20 25 10
A7 LG(!3) p � 0 35 41 15

Table 3.4.2: The value of �G(V ) for the particular modules of groups of type A‘.

Proof. The result follows by Proposition 2.2.3, using the detailed results of Subsections 3.2.2
and 3.3.2.

Lastly, we state the following additional result, whose proof follows by Propositions 2.2.3,
3.2.15 and 3.3.20.

Proposition 3.4.3. Let ‘ � 6 and V = LG(!3). Then max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g =

(‘� 2)(‘� 1)‘

6
, max
u2Gunf1g

dim(Vu(1)) =
(‘� 1)(‘2 � 2‘+ 6)

6
and �G(V ) = (‘�2)(‘�1)

2
.
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Chapter 4

Groups of type C‘

In this chapter we prove Theorems 1.1.1 and 1.1.3 for the simple simply connected linear
algebraic groups of type C‘, ‘ � 2. The structure is as follows: in the first section we construct
such a group and exhibit some properties of its semisimple and unipotent elements. In Section
4.2 we determine max

s2TnZ(G)
fdim(Vs(�)) j � 2 k�g, where V runs through the list of kG-modules

we identified in Subsection 2.7.2. Similarly, in Section 4.3, we determine max
u2Gunf1g

dim(Vu(1)),

where Gu is the set of unipotent elements of G, for the same kG-modules V . Lastly, Section
4.4 records all the results of this chapter.

We now fix some notation which will be used throughout this chapter. The field k is an
algebraically closed field of characteristic p � 0, unless otherwise specified, and the group
G is a simple simply connected linear algebraic group of type C‘, ‘ � 2. By T , �, B,
� = f�1; : : : ; �‘g and !1; !2; : : : ; !‘ we denote a fixed maximal torus in G, the root system
of G determined by T , the positive Borel subgroup of G, the set of simple roots in � given
by B, and the fundamental dominant weights of G corresponding to �.

4.1 Construction of linear algebraic groups of type C‘
LetW be a 2‘-dimensional, ‘ � 2, k-vector space equipped with a nondegenerate alternating
bilinear form b. We fix BW = fu1; u2; : : : ; u‘; v‘; : : : ; v2; v1g to be an ordered basis in W with

the property that W =
‘M
i=1

hui; vii is an orthogonal direct sum, where fui; vig, 1 � i � ‘,

is a hyperbolic pair, see Theorem 2.1.1. Let D, respectively U , denote the set of diagonal,
respectively upper-triangular, matrices in GL(W ). Set G = Sp(W ) and note that G is a
simple simply connected linear algebraic group of type C‘, see [Car89, p.184]. Moreover,
B := U \G is a Borel subgroup of G which contains the maximal torus T =: D \G of G.

4.1.1 Semisimple elements

Let s 2 T , s = diag(a1; : : : ; a‘; a
�1
‘ ; : : : ; a�1

1 ) with ai 2 k� for all 1 � i � ‘. Let f�1; �2; : : : ;
�mg, where 1 � m � ‘, be the set of distinct ai’s, and let ni, 1 � i � m, be the multiplicity
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of each �i in s. It follows that
mX
i=1

ni = ‘ and we can assume, without loss of generality, that

n1 � n2 � � � � � nm � 1. By conjugating s by an element of NG(T ), we can also assume
that s = diag(�1 � In1 ; �2 � In2 ; : : : ; �m � Inm ; ��1

m � Inm ; : : : ; ��1
2 � In2 ; �

�1
1 � In1):

Lemma 4.1.1. Assume there exists 1 � i < j � m such that �j = ��1
i . Then there exists

g 2 G such that

gsg�1 =

�
A 0
0 A�

�
;

where

A = diag(�1 � In1 ; : : : ; �i�1 � Ini�1
; �i � Ini+nj ; �i+1 � Ini+1

; : : : ; �j�1 � Inj�1
; �j+1 � Inj+1

; : : : ; �m � Inm)

and A� = (A�i;j)i;j is a diagonal matrix with A�r;r = A�1
n1+���+nm+1�r;n1+���+nm+1�r, for all 1 �

r � n1 + � � �+ nm.

Proof. For any r � 1, set Kr to be the r � r matrix Kr :=

0B@0 � � � 1
...

1 � � � 0

1CA. We now consider

the element g1 2 SL(W ) given by g1 =

0BBBBBB@
Ia 0 � � � � � � 0

0 0nj � � � Knj

...
... 0 I2b 0

...
... �Knj � � � 0nj 0
0 � � � � � � 0 Ia

1CCCCCCA ; where a =

j�1X
i=1

ni and

b =
mX

i=j+1

nj. We calculate and determine that

g�1
1 = gtr

1 =

0BBBBBB@
Ia 0 � � � � � � 0

0 0nj � � � �Knj

...
...

... I2b
...

...
... Knj � � � 0nj 0
0 � � � � � � 0 Ia

1CCCCCCA :

We denote by [b] the representing matrix of b with respect to the basis BW . By Theorem

2.1.1, we have that [b] =

�
0 K‘

�K‘ 0

�
. One calculates and determines that gtr

1 [b]g1 = [b],

hence g1 2 G, and

g1sg
�1
1 = diag(�1 � In1 ; : : : ; �j�1 � Inj�1

; �i � Inj ; �j+1 � Inj+1
; : : : ; �m � Inm ; ��1

m � Inm ; : : : ;
��1
j+1 � Inj+1

; ��1
i � Inj ; ��1

j�1 � Inj�1
; : : : ; ��1

1 � In1):

Finally, reordering as before, we deduce that there exists g 2 G such that gsg�1 has the
desired matrix form.
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Now, let s 2 T , s = diag(�1 � In1 ; : : : ; �m � Inm ; ��1
m � Inm ; : : : ; ��1

1 � In1) with �i 6= �j
for all 1 � i < j � m. By Lemma 4.1.1, we may further assume that �i 6= ��1

j for all
1 � i < j � m. For the rest of this chapter, we fix the following hypothesis on semisimple
elements of G:

(yHs) : any s 2 T n Z(G) is such that s = diag(�1 � In1 ; : : : ; �m � Inm ; ��1
m � Inm ; : : : ; ��1

1 � In1);

where �i 6= ��1
j for all 1 � i < j � m;

mX
i=1

ni = ‘ and n1 � n2 � � � � � nm � 1:

Moreover, if m = 1; then �1 6= �1:

4.1.2 Unipotent elements

Let u be a unipotent element of G and let
mM
i=1

Jrini be its Jordan form onW , where
mX
i=1

niri =

2‘ and ri � 1 is even for all odd ni, see Theorem 2.9.2. If p 6= 2, we know that the conjugacy
class of u in G is completely determined by its Jordan form on W . However, when p = 2,
the Jordan form is no longer enough to characterize conjugacy classes in G and so we will
use the Hesselink normal form to distinguish between unipotent conjugacy classes. Now,
by Theorem 2.9.15, the Hesselink normal form of u is (nr1

10
; : : : ; nrtt0 ; n

rt+1

t+11
; : : : ; nrmm1

), where
m � 1, t � 0 and ri � 1 is even for all odd ni, see Lemma 2.9.13.

In conclusion, regardless of the characteristic of k, if u is a unipotent element of G with

Jordan form
mM
i=1

Jrini on W , then
mX
i=1

rini = 2‘, ri is even for all odd ni and, moreover, we

can assume, without loss of generality, that 2‘ � n1 > � � � > nm � 1.

4.2 Eigenspace dimensions for semisimple elements
Before we state the main results of this section, we recall that FC‘ = f!1; 2!1; !2g, see
Subsection 2.7.2.

Theorem 4.2.1. Let k be an algebraically closed field of characteristic p � 0 and let G be a
simple simply connected linear algebraic group of type C‘, ‘ � 2. Let T be a fixed maximal
torus in G and let V = LG(�), where � 2 FC‘ or � is given in Tables 2:7:2 and 2:7:3. Then,
there exist s 2 T n Z(G) and � 2 k�, an eigenvalue of s on V , such that

dim(Vs(�)) � dim(V )�
p

dim(V )

if and only if ‘, � and p appear in the following list:

(1) ‘ � 2, � = !1 and p � 0;

(2) ‘ = 2, � = !2 and p � 0.

Theorem 4.2.2. Let k be an algebraically closed field of characteristic p � 0 and let G be
a simple simply connected linear algebraic group of type C‘, ‘ � 2. Let T and V be as in
Theorem 4:2:1. Then the value of max

s2TnZ(G)
fdim(Vs(�)) j � 2 k�g is given in the table below:
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V Char. Rank max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g

LG(!1) p � 0 ‘ � 2 2‘� 2
yLG(2!1) p 6= 2 ‘ � 2 2‘2 � 3‘+ 4

?LG(!2)
p - ‘ ‘ = 2; 3; 4 2‘2 � 6‘+ 8

‘ � 5 2‘2 � 5‘+ 3

p j ‘ ‘ = 2; 3 2‘2 � 4‘+ 2
‘ � 4 2‘2 � 5‘+ 2

yLG(!1 + !2) p � 0 ‘ = 2 8� 2�p;5
yLG(2!2) p 6= 2 ‘ = 2 10� �p;5
yLG(3!1) p 6= 2; 3 ‘ = 2 10

yLG(!1 + 2!2) p = 7 ‘ = 2 12
yLG(3!2) p = 7 ‘ = 2 16

yLG(2!1 + !2) p = 3 ‘ = 2 16
yLG(!‘) p = 2 3 � ‘ � 8 2‘�1

yLG(!3) p 6= 2 ‘ = 3 10
yLG(!1 + !3) p = 2 ‘ = 3 � 24
yLG(2!1 + !3) p = 2 ‘ = 3 20
yLG(!3) p � 0 ‘ = 4 � 30� 4�p;3
yLG(!4) p 6= 2 ‘ = 4 28
yLG(!3) p = 2 ‘ = 5 � 58

Table 4.2.1: The value of max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g.

In particular, for each V in Table 4.2.1 labeled as yV , respectively as each ?V with ‘ � 3,
we have dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 T n Z(G) and all eigenvalues � 2 k�

of s on V .

We will give the proof of Theorems 4.2.1 and 4.2.2 in a series of results, each treating one
of the candidate-modules. In Subsection 4.2.1, we determine max

s2TnZ(G)
fdim(Vs(�)) j � 2 k�g,

where V belongs to one of the families of modules, i.e. V is an irreducible kG-module
LG(�) with p-restricted dominant weight � 2 FC‘ . In Subsection 4.2.2, we determine

max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g for the irreducible kG-modules V = LG(�) with p-restricted

dominant weight � featured in one of the Tables 2.7.2 and 2.7.3.

4.2.1 The families of modules

Lemma 4.2.3. Let V = LG(!1). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s
on V we have

dim(Vs(�)) � 2‘� 2;

where equality holds if and only if � = �1 and, up to conjugation, s = diag(�1; : : : ;�1; d; d�1;
�1; : : : ;�1) with d 6= �1.

In particular, there exist s 2 T n Z(G) that afford an eigenvalue � 2 k� on V for which
dim(Vs(�)) � dim(V )�

p
dim(V ).
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Proof. We first note that V �= W as kG-modules, hence dim(V ) = 2‘. Now, let s 2
T n Z(G) and let � 2 k� be an eigenvalue of s on V with � 6= ��1. Then, dim(Vs(�)) �
dim(V )

2
= ‘, as dim(Vs(�)) = dim(Vs(�

�1)). On the other hand, for � = �1, as s =2 Z(G),
we have dim(Vs(�)) � 2‘ � 2. Now equality holds if and only if, up to conjugation, s =
diag(�1; : : : ;�1; d; d�1;�1; : : : ;�1) with d 6= �1, as in the statement of the result.

In conclusion, we proved that dim(Vs(1)) � 2‘�2 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V , and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound is
attained. Now, as the inequality 2 �

p
2‘ holds for all ‘ � 2, it follows that 2‘�2 � 2‘�

p
2‘

for all ‘ � 2 and thus, we have shown that there exist (s; �) 2 T nZ(G)�k� with the property
that dim(Vs(�)) � dim(V )�

p
dim(V ).

Proposition 4.2.4. Let k be an algebraically closed field of characteristic p 6= 2 and let
V = LG(2!1). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V we have

dim(Vs(�)) � 2‘2 � 3‘+ 4:

Furthermore, we have equality if and only if one of the following holds:

(1) ‘ = 2, � = �1 and, up to conjugation, s = diag(�1; �1; �
�1
1 ; ��1

1 ) with �2
1 = �1.

(2) ‘ � 2, � = 1 and, up to conjugation, s = � diag(1; : : : ; 1;�1;�1; 1; : : : ; 1).

In particular, we have dim(Vs(�)) < dim(V ) �
p

dim(V ) for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V .

Proof. Let s 2 T n Z(G) be as in hypothesis (yHs). By Lemma 2.8.2, since p 6= 2, we have
that V �= S2(W ) and so we deduce that dim(V ) = 2‘2 + ‘ and that the eigenvalues of s on
V , not necessarily distinct, are:

(4.1)

8>>>>>><>>>>>>:

�2
i and �

�2
i , 1 � i � m, each with multiplicity at least ni(ni+1)

2
;

�i�j and ��1
i ��1

j , 1 � i < j � m, each with multiplicity at least ninj;
�i�

�1
j and ��1

i �j, 1 � i < j � m, each with multiplicity at least ninj;

1 with multiplicity at least
mX
i=1

n2
i :

Let � 2 k� be an eigenvalue of s on V such that � 6= ��1. Then:

dim(Vs(�)) � dim(V )� dim(Vs(1))� dim(Vs(�
�1)):

Since dim(Vs(1)) �
mX
i=1

n2
i and ni � 1 for all 1 � i � m, we have that dim(Vs(1)) �

mX
i=1

ni =

‘. Furthermore, V is a self-dual module, hence dim(Vs(�)) = dim(Vs(�
�1)). Now, as ‘ � 2,

it follows that:
dim(Vs(�)) � 2‘2 + ‘� ‘

2
= ‘2 < 2‘2 � 3‘+ 4: (4.2)

Therefore we can assume that � is such that � = ��1.
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Let m = 1. Then, n1 = ‘ and, since s =2 Z(G), we have �1 6= �1, hence �2
1 6= 1. Now, by

(4.1), the eigenvalues of s on V , not necessarily distinct, are �2
1 and �

�2
1 , each with multiplicity

at least ‘(‘+1)
2

, and 1 with multiplicity ‘2. It follows that dim(Vs(�1)) � ‘2 +‘. If ‘ � 3, then
dim(Vs(�1)) < 2‘2 � 3‘+ 4. On the other hand, if ‘ = 2, then dim(Vs(�1)) � 2‘2 � 3‘+ 4,
where equality holds if and only if �1 = �2

1 and, up to conjugation, s = diag(�1; �1; �
�1
1 ; ��1

1 ),
as in (1).

We now assume thatm � 2. First, we consider the eigenvalue 1 of s on V . Since �i 6= ��1
j

for all 1 � i < j � m, it follows that ��1
i ��1

j 6= 1 for all 1 � i < j � m. By (4.1), these
account for at least 4

X
i<j

ninj eigenvalues of s on V which are different than 1, therefore

dim(Vs(1)) � 2‘2 + ‘� 4
X
i<j

ninj:

Assume dim(Vs(1)) � 2‘2 � 3‘+ 4. Then:

‘� 1�
X
i<j

ninj � 0: (4.3)

Since ‘ =
mX
i=1

ni, by Inequality (4.3), we have:

m�2X
i=1

ni(1�
X
i<j

nj) + (nm�1 � 1)(1� nm) � 0: (4.4)

But
m�2X
i=1

ni(1 �
X
i<j

nj) � 0 and (nm�1 � 1)(1 � nm) � 0, as ni � 1 for all 1 � i � m,

and so Inequality (4.4) holds if and only if m = 2, n2 = 1 and n1 = ‘ � 1. In this case,
dim(Vs(1)) = 2‘2 � 3‘ + 4 if and only if all eigenvalues of s on V different than ��1

1 ��1
2 are

equal to 1. Hence, by (4.1), it follows that �2
1 = �2

2 = 1, where �1 6= �2, and so, we deduce
that, up to conjugation, s = � diag(1; : : : ; 1;�1;�1; 1; : : : ; 1), as in (2).

Finally, we consider the eigenvalue �1 of s on V . We first remark that

dim(Vs(�1)) � 2‘2 + ‘�
mX
i=1

n2
i :

If �i�j 6= �1 for all 1 � i < j � m, then also ��1
i ��1

j 6= �1 for all 1 � i < j � m. By
(4.1), these account for at least 2

X
i<j

ninj additional eigenvalues of s on V different than �1

and so:

dim(Vs(�1)) � 2‘2 + ‘�
mX
i=1

n2
i � 2

X
i<j

ninj

= 2‘2 + ‘� (
mX
i=1

ni)
2

= ‘2 + ‘:

(4.5)
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If ‘ � 3, then dim(Vs(�1)) < 2‘2 � 3‘ + 4, while, for ‘ = 2, we have that dim(Vs(�1)) �
2‘2 � 3‘ + 4 where equality holds if and only if all eigenvalues of s on V different than 1,
�1�2 and ��1

1 ��1
2 are equal to �1. But then, by (4.1), it follows that �2

1 = �1�
�1
2 and so

�1 = ��1
2 , a contradiction.

We can thus assume that there exists some 1 � i < j � m such that �i�j = �1. In this
case, we also have ��1

i ��1
j = �1. Furthermore, since the �i’s are distinct, it follows that:8>>>>>><>>>>>>:

�2
i 6= �1; ��2

i 6= �1 and �2
j 6= �1; ��2

j 6= �1;

�i�r 6= �1; for i < r � m; r 6= j; and �r�i 6= �1; for 1 � r < i;

��1
i ��1

r 6= �1; for i < r � m; r 6= j; and ��1
r ��1

i 6= �1; for 1 � r < i;

�j�r 6= �1; for j < r � m; and �r�j 6= �1; for 1 � r < j; r 6= i;

��1
j ��1

r 6= �1; for j < r � m; and ��1
r ��1

j 6= �1; for 1 � r < j; r 6= i:

By (4.1), these account for at least ni(ni + 1) +nj(nj + 1) + 2(ni +nj)(‘�ni�nj) additional
eigenvalues of s on V which are different than �1. Thus, we have:

dim(Vs(�1)) � 2‘2 + ‘�
mX
r=1

n2
r � ni(ni + 1)� nj(nj + 1)� 2(ni + nj)(‘� ni � nj): (4.6)

Assume dim(Vs(�1)) � 2‘2 � 3‘+ 4. Then:

4‘� 4�
mX
r=1

n2
r � ni(ni + 1)� nj(nj + 1)� 2(ni + nj)(‘� ni � nj) � 0 (4.7)

and therefore

4‘� 4�
X
r 6=i;j

n2
r � 2n2

i � 2n2
j � (ni + nj)(‘� ni� nj)� (ni + nj)� (ni + nj)(‘� ni� nj) � 0;

which gives:

‘(4� ni � nj)�
X
r 6=i;j

n2
r � (ni � nj)2 � (ni + nj)(‘+ 1� ni � nj)� 4 � 0: (4.8)

We remark that ‘+ 1 > ni + nj, as
mX
r=1

nr = ‘, and so (�
X
r 6=i;j

n2
r � (ni� nj)2� (ni + nj)(‘+

1� ni � nj)� 4) < 0. Therefore, by (4.8), we have:

‘(4� ni � nj) > 0

and, since ni � nj � 1, it follows that (ni; nj) 2 f(2; 1); (1; 1)g. If (ni; nj) = (2; 1), then the
left-hand side of Inequality (4.7) becomes:

4‘� 4�
X
r 6=i;j

n2
r � 4� 1� 6� 2� 6(‘� 3) = 1� 2‘�

X
r 6=i;j

n2
r < 0;
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while if (ni; nj) = (1; 1) we get:

4‘� 4�
X
r 6=i;j

n2
r � 2� 2� 2� 4(‘� 2) = �2�

X
r 6=i;j

n2
r < 0:

Having covered all cases, we deduce that dim(Vs(�1)) < 2‘2 � 3‘+ 4 for all s 2 T n Z(G).
In conclusion, we showed that dim(Vs(�)) � 2‘2 � 3‘ + 4 for all s 2 T n Z(G) and all

eigenvalues � 2 k� of s on V . In particular, since the inequality 0 < 14‘2 � 33‘ + 16 holds
for all ‘ � 2, it follows that 2‘2 � 3‘ + 4 < 2‘2 + ‘ �

p
2‘2 + ‘ for all ‘ � 2, thereby

dim(Vs(�)) < dim(V )�
p

dim(V ) for all (s; �) 2 T n Z(G)� k�.

Proposition 4.2.5. Let V 0 = ^2(W ). Moreover, let s 2 T n Z(G) and let � 2 k� be an
eigenvalue of s on V 0. Then one of the following holds:

(1) ‘ = 2 and dim(V
0
s (�)) � 4, where we have equality if and only if one of the following

holds:

(1:1) � = 1 and, up to conjugation, s = diag(�1; �1; �
�1
1 ; ��1

1 ) with �1 6= �1.

(1:2) p 6= 2, � = �1 and, up to conjugation, s = diag(1;�1;�1; 1).

(2) ‘ = 3 and dim(V
0
s (�)) � 9, where equality holds if and only if � = 1 and, up to

conjugation, s = diag(�1; �1; �1; �
�1
1 ; ��1

1 ; ��1
1 ) with �1 6= �1.

(3) ‘ � 4 and dim(V
0
s (�)) � 2‘2 � 5‘+ 4, where we have equality if and only if one of the

following holds:

(3:1) ‘ = 4, � = 1 and, up to conjugation, s = diag(�1; �1; �1; �1; �
�1
1 ; ��1

1 ; ��1
1 ; ��1

1 )
with �1 6= �1.

(3:2) ‘ = 4, p 6= 2, � = �1 and, up to conjugation, s = diag(1; 1;�1;�1;�1;�1; 1; 1).

(3:3) ‘ � 4, � = 1 and, up to conjugation, s = � diag(1; : : : ; 1; �2; �
�1
2 ; 1; : : : ; 1) with

�2 6= 1.

Proof. Let s 2 T n Z(G) be as in hypothesis (yHs). We first remark that the kG-module
V
0

= ^2(W ) is self-dual, see Remark 2.8.3. Secondly, we note that dim(V
0
) = 2‘2 � ‘ and

we determine that the eigenvalues of s on V 0 , not necessarily distinct, are:

(4.9)

8>>>>>><>>>>>>:

�2
i and �

�2
i , 1 � i � m, each with multiplicity at least ni(ni�1)

2
;

�i�j and ��1
i ��1

j , 1 � i < j � m, each with multiplicity at least ninj;
�i�

�1
j and ��1

i �j, 1 � i < j � m, each with multiplicity at least ninj;

1 with multiplicity at least
mX
i=1

n2
i :

Let � 2 k� be an eigenvalue of s on V 0 such that � 6= ��1. Then:

dim(V
0

s (�)) � dim(V
0
)� dim(V

0

s (1))� dim(V
0

s (��1)):
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Since ni � 1 for all 1 � i � m, we have dim(V
0
s (1)) �

mX
i=1

n2
i �

mX
i=1

ni = ‘. Moreover, we

have that dim(V
0
s (�)) = dim(V

0
s (��1)), as V 0 is a self-dual kG-module, and so, substituting

in the above yields:

dim(V
0

s (�)) � 2‘2 � ‘� ‘
2

= ‘2 � ‘: (4.10)

If ‘ � 4, then dim(V
0
s (�)) < 2‘2 � 5‘ + 4, while, if ‘ � 3, then dim(V

0
s (�)) < ‘2. Thus, we

can assume from this point onward that the eigenvalue � is such that � = ��1.
We now consider the case of m = 1, hence n1 = ‘. Since s =2 Z(G), we have that

�2
1 6= 1. By (4.9), we deduce that dim(V

0
s (1)) = ‘2 and dim(V

0
s (�1)) � ‘2 � ‘. Therefore,

if ‘ � 5, it follows that dim(V
0
s (�1)) � ‘2 < 2‘2 � 5‘ + 4. On the other hand, if ‘ � 4,

then dim(V
0
s (�1)) � ‘2, where equality holds if and only if the eigenvalue is 1 and, up to

conjugation, s = diag(�1; : : : ; �1| {z }
‘

; ��1
1 ; : : : ; ��1

1| {z }
‘

) with �1 6= �1, as in (1:1), (2) and (3:1).

Now we can assume that m � 2.
Let ‘ = 2. Then m = 2, hence n1 = n2 = 1, and, by (4.9), the eigenvalues of s on V 0 are

1 with multiplicity at least 2, �1�2, ��1
1 ��1

2 , ��1
1 �2 and �1�

�1
2 . Therefore, dim(V

0
s (1)) = 2,

as �1 6= ��1
2 and dim(V

0
s (�1)) � 4 where equality holds if and only if �1�

�1
2 = �1, hence if

and only if �1 = ��2 and �2
2 = 1. We conclude that dim(V

0
s (�)) � 4 for all s 2 T n Z(G)

and all eigenvalues � 2 k� of s on V 0 and that equality holds if and only if � = �1 and, up
to conjugation, s = diag(1;�1;�1; 1), as in (1:2).

Let ‘ = 3.
Case 1.1: Assume that m = 2. Then n1 = 2 and n2 = 1, as n1 � n2. For � = 1,

since �1 6= ��1
2 , it follows that ��1

1 ��1
2 6= 1, hence dim(V

0
s (1)) � 7. For � = �1 we have

dim(V
0
s (�1)) � 10, as the eigenvalue 1 occurs with multiplicity at least 5, see (4.9). Since

�1 6= �2, it follows that �2
1 6= �1�2, hence ��2

1 6= ��1
1 ��1

2 , and so dim(V
0
s (�1)) � 8.

Case 1.2: Assume that m = 3. For � = 1, since �i 6= ��1
j for all 1 � i < j � 3, we

have that ��1
i ��1

j 6= 1 for all 1 � i < j � 3, hence dim(V
0
s (1)) = 3. For � = �1 we have

dim(V
0
s (�1)) � 12, see (4.9). Since the �i’s are distinct, it follows that �1 can equal at most

one eigenvalue of the form �i�j and at most one of the form �i�
�1
j , thus dim(V

0
s (�1)) � 4.

Having dealt with the cases of ‘ = 2 and ‘ = 3, we can now assume that ‘ � 4. Recall
that we are still in the case of m � 2 and � = ��1. For � = 1, since �i 6= ��1

j for all
1 � i < j � m, it follows that ��1

i ��1
j 6= 1 for all 1 � i < j � m. Therefore:

dim(V
0

s (1)) � 2‘2 � ‘� 4
X
i<j

ninj: (4.11)

Assume dim(V
0
s (1)) � 2‘2 � 5‘+ 4. Then:

‘� 1�
X
i<j

ninj � 0

and this is just Inequality (4.3), which we have shown to hold if and only if m = 2, n2 = 1
and n1 = ‘�1. In this case, by (4.11), we have dim(V

0
s (1)) � 2‘2�5‘+4 where equality holds

if and only if all eigenvalues of s on V different than ��1
1 ��1

2 are equal to 1. Hence �2
1 = 1
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and, since �1�2 6= 1, it follows that, up to conjugation, s = � diag(1; : : : ; 1; �2; �
�1
2 ; 1; : : : ; 1)

with �2 6= 1, as in (3:3).

Lastly, let � = �1. We remark that dim(V
0
s (�1)) � 2‘2 � ‘ �

mX
r=1

n2
r, see (4.9). If

�i�j 6= �1 for all 1 � i < j � m, then ��1
i ��1

j 6= �1 for all 1 � i < j � m, and we have:

dim(V
0

s (�1)) � 2‘2 � ‘�
mX
r=1

n2
r � 2

X
i<j

ninj = 2‘2 � ‘� (
mX
r=1

nr)
2 = ‘2 � ‘: (4.12)

Therefore dim(V
0
s (�1)) < 2‘2 � 5‘ + 4, as ‘ � 4. We can thus assume that there exist

1 � i < j � m such that �i�j = �1. Then ��1
i ��1

j = �1 and, since the �i’s are distinct, we
have that:

(4.13)

8>>>>>><>>>>>>:

�2
i 6= �1 and �2

j 6= �1, hence ��2
i 6= �1 and ��2

j 6= �1;

�i�r 6= �1, i < r � m, r 6= j, and �r�i 6= �1, 1 � r < i;

��1
i ��1

r 6= �1, i < r � m, r 6= j, and ��1
r ��1

i 6= �1, 1 � r < i;

�r�j 6= �1, 1 � r < j, r 6= i, and �j�r 6= �1, j < r � m;

��1
r ��1

j 6= �1, 1 � r < j, r 6= i, and ��1
j ��1

r 6= �1, j < r � m:

By (4.9), all of the above account for at least ni(ni� 1) +nj(nj � 1) + 2(ni +nj)(‘�ni�nj)
additional eigenvalues of s on V 0 different than �1. Therefore, we have:

dim(V
0

s (�1)) � 2‘2 � ‘�
mX
r=1

n2
r � ni(ni � 1)� nj(nj � 1)� 2(ni + nj)(‘� ni � nj): (4.14)

Assume dim(V
0
s (�1)) � 2‘2 � 5‘+ 4. Then:

4‘� 4�
mX
r=1

n2
r � ni(ni � 1)� nj(nj � 1)� 2(ni + nj)(‘� ni � nj) � 0: (4.15)

After simplifications, this becomes:

4‘� 4�
X
r 6=i;j

n2
r � 2n2

i � 2n2
j + (ni + nj)� 2(ni + nj)(‘� ni � nj) � 0:

Since
X
r 6=i;j

n2
r � 0, we must have:

4‘� 4� 2n2
i � 2n2

j � (ni + nj)(‘� ni � nj)� (ni + nj)(‘� ni � nj � 1) � 0:

Again, after simplifications, this becomes:

4‘� 4� (ni + nj)‘� n2
i + 2ninj � n2

j � (ni + nj)(‘� ni � nj � 1) � 0;

therefore
‘(4� ni � nj)� 4� (ni � nj)2 � (ni + nj)(‘� ni � nj � 1) � 0: (4.16)
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If ‘ � ni � nj � 1 < 0, then, as
mX
r=1

nr = ‘, we have m = 2 and so ‘ = n1 + n2. By

Inequality (4.16), it follows that :

‘(5� ‘)� 4� (2n1 � ‘)2 � 0:

As ‘ � 4 and �(2n1 � ‘)2 � 0, the above inequality holds if and only if ‘ = 4 and 2n1 = ‘,
hence if and only if ‘ = 4 and n1 = n2 = 2. Substituting in (4.14) gives dim(V

0
s (�1)) � 16

and we note that equality holds if and only if all eigenvalues of s on V 0 different than 1 and
the ones listed in (4.13) are equal to �1. Hence �1�

�1
2 = �1 and, as �1�2 = �1, it follows

that �2
1 = �2

2 = 1 and so, up to conjugation, s = diag(1; 1;�1;�1;�1;�1; 1; 1), as in (3:2).
On the other hand, if ‘�ni�nj�1 � 0, then, by (4.16), it follows that ‘(4�ni�nj) > 0

and so ni + nj � 3. Since ni � nj � 1, we deduce that (ni; nj) 2 f(2; 1); (1; 1)g. If
(ni; nj) = (2; 1), then, by (4.16), we have 7� 2‘ � 0, contradicting ‘ � 4. If (ni; nj) = (1; 1),
then, by (4.15), we have

2�
X
r 6=i;j

n2
r � 0:

As
X
r 6=i;j

n2
r � ‘� 2 and ‘ � 4, it follows that

X
r 6=i;j

n2
r � 2. We deduce that

X
r 6=i;j

n2
r = 2, hence

m = 4, ni = 1 for all 1 � i � 4 and ‘ = 4. Substituting in (4.14) gives dim(V
0
s (�1)) � 16

and we note that equality holds if and only if all eigenvalues of s on V 0 different than 1 and
the ones listed in (4.13) are equal to �1. Therefore �i��1

j = �1 for all 1 � i � 4 and all
i < j � 4, contradicting the fact that the �i’s are distinct. This completes the proof of the
proposition.

Corollary 4.2.6. Assume p - ‘ and let V = LG(!2). Moreover, let s 2 T n Z(G) and let
� 2 k� be an eigenvalue of s on V . Then one of the following holds:

(1) ‘ = 2 and dim(Vs(�)) � 4, where equality holds if and only if � = �1 and, up to
conjugation, s = diag(1;�1;�1; 1).

(2) ‘ = 3 and dim(Vs(�)) � 8, where we have equality if and only if one of the following
holds:

(2:1) � = 1 and, up to conjugation, s = diag(�1; �1; �1; �
�1
1 ; ��1

1 ; ��1
1 ) with �1 6= �1.

(2:2) p 6= 2, � = �1 and, up to conjugation, s = � diag(1; 1;�1;�1; 1; 1).

(3) ‘ = 4 and dim(Vs(�)) � 16, where equality holds if and only if � = �1 and, up to
conjugation, s = diag(1; 1;�1;�1;�1;�1; 1; 1).

(4) ‘ � 5 and dim(Vs(�)) � 2‘2� 5‘+ 3, where equality holds if and only if � = 1 and, up
to conjugation, s = � diag(1; : : : ; 1; �2; �

�1
2 ; 1; : : : ; 1) with �2 6= 1.

In particular, for ‘ = 2 there exist s 2 T n Z(G) which afford an eigenvalue � 2 k�

on V for which dim(Vs(�)) � dim(V ) �
p

dim(V ). On the other hand, for ‘ � 3 we have
dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T nZ(G) and all eigenvalues � 2 k� of s on V .
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Proof. Let s 2 T n Z(G) be as in hypothesis (yHs). Set V 0 = ^2(W ). By Lemma 2.8.2, since
p - ‘, it follows that V 0 = V �LG(0), thus dim(V ) = 2‘2�‘�1, dim(Vs(1)) = dim(V

0
s (1))�1

and dim(Vs(�)) = dim(V
0
s (�)) for all eigenvalues � 6= 1 of s on V .

We remark that for any eigenvalue � 2 k� of s on V such that � 6= ��1, by Inequality
(4.10), we have dim(Vs(�)) � ‘2 � ‘ and so dim(Vs(�)) < ‘2 for ‘ � 4, respectively
dim(Vs(�)) < 2‘2 � 5‘+ 3 for ‘ � 5. Furthermore, for the eigenvalue 1 of s on V , items (2)
and (3) of Proposition 4.2.5 establish statements (2:1) and (4) of this corollary.

In order to complete the proof, we assume p 6= 2 and consider the eigenvalue �1 of s
on V . For ‘ = 2 and ‘ = 4, items (1) and (3) of Proposition 4.2.5 establish statements (1)
and (3) of this corollary. For the case of ‘ = 3, by Case 1.1 and Case 1.2 of the proof of
Proposition 4.2.5, we have that dim(V

0
s (�1)) � 8, where equality holds if and only if m = 2

and �1�
�1
2 = �1. We determine that dim(Vs(�1)) � 8 and equality holds if and only if, up

to conjugation, s = � diag(1; 1;�1;�1; 1; 1), as in (2:2).
We can now assume that ‘ � 5. First, if �i�j 6= �1 for all 1 � i < j � m, then we

proceed as for Inequality (4.12) to determine that

dim(Vs(�1)) � ‘2 � ‘:

Since 0 < ‘2 � 4‘ + 3 for all ‘ � 5, it follows that dim(Vs(�1)) < 2‘2 � 5‘ + 3. We can
thus assume that there exist 1 � i < j � m such that �i�j = �1. Then, we argue as for
Inequality (4.14) to determine that

dim(Vs(�1)) � 2‘2 � ‘�
mX
r=1

n2
r � ni(ni � 1)� nj(nj � 1)� 2(ni + nj)(‘� ni � nj): (4.17)

Suppose that dim(Vs(�1)) � 2‘2 � 5‘+ 3. Then

4‘� 3�
mX
r=1

n2
r � ni(ni � 1)� nj(nj � 1)� 2(ni + nj)(‘� ni � nj) � 0: (4.18)

We proceed as in the proof for V 0s (�1), see (4.16), and we arrive at

‘(4� ni � nj)� 3� (ni � nj)2 � (ni + nj)(‘� ni � nj � 1) � 0: (4.19)

Assume that ‘� ni� nj � 1 < 0. Then m = 2, ‘ = n1 + n2 and, by Inequality (4.19), we get

8

13
(n1 �

5

4
)2 +

8

13
(n2 �

5

4
)2 � 1:

It follows that (n1; n2) 2 f(2; 2); (2; 1); (1; 1)g, contradicting ‘ � 5. Therefore ‘�ni�nj�1 �
0 and so, by (4.19), we have

‘(4� ni � nj) > 0:

Hence ni + nj � 3 and, since ni � nj, we have (ni; nj) 2 f(2; 1); (1; 1)g. If (ni; nj) = (2; 1),
then Inequality (4.19) gives �2‘ + 8 � 0, contradicting ‘ � 5. If (ni; nj) = (1; 1), then

Inequality (4.18) gives
X
r 6=i;j

n2
r � 3, therefore

X
r 6=i;j

n2
r = 3, as

mX
r=1

n2
r � ‘ and ‘ � 5. It follows
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that m = 5, ni = 1, for all 1 � i � 5, and ‘ = 5. Substituting in Inequality (4.17) gives
dim(Vs(�1)) � 28. Equality holds if and only if all eigenvalues of s on V different than 1
and the ones listed in (4.13) are equal to �1. By (4.9), it follows that �i��1

j = �i�
�1
r for all

1 � i � 5 and i < j < r � 5, contradicting the fact that the �i’s are distinct.
In conclusion, for ‘ = 2 we have shown that dim(Vs(�)) � 4 for all s 2 T n Z(G) and

all eigenvalues � 2 k� of s on V , and that there exist (s; �) 2 T n Z(G) � k� for which
equality holds, for example s = diag(1;�1;�1; 1) and � = �1. Therefore, there exist
(s; �) 2 T n Z(G) � k� such that dim(Vs(�)) � dim(V ) �

p
dim(V ). On the other hand,

for ‘ = 3 and ‘ = 4 we have proven that dim(Vs(�)) � 2‘2 � 6‘ + 8 for all s 2 T n Z(G)
and all eigenvalues � 2 k� of s on V , thus dim(Vs(�)) < dim(V ) �

p
dim(V ). Lastly, for

‘ � 5 we have proven that dim(Vs(�)) � 2‘2� 5‘+ 3 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V . Now, as the inequality 0 < 14‘2 � 31‘ + 17 holds for all ‘ � 5, we have
2‘2�5‘+3 < 2‘2�‘�1�

p
2‘2 � ‘� 1 for all ‘ � 5, hence dim(Vs(�)) < dim(V )�

p
dim(V )

for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V .

Corollary 4.2.7. Assume p j ‘ and let V = LG(!2). Moreover, let s 2 T n Z(G) and let
� 2 k� be an eigenvalue of s on V . Then one of the following holds:

(1) ‘ = 2 and dim(Vs(�)) � 2, where we have equality if and only if one of the following
holds:

(1:1) � = 1 and, up to conjugation, s = diag(�1; �1; �
�1
1 ; ��1

1 ) with �1 6= 1.

(1:2) � = ��1
1 and, up to conjugation, s = diag(�1; 1; 1; �

�1
1 ) with �1 6= 1.

(2) ‘ = 3 and dim(Vs(�)) � 8, where equality holds if and only if � = �1 and, up to
conjugation, s = � diag(1; 1;�1;�1; 1; 1).

(3) ‘ = 4 and dim(Vs(�)) � 14, where we have equality if and only if one of the following
holds:

(3:1) � = 1 and, up to conjugation, s = diag(�1; �1; �1; �1; �
�1
1 ; ��1

1 ; ��1
1 ; ��1

1 ) with
�1 6= 1.

(3:2) � = 1 and, up to conjugation, s = diag(1; 1; 1; �2; �
�1
2 ; 1; 1; 1) with �2 6= 1.

(4) ‘ � 5 and dim(Vs(�)) � 2‘2� 5‘+ 2, where equality holds if and only if � = 1 and, up
to conjugation, s = � diag(1; : : : ; 1; �2; �

�1
2 ; 1; : : : ; 1) with �2 6= 1.

In particular, for ‘ = 2 there exist s 2 T n Z(G) which afford an eigenvalue � 2 k�

on V for which dim(Vs(�)) � dim(V ) �
p

dim(V ). On the other hand, for ‘ � 3 we have
dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T nZ(G) and all eigenvalues � 2 k� of s on V .

Proof. Let s 2 T nZ(G) be as in hypothesis (yHs). Let V 0 = ^2(W ). By Lemma 2.8.2, since
p j ‘, we have that V 0 = LG(0) j V j LG(0), hence dim(V ) = 2‘2 � ‘ � 2, dim(Vs(1)) =
dim(V

0
s (1))� 2 and dim(Vs(�)) = dim(V

0
s (�)) for all eigenvalues � 6= 1 of s on V .

Let ‘ = 2 and note that, in this case, p = 2. For the eigenvalue 1 item (1:1) of Proposition
4.2.5 gives the result, while for any eigenvalue � 6= 1 of s on V , by Inequality (4.10), we have
dim(Vs(�)) � 2. Now, if m = 1, then dim(Vs(�)) = 2 if and only if �2

1 = ��2
1 , contradicting
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s =2 Z(G). On the other hand, if m = 2, then the eigenvalues of s on V , not necessarily
distinct, are �1�2, �1�

�1
2 , ��1

1 �2 and ��1
1 ��1

2 , see (4.9). One checks that dim(Vs(�)) = 2 if
and only if � = ��1

1 and, up to conjugation, s = diag(�1; 1; 1; �
�1
1 ) with �1 6= 1, as in (1:2).

We can now assume that ‘ � 3. Then for any eigenvalue � 2 k� of s on V such that
� 6= ��1, by Inequality (4.10), we have dim(Vs(�)) � ‘2 � ‘, therefore dim(Vs(�)) < ‘2 for
‘ = 3; 4, respectively dim(Vs(�)) < 2‘2� 5‘+ 2 for ‘ � 5. Moreover, Proposition 4.2.5 solves
the case of the eigenvalue � = 1 and, in particular, establishes statements (3) and (4) of the
corollary. Hence, to complete the proof, we only need to investigate the dimension of the
eigenspace corresponding to the eigenvalue �1 of s on V .

We first consider the case of ‘ = 3. By Case 1.1 and Case 1.2 of the proof of Proposition
4.2.5, we determine that dim(Vs(�1)) � 8 for all s 2 T nZ(G) and that equality holds if and
only if, up to conjugation, s = � diag(1; 1;�1;�1; 1; 1), as in (2).

As p j ‘ and as we want to determine dim(Vs(�1)), we can assume that ‘ � 5. If
�i�j 6= �1 for all 1 � i < j � m. We argue as for Inequality (4.12) to determine that

dim(Vs(�1)) � ‘2 � ‘:

As 0 < ‘2 � 4‘ + 2 for all ‘ � 4, it follows that dim(Vs(�1)) < 2‘2 � 5‘ + 2. Hence, we
can assume that there exist 1 � i < j � m such that �i�j = �1. Then, we argue as for
Inequality (4.14) to determine that:

dim(Vs(�1)) � 2‘2 � ‘�
mX
r=1

n2
r � ni(ni � 1)� nj(nj � 1)� 2(ni + nj)(‘� ni � nj): (4.20)

Assume dim(Vs(�1)) � 2‘2 � 5‘+ 2. Then:

4‘� 2�
mX
r=1

n2
r � ni(ni � 1)� nj(nj � 1)� 2(ni + nj)(‘� ni � nj) � 0: (4.21)

Once again, we proceed as for V 0s (�1), see (4.16), to arrive at

‘(4� ni � nj)� 2� (ni � nj)2 � (ni + nj)(‘� ni � nj � 1) � 0: (4.22)

Assume that ‘� ni� nj � 1 < 0. Then m = 2, ‘ = n1 + n2 and, by Inequality (4.22), we get

8

17
(n1 �

5

4
)2 +

8

17
(n2 �

5

4
)2 � 1:

Therefore (n1; n2) 2 f(2; 2); (2; 1); (1; 1)g, contradicting ‘ � 5. Thus ‘� ni � nj � 1 � 0 and
so by (4.22), we get

‘(4� ni � nj) > 0:

Hence ni + nj � 3 and, since ni � nj, we have (ni; nj) 2 f(2; 1); (1; 1)g. If (ni; nj) = (2; 1),
then, by (4.22), we get �2‘ + 9 � 0, contradicting ‘ � 5. On the other hand, if (ni; nj) =

(1; 1), then, by Inequality (4.21), we get
X
r 6=i;j

n2
r � 4. But, as

mX
r=1

n2
r � ‘ and ‘ � 5, it follows
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that
X
r 6=i;j

n2
r 2 f3; 4g. In both cases, since ‘ � 5, it follows that m = ‘, ni = 1, for all

1 � i � ‘, and ‘ � 6.
Assume that ‘ = 5. Then, up to conjugation, s = diag(�1; : : : ; �5; �

�1
5 ; : : : ; ��1

1 ) with
�i 6= ��1

j for all 1 � i < j � 5 and there exist 1 � r < q � 5 such that �r�q = �1. We
can assume without loss of generality that �1�2 = �1. Now, by (4.9), the eigenvalues of
s on V , not necessarily distinct, are: �i�j, ��1

i ��1
j , �i��1

j , ��1
i �j, 1 � i < j � 5 and 1

with multiplicity 3. Since �1�2 = �1, it follows that �1�i 6= �1, ��1
1 ��1

i 6= �1, �2�i 6= �1
and ��1

2 ��1
i 6= �1 for all 3 � i � 5, as the �j’s are distinct. This totals 12 eigenvalues of

s on V that are different than �1. Similarly, since �i 6= ��1
j for all 1 � i < j � 5, we

determine that ��1
1 �i 6= �1, �1�

�1
i 6= �1, ��1

2 �i 6= �1 and �2�
�1
i 6= �1 for all 3 � i � 5.

This amounts to another 12 eigenvalues of s on V that are different than �1. It follows that
dim(Vs(�1)) � 16, contradicting our assumption that dim(Vs(�1)) � 27.

If ‘ = 6, then, substituting in Inequality (4.20) gives dim(Vs(�1)) � 44. Equality holds
if and only if all eigenvalues of s on V different than 1 and those listed in (4.13) are equal
to �1. Therefore, �i��1

j = �i�
�1
r for all 1 � i � 6 and i < j < r � 6, contradicting the fact

that the �i’s are distinct.
In conclusion, for ‘ = 2 we have shown that dim(Vs(�)) � 2 for all s 2 T n Z(G) and

all eigenvalues � 2 k� of s on V and that there exist (s; �) 2 T n Z(G) � k� for which
equality holds, for example s = diag(�1; 1; 1; �

�1
1 ), with �1 6= 1, and � = 1. Therefore,

there exist (s; �) 2 T n Z(G) � k� such that dim(Vs(�)) � dim(V ) �
p

dim(V ). On the
other hand, for ‘ = 3 we have proven that dim(Vs(�)) � 8 for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V , thus dim(Vs(�)) < dim(V ) �

p
dim(V ). Lastly, for ‘ � 4 we

have proven that dim(Vs(�)) � 2‘2 � 5‘ + 2 for all s 2 T n Z(G) and all eigenvalues � 2 k�
of s on V . Now, as the inequality 0 < 14‘2 � 31‘ + 18 holds for all ‘ � 4, it follows that
2‘2�5‘+2 < 2‘2�‘�2�

p
2‘2 � ‘� 2 for all ‘ � 4, hence dim(Vs(�)) < dim(V )�

p
dim(V )

for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V .

To conclude this subsection, we remark that Lemma 4.2.3, Proposition 4.2.4 and Corollaries
4.2.6 and 4.2.7 give the proof of Theorems 4.2.1 and 4.2.2 for the families of kG-modules
given by p-restricted dominant weights � 2 FC‘ .

4.2.2 The particular modules

As previously mentioned, in this subsection we will give an upper-bound for dim(Vs(�)),
where (s; �) 2 T n Z(G)� k� and V is an irreducible kG-module with p-restricted dominant
highest weight featured in one of the Tables 2.7.2 and 2.7.3. In order to determine

max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g we will use the inductive algorithm of Subsection 2.4.3. For

this, we will use the properties of the Levi subgroup L1 of the maximal parabolic subgroup
P1 of G given in Section 2.4. We recall that L1 = Z(L1)�[L1; L1], where Z(L1)� is a one-
dimensional torus and [L1; L1] is a simply connected group of type C‘�1; and that we have
denote by T 0 the maximal torus T \ [L1; L1] of [L1; L1]. Moreover, for ‘ = 2, we also recall
that L2, a Levi subgroup of the maximal parabolic subgroup P2 of G, is such that L2 =
Z(L2)�[L2; L2], where Z(L2)� is a one-dimensional torus and [L2; L2] is a simply connected
group of type A1. We abuse notation and denote by T

0 the maximal torus T \ [L2; L2]
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of [L2; L2], as it will be clear from the context which derived subgroup we are refering to.
Lastly, although we do not mention the result explicitly, we make great use of the data in
[Lü01b], when discussing weights and weight multiplicities in this subsection.

Let s 2 T . Then s = z � h, where z 2 Z(L1)� and h 2 [L1; L1]. As z 2 Z(L1)�, we have

z =
‘Y

j=1

h�j(c
kj), where c 2 k� and kj 2 Z for all 1 � j � ‘. Moreover, we have �j(z) = 1 for

all 2 � j � ‘ and so z =
‘Y
i=1

h�i(c) for some c 2 k�. As h 2 [L1; L1], we have h =
‘Y

j=2

h�j(aj)

with aj 2 k� for all 2 � j � ‘. Therefore, s = h�1(c) � (
‘Y

j=2

h�j(caj)) with c 2 k� and aj 2 k�

for all 2 � j � ‘.
Let V be an irreducible kG-module of p-restricted dominant highest weight � 2 X(T ),

where � = d1!1 + � � �+ d‘!‘ with 0 � d1; : : : ; d‘ � p� 1. We consider the decomposition:

V j[L1;L1]=

e1(�)M
i=0

V i;

where V i =
M
2N�1

V��i�1� for all 0 � i � e1(�). Let s 2 T and write s = z � h as above. By

(2.5), we have that:

siz = (�� i�1 � )(z) = (�� i�1)(
‘Y

j=1

h�j(c)) =
‘Y

j=1

cdj � c�i:

Therefore, z acts on V i, 0 � i � e1(�), as the scalar siz. Now, let �i1; : : : ; �iti , ti � 1, be
the distinct eigenvalues of h on V i, 0 � i � e1(�), and let ni1; : : : ; niti be their respective
multiplicities. Then, by Lemma 2.4.8, it follows that the distinct eigenvalues of s on V i are
siz�

i
1; : : : ; s

i
z�

i
ti
with respective multiplicities ni1; : : : ; niti .

Now, we consider the case of ‘ = 2 and let s 2 T . Then s = z0 � h0, where z0 2 Z(L2)�

and h0 2 [L2; L2]. As z0 2 Z(L2)�, we have �1(z0) = 1 and so z0 = h�1(c)h�2(c2) with c 2 k�.
As h0 2 [L2; L2], we have h0 = h�1(a1), where a1 2 k�. Therefore, s = h�1(ca1)h�2(c2) with
c; a2 2 k�. As before, let V be an irreducible kG-module of p-restricted dominant highest
weight � 2 X(T ), � = d1!1 + � � � + d‘!‘ with 0 � d1; : : : ; d‘ � p� 1. We have the following
decomposition:

V j[L2;L2]=

e2(�)M
i=0

V i;

where V i =
M
2N�2

V��i�2� for all 0 � i � e2(�). Let s 2 T and write s = z0 � h0 as above.

By (2.5), we have that:

siz0 := (�� i�2 � )(z0) = (�� i�2)(h�1(c)h�2(c2)) = cd1+2d2 � c�2i:
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Therefore, z0 acts on V i, 0 � i � e2(�), as the scalar siz0 . Now, let �i1; : : : ; �iti , ti � 1, be
the distinct eigenvalues of h0 on V i, 0 � i � e2(�), and let ni1; : : : ; niti be their respective
multiplicities. Then, as in the previous case, by Lemma 2.4.8, the distinct eigenvalues of s
on V i are siz0�i1; : : : ; siz0�iti , with respective multiplicities ni1; : : : ; niti .

Proposition 4.2.8. Let k be an algebraically closed field of characteristic p = 5. Assume
‘ = 2 and let V = LG(!1 + !2). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s
on V we have

dim(Vs(�)) � 6;

where there exist pairs (s; �) 2 T n Z(G)� k� for which the bound is attained.
In particular, dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and all eigenvalues

� 2 k� of s on V .

Proof. Let � = !1 + !2 and let L = L2. Then dim(V ) = 12, as p = 5, and, by Lemma 2.4.5,
we have e2(�) = 3, therefore

V j[L;L]= V 0 � V 1 � V 2 � V 3;

where V i =
M
2N�2

V��i�2� for all 0 � i � 3. By [Smi82, Proposition], it follows that

V 0 �= LL(!1) and, by Lemma 2.4.3, we also have V 3 �= (LL(!1))� �= LL(!1). Now, the
weight (� � �2) jT 0= 3!1 admits a maximal vector in V 1, therefore V 1 has a composition
factor isomorphic to LL(3!1) and thus dim(V 1) � dim(LL(3!1)) = 4, since p = 5. Since
V 2 �= (V 1)�, see Lemma 2.4.3, it follows that dim(V 1) = 4 and so V 1 �= LL(3!1), hence
V 2 �= (LL(3!1))� �= LL(3!1). Therefore, we have:

V j[L;L]
�= LL(!1)� LL(3!1)� LL(3!1)� LL(!1): (4.23)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0; 1; 2 or i = 3,

then s 2 Z(L)� n Z(G), and so s = h�1(c)h�2(c2) with c2 6= 1. In this case, as s acts on each
V i, 0 � i � 3, as scalar multiplication by c3�2i, we determine that the eigenvalues of s on
V , not necessarily distinct, are:8>>><>>>:

c3 with dim(Vs(c
3)) � dim(V 0) = 2;

c with dim(Vs(c)) � dim(V 1) = 4;

c�1 with dim(Vs(c
�1)) � dim(V 2) = 4;

c�3 with dim(Vs(c
�3)) � dim(V 3) = 2:

As c2 6= 1, it follows that dim(Vs(�)) � 6 for all eigenvalues � 2 k� of s on V . Moreover, for
s = h�1(c)h�2(�1) with c2 = �1, we have dim(Vs(�c)) = 6.

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V and

all 0 � i � 3. We write s = z0 � h0, where z0 2 Z(L)� and h0 2 [L;L]. Since z0 acts by scalar
multiplication on V i, 0 � i � 3, it follows that dim(V i

h0(�h0)) < dim(V i) for all 0 � i � 3,
where �h0 is any eigenvalue of h0 on V i. Now, by Lemma 3.2.3, we have dim(V 0

h0(�h0)) �
1, respectively dim(V 3

h0(�h0)) � 1, for all eigenvalues �h0 of h0 on V 0, respectively on V 3.
Similarly, by Proposition 3.2.9, we have dim(V 1

h0(�h0)) � 2, respectively dim(V 2
h0(�h0)) � 2,
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for all eigenvalues �h0 of h0 on V 1, respectively on V 2. This gives dim(Vh0(�h0)) � 6 for all
eigenvalues �h0 of h0 on V , therefore dim(Vs(�)) � 6 for all eigenvalues � 2 k� of s on V .

In conclusion, we have shown that dim(Vs(�)) � 6 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V , and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound is
attained. In particular, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and

all eigenvalues � 2 k� of s on V .

Proposition 4.2.9. Let k be an algebraically closed field of characteristic p 6= 5. Assume
‘ = 2 and let V = LG(!1 + !2). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s
on V we have

dim(Vs(�)) � 8;

where there exist pairs (s; �) 2 T n Z(G)� k� for which the bound is attained.
In particular, dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and all eigenvalues

� 2 k� of s on V .

Proof. Set L = L1 and � = !1 + !2. Then dim(V ) = 16, as p 6= 5, and, by Lemma 2.4.5, we
have e1(�) = 4, therefore

V j[L;L]= V 0 � � � � � V 4;

where V i =
M
2N�1

V��i�1� for all 0 � i � 4. By [Smi82, Proposition], it follows that

V 0 �= LL(!2) and, by Lemma 2.4.3, we also have V 4 �= (LL(!2))� �= LL(!2). Now, the
weight (� � �1) jT 0= 2!2 admits a maximal vector in V 1, therefore V 1 has a composition
factor isomorphic to LL(2!2). Moreover, we also note that the weight (�� �1 � �2) jT 0= 0
occurs with multiplicity 2 in V 1, where it has multiplicity 1� �p;2 in the composition factor
of V 1 isomorphic to LL(2!2). It follows that dim(V 1) � 4 and, by Lemma 2.4.3, we also have
dim(V 3) � 4, hence dim(V 2) � 4. Similarly, the weight (�� 2�1��2) jT 0= !2 is the highest
weight in V 2, in which it occurs with multiplicity 2, and admits a maximal vector. It follows
that V 2 has two composition factors, both isomorphic to LL(!2). As dim(LL(!2)) = 2, we
deduce that V 2 has exactly two composition factors, both isomorphic to LL(!2), and, by
[Jan07, II.2.14], we have V 2 �= LL(!2)�LL(!2). Moreover, it also follows that dim(V 1) = 4
and dim(V 3) = 4. If p 6= 2, then V 1, hence V 3, by Lemma 2.4.3, consists of exactly two
composition factors: one isomorphic to LL(2!2) and one isomorphic to LL(0). Then, by
[Jan07, II.2.14], we have V 1 �= LL(2!2) � LL(0) and V 3 �= LL(2!2) � LL(0). Therefore, in
the case of p 6= 2, we have:

V j[L;L]
�= LL(!2)� LL(2!2)� LL(0)� LL(!2)� LL(!2)� LL(2!2)� LL(0)� LL(!2):

On the other hand, if p = 2, then V 1, hence V 3, by Lemma 2.4.3, has three composition
factors: one isomorphic to LL(!2)(2) and two isomorphic to LL(0).

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0; 1; 2; 3 or

i = 4, then s 2 Z(L)� n Z(G), and so s = h�1(c)h�2(c) with c 6= 1. In this case, as s acts on
each V i, 0 � i � 4, as scalar multiplication by c2�i, we determine that the eigenvalues of s
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on V , not necessarily distinct, are:8>>>>>><>>>>>>:

c2 with dim(Vs(c
2)) � dim(V 0) = 2;

c with dim(Vs(c)) � dim(V 1) = 4;

1 with dim(Vs(1)) � dim(V 2) = 4;

c�1 with dim(Vs(c
�1)) � dim(V 3) = 4;

c�2 with dim(Vs(c
�2)) � dim(V 4) = 2:

Since c 6= 1, it follows that dim(Vs(�)) � 8 for all eigenvalues � 2 k� of s on V . Moreover,
for s = h�1(�1)h�2(�1) 2 Z(L)� n Z(G) we have dim(Vs(�1)) = 8.

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V and

all 0 � i � 4. We write s = z � h, where z 2 Z(L)� and h 2 [L;L]. Since z acts by scalar
multiplication on V i, 0 � i � 4, it follows that dim(V i

h(�h)) < dim(V i) for all 0 � i � 4,
where �h is any eigenvalue of h on V i. Using (3.1) of the proof of Proposition 3.2.4, we
determine that the eigenvalues of h on V 1 are of the form a2

1, 1 with multiplicity 2, and a�2
1 .

Note that, if a2
1 = 1, or a�2

1 = 1, then dim(V 1
h (1)) = dim(V 1), hence dim(V 1

s (c)) = dim(V 1),
contradicting our assumption. Therefore, dim(V 1

h (�h)) � 2 for all eigenvalues �h of h on V 1.
Moreover, as V 3 �= (V 1)�, we also have dim(V 3

h (�h)) � 2 for all eigenvalues �h of h on V 3.
Lastly, by Lemma 3.2.3, we have dim(V 0

h (�h)) � 1, dim(V 2
h (�h)) � 2 and dim(V 4

h (�h)) � 1
for all eigenvalues �h of h on V 0, V 2 and V 4, respectively. It follows that dim(Vh(�h)) � 8
for all eigenvalues �h of h on V and so dim(Vs(�)) � 8 for all eigenvalues � 2 k� of s on V .

In conclusion, we have shown that dim(Vs(�)) � 8 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V , and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound is
attained. In particular, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and

all eigenvalues � 2 k� of s on V .

Proposition 4.2.10. Let k be an algebraically closed field of characteristic p 6= 2. Assume
‘ = 2 and let V = LG(2!2). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V
we have

dim(Vs(�)) � 10� �p;5;

where there exist pairs (s; �) 2 T n Z(G)� k� for which the bound is attained.
In particular, dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and all eigenvalues

� 2 k� of s on V .

Proof. Let � = 2!2 and let L = L1. Then dim(V ) = 14� �p;5 and, by Lemma 2.4.5, we have
e1(�) = 4, therefore

V j[L;L]= V 0 � V 1 � V 2 � V 3 � V 4;

where V i =
M
2N�1

V��i�1� for all 0 � i � 4. By [Smi82, Proposition], it follows that

V 0 �= LL(2!2) and, by Lemma 2.4.3, we also have V 4 �= (LL(2!2))� �= LL(2!2). Now, the
weight (���1��2) jT 0= !2 admits a maximal vector in V 1, therefore V 1 has a composition
factor isomorphic to LL(!2) and so dim(V 1) � dim(LL(!2)) = 2. Since V 3 �= (V 1)�, see
Lemma 2.4.3, we have dim(V 3) � 2, and so dim(V 2) � 4 � �p;5. Lastly, in V 2 the weight
(��2�1��2) jT 0= 2!2 admits a maximal vector, thus V 2 has a composition factor isomorphic
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to LL(2!2) and dim(V 2) � dimLL(2!2) = 3, as p 6= 2. If p = 5, then V 1 �= LL(!2),
V 3 �= (LL(!2))� �= LL(!2) and V 2 �= LL(2!2). Therefore

V j[L;L]
�= LL(2!2)� LL(!2)� LL(2!2)� LL(!2)� LL(2!2): (4.24)

Similarly, if p 6= 5, then, as 3 � dim(V 2) � 4, it follows that V 1 �= LL(!2), V 3 �= (LL(!2))� �=
LL(!2) and dim(V 2) = 4. Therefore, V 2 consists of exactly two composition factors: one
isomorphic to LL(2!2) and one to LL(0). We use [Jan07, II.2.14] to show that V 2 �= LL(2!2)�
LL(0), and so

V j[L;L]
�= LL(2!2)� LL(!2)� LL(2!2)� LL(0)� LL(!2)� LL(2!2): (4.25)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0; 1; 2; 3 or

i = 4, then s 2 Z(L)� n Z(G), and so s = h�1(c)h�2(c) with c 6= 1. In this case, as s acts on
each V i, 0 � i � 4, as scalar multiplication by c2�i, we determine that the eigenvalues of s
on V , not necessarily distinct, are:8>>>>>><>>>>>>:

c2 with dim(Vs(c
2)) � dim(V 0) = 3;

c with dim(Vs(c)) � dim(V 1) = 2;

1 with dim(Vs(1)) � dim(V 2) = 4� �p;5;

c�1 with dim(Vs(c
�1)) � dim(V 3) = 2;

c�2 with dim(Vs(c
�2)) � dim(V 4) = 3:

As c 6= 1, it follows that dim(Vs(�)) � 10��p;5 for all eigenvalues � 2 k� of s on V . Moreover,
for s = h�1(�1)h�2(�1) 2 Z(L)� n Z(G) we have dim(Vs(1)) = 10� �p;5.

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on

V and all 0 � i � 4. We write s = z � h, where z 2 Z(L)� and h 2 [L;L]. Since z
acts by scalar multiplication on V i, 0 � i � 4, it follows that dim(V i

h(�h)) < dim(V i)
for all 0 � i � 4, where �h is any eigenvalue of h on V i. By Proposition 3.2.4, we have
dim(V 0

h (�h)) � 2, dim(V 4
h (�h)) � 2 and dim(V 2

h (�h)) � 3 � �p;5 for all eigenvalues �h of
h on V 0, V 4 and V 2, respectively. Similarly, by Lemma 3.2.3, we have dim(V 1

h (�h)) � 1,
respectively dim(V 3

h (�h)) � 1, for all eigenvalues �h of h on V 1, respectively on V 3. It follows
that dim(Vh(�h)) � 9� �p;5 for all eigenvalues �h of h on V , therefore dim(Vs(�)) � 9� �p;5
for all eigenvalues � 2 k� of s on V .

In conclusion, we proved that dim(Vs(�)) � 10��p;5 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V , and there exist pairs (s; �) 2 T nZ(G)�k� for which the bound is attained.
Therefore, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T nZ(G) and all eigenvalues

� 2 k� of s on V .

Proposition 4.2.11. Let k be an algebraically closed field of characteristic p 6= 2; 3. Assume
‘ = 2 and let V = LG(3!1). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V
we have

dim(Vs(�)) � 10;

where there exist pairs (s; �) 2 T n Z(G)� k� for which the bound is attained.
In particular, we have dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 T n Z(G) and all

eigenvalues � 2 k� of s on V .
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Proof. Let � = 3!1 and let L = L2. Then dim(V ) = 20, as p 6= 2; 3, and, by Lemma 2.4.5,
we have e2(�) = 3, therefore:

V j[L;L]= V 0 � V 1 � V 2 � V 3;

where V i =
M
2N�2

V��i�2� for all 0 � i � 3. By [Smi82, Proposition], it follows that

V 0 �= LL(3!1) and so V 3 �= (LL(3!1))� �= LL(3!1), see Lemma 2.4.3. Therefore dim(V 1) +
dim(V 2) = 12 and, as V 2 �= (V 1)�, see Lemma 2.4.3, we deduce that dim(V 1) = dim(V 2) = 6.
Now, the weight (� � �1 � �2) jT 0= 3!1 admits a maximal vector in V 1, thus V 1 has a
composition factor isomorphic to LL(3!1). Moreover, the dominant weight (��2�1��2) jT 0=
!1, occurring with multiplicity 2 in V 1, has multiplicity 1 in the composition factor of V 1

isomorphic to LL(3!1). As dim(V 1) = 6, we determine that V 1 consists of exactly two
composition factors: one isomorphic to LL(3!1) and one isomorphic to LL(!1). As p 6= 2; 3,
we use [Jan07, II.2.14] to show that V 1 �= LL(3!1) � LL(!1). Lastly, as V 2 �= (V 1)�, it
follows that V 2 �= LL(3!1)� LL(!1), and so:

V j[L;L]
�= LL(3!1)� LL(3!1)� LL(!1)� LL(3!1)� LL(!1)� LL(3!1): (4.26)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0; 1; 2 or i = 3,

then s 2 Z(L)� n Z(G), and so s = h�1(c)h�2(c2) with c2 6= 1. In this case, as s acts on each
V i, 0 � i � 3, as scalar multiplication by c3�2i, we determine that the eigenvalues of s on
V , not necessarily distinct, are:8>>><>>>:

c3 with dim(Vs(c
3)) � dim(V 0) = 4;

c with dim(Vs(c)) � dim(V 1) = 6;

c�1 with dim(Vs(c
�1)) � dim(V 2) = 6;

c�3 with dim(Vs(c
�3)) � dim(V 3) = 4:

As c2 6= 1, it follows that dim(Vs(�)) � 10 for all eigenvalues � 2 k� of s on V . Moreover,
for s = h�1(c)h�2(�1) with c2 = �1 we have dim(Vs(�c)) = 10.

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V

and all 0 � i � 3. We write s = z0 � h0, where z0 2 Z(L)� and h0 2 [L;L]. Since z0
acts by scalar multiplication on V i, 0 � i � 3, it follows that dim(V i

h0(�h0)) < dim(V i)
for all 0 � i � 3, where �h0 is any eigenvalue of h0 on V i. Now, by Proposition 3.2.9, we
have dim(V 0

h0(�h0)) � 2, respectively dim(V 3
h0(�h0)) � 2, for all eigenvalues �h0 of h0 on V 0,

respectively on V 3. Moreover, by the same result together with Lemma 3.2.3, it follows
that dim(V 1

h0(�h0)) � 3 and dim(V 2
h0(�h0)) � 3 for all eigenvalues �h0 of h0 on V 1 and V 2,

respectively. This gives dim(Vh0(�h0)) � 10 for all eigenvalues �h0 of h0 on V , therefore
dim(Vs(�)) � 10 for all eigenvalues � 2 k� of s on V .

In conclusion, we have shown that dim(Vs(�)) � 10 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V , and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound is
attained. In particular, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and

all eigenvalues � 2 k� of s on V .
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Proposition 4.2.12. Let k be an algebraically closed field of characteristic p = 7. Assume
‘ = 2 and let V = LG(!1 + 2!2). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s
on V we have

dim(Vs(�)) � 12;

where there exist pairs (s; �) 2 T n Z(G)� k� for which the bound is attained.
In particular, dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and all eigenvalues

� 2 k� of s on V .

Proof. Let � = !1 + 2!2 and let L = L1. Then dim(V ) = 24, as p = 7, and, by Lemma
2.4.5, we have e1(�) = 6, therefore:

V j[L;L]= V 0 � V 1 � � � � � V 6;

where V i =
M
2N�1

V��i�1� for all 0 � i � 6. By [Smi82, Proposition], it follows that V 0 �=

LL(2!2) and, moreover, by Lemma 2.4.3, we also have V 6 �= (LL(2!2))� �= LL(2!2). Now, in
V 1, the weight (�� �1) jT 0= 3!2 admits a maximal vector, therefore V 1 has a composition
factor isomorphic to LL(3!2) and dim(V 1) � dim(LL(3!2)) = 4, since p = 7. Moreover,
by Lemma 2.4.3, we also have dim(V 5) � 4. Similarly, the weight (� � 2�1 � �2) jT 0= 2!2

admits a maximal vector in V 2, thus V 2 has a composition factor isomorphic to LL(2!2)
and dim(V 2) � dim(LL(2!2)) = 3, as p = 7. Once more, by Lemma 2.4.3, we also have
dim(V 4) � 3. Lastly, the weight (�� 3�1��2) jT 0= 3!2 admits a maximal vector in V 3 and
so V 3 has a composition factor isomorphic to LL(3!2), hence dim(V 3) � 4, since p = 7. We
deduce that:

V j[L;L]
�= LL(2!2)� LL(3!2)� LL(2!2)� LL(3!2)� LL(2!2)� LL(3!2)� LL(2!2): (4.27)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where 0 � i � 5 or i = 6,

then s 2 Z(L)� n Z(G), and so s = h�1(c)h�2(c) with c 6= 1. In this case, as s acts on each
V i, 0 � i � 6, as scalar multiplication by c3�i, we determine that the eigenvalues of s on V ,
not necessarily distinct, are:8>>>>>>>>>>><>>>>>>>>>>>:

c3 with dim(Vs(c
3)) � dim(V 0) = 3;

c2 with dim(Vs(c
2)) � dim(V 1) = 4;

c with dim(Vs(c)) � dim(V 2) = 3;

1 with dim(Vs(1)) � dim(V 3) = 4;

c�1 with dim(Vs(c
�1)) � dim(V 4) = 3;

c�2 with dim(Vs(c
�2)) � dim(V 5) = 4;

c�3 with dim(Vs(c
�3)) � dim(V 6) = 3:

As c 6= 1, it follows that dim(Vs(�)) � 12 for all eigenvalues � 2 k� of s on V . Moreover, for
s = h�1(�1)h�2(�1) 2 Z(L)� n Z(G) we have dim(Vs(�1)) = dim(Vs(1)) = 12.

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V

and all 0 � i � 6. We write s = z � h, where z 2 Z(L)� and h 2 [L;L]. Since z acts
by scalar multiplication on V i, 0 � i � 6, it follows that dim(V i

h(�h)) < dim(V i) for all
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0 � i � 6, where �h is any eigenvalue of h on V i. Now, by Propositions 3.2.4 and 3.2.9,
we have dim(V i

h(�h)) � 2 for all 0 � i � 6 and all eigenvalues �h of h on V i. It follows
that dim(Vh(�h)) � 14 for all eigenvalues �h of h on V , therefore dim(Vs(�)) � 14 for all
eigenvalues � 2 k� of s on V . However, we will show that, in fact, we have dim(Vs(�)) � 12
for all pairs (s; �) 2 T n Z(G)� k�.

Assume there exist (s; �) 2 T nZ(G)�k� with the property that dim(Vs(�)) > 12. Then,
as V is a self-dual kG-module and dim(V ) = 24, it follows that � = �1. Moreover, since
dim(Vs(�1)) > 12, by the arguments of the previous paragraph, it follows that there exist
at least 6 V i’s such that dim(V

0
s (�1)) = 2. Furthermore, as V 6�i �= (V i)� for all 0 � i � 6,

we determine that dim(V i
s (�1)) = 2 for i = 0; 1; 2; 4; 5 and i = 6. We write s = z � h, where

z = h�1(c)h�2(c) and h 2 [L;L]. Let �ih, 0 � i � 6, be the eigenvalue of h on V i with the
property that � = c3�i�ih. We have that dim(V i

h(�ih)) = 2 for i = 0; 1; 2; 4; 5 and i = 6. We
now use Proposition 3.2.4 to determine that �2

h = �1 and so, we get c = ��. Similarly, we
use the proof of Proposition 3.2.9 to determine that �1

h = d�1, where d2 = �1. Therefore,
we have � = c2d�1 = (��)2d�1 = d�1, contradicting the fact that d2 = �1. This shows that
there do not exist pairs (s; �) 2 T n Z(G)� k� such that dim(Vs(�)) > 12.

In conclusion, we have shown that dim(Vs(�)) � 12 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V , and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound is
attained. In particular, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and

all eigenvalues � 2 k� of s on V .

Proposition 4.2.13. Let k be an algebraically closed field of characteristic p = 7. Assume
‘ = 2 and let V = LG(3!2). Then for all s 2 T nZ(G) and all eigenvalues � 2 k� of s on V ,
we have

dim(Vs(�)) � 16;

where there exist pairs (s; �) 2 T n Z(G)� k� for which the bound is attained.
In particular, dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and all eigenvalues

� 2 k� of s on V .

Proof. Let � = 3!2 and let L = L1. Then dim(V ) = 25, as p = 7, and, by Lemma 2.4.5, we
have e1(�) = 6, therefore

V j[L;L]= V 0 � � � � � V 6;

where V i =
M
2N�1

V��i�1� for all 0 � i � 6. By [Smi82, Proposition], it follows that

V 0 �= LL(3!2) and thus V 6 �= (LL(3!2))� �= LL(3!2), see Lemma 2.4.3. Now, the weight
(���1��2) jT 0= 2!2 admits a maximal vector in V 1, therefore V 1 has a composition factor
isomorphic to LL(2!2) and dim(V 1) � dim(LL(2!2)) = 3, since p = 7. Moreover, by Lemma
2.4.3, we also have dim(V 5) � 3. The weight (� � 2�1 � �2) jT 0= 3!2 admits a maximal
vector in V 2, therefore V 2 has a composition factor isomorphic to LL(3!2) and dim(V 2) �
dim(LL(3!2)) = 4, since p = 7. Once more, by Lemma 2.4.3, we have dim(V 4) � 4. Lastly,
the weight (� � 3�1 � 2�2) jT 0= 2!2 admits a maximal vector in V 3, therefore V 3 has a
composition factor isomorphic to LL(2!2) and dim(V 3) � 3. We deduce that:

V j[L;L]
�= LL(3!2)� LL(2!2)� LL(3!2)� LL(2!2)� LL(3!2)� LL(2!2)� LL(3!2): (4.28)
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If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where 0 � i � 5 or i = 6,

then s 2 Z(L)� n Z(G), and so s = h�1(c)h�2(c) with c 6= 1. In this case, as s acts on each
V i, 0 � i � 6, as scalar multiplication by c3�i, we determine that the eigenvalues of s on V ,
not necessarily distinct, are:8>>>>>>>>>>><>>>>>>>>>>>:

c3 with dim(Vs(c
3)) � dim(V 0) = 4;

c2 with dim(Vs(c
2)) � dim(V 1) = 3;

c with dim(Vs(c)) � dim(V 2) = 4;

1 with dim(Vs(1)) � dim(V 3) = 3;

c�1 with dim(Vs(c
�1)) � dim(V 4) = 4;

c�2 with dim(Vs(c
�2)) � dim(V 5) = 3;

c�3 with dim(Vs(c
�3)) � dim(V 6) = 4:

As c 6= 1, it follows that dim(Vs(�)) � 16 for all eigenvalues � 2 k� of s on V . Moreover, for
s = h�1(�1)h�2(�1) 2 Z(L)� n Z(G) we have dim(Vs(�1)) = 16.

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on

V and all 0 � i � 6. We write s = z � h, where z 2 Z(L)� and h 2 [L;L]. Since z
acts by scalar multiplication on V i, 0 � i � 6, it follows that dim(V i

h(�h)) < dim(V i) for
all 0 � i � 6, where �h is any eigenvalue of h on V i. Now, by Propositions 3.2.9 and
3.2.4, we have dim(V i

h(�h)) � 2 for all eigenvalues �h of h on V i, 0 � i � 6. It follows
that dim(Vh(�h)) � 14 for all eigenvalues �h of h on V , therefore dim(Vs(�)) � 14 for all
eigenvalues � 2 k� of s on V .

In conclusion, we have shown that dim(Vs(�)) � 16 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V , and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound is
attained. In particular, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and

all eigenvalues � 2 k� of s on V .

Proposition 4.2.14. Let k be an algebraically closed field of characteristic p = 3. Assume
‘ = 2 and let V = LG(2!1 + !2). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s
on V we have

dim(Vs(�)) � 16;

where there exist pairs (s; �) 2 T n Z(G)� k� for which the bound is attained.
In particular, we have dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 T n Z(G) and all

eigenvalues � 2 k� of s on V .

Proof. Let � = 2!1 + !2 and let L = L2. Then dim(V ) = 25, as p = 3, and, by Lemma
2.4.5, we have e2(�) = 4, therefore

V j[L;L]= V 0 � V 1 � � � � � V 4;

where V i =
M
2N�2

V��i�2� for all 0 � i � 4. By [Smi82, Proposition], it follows that

V 0 �= LL(2!1) and therefore V 4 �= (LL(2!1))� �= LL(2!1), see Lemma 2.4.3. Now, the weight
(���2) jT 0= 4!1 admits a maximal vector in V 1, thus V 1 has a composition factor isomorphic
to LL(4!1). We remark that, as p = 3, we have LL(4!1) �= LL(!1)
LL(!1)(3), see Theorem
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2.3.8, thus dim(V 1) � 4. Moreover, we also note that the dominant weight (��2�1��2) jT 0=
0, occurring with multiplicity 2 in V 1, is not a sub-dominant weight in the composition factor
of V 1 isomorphic to LL(!1)
LL(!1)(3). It follows that dim(V 1) � 6, hence dim(V 3) � 6, by
Lemma 2.4.3, thereby dim(V 2) � 7. Similarly, the weight (�� �1 � 2�2) jT 0= 4!1 admits a
maximal vector in V 2, thus V 2 has a composition factor isomorphic to LL(!1) 
 LL(!1)(3).
Moreover, the dominant weight (��2�1�2�2) jT 0= 2!1, occurring with multiplicity 2 in V 2,
is a sub-dominant weight in the composition factor of V 2 isomorphic to LL(!1)
 LL(!1)(3),
in which it has multiplicity 1. As p = 3, we have dim(LL(2!1)) = 3 and so V 2 consists of
exactly two composition factors: one isomorphic to LL(!1)
LL(!1)(3) and one isomorphic to
LL(2!1). It follows that dim(V 1) = 6, therefore V 1 is composed of exactly three composition
factors: two isomorphic to LL(0) and one isomorphic to LL(!1)
LL(!1)(3). Lastly, we apply
Lemma 2.4.3 once more to determine that V 3 also consists of exactly three composition
factors: two isomorphic to LL(0) and one isomorphic to LL(!1)
 LL(!1)(3).

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where 0 � i � 3 or i = 4,

then s 2 Z(L)� n Z(G), and so s = h�1(c)h�2(c2) with c2 6= 1. In this case, as s acts on each
V i, 0 � i � 4, as scalar multiplication by c4�2i, we determine that the eigenvalues of s on
V , not necessarily distinct, are:8>>>>>><>>>>>>:

c4 with dim(Vs(c
4)) � dim(V 0) = 3;

c2 with dim(Vs(c
2)) � dim(V 1) = 6;

1 with dim(Vs(1)) � dim(V 2) = 7;

c�2 with dim(Vs(c
�2)) � dim(V 3) = 6;

c�4 with dim(Vs(c
�4)) � dim(V 4) = 3:

As c2 6= 1, it follows that dim(Vs(�)) � 13 for all eigenvalues � 2 k� of s on V .
We can now assume that dim(V i

s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V
and all 0 � i � 4. We write s = z0 � h0, where z0 2 Z(L)�, z0 = h�1(c)h�2(c2) with c 2 k�,
and h0 2 [L;L]. Since z0 acts by scalar multiplication on V i, 0 � i � 4, it follows that
dim(V i

h0(�h0)) < dim(V i) for all 0 � i � 4, where �h0 is any eigenvalue of h0 on V i. First,
we will show that dim(V 1

h0(�h0)) � 4. For this, we recall that V 1 has three composition
factors: two isomorphic to LL(0) and one isomorphic to LL(4!1). Now, by the proof of
Proposition 3.2.9, we determine that the eigenvalues of h0 on V 1, not necessarily distinct,
are 1 with multiplicity 2, a4

1, a2
1, a

�2
1 and a�4

1 , where a1 2 k�. If a2
1 = 1, then dim(V 1

h0(1)) = 6
and so dim(V 1

s (c2)) = 6, contradicting our assumption. Therefore, a2
1 6= 1 and we have

dim(V 1
h0(�h0)) � 4 for all eigenvalues �h0 of h0 on V 1. Moreover, as V 3 �= (V 1)�, we also

have dim(V 3
h0(�h0)) � 4 for all eigenvalues �h0 of h0 on V 3. We now focus on V 2 and we

will show that dim(V 2
h0(�h0)) � 4 for all eigenvalues �h0 of h0 on V 2. For this, we recall

that V 2 consists of two composition factors: one isomorphic to LL(2!1) and one isomorphic
to LL(4!1). Thus, the eigenvalues of h0 on V 2, not necessarily distinct, are a2

1, 1, a�2
1 , by

(3.1), and a4
1, a2

1, a
�2
1 , a�4

1 , by the proof of Proposition 3.2.9. As in the case of V 1, we argue
that a2

1 6= 1. Therefore, dim(V 2
h0(�h0)) � 4 for all eigenvalues �h0 of h0 on V 2. Lastly, by

Proposition 3.2.4, we have dim(V 0
h0(�h0)) � 2 and dim(V 4

h0(�h0)) � 2 for all eigenvalues �h0 of
h0 on V 0 and V 4, respectively. We conclude that dim(Vh0(�h0)) � 16 for all eigenvalues �h0
of h0 on V , therefore dim(Vs(�)) � 16 for all eigenvalues � 2 k� of s on V .
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We will now show that there exist (s; �) 2 T n Z(G) � k� such that dim(Vs(�)) = 16.
Let s = z0 � h0, where z0 = h�1(c)h�2(�1) with c2 = �1 and h0 = h�2(�1) with �2

1 = �1.
Then s 2 T n Z(G). Using Propositions 3.2.4 and 3.2.9, we determine that the distinct
eigenvalues of s on V are 1 and �1 with dim(V 0

s (�1)) = dim(V 4
s (�1)) = 2 and dim(V 0

s (1)) =
dim(V 4

s (1)) = 1; dim(V 1
s (�1)) = dim(V 3

s (�1)) = 4 and dim(V 1
s (1)) = dim(V 3

s (1)) = 2; and
dim(V 2

s (�1)) = 4 and dim(V 2
s (1)) = 3. Therefore, dim(Vs(�1)) = 16 and dim(Vs(1)) = 9.

In conclusion, we have shown that dim(Vs(�)) � 16 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V , and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound is
attained. In particular, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and

all eigenvalues � 2 k� of s on V .

Proposition 4.2.15. Let k be an algebraically closed field of characteristic p = 2. Assume
‘ � 3 and let V = LG(!‘). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V
we have

dim(Vs(�)) � 2‘�1;

where there exist pairs (s; �) 2 T n Z(G)� k� for which the bound is attained.
In particular, we have dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 T n Z(G) and all

eigenvalues � 2 k� of s on V .

Proof. Let � = !‘ and let L = L1. Then, dim(V ) = 2‘, as p = 2, and, by Lemma 2.4.5, we
have e1(�) = 2, therefore

V j[L;L]= V 0 � V 1 � V 2;

where V i =
M
2N�1

V��i�1� for all 0 � i � 2. Now, as p = 2, we have V 1 = f0g. By [Smi82,

Proposition], it follows that V 0 �= LL(!‘) and thus V 2 �= (LL(!‘))
� �= LL(!‘), see Lemma

2.4.3. Therefore, we have:
V j[L;L]

�= LL(!‘)� LL(!‘): (4.29)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0 or i = 2, then

s 2 Z(L)� n Z(G), and so s = h�1(c) � � �h�‘(c) with c 6= 1. In this case, as s acts on each V i,
i = 0 and i = 2, as scalar multiplication by c1�i, we determine that the distinct eigenvalues
of s on V are c and c�1 with dim(Vs(c

�1)) = 2‘�1.
We can now assume that dim(V i

s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V and
for both i = 0 and i = 2. We write s = z � h, where z 2 Z(L)� and h 2 [L;L]. Since z acts
by scalar multiplication on V 0 and V 2, respectively, it follows that dim(V i

h(�h)) < dim(V i)
for both i = 0 and i = 2, where �h is any eigenvalue of h on V i. First, suppose that
‘ = 3. Then, by Corollary 4.2.7, as p = 2, we have dim(V 0

h (�h)) � 2 and dim(V 2
h (�h)) � 2

for all eigenvalues �h of h on V 0 and V 2, respectively. It follows that dim(Vh(�h)) � 22

for all eigenvalues �h of h on V , therefore dim(Vs(�)) � 22 for all eigenvalues � 2 k� of
s on V . Suppose now that ‘ � 4. Then, by recurrence, we have dim(V 0

h (�h)) � 2‘�2

and dim(V 2
h (�h)) � 2‘�2 for all eigenvalues �h of h on V 0 and V 2, respectively. This gives

dim(Vh(�h)) � 2‘�1 for all eigenvalues �h of h on V , therefore dim(Vs(�)) � 2‘�1 for all
eigenvalues � 2 k� of s on V .

In conclusion, we have shown that dim(Vs(�)) � 2‘�1 for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V , and that there exist pairs (s; �) 2 TnZ(G)�k� for which equality
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holds. Since the inequality 0 < 2‘(2‘�2 � 1) holds for all ‘ � 3, we have 2‘�1 < 2‘ �
p

2‘ for
all ‘ � 3, and thus dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T nZ(G) and all eigenvalues

� 2 k� of s on V .

Proposition 4.2.16. Let k be an algebraically closed field of characteristic p 6= 2. Assume
‘ = 3 and let V = LG(!3). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V
we have

dim(Vs(�)) � 10;

where there exist pairs (s; �) 2 T n Z(G)� k� for which the bound is attained.
In particular, we have dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 T n Z(G) and all

eigenvalues � 2 k� of s on V .

Proof. Let � = !3 and let L = L1. Then dim(V ) = 14, as p 6= 2, and, by Lemma 2.4.5, we
have e1(�) = 2, therefore:

V j[L;L]= V 0 � V 1 � V 2;

where V i =
M
2N�1

V��i�1� for all 0 � i � 2. By [Smi82, Proposition], it follows that V 0 �=

LL(!3), therefore V 2 �= (LL(!3))� �= LL(!3), by Lemma 2.4.3. Since the weight (� � �1 �
�2��3) jT 0= !2 admits a maximal vector in V 1, it follows that V 1 has a composition factor
isomorphic to LL(!2) and dim(V 1) � dim(LL(!2)) = 4. By dimensional considerations, we
deduce that V 1 �= LL(!2) and

V j[L;L]
�= LL(!3)� LL(!2)� LL(!3): (4.30)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0; 1 or i = 2,

then s 2 Z(L)� n Z(G), and so s = h�1(c)h�2(c)h�3(c) with c 6= 1. In this case, as s acts on
each V i, i = 0; 1; 2, as scalar multiplication by c1�i, we determine that the eigenvalues of s
on V , not necessarily distinct, are8><>:

c with dim(Vs(c)) � dim(V 0) = 5;

1 with dim(Vs(1)) � dim(V 1) = 4;

c�1 with dim(Vs(c
�1)) � dim(V 2) = 5:

As c 6= 1, it follows that dim(Vs(�)) � 10 for all eigenvalues � 2 k� of s on V . Moreover, for
s = h�1(�1)h�2(�1)h�3(�1) 2 Z(L)� n Z(G) we have dim(Vs(�1)) = 10.

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V

and all 0 � i � 2. We write s = z � h, where z 2 Z(L)� and h 2 [L;L]. Since z acts
by scalar multiplication on V i, 0 � i � 2, it follows that dim(V i

h(�h)) < dim(V i) for all
0 � i � 2, where �h is any eigenvalue of h on V i. As p 6= 2, by Corollary 4.2.6, we have
dim(V 0

h (�h)) � 4 and dim(V 2
h (�h)) � 4 for all eigenvalues �h of h on V 0 and V 2, respectively.

Similarly, by Lemma 4.2.3, we have dim(V 1
h (�h)) � 2 for all eigenvalues �h of h on V 1. This

implies that dim(Vh(�h)) � 10 for all eigenvalues �h of h on V , therefore dim(Vs(�)) � 10
for all eigenvalues � 2 k� of s on V .

In conclusion, we have shown that dim(Vs(�)) � 10 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V , and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound is
attained. In particular, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and

all eigenvalues � 2 k� of s on V .
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Proposition 4.2.17. Let k be an algebraically closed field of characteristic p = 2. Assume
‘ = 3 and let V = LG(!1 + !3). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s
on V we have

dim(Vs(�)) � 24:

In particular, we have dim(Vs(�)) < dim(V ) �
p

dim(V ) for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V .

Proof. Let � = !1 + !3 and let L = L1. Then dim(V ) = 48, as p = 2, and, by Lemma 2.4.5,
we have e1(�) = 4, therefore

V j[L;L]= V 0 � V 1 � V 2 � V 3 � V 4;

where V i =
M
2N�1

V��i�1� for all 0 � i � 4. By [Smi82, Proposition], it follows that V 0 �=

LL(!3) and so, by Lemma 2.4.3, we also have V 4 �= (LL(!3))� �= LL(!3). Since the weight
(�� �1) jT 0= !2 + !3 admits a maximal vector in V 1, it follows that V 1 has a composition
factor isomorphic to LL(!2 +!3) and dim(V 1) � dim(LL(!2 +!3)) = 16, since p = 2. Hence,
by Lemma 2.4.3, we also have dim(V 3) � 16. Lastly, as the weight (��2�1�2�2��3) jT 0= !3

is the highest weight in V 2, in which it has multiplicity 2, and admits a maximal vector, it
follows that V 2 has two composition factors, both isomorphic to LL(!3). By dimensional
considerations, it follows that V 1 �= LL(!2 +!3), hence V 3 �= (LL(!2 +!3))� �= LL(!2 +!3),
V 2 �= LL(!3)� LL(!3), by [Jan07, II.2.14], and so:

V j[L;L]
�= LL(!3)� LL(!2 + !3)� LL(!3)� LL(!3)� LL(!2 + !3)� LL(!3): (4.31)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where 0 � i � 3 or i = 4,

then s 2 Z(L)� n Z(G), and so s = h�1(c)h�2(c)h�3(c) with c 6= 1. In this case, as s acts on
each V i, 0 � i � 4, as scalar multiplication by c2�i, we determine that the eigenvalues of s
on V , not necessarily distinct, are8>>>>>><>>>>>>:

c2 with dim(Vs(c
2)) � dim(V 0) = 4;

c with dim(Vs(c)) � dim(V 1) = 16;

1 with dim(Vs(1)) � dim(V 2) = 8;

c�1 with dim(Vs(c
�1)) � dim(V 3) = 16;

c�2 with dim(Vs(c
�2)) � dim(V 4) = 4:

As c 6= 1 and p = 2, it follows that dim(Vs(�)) � 20 for all eigenvalues � 2 k� of s on V .
We can now assume that dim(V i

s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V
and all 0 � i � 4. We write s = z � h, where z 2 Z(L)� and h 2 [L;L]. Since z acts
by scalar multiplication on V i, 0 � i � 4, it follows that dim(V i

h(�h)) < dim(V i) for all
0 � i � 4, where �h is any eigenvalue of h on V i. Now, as p = 2, by Corollary 4.2.7, we
have dim(V 0

h (�h)) � 2, dim(V 2
h (�h)) � 4 and dim(V 4

h (�h)) � 2 for all eigenvalues �h of h on
V 0, V 2 and V 4, respectively. Furthermore, by Proposition 4.2.9, we have dim(V 1

h (�h)) � 8
and dim(V 3

h (�h)) � 8 for all eigenvalues �h of h on V 1 and V 3, respectively. This implies
that dim(Vh(�h)) � 24 for all eigenvalues �h of h on V , therefore dim(Vs(�)) � 24 for all
eigenvalues � 2 k� of s on V .
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In conclusion, we have shown that dim(Vs(�)) � 24 < dim(V ) �
p

dim(V ) for all s 2
T n Z(G) and all eigenvalues � 2 k� of s on V .

Proposition 4.2.18. Let k be an algebraically closed field of characteristic p = 2. Assume
‘ = 3 and let V = LG(2!1 + !3). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s
on V we have

dim(Vs(�)) � 20;

where there exist pairs (s; �) 2 T n Z(G)� k� for which the bound is attained.
In particular, we have dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 T n Z(G) and all

eigenvalues � 2 k� of s on V .

Proof. Let � = 2!1 + !3 and let L = L1. Then dim(V ) = 48, as p = 2, and, by Lemma
2.4.5, we have e1(�) = 6, therefore

V j[L;L]= V 0 � � � � � V 6;

where V i =
M
2N�1

V��i�1� for all 0 � i � 6. By [Smi82, Proposition], it follows that

V 0 �= LL(!3) and so, by Lemma 2.4.3, we also have V 6 �= (LL(!3))� �= LL(!3). As p = 2,
we have V 1 = f0g, V 3 = f0g and V 5 = f0g. This gives dim(V 2) = 20, as V 4 �= (V 2)�,
by Lemma 2.4.3. Since the weight (� � 2�1) jT 0= 2!2 + !3 admits a maximal vector in
V 2, it follows that V 2 has a composition factor isomorphic to LL(2!2 + !3). Remark that
dim(LL(2!2 +!3)) = 16, as LL(2!2 +!3) �= LL(!2)(2)
LL(!3), by Theorem 2.3.8. Moreover,
we note that the dominant weight (��2�1�2�2��3) jT 0= !3, which occurs with multiplicity
3 in V 2, is a sub-dominant weight in the composition factor of V 2 isomorphic to LL(2!2+!3),
in which it has multiplicity 2. Therefore, as dim(V 2) = 20, we determine that V 2 has two
composition factors: one isomorphic to LL(2!2 + !3) and one isomorphic to LL(!3). Lastly,
by Lemma 2.4.3, it follows that V 4 also consists of exactly two composition factors: one
isomorphic to LL(2!2 + !3) and one isomorphic to LL(!3).

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0; 2; 4 or i = 6,

then s 2 Z(L)� n Z(G), and so s = h�1(c)h�2(c)h�3(c) with c 6= 1. In this case, as s acts on
each V i, i = 0; 2; 4; 6, as scalar multiplication by c3�i, we determine that the eigenvalues of
s on V , not necessarily distinct, are8>>><>>>:

c3 with dim(Vs(c
3)) � dim(V 0) = 4;

c with dim(Vs(c)) � dim(V 2) = 20;

c�1 with dim(Vs(c
�1)) � dim(V 4) = 20;

c�3 with dim(Vs(c
�3)) � dim(V 6) = 4:

As c 6= 1 and p = 2, it follows that dim(Vs(�)) � 20 for all eigenvalues � 2 k� of s on V .
We can now assume that dim(V i

s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V and
all i = 0; 2; 4 and i = 6. We write s = z � h, where z 2 Z(L)� and h 2 [L;L]. Since z acts
by scalar multiplication on V i, i = 0; 2; 4; 6, it follows that dim(V i

h(�h)) < dim(V i) for all
i = 0; 2; 4 and i = 6, where �h is any eigenvalue of h on V i. In what follows, we will show
that dim(V 2

h (�h)) � 8 for all eigenvalues �h of h on V 2. First, we determine the eigenvalues
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of h on the composition factor of V 2 isomorphic to LL(2!2 + !3). For this, we recall that,
by Theorem 2.3.8, we have

LL(2!2 + !3) �= LL(!2)(2) 
 LL(!3):

Now, the eigenvalues of h on LL(!2)(2) have the form a2
2, a2

3, a
�2
2 and a�2

3 , while the eigenvalues
of h on LL(!3), by (4.9), have the form a2a3, a2a

�1
3 , a�1

2 a3 and a�1
2 a�1

3 , where a2; a3 2 k� are
not both simultaneously equal to 1. Therefore, keeping in mind that the other composition
factor of V 2 is isomorphic to LL(!3), we determine that the eigenvalues of h on V 2, not
necessarily distinct, are(
a2a3; a2a

�1
3 ; a�1

2 a3 and a�1
2 a�1

3 ; each with multiplicity at least 3;

a3
2a3; a2a

3
3; a

3
2a
�1
3 ; a�1

2 a3
3; a2a

�3
3 ; a�3

2 a3; a
�1
2 a�3

3 and a�3
2 a�1

3 ; each with multiplicity at least 1:

Case 1: Consider the eigenvalue �h = 1 of h on V 2.

(1) If a2a3 = 1, then a3 = a�1
2 and the eigenvalues of h on V 2, not necessarily distinct,

are: a2
2 and a�2

2 , each with multiplicity at least 5, a4
2 and a�4

2 , each with multiplicity at
least 2, and 1 with multiplicity 6. It follows that dim(V 2

h (1)) = 6 and dim(V 2
h (�h)) � 7

for all eigenvalues �h with �h 6= ��1
h of h on V 2.

(2) If a�1
2 a�1

3 = 1, then, as above, we obtain dim(V 2
h (1)) = 6 and dim(V 2

h (�h)) � 7 for all
eigenvalues �h with �h 6= ��1

h of h on V 2.

(3) The cases of a2a
�1
3 = 1 and a�1

2 a3 = 1 are analogs of (1) and (2).

Lastly, if each a2a3, a�1
2 a�1

3 , a2a
�1
3 and a�1

2 a3 is different that 1, then we get dim(V 2
h (1)) � 8.

Case 2: Consider the eigenvalue �h of h on V 2 with �h 6= ��1
h . We first note that

dim(V 2
h (�h)) � 10, as V 2 is self-dual.

(1) Suppose that �h = a2a3.

(1:1) If �h = a2a
�1
3 , then a3 = 1, hence a2 6= 1, �h = a2 and the distinct eigenvalues

of h on V 2 are a2 and a�1
2 , each with multiplicity 8; and a3

2 and a�3
2 , each with

multiplicity 2.

(1:2) If �h = a�1
2 a3, then a2 = 1, hence a3 6= 1, �h = a3, and, as in the previous case,

we have dim(V 2
h (a3)) = dim(V 2

h (a�1
3 )) = 8 and dim(V 2

h (a3
3)) = dim(V 2

h (a�3
3 )) = 2.

(1:3) If �h 6= a2a
�1
3 and �h 6= a�1

2 a3, then dim(V 2
h (�h)) � 7. This completes the case of

�h = a2a3.

(2) If �h = a�1
2 a�1

3 , then, we argue as in (1) to show that dim(V 2
h (�h)) � 8.

(3) If �h 6= a2a3 and �h 6= a�1
2 a�1

3 , then dim(V 2
h (�h)) � 7.

To summarize all of the above, we have shown that dim(V 2
h (�h)) � 8 for all eigenvalues �h

of h on V 2. Furthermore, we note that, as V 4 �= (V 2)�, we also have dim(V 4
h (�h)) � 8 for

all eigenvalues �h of h on V 4. Lastly, as p = 2, by Corollary 4.2.7, we have dim(V 0
h (�h)) � 2

and dim(V 6
h (�h)) � 2 for all eigenvalues �h of h on V 0 and V 6, respectively. Therefore,
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dim(Vh(�h)) � 20 for all eigenvalues �h of h on V , and, consequently, dim(Vs(�)) � 20 for
all eigenvalues � 2 k� of s on V .

In conclusion, we have shown that dim(Vs(�)) � 20 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V , and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound is
attained. In particular, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and

all eigenvalues � 2 k� of s on V .

Proposition 4.2.19. Let k be an algebraically closed field of characteristic p = 3. Assume
‘ = 4 and let V = LG(!3). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V
we have

dim(Vs(�)) � 26;

where there exist pairs (s; �) 2 T n Z(G)� k� for which the bound is attained.
In particular, we have dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 T n Z(G) and all

eigenvalues � 2 k� of s on V .

Proof. Let � = !3 and let L = L1. Then dim(V ) = 40, as p = 3, and, by Lemma 2.4.5, we
have e1(�) = 2, therefore:

V j[L;L]= V 0 � V 1 � V 2;

where V i =
M
2N�1

V��i�1� for all 0 � i � 2. By [Smi82, Proposition], it follows that

V 0 �= LL(!3) and so, by Lemma 2.4.3, we also have V 2 �= (LL(!3))� �= LL(!3). Therefore,
dim(V 1) = 14, as dim(V 0) = dim(V 2) = 13. Since the weight (� � �1 � �2 � �3) jT 0= !4

admits a maximal vector in V 1, it follows that V 1 has a composition factor isomorphic to
LL(!4) and dim(V 1) � dim(LL(!4)) = 14, since p 6= 2. Therefore, V 1 �= LL(!4) and

V j[L;L]
�= LL(!3)� LL(!4)� LL(!3): (4.32)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0; 1 or i = 2,

then s 2 Z(L)� nZ(G), and so s = h�1(c) � � �h�4(c) with c 6= 1. In this case, as s acts on each
V i, 0 � i � 2, as scalar multiplication by c1�i, we determine that the eigenvalues of s on V ,
not necessarily distinct, are8><>:

c with dim(Vs(c)) � dim(V 0) = 13;

1 with dim(Vs(1)) � dim(V 1) = 14;

c�1 with dim(Vs(c
�1)) � dim(V 2) = 13:

As c 6= 1, it follows that dim(Vs(�)) � 26 for all eigenvalues � 2 k� of s on V . Moreover, for
s = h�1(�1) � � �h�4(�1) 2 Z(L)� n Z(G) we have dim(Vs(�1)) = 26.

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V

and all 0 � i � 2. We write s = z � h, where z 2 Z(L)� and h 2 [L;L]. Since z acts
by scalar multiplication on V i, 0 � i � 2, it follows that dim(V i

h(�h)) < dim(V i) for all
0 � i � 2, where �h is any eigenvalue of h on V i. As p = 3, by Corollary 4.2.7, it follows
that dim(V 0

h (�h)) � 8 and dim(V 2
h (�h)) � 8 for all eigenvalues �h of h on V 0 and V 2,

respectively. Similarly, as p 6= 2, by Proposition 4.2.16, we have dim(V 1
h (�h)) � 10 for all
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eigenvalues �h of h on V 1. This implies that dim(Vh(�h)) � 26 for all eigenvalues �h of h on
V , therefore dim(Vs(�)) � 26 for all eigenvalues � 2 k� of s on V .

In conclusion, we have shown that dim(Vs(�)) � 26 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V , and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound is
reched. Therefore, we have dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 T n Z(G) and all

eigenvalues � 2 k� of s on V .

Proposition 4.2.20. Let k be an algebraically closed field of characteristic p 6= 3. Assume
‘ = 4 and let V = LG(!3). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V
we have

dim(Vs(�)) � 30:

In particular, we have dim(Vs(�)) < dim(V ) �
p

dim(V ) for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V .

Proof. Let � = !3 and let L = L1. Then dim(V ) = 48, as p 6= 3, and, by Lemma 2.4.5, we
have e1(�) = 2, therefore

V j[L;L]= V 0 � V 1 � V 2;

where V i =
M
2N�1

V��i�1� for all 0 � i � 2. By [Smi82, Proposition], it follows that

V 0 �= LL(!3) and so, by Lemma 2.4.3, we also have V 2 �= (LL(!3))� �= LL(!3). This gives
dim(V 1) = 20. Now, in V 1 the weight (�� �1 � �2 � �3) jT 0= !4 admits a maximal vector,
hence V 1 has a composition factor isomorphic to LL(!4). Furthermore, the dominant weight
(���1��2�2�3��4) jT 0= !2 occurs with multiplicity 2 in V 1 and it has multiplicity 1��p;2
in the composition factor of V 1 isomorphic to LL(!4). By dimensional considerations, we
deduce that, if p 6= 2, then V 1 consists of exactly two composition factors: one isomorphic to
LL(!4) and one isomorphic to LL(!2), while, if p = 2, then V 1 consists of three composition
factors: one isomorphic to LL(!4) and two isomorphic to LL(!2).

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0; 1 or i = 2,

then s 2 Z(L)� nZ(G), and so s = h�1(c) � � �h�4(c) with c 6= 1. In this case, as s acts on each
V i, 0 � i � 2, as scalar multiplication by c1�i, we determine that the eigenvalues of s on V ,
not necessarily distinct, are8><>:

c with dim(Vs(c)) � dim(V 0) = 14;

1 with dim(Vs(1)) = dim(V 1) = 20;

c�1 with dim(Vs(c
�1)) � dim(V 2) = 14:

As c 6= 1, it follows that dim(Vs(�)) � 28 for all eigenvalues � 2 k� of s on V .
We can now assume that dim(V i

s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V and
all 0 � i � 2. We write s = z � h, where z 2 Z(L)� and h 2 [L;L]. Since z acts by scalar
multiplication on V i, 0 � i � 2, it follows that dim(V i

h(�h)) < dim(V i) for all 0 � i � 2,
where �h is any eigenvalue of h on V i. As p 6= 3, by Corollary 4.2.6, we have dim(V 0

h (�h)) � 8
and dim(V 2

h (�h)) � 8 for all eigenvalues �h of h on V 0 and V 2, respectively. Similarly, by
Lemma 4.2.3 and Proposition 4.2.16 if p 6= 2, respectively by Proposition 4.2.15 if p = 2, we
have dim(V 1

h (�h)) � 14 if p 6= 2, respectively dim(V 1
h (�h)) � 12 if p = 2, for all eigenvalues
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�h of h on V 1. In both cases it follows that dim(Vh(�h)) � 30 for all eigenvalues �h of h on
V , therefore dim(Vs(�)) � 30 for all eigenvalues � 2 k� of s on V .

In conclusion, we have shown that dim(Vs(�)) � 30 < dim(V ) �
p

dim(V ) for all s 2
T n Z(G) and all eigenvalues � 2 k� of s on V .

Proposition 4.2.21. Let k be an algebraically closed field of characteristic p 6= 2. Assume
‘ = 4 and let V = LG(!4). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V
we have

dim(Vs(�)) � 28;

where there exist pairs (s; �) 2 T n Z(G)� k� for which the bound is attained.
In particular, we have dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 T n Z(G) and all

eigenvalues � 2 k� of s on V .

Proof. Let � = !4 and let L = L1. Then, as p 6= 2, we have dim(V ) = 42 � �p;3 and, by
Lemma 2.4.5, we have e1(�) = 2, therefore

V j[L;L]= V 0 � V 1 � V 2;

where V i =
M
2N�1

V��i�1� for all 0 � i � 2. By [Smi82, Proposition], it follows that

V 0 �= LL(!4) and so, by Lemma 2.4.3, we also have V 2 �= (LL(!4))� �= LL(!4). Moreover,
as dim(V 0) = dim(V 2) = 14, since p 6= 2, we have dim(V 1) = 14 � �p;3. Now, since the
weight (���1��2��3��4) jT 0= !3 admits a maximal vector in V 1, it follows that V 1 has
a composition factor isomorphic to LL(!3) and dim(V 1) � dim(LL(!3)). We deduce that
V 1 �= LL(!3) and

V j[L;L]
�= LL(!4)� LL(!3)� LL(!4): (4.33)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0; 1 or i = 2,

then s 2 Z(L)� nZ(G), and so s = h�1(c) � � �h�4(c) with c 6= 1. In this case, as s acts on each
V i, 0 � i � 2, as scalar multiplication by c1�i, we determine that the eigenvalues of s on V ,
not necessarily distinct, are8><>:

c with dim(Vs(c)) � dim(V 0) = 14;

1 with dim(Vs(1)) � dim(V 1) = 14� �p;3;

c�1 with dim(Vs(c
�1)) � dim(V 2) = 14:

As c 6= 1, it follows that dim(Vs(�)) � 28 for all eigenvalues � 2 k� of s on V . Moreover, for
s = h�1(�1) � � �h�4(�1) 2 Z(L)� n Z(G) we have dim(Vs(�1)) = 28.

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V and

all 0 � i � 2. We write s = z � h, where z 2 Z(L)� and h 2 [L;L]. Since z acts by scalar
multiplication on V i, 0 � i � 2, it follows that dim(V i

h(�h)) < dim(V i) for all 0 � i � 2,
where �h is any eigenvalue of h on V i. Now, either by Corollary 4.2.6 if p 6= 3, or by Corollary
4.2.7 if p = 3, it follows that dim(V 1

h (�h)) � 8 for all eigenvalues �h of h on V 1. Similarly,
as p 6= 2, by Proposition 4.2.16, we have dim(V 0

h (�h)) � 10 and dim(V 2
h (�h)) � 10 for all

eigenvalues �h of h on V 0 and V 2, respectively. This implies that dim(Vh(�h)) � 28 for all
eigenvalues �h of h on V , therefore dim(Vs(�)) � 28 for all eigenvalues � 2 k� of s on V .
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In conclusion, we have shown that dim(Vs(�)) � 28 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V , and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound is
attained. Therefore, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 T n Z(G) and all

eigenvalues � 2 k� of s on V .

Proposition 4.2.22. Let k be an algebraically closed field of characteristic p = 2. Assume
‘ = 5 and let V = LG(!3). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V
we have

dim(Vs(�)) � 58:

In particular, we have dim(Vs(�)) < dim(V ) �
p

dim(V ) for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V .

Proof. Let � = !3 and let L = L1. Then dim(V ) = 100, as p = 2, and, by Lemma 2.4.5, we
have e1(�) = 2, therefore:

V j[L;L]= V 0 � V 1 � V 2;

where V i =
M
2N�1

V��i�1� for all 0 � i � 2. By [Smi82, Proposition], it follows that

V 0 �= LL(!3) and so, by Lemma 2.4.3, we also have V 2 �= (LL(!3))� �= LL(!3). This
gives dim(V 1) = 48, as dim(V 0) = dim(V 2) = 26, since p = 2. Now, in V 1 the weight
(�� �1 � �2 � �3) jT 0= !4 admits a maximal vector, therefore V 1 has a composition factor
isomorphic to LL(!4) and dim(V 1) � dim(LL(!4)) = 48, since p 6= 3. We deduce that
V 1 �= LL(!4) and

V j[L;L]
�= LL(!3)� LL(!4)� LL(!3): (4.34)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0; 1 or i = 2,

then s 2 Z(L)� nZ(G), and so s = h�1(c) � � �h�5(c) with c 6= 1. In this case, as s acts on each
V i, 0 � i � 2, as scalar multiplication by c1�i, we determine that the distinct eigenvalues of
s on V are 8><>:

c with dim(Vs(c)) = dim(V 0) = 26;

1 with dim(Vs(1)) = dim(V 1) = 48;

c�1 with dim(Vs(c
�1)) = dim(V 2) = 26:

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V

and all 0 � i � 2. We write s = z � h, where z 2 Z(L)� and h 2 [L;L]. Since z acts
by scalar multiplication on V i, 0 � i � 2, it follows that dim(V i

h(�h)) < dim(V i) for all
0 � i � 2, where �h is any eigenvalue of h on V i. As p = 2, by Corollary 4.2.7, it follows
that dim(V 0

h (�h)) � 14 and dim(V 2
h (�h)) � 14 for all eigenvalues �h of h on V 0 and V 2,

respectively. Similarly, as p = 2, by Proposition 4.2.20, we have dim(V 1
h (�h)) � 30 for all

eigenvalues �h of h on V 1. This implies that dim(Vh(�h)) � 58 for all eigenvalues �h of h on
V , therefore dim(Vs(�)) � 58 for all eigenvalues � 2 k� of s on V .

In conclusion, we have shown that dim(Vs(�)) � 58 < dim(V ) �
p

dim(V ) for all s 2
T n Z(G) and all eigenvalues � 2 k� of s on V .

We conclude this subsection by noting that Propositions 4.2.8 through 4.2.22 complete
the proofs of Theorems 4.2.1 and 4.2.2, as they cover all the irreducible kG-modules LG(�)
corresponding to p-restricted dominant weights � featured in Tables 2.7.2 and 2.7.3.
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4.3 Eigenspace dimensions for unipotent elements
This section is dedicated to the proof of the following two theorems, analogs of Theorems 4.2.1
and 4.2.2 in the case of unipotent elements. Similar to the semisimple case, the proofs will be
given in a series of results, each treating one of the candidate-modules. In Subsection 4.3.1, we
determine max

u2Gunf1g
dim(Vu(1)), where Gu is the set of unipotent elements in G and V belongs

to one of the families of kG-modules that satisfies the dimensional criteria (2.16), i.e. V is an
irreducible kG-modules LG(�) for which � 2 FC‘ , where FC‘ = f!1; 2!1; !2g. We complete
the proofs of the two theorems in Subsection 4.3.2, where we establish max

u2Gunf1g
dim(Vu(1))

for the irreducible kG-modules V = LG(�) corresponding to p-restricted dominant weights
� featured in one of the Tables 2.7.2 and 2.7.3.

Theorem 4.3.1. Let k be an algebraically closed field of characteristic p � 0 and let G be a
simple simply connected linear algebraic group of type C‘, ‘ � 2. Let T be a fixed maximal
torus in G and let V = LG(�), where either � 2 FC‘, or � is featured in one of the Tables
2:7:2 and 2:7:3. Then there exist non-identity unipotent elements u 2 G for which:

dim(Vu(1)) � dim(V )�
p

dim(V )

if and only if ‘, � and p appear in the following list:

(1) ‘ � 2, � = !1 and p � 0;

(2) ‘ = 2, � = !2 and p � 0;

(3) ‘ = 3; 4, � = !‘ and p = 2.

Theorem 4.3.2. Let k be an algebraically closed field of characteristic p � 0 and let G be
a simple simply connected linear algebraic group of type C‘, ‘ � 2. Let T and V be as in
Theorem 4:3:1. Then the value of max

u2Gunf1g
dim(Vu(1)) is given in the table below:
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V Char. Rank max
u2Gunf1g

dim(Vu(1))

LG(!1) p � 0 ‘ � 2 2‘� 1
yLG(2!1) p 6= 2 ‘ � 2 2‘2 � ‘

?LG(!2)
p - ‘ ‘ � 2 2‘2 � 3‘+ 1

p j ‘ ‘ = 2 3
‘ � 3 2‘2 � 3‘

yLG(!1 + !2) p � 0 ‘ = 2 8� 3�p;5
yLG(2!2) p 6= 2 ‘ = 2 � 8
yLG(3!1) p 6= 2; 3 ‘ = 2 10

yLG(!1 + 2!2) p = 7 ‘ = 2 7
yLG(3!2) p = 7 ‘ = 2 7

yLG(2!1 + !2) p = 3 ‘ = 2 � 13
zLG(!‘) p = 2 3 � ‘ � 8 3 � 2‘�2

yLG(!3) p 6= 2 ‘ = 3 9
yLG(!1 + !3) p = 2 ‘ = 3 28
yLG(2!1 + !3) p = 2 ‘ = 3 28
yLG(!3) p � 0 ‘ = 4 34� 7�p;3
yLG(!4) p 6= 2 ‘ = 4 � 28� �p;3
yLG(!3) p = 2 ‘ = 5 74

Table 4.3.1: The value of max
u2Gunf1g

dim(Vu(1)).

In particular, for each V in Table 4.3.1 labeled as yV ; as ?V with ‘ � 3; and as zV with
‘ � 5; we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent elements

u 2 G.

4.3.1 The families of modules

For the rest of this chapter, we fix the following hypothesis on unipotent elements in G:

(yHu) : every u 2 Gu n f1g; has Jordan form on W given by
mM
i=1

Jrini ; where
mX
i=1

niri = 2‘;

ri � 1 is even for all odd ni; 2‘ � n1 > � � � > nm � 1 and n1 � 2:

Lemma 4.3.3. Let V = LG(!1). Then for all non-identity unipotent elements u 2 G we
have

dim(Vu(1)) � 2‘� 1;

where equality holds if and only if the Jordan form of u on W is J2 � J2‘�2
1 .

In particular, there exist non-identity unipotent elements u 2 G for which dim(Vu(1)) �
dim(V )�

p
dim(V ).

Proof. To begin, we note that V �= W as kG-modules. Now, let the unipotent element u 2 G
be as in (yHu). Let uW denote the action of u on W . Then:

dim(Vu(1)) = dim(WuW (1)) =
mX
i=1

ri: (4.35)
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As u 6= 1, it follows that dim(Vu(1)) � 2‘ � 1. Moreover, by Lemma 3.3.3, we have
dim(Vu(1)) = 2‘� 1 if and only if the Jordan form of u on W is J2 � J2‘�2

1 .
In conclusion, we have shown that dim(Vu(1)) � 2‘ � 1 for all non-identity unipotent

elements u 2 G and that equality holds if and only if u has Jordan form J2 � J2‘�2
1 on W .

Now, let u be such an element of G. Since the inequality
p

2‘ � 1 holds for all ‘ � 2, it
follows that 2‘� 1 � 2‘�

p
2‘ for all ‘ � 2 and thus dim(Vu(1)) � dim(V )�

p
dim(V ).

The following corollary, although not relevant for this subsection, will be the fundamental
result used in the proof of Lemma 6.3.4.

Corollary 4.3.4. Assume ‘ � 4 and let V = LG(!1). Let u be a non-identity unipotent
element of G and assume that its Jordan form on W is different than J2 � J2‘�2

1 . Then:

dim(Vu(1)) � 2‘� 2;

where equality holds if and only if u has Jordan form J2
2 � J2‘�4

1 on W .

Proof. Let the unipotent element u 2 G be as in (yHu). We note that if n1 = 2, then, by
hypothesis, we have r1 � 2. Moreover, by Lemma 4.3.3, as the Jordan form of u on W is
different than J2 � J2‘�2

1 , we have dim(Vu(1)) � 2‘ � 2. Assume that dim(Vu(1)) = 2‘ � 2.

Then, by (4.35) and keeping in mind that
mX
i=1

niri = 2‘, it follows that
mX
i=1

(ni � 1)ri = 2

and, in particular, that 2 � (n1 � 1)r1 � n1 � 1, hence 3 � n1.

Assume that n1 = 3. Then r1 � 2 and thus
mX
i=1

(ni� 1)ri � 4, a contradiction. Therefore

n1 = 2, hence m � 2 and r1 � 2. Moreover, as
mX
i=1

(ni � 1)ri � 2, it follows that r1 = 2.

Lastly, as ‘ � 4, we deduce that m = 2, n2 = 1, r2 = 2‘ � 4 and, consequently, the Jordan
form of u on W is J2

2 � J2‘�4
1 . Conversely, let u 2 G be a unipotent element whose Jordan

form on W is J2
2 �J2‘�4

1 . Then, by (4.35), we have that dim(Vu(1)) = 2‘�2. This completes
the proof of the corollary.

Before, we continue the proofs of Theorems 4.3.1 and 4.3.2, we recall that the irreducible
kG-module LG(!2) is a composition factor of the kG-module ^2(W ), see Lemma 2.8.2. This
is a relevant fact, since, using Proposition 3.3.4, we can calculate the dimension of the fixed
point space on ^2(W ) of any unipotent element u 2 G. With dim((^2(W ))u(1)) known, we
can deduce dim((LG(!2))u(1)) using either [Kor19, Corollary 6:2], or [Kor20, Theorem B],
depending on whether p 6= 2 or p = 2. Before we state these two results, we recall that rt(u)
is the number of Jordan blocks of size t � 1 appearing in the Jordan form of the unipotent
element u; and that �p denotes the p-adic valuation on the integers.

Theorem 4.3.5. [Kor19, Corollary 6:2] Let k be an algebraically closed field of characteristic

p 6= 2. Let u 2 G be a unipotent element and let
mM
i=1

Jrini be its Jordan form on W , where

m � 1, ni � 1 and ri � 1 for all 1 � i � m. Set � = �p(gcd(n1; : : : ; nm)). Let u0 be the
action of u on ^2(W ) and let uV be the action of u on V := LG(!2). Then the Jordan block
sizes of uV are determined from those of u0 in the following way:
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(a) If p - ‘, then r1(uV ) = r1(u
0
)� 1 and rt(uV ) = rt(u

0
) for all t 6= 1.

(b) If p j ‘ and � = 0, then r1(uV ) = r1(u
0
)� 2 and rt(uV ) = rt(u

0
) for all t 6= 1.

(c) If p j ‘ and � > 0, then:

(c.1) If p j 2‘

p�
, then rp�(uV ) = rp�(u

0
) � 2, rp��1(uV ) = 2 and rt(uV ) = rt(u

0
) for all

t 6= p�; p� � 1.

(c.2) If p -
2‘

p�
, then rp�(uV ) = rp�(u

0
) � 1, rp��2(uV ) = 1 and rt(uV ) = rt(u

0
) for all

t 6= p�; p� � 2.

Theorem 4.3.6. [Kor20, Theorem B] Let k be an algebraically closed field of characteristic
p = 2. Let u 2 G be a unipotent element and let (nr1

10
; : : : ; nrtt0 ; 2n

rt+1

t+11
; : : : ; 2nrmm1

) be its
Hesselink normal form, where m � 1, t � 0 and ri � 1 for all 1 � i � m. Set � =
�2(gcd(n1; : : : ; nt; nt+1; : : : ; nm)). Let u0 denote the action of u on ^2(W ) and let uV denote
the action of u on V := LG(!2). Then the Jordan block sizes of uV are determined from
those of u0 in the following way:

(a) If 2 - ‘, then r1(uV ) = r1(u
0
)� 1 and rt(uV ) = rt(u

0
) for all t 6= 1.

(b) If 2 j ‘ and � = 0, then r1(uV ) = r1(u
0
)� 2 and rt(uV ) = rt(u

0
) for all t 6= 1.

(c) If 2 j ‘ and � > 0, then

(c.1) If 2 j ‘
2�

, then r2�(uV ) = r2�(u
0
) � 2, r2��1(uV ) = 2 and rt(uV ) = rt(u

0
) for all

t 6= 2�; 2� � 1.

(c.2) If � > 1 and 2 -
‘

2�
, then r2�(uV ) = r2�(u

0
)�1, r2��2(uV ) = 1 and rt(uV ) = rt(u

0
)

for all t 6= 2�; 2� � 2.

(c.3) If � = 1 and 2 -
‘

2�
, then r2(uV ) = r2(u

0
)� 1 and rt(uV ) = rt(u

0
) for all t 6= 2.

Proposition 4.3.7. Let V 0 = ^2(W ). Then for all non-identity unipotent elements u 2 G
we have

dim(V
0

u(1)) � 2‘2 � 3‘+ 2:

Moreover, we have equality if and only if one of the following holds:

(1) ‘ = 2 and the Jordan form of u on W is one of J2
2 and J2 � J2

1 .

(2) ‘ � 3 and the Jordan form of u on W is J2 � J2‘�2
1 .

Proof. Let u be a non-identity unipotent element of G. We apply Proposition 3.3.4, keeping

in mind that dim(W ) = 2‘, to deduce that dim(V
0

u(1)) � (2‘� 1)2 � (2‘� 1) + 2

2
= 2‘2 �

3‘+ 2 for all non-identity unipotent elements u 2 G. Moreover, by the same result, for ‘ = 2
equality holds if and only if the Jordan form of u on W is one of J2

2 and J2 � J2
1 , while, for

‘ � 3 equality holds if and only if the Jordan form of u on W is J2 � J2‘�2
1 .
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Corollary 4.3.8. Assume p - ‘ and let V = LG(!2). Then for all non-identity unipotent
elements u 2 G we have

dim(Vu(1)) � 2‘2 � 3‘+ 1:

Moreover, we have equality if and only if one of the following holds:

(1) ‘ = 2 and the Jordan form of u on W is one of J2
2 and J2 � J2

1 .

(2) ‘ � 3 and the Jordan form of u on W is J2 � J2‘�2
1 .

In particular, for ‘ = 2 there exist non-identity unipotent elements u 2 G for which
dim(Vu(1)) � dim(V ) �

p
dim(V ). On the other hand, for ‘ � 3, we have dim(Vu(1)) <

dim(V )�
p

dim(V ) for all non-identity unipotent elements u 2 G.

Proof. To begin, we set V 0 = ^2(W ). By Lemma 2.8.2, since p - ‘, we have that V 0 �=
V � LG(0) and therefore dim(Vu(1)) = dim(V

0
u(1)) � 1. We now apply Proposition 4.3.7

to deduce that dim(Vu(1)) � 2‘2 � 3‘ + 1 for all non-identity unipotent elements u 2 G.
Moreover, equality holds if and only if dim(V

0
u(1)) = 2‘2 � 3‘ + 2 and we use Proposition

4.3.7 once more to obtain the result.
To conclude, we first assume that ‘ = 2, hence dim(V ) = 5, and we let u be a unipotent

element of G whose Jordan form on W is J2
2 . Then dim(Vu(1)) = 3 and so, we have

shown that there exist non-identity unipotent elements u 2 G for which dim(Vu(1)) �
dim(V )�

p
dim(V ). On the other hand, for ‘ � 3, since the inequality 0 < (2‘� 5)(‘� 1)

holds for all ‘ � 3, it follows that 2‘2 � 3‘ + 1 < 2‘2 � ‘ � 1 �
p

2‘2 � ‘� 1 for all ‘ � 3
and, consequently, we have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent

elements u 2 G.

As with Corollary 4.3.4, the following result, although not relevant for this subsection,
will be one of the fundamental tools used in the proof of Proposition 6.3.6.

Lemma 4.3.9. Let u be a non-identity unipotent element of G whose Jordan form on W is
different than J2 � J2‘�2

1 . If V 0 = ^2(W ), then one of the following holds:

(1) ‘ = 2 and dim(V
0
u(1)) � 4, where equality holds if and only if the Jordan form of u on

W is J2
2 .

(2) ‘ = 3 and dim(V
0
u(1)) � 9, where equality holds if and only if the Jordan form of u on

W is one of J3
2 and J2

2 � J2
1 .

(3) ‘ � 4 and dim(V
0
u(1)) � 2‘2 � 5‘ + 6, where equality holds if and only if the Jordan

form of u on W is J2
2 � J2‘�4

1 .

Proof. We note that for ‘ = 2 the result follows from Proposition 4.3.7 and thus, we can
assume that ‘ � 3.

Let the unipotent element u 2 G be as in (yHu). First, we assume that the Jordan form
of u on W is J2‘. Then, either by Lemma 2.9.4 if p 6= 2, or by Lemma 2.9.5 if p = 2, it
follows that dim(V

0
u(1)) = ‘. Hence, for ‘ = 3 we have dim(V

0
u(1)) < 9, while for ‘ � 4 we

have dim(V
0
u(1)) < 2‘2 � 5‘+ 6.
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We can now assume that the Jordan form of u on W consists of at least two blocks and
we first consider the case when exactly one of these blocks, Jn1 , is nontrivial. Then the
Jordan form of u on W is Jn1 � J2‘�n1

1 , where 4 � n1 � 2‘ � 2 is even, since r1 = 1. We
write W = W1�W2, where dim(W1) = n1 and u acts as Jn1 on W1, and dim(W2) = 2‘� n1

and u acts trivially on W2. Then, we have the following isomorphism of k[u]-modules:

V
0 �= ^2(W1)� (W1 
W2)� ^2(W2);

which gives:

dim(V
0

u(1)) = dim((^2(W1))u(1)) + dim((W1 
W2)u(1)) + dim((^2(W2))u(1)): (4.36)

We now apply either Lemma 2.9.4 if p 6= 2, or Lemma 2.9.5 if p = 2, to deduce that
dim((^2(W1))u(1)) =

jn1

2

k
=
n1

2
and that dim((W1 
W2)u(1)) = 2‘� n1. Lastly, as u acts

trivially onW2, it acts trivially on ^2(W2), and so dim((^2(W2))u(1)) =
(2‘� n1 � 1)(2‘� n1)

2
.

Substituting in (4.36) gives:

dim(V
0

u(1)) =
n1

2
+ 2‘� n1 +

(2‘� n1 � 1)(2‘� n1)

2

=
4‘2 � 4‘n1 + n2

1 + 2‘

2
:

(4.37)

Assume ‘ = 3. Then u has Jordan form J4 � J2
1 on W and by (4.37) it follows that

dim(V
0
u(1)) = 5. We can now assume that ‘ � 4 and, by (4.37), we have

dim(V
0

u(1)) = 2‘2 � 5‘+ 6 +
n2

1 � 4‘n1 + 12‘� 12

2
:

One checks that the inequality

n2
1 � 4‘n1 + 12‘� 12 < 0

holds for all n1 2 (2‘ � 2
p
‘2 � 3‘+ 3; 2‘ + 2

p
‘2 � 3‘+ 3) and all ‘ � 1. Since 2‘ +

2
p
‘2 � 3‘+ 3 > 2‘� 2 and since 2‘� 2

p
‘2 � 3‘+ 3 < 4, it follows that, in particular, the

inequality holds for all 4 � n1 � 2‘� 2 and all ‘ � 4. Therefore dim(V
0
u(1)) < 2‘2 � 5‘ + 6

for all ‘ � 4 and all unipotent elements u of G whose Jordan form on W is Jn1 � J2‘�n1
1 ,

where 4 � n1 � 2‘� 2.
Lastly, we consider the case when the Jordan form of u onW admits at least two nontrivial

blocks. Then 2 � n1 � 2‘� 2 and we write W = W
0
1 �W

0
2, where dim(W

0
1) = n1 and u acts

as Jn1 on W 0
1, and dim(W

0
2) = 2‘� n1 and u acts as Jr1�1

n1
�

mM
i=2

Jrini on W
0
2. Now, either by

Lemma 2.9.4 if p 6= 2, or by Lemma 2.9.5 if p = 2, we have dim((^2(W
0

1))u(1)) =
jn1

2

k
=

n1 + �

2
, where � = 0 if n1 is even, or � = �1 if n1 is odd, and, furthermore, since u acts as

(Jn1 
 Jn1)r1�1 �
mM
i=2

(Jn1 
 Jni)ri on W
0
1 
W

0
2, we also deduce that

dim((W
0

1 
W
0

2)u(1)) = (r1 � 1)n1 +
mX
i=2

niri = 2‘� n1: (4.38)
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Substituting in (4.36) gives:

dim(V
0

u(1)) =
n1 + �

2
+ 2‘� n1 + dim((^2(W

0

2))u(1)): (4.39)

Assume ‘ = 3. Then the Jordan form of u on W is one of J4�J2, J2
3 , J3

2 and J2
2 �J2

1 . In
the first two cases, as u acts as a single Jordan block on W 0

2, we apply either Lemma 2.9.4
if p 6= 2, or Lemma 2.9.5 if p = 2, to determine that, in both cases, dim((^2(W

0
2))u(1)) = 1.

Therefore, by (4.39), in both cases, we have dim(V
0
u(1)) = 5. Similarly, for the last two

cases, as u acts on W
0
2 as J2

2 and as J2 � J2
1 , respectively, we apply Proposition 3.3.4 to

determine that, in both cases, dim((^2(W
0
2))u(1)) = 4. Now, by (4.39), in both cases, we get

dim(V
0
u(1)) = 9. Therefore dim(V

0
u(1)) � 9 for all unipotent elements u 2 G whose Jordan

form on W admits at least two nontrivial blocks. Moreover, equality holds if and only if the
Jordan form of u on W is one of J3

2 and J2
2 � J2

1 .
We can now assume that ‘ � 4. We use Proposition 3.3.4 to deduce that dim((^2(W

0
2))u(1))

� (2‘� n1 � 1)2 � (2‘� n1 � 1) + 2

2
, where equality holds if and only if u acts on W

0
2 as

J2 � J2‘�n1�2
1 . Substituting in (4.39) gives:

dim(V
0

u(1)) � n1 + �

2
+ 2‘� n1 +

(2‘� n1 � 1)2 � (2‘� n1 � 1) + 2

2

=
4‘2 � 4‘n1 + n2

1 � 2‘+ 2n1 + 4 + �

2

= 2‘2 � 5‘+ 6 +
n2

1 � 4‘n1 + 2n1 + 8‘� 8 + �

2
:

(4.40)

If n1 = 2, then � = 0 and, by (4.40), we have dim(V
0
u(1)) � 2‘2�5‘+ 6, where, as previously

noted, equality holds if and only if u acts on W
0
2 as J2 � J2‘�4

1 . We can thus assume that
n1 � 3. One checks that the inequality

n2
1 � 4‘n1 + 2n1 + 8‘� 8 + � < 0

holds for all n1 2 (2‘� 1�
p

4‘2 � 12‘+ 9� �; 2‘� 1 +
p

4‘2 � 12‘+ 9� �) and all ‘ � 1.
Since 2‘ � 1 �

p
4‘2 � 12‘+ 9� � < 3, as 7 + � < 4‘ for all ‘ � 4, and since 2‘ � 1 +p

4‘2 � 12‘+ 9� � > 2‘ � 2, it follows that, in particular, the inequality holds for all 3 �
n1 � 2‘ � 2 and all ‘ � 4. Therefore, dim(V

0
u(1)) < 2‘2 � 5‘ + 6 for all unipotent elements

u of G whose Jordan form on W admits at least two nontrivial blocks and n1 � 3. This
completes the proof of the lemma.

Proposition 4.3.10. Assume p j ‘ and let V = LG(!2). Then for all non-identity unipotent
elements u 2 G one of the following holds:

(1) ‘ = 2 and dim(Vu(1)) � 3, where equality holds if and only if the Hesselink normal
form of u is (22

0).

(2) ‘ � 3 and dim(Vu(1)) � 2‘2 � 3‘, where equality holds if and only if the Jordan form
of u on W is J2 � J2‘�2

1 .
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In particular, for ‘ = 2 there exist non-identity unipotent elements u 2 G for which
dim(Vu(1)) � dim(V ) �

p
dim(V ). On the other hand, for ‘ � 3, we have dim(Vu(1)) <

dim(V )�
p

dim(V ) for all non-identity unipotent elements u 2 G.

Proof. To begin, set V 0 = ^2(W ) and let u be a non-identity unipotent element of G. If we
denote by u0 , respectively by uV , the action of u on V

0 , respectively on V , then either by
Theorem 4.3.5 if p 6= 2, or by Theorem 4.3.6 if p = 2, we know that we can determine the
Jordan form of uV from that of u0 .

First, assume ‘ = 2. Then p = 2 and the Hesselink normal form of u is one of (41), (22
1),

(22
0) and (12

0; 21). In each case, one determines that the Jordan form of u0 is J4�J2, J2
2 �J2

1 ,
J2

2 � J2
1 and J2

2 � J2
1 , respectively. We apply Theorem 4.3.6, cases (c:3), (b), (c:3) and (b),

respectively, to deduce that dim(Vu(1)) = 1; 2; 3 and 2, respectively. We conclude that for
‘ = 2, we have dim(Vu(1)) � 3 and equality holds if and only if the Hesselink normal form
of u is (22

0). We can now assume that ‘ � 3.
First, we consider the case when p 6= 2. Let n1; : : : ; nm be the distinct Jordan block sizes

of u on W , where m � 1, and set � = �p(gcd(n1; : : : ; nm)). If � = 0, then, since p j ‘, by
Theorem 4.3.5 (b), it follows that dim(Vu(1)) = dim(V

0
u(1)) � 2. We now use Proposition

4.3.7 to deduce that dim(Vu(1)) � 2‘2 � 3‘ for all unipotent elements u, u 6= 1, of G with
� = 0. Moreover, by the same result, equality holds if and only if the Jordan form of u on
W is J2 � J2‘�2

1 . On the other hand, if � > 0, then by Theorem 4.3.5 (c), it follows that
dim(Vu(1)) = dim(V

0
u(1)). Let ‘ = 3. As � > 0, the Jordan form of u on W is either J6 or

J2
3 . In both cases, by Proposition 4.3.9, it follows that dim(V

0
u(1)) < 9 and, consequently,

dim(Vu(1)) < 9. We now assume that ‘ � 4. Again, as � > 0, the Jordan form of u
on W is different than J2 � J2‘�2

1 and J2
2 � J2‘�4

1 , therefore, by Proposition 4.3.9, we have
dim(V

0
u(1)) < 2‘2 � 5‘+ 6. As the inequality 2‘2 � 5‘+ 6 < 2‘2 � 3‘ holds for all ‘ � 4, we

deduce that dim(V
0
u(1)) < 2‘2�3‘ and, consequently, dim(Vu(1)) < 2‘2�3‘ for all unipotent

elements u of G with � > 0.
We now consider the case when p = 2. For t � 0, let (nr1

10
; : : : ; nrtt0 ; 2n

rt+1

t+11
; : : : ; 2nrmm1

) be
the Hesselink normal form of u. Set � = �2(gcd(n1; : : : ; nt; nt+1; : : : ; nm)). If � = 0, we use
Theorem 4.3.6 (b), Proposition 4.3.7 and proceed as in the analogous case of p 6= 2 to deduce
that dim(Vu(1)) � 2‘2 � 3‘ for all unipotent elements u, u 6= 1, of G. Moreover, equality
holds if and only if the Jordan form of u on W is J2 � J2‘�2

1 . On the other hand, if � > 0,
we use Theorem 4.3.6 (c), Proposition 4.3.9 and proceed as in the analogous case of p 6= 2
to deduce that dim(Vu(1)) < 2‘2 � 3‘ for all unipotent elements u of G with � > 0.

In conclusion, we have shown that for ‘ = 2 there exist non-identity unipotent elements
u 2 G, for example those with Hesselink normal form (22

0), for which dim(Vu(1)) � dim(V )�p
dim(V ). On the other hand, for ‘ � 3, since the inequality 0 < (‘ � 2)(2‘ � 3) holds for

all ‘ � 3, we have 2‘2 � 3‘ < 2‘2 � ‘ � 2 �
p

2‘2 � ‘� 2 and, consequently, dim(Vu(1)) <
dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 G.

As with Corollary 4.3.4 and Lemma 4.3.9, the following result, although not relevant for
this subsection, will be one of the fundamental tools used in the proof of Proposition 6.3.6.

Proposition 4.3.11. Let u be a non-identity unipotent element of G whose Jordan form on
W is different than J2

2 , J3
2 , J2 � J2‘�2

1 and J2
2 � J2‘�4

1 . If V 0 = ^2(W ), then:

dim(V
0

u(1)) � 2‘2 � 5‘+ 4:
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Furthermore, we have equality if and only if one of the following holds:

(1) ‘ = 2 and the Jordan form of u on W is J4.

(2) ‘ = 4 and the Jordan form of u on W is one of J4
2 and J3

2 � J2
1 .

Proof. Let the unipotent element u 2 G be as in (yHu). We note that, if n1 = 2, then, by
hypothesis, ‘ � 4 and r1 � 3. First, assume that the Jordan form of u on W is J2‘. Then,
either by Lemma 2.9.4 if p 6= 2, or by Lemma 2.9.5 if p = 2, we have dim(V

0
u(1)) = ‘ and, as

the inequality 0 � ‘2 � 3‘+ 2 holds for all ‘ � 2, it follows that dim(V
0
u(1)) � 2‘2 � 5‘+ 4.

Moreover, equality holds if and only if ‘ = 2, in which case u has Jordan form J4 on W . We
can now assume that the Jordan form of u on W admits at least two blocks. Furthermore,
we can also assume that ‘ � 3.

Secondly, we consider the case when exactly one block, Jn1 , appearing in the Jordan form
of u on W , is nontrivial. Then 4 � n1 � 2‘� 2 is even and we write W = W1 �W2, where
dim(W1) = n1 and u acts as Jn1 on W1, and dim(W2) = 2‘� n1 and u acts trivially on W2.
We proceed as in the proof of Lemma 4.3.9, see arguments leading to (4.37), to deduce that:

dim(V
0

u(1)) =
4‘2 � 4‘n1 + n2

1 + 2‘

2
= 2‘2 � 5‘+ 4 +

n2
1 � 4‘n1 + 12‘� 8

2
:

One checks that the inequality

n2
1 � 4‘n1 + 12‘� 8 < 0

holds for all n1 2 (2‘ � 2
p
‘2 � 3‘+ 2; 2‘ + 2

p
‘2 � 3‘+ 2) and all ‘ � 2. Since 2‘ �

2
p
‘2 � 3‘+ 2 < 4 and since 2‘ + 2

p
‘2 � 3‘+ 2 > 2‘� 2, it follows that, in particular, the

inequality holds for all 4 � n1 � 2‘�2 and all ‘ � 3. Hence, dim(V
0
u(1)) < 2‘2�5‘+4 for all

unipotent elements u 2 G whose Jordan form on W is Jn1 � J2‘�n1
1 , where 4 � n1 � 2‘� 2.

Lastly, we consider the case when the Jordan form of u onW admits at least two nontrivial
blocks. Then 2 � n1 � 2‘ � 2. Assume that n1 = 2. Then ‘ � 4, r1 � 3 and we write
W = W

0
1�W

0
2, where dim(W

0
1) = 4 and u acts as J2

2 onW 0
1, and dim(W

0
2) = 2‘�4 and u acts

as Jr1�2
2 � J2‘�2r1

1 on W 0
2. By (4.36), to determine dim(V

0
u(1)) comes down to determining

dim((^2(W
0
1))u(1)), dim((W

0
1 
W

0
2)u(1)) and dim((^2(W

0
2))u(1)). By Proposition 4.3.7 we

have dim((^2(W
0
1))u(1)) = 4 and, furthermore, as u acts nontrivially on W 0

2, since r1 � 3, we
also have dim((^2(W

0
2))u(1)) � 2(‘� 2)2 � 3(‘� 2) + 2 = 2‘2 � 11‘+ 16. Moreover, by the

same result, equality holds if and only if u acts on W 0
2 as one of J2

2 and J2 � J2‘�6
1 . Finally,

as u acts as (J2
 J2)2r1�4� (J2
 J1)4‘�4r1 on W 0
1
W

0
2, we use Lemma 2.9.4 to deduce that

dim((W
0
1 
W

0
2)u(1)) = 2(2r1 � 4) + 4‘� 4r1 = 4‘� 8. By (4.36), it follows that:

dim(V
0

u(1)) � 4 + 4‘� 8 + 2‘2 � 11‘+ 16 = 2‘2 � 7‘+ 12:

As the inequality 2‘2 � 7‘ + 12 � 2‘2 � 5‘ + 4 holds for all ‘ � 4, we have dim(V
0
u(1)) �

2‘2�5‘+4 for all unipotent elements u of G whose Jordan form onW is Jr1
2 �J2‘�2r1

1 , where
r1 � 3. Furthermore, equality holds if and only if 2‘2 � 7‘+ 12 = 2‘2 � 5‘+ 4, hence ‘ = 4,
and dim((^2(W

0
2))u(1)) = 2‘2 � 11‘ + 16, hence u acts on W 0

2 as one of J2
2 and J2 � J2

1 , see
Proposition 4.3.7. Therefore, dim(V

0
u(1)) = 2‘2 � 5‘+ 4 if and only if ‘ = 4 and the Jordan

form of u on W is one of J4
2 and J3

2 � J2
1 .
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We now assume that n1 � 3. We write W = W
00
1 �W

00
2 , where dim(W

00
1 ) = n1 and u

acts as Jn1 on W 00
1 , and dim(W

00
2 ) = 2‘� n1 and u acts as Jr1�1

n1
�

mM
i=2

Jrini on W
00
2 . We then

proceed as in the proof of Lemma 4.3.9, see (4.38), (4.39) and (4.40), to deduce that:

dim(V
0

u(1)) � 2‘2 � 5‘+ 4 +
n2

1 � 4‘n1 + 2n1 + 8‘� 4 + �

2
:

One checks that the inequality

n2
1 � 4‘n1 + 2n1 + 8‘� 4 + � < 0

holds for all n1 2 (2‘� 1�
p

4‘2 � 12‘+ 5� �; 2‘� 1 +
p

4‘2 � 12‘+ 5� �) and all ‘ � 3.
Since 2‘ � 1 +

p
4‘2 � 12‘+ 5� � > 2‘ � 2 and since 2‘ � 1 �

p
4‘2 � 12‘+ 5� � < 3, as

11 + � < 4‘ holds for all ‘ � 3, it follows that, in particular, the inequality holds for all
3 � n1 � 2‘� 2 and all ‘ � 3. We deduce that dim(V

0
u(1)) < 2‘2 � 5‘ + 4 for all unipotent

elements u of G whose Jordan form on W admits at least two nontrivial blocks and n1 � 3.
This completes the proof of the proposition.

Proposition 4.3.12. Let k be an algebraically closed field of characteristic p 6= 2 and let
V = LG(2!1). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 2‘2 � ‘;

where equality holds if and only if the Jordan form of u on W is J2 � J2‘�2
1 .

In particular, we have dim(Vu(1)) < dim(V ) �
p

dim(V ) for all non-identity unipotent
elements u 2 G.

Proof. We first note that, as p 6= 2, by Lemma 2.8.2, we have V �= S2(W ). Keeping in mind

that dim(W ) = 2‘, we apply Proposition 3.3.5 to determine that dim(Vu(1)) � 2‘(2‘� 1)

2
=

2‘2 � ‘ for all non-identity unipotent elements u 2 G. Furthermore, equality holds if and
only if the Jordan form of u on W is J2 � J2‘�2

1 .
In conclusion, as

p
2‘2 + ‘ < 2‘ for all ‘ � 2, it follows that the inequality 2‘2 + ‘ �p

2‘2 + ‘ > 2‘2 � ‘ holds for all ‘ � 2, and so dim(Vu(1)) < dim(V ) �
p

dim(V ) for all
non-identity unipotent elements u 2 G.

To conclude this subsection, we remark that Lemma 4.3.3, Propositions 4.3.10 and 4.3.12
and Corollary 4.3.8 give the proof of Theorems 4.3.1 and 4.3.2 for the families of kG-modules
corresponding to p-restricted dominant weights � 2 FC‘ .

4.3.2 The particular modules

As previously mentioned, this subsection is dedicated to the proof of Theorems 4.3.1 and 4.3.2
for the particular kG-modules, i.e. the kG-modules V = LG(�) for which the corresponding
p-restricted dominant weight � is listed in one of the Tables 2.7.2 and 2.7.3. In order to
determine an upper-bound for dim(Vu(1)), where u 2 G is a non-identity unipotent element,
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we will use the inductive algorithm described in Subsection 2.4.4. In the first part of this
subsection, we will consider the case of ‘ = 2 and for each V = LG(�) with � featured
in Table 2.7.2 we will establish max

u2Gunf1g
dim(Vu(1)), see Propositions 4.3.13 through 4.3.19.

In the second part, we assume that ‘ � 3 and we focus our attention on the irreducible
kG-modules V = LG(�), where � is listed in Table 2.7.3, for which we will establish an
upper-bound for dim(Vu(1)), see Propositions 4.3.13 through 4.3.31.

For the moment, let us assume that ‘ = 2. Let L1 and L2, respectively, be Levi subgroups
of the maximal parabolic subgroups P1 and P2, respectively, of G, see Section 2.4. Now, if
p 6= 2, we have seen in Theorem 2.9.2 that unipotent conjugacy classes in G are completely
determined by the Jordan normal form of a class representative on W . In Table 4.3.2
we list all unipotent conjugacy classes of G and we give a representative. Note that for
each non-identity class, the representative u0 has been chosen such that either u0L1

6= 1, or
u
0
L2
6= 1. On the other hand, when p = 2, we have seen in Theorem 2.9.11 that unipotent

conjugacy classes in G are completely determined by the Hesselink normal form of a class
representative. In Table 4.3.3 we list all unipotent conjugacy classes of G and for each class
we give a representative. Once more, note that for each non-identity class, the representative
u
0 has been chosen such that either u0L1

6= 1, or u0L2
6= 1.

[LS12, Subsection 3:3:2][MKT21, Table 7]
Class representative Jordan normal form

1 J4
1

x�1(1) J2
2

x�2(1) J2 � J2
1

x�1(1)x�2(1) J4

Table 4.3.2: Unipotent class representatives in C2 when p 6= 2.

[Remark 2.9.19][MKT21, Table 7]
Class representative Hesselink normal form

1 (14
0)

x�1(1) (22
0)

x�2(1) (12
0; 21)

x�2(1)x2�1+�2(1) (22
1)

x�1(1)x�2(1) (41)

Table 4.3.3: Unipotent class representatives in C2 when p = 2.

Let u 2 G be a non-identity unipotent element and let u0 be the class representative
given in either Table 4.3.2 or Table 4.3.3, depending on whether p 6= 2, or p = 2, of the
unipotent conjugacy class of u. Because of the choice of representatives, we either have
u
0
L1
6= 1, or u0L2

6= 1. First, suppose that u0L1
6= 1, thus u0L1

= x�2(1). Now, as dim(Vu(1)) =
dim(Vu0 (1)), dim(Vu0 (1)) � dim(Vx�2 (1)(1)), see Inequality (2.7), it follows that dim(Vu(1)) �
dim(Vx�2 (1)(1)). Now, suppose that u0L1

= 1, hence u0L2
6= 1 and so u0L2

= x�1(1). We argue
exactly as in the case of u0L1

6= 1 to show that dim(Vu(1)) � dim(Vx�1 (1)(1)). Lastly, as either
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u
0
L1
6= 1, or u0L2

6= 1, for any pair (u; u
0
) of a non-identity unipotent element u 2 G and a

class representative u0 of the G-conjugacy class of u, we have:

dim(Vu(1)) � maxfdim(Vx�1 (1)(1)); dim(Vx�2 (1)(1))g: (4.41)

Moreover, by Identity (2.8), we deduce that there exist unipotent elements u 2 G for
which the bound in (4.41) is attained, for example x�1(1) or x�2(1), depending on whether
dim(Vx�1 (1)(1)), or dim(Vx�2 (1)(1)) realizes the maximum in (4.41). Hence, in what follows,
we concentrate on determining maxfdim(Vx�1 (1)(1)); dim(Vx�2 (1)(1))g.

Proposition 4.3.13. Let k be an algebraically closed field of characteristic p = 5. Assume
‘ = 2 and let V = LG(!1 +!2). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 5;

where there exist u 2 G for which the bound is attained.
In particular, we have dim(Vu(1) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. Let u 2 G be a non-identity unipotent element. We recall Inequality (4.41), which
states that:

dim(Vu(1)) � maxfdim(Vx�1 (1)(1)); dim(Vx�2 (1)(1))g:
Therefore, in order to establish a bound for dim(Vu(1)), we need to determine dim(Vx�1 (1)(1))
and dim(Vx�2 (1)(1)). We begin with the former. For this, we recall the Decomposition (4.23)
of Proposition 4.2.8, which states:

V j[L2;L2]
�= LL2(!1)� LL2(3!1)� LL2(3!1)� LL2(!1):

By applying Lemma 3.3.3 and Proposition 3.3.12 it follows that dim(Vx�1 (1)(1)) = 4.
We will now determine dim(Vx�2 (1)(1)). For this, we consider the Levi subgroup L1 of

the maximal parabolic subgroup P1 of G. Let T 0 denote the maximal torus T \ [L1; L1] of
[L1; L1]. Set � = !1 + !2 and note that dim(V ) = 12, as p = 5. By Lemma 2.4.5, we have
e1(�) = 4, therefore

V j[L1;L1]= V 0 � V 1 � V 2 � V 3 � V 4;

where V i =
M
2N�1

V��i�1� for 0 � i � 4. By [Smi82, Proposition], it follows that V 0 �=

LL1(!2) and, by Lemma 2.4.3, we also have V 4 �= (LL1(!2))� �= LL1(!2). Now, the weight
(� � �1) jT 0= 2!2 admits a maximal vector in V 1, therefore V 1 has a composition factor
isomorphic to LL1(2!2), thus dim(V 1) � 3. Moreover, as V 3 �= (V 1)�, see Lemma 2.4.3, we
have dim(V 2) � 2. Lastly, since the weight � � 2�1 � �2 jT 0= !2 admits a maximal vector
in V 2, it follows that V 2 �= LL1(!2). Therefore, V 1 �= LL1(2!2), V 3 �= LL1(2!2) and

V j[L1;L1]
�= LL1(!2)� LL1(2!2)� LL1(!2)� LL1(2!2)� LL1(!2):

We now apply Lemma 3.3.3 and Proposition 3.3.5 to determine that dim(Vx�2 (1)(1)) = 5.
In conclusion, we have shown that dim(Vu(1)) � 5 for all non-identity unipotent elements

u 2 G and that there exist u 2 G for which the bound is attained, for example x�2(1).
Moreover, we have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements

u 2 G.
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Proposition 4.3.14. Let k be an algebraically closed field of characteristic p 6= 5. Assume
‘ = 2 and let V = LG(!1 +!2). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 8;

where there exist u 2 G for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. Let u 2 G be a non-identity unipotent element. We recall Inequality (4.41), which
states that:

dim(Vu(1)) � maxfdim(Vx�1 (1)(1)); dim(Vx�2 (1)(1))g:

Therefore, in order to establish a bound for dim(Vu(1)), we need to determine dim(Vx�1 (1)(1))
and dim(Vx�2 (1)(1)).

First, we assume that p = 2. In this case, by [Sei87, (1.6)], we have the following
isomorphism of kG-modules:

V = LG(!1)
 LG(!2):

We start with determining dim(Vx�1 (1)(1)). Now, x�1(1) has Hesselink normal form (22
0),

see Table 4.3.3. Thereby, the Jordan form of x�1(1) onW , hence on LG(!1), is J2
2 . This gives

rise to the following k[x�1(1)]-module isomorphism: W jk[x�1 (1)]
�= V2� V2, where Vi, i = 1; 2,

is the unique, up to isomorphism, indecomposable k[x�1(1)]-module with dim(Vi) = i and
on which x�1(1) acts as the full Jordan block of size i. Then

^2(W ) �= ^2(V2 � V2) = ^2(V2)� V2 
 V2 � ^2(V2)

= V 2
2 � V 2

1 ;

as k[x�1(1)]-modules. Thus, the Jordan form of the action of x�1(1) on ^2(W ) is J2
2 � J2

1 .
Since the Hesselink normal form of x�1(1) is (22

0), it follows that � = �2(2) = 1, and since
2 - ‘

2�
, we use case (c:3) of Theorem 4.3.6 to determine that the Jordan form of the action

of x�1(1) on LG(!2) is J2 � J2
1 . Therefore, the Jordan form of the action of x�1(1) on V is

J2
2 
 (J2 � J2

1 ) = J8
2 , since p = 2, and so dim(Vx�1 (1)(1)) = 8.

We will now determine dim(Vx�2 (1)(1)). As x�2(1) has Hesselink normal form (12
0; 21), see

Table 4.3.3, it follows that the Jordan form of x�2(1) onW , hence on LG(!1), is J2�J2
1 . This

gives rise to the following k[x�2(1)]-module isomorphism: W jk[x�2 (1)]
�= V2 � V 2

1 , where Vi,
i = 1; 2, is the unique, up to isomorphism, indecomposable k[x�2(1)]-module with dim(Vi) = i
and on which x�2(1) acts as the full Jordan block of size i. Then:

^2(W ) �= ^2(V2 � V 2
1 ) = ^2(V2)� V2 
 V 2

1 � ^2(V 2
1 )

= V 2
2 � V 2

1 ;

as k[x�2(1)]-modules. Thus, the Jordan form of the action of x�2(1) on ^2(W ) is J2
2 � J2

1 .
Since the Hesselink normal form of x�2(1) is (12

0; 21), it follows that � = �2(1) = 0, and,
since 2 j ‘, we use case (b) of Theorem 4.3.6 to determine that the Jordan form of the
action of x�2(1) on LG(!2) is J2

2 . Therefore, the Jordan form of the action of x�2(1) on V is
(J2 � J2

1 )
 J2
2 = J8

2 , since p = 2, and so dim(Vx�2 (1)(1)) = 8.
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We can now assume that p 6= 2. We will first determine dim(Vx�2 (1)(1)). For this, we
recall the decomposition of V j[L1;L1] from Proposition 4.2.9, which states:

V j[L1;L1]
�= LL1(!2)�LL1(2!2)�LL1(0)�LL1(!2)�LL1(!2)�LL1(2!2)�LL1(0)�LL1(!2):

By applying Lemma 3.3.3 and Proposition 3.3.5, we deduce that dim(Vx�2 (1)(1)) = 8.
We will now determine dim(Vx�1 (1)(1)). For this, we consider the Levi subgroup L2 of

the maximal parabolic subgroup P2 of G. Let T 0 denote the maximal torus T \ [L2; L2] of
[L2; L2]. Set � = !1 + !2 and note that dim(V ) = 16. By Lemma 2.4.5, we have e2(�) = 3,
therefore

V j[L2;L2]= V 0 � V 1 � V 2 � V 3;

where V i =
M
2N�2

V��i�2� for i = 0; 1; 2 and i = 3. By [Smi82, Proposition], it follows

that V 0 �= LL2(!1), hence, by Lemma 2.4.3, we also have V 3 �= (LL2(!1))� = LL2(!1).
Then dim(V 1) + dim(V 2) = 12 and, as V 2 �= (V 1)�, see Lemma 2.4.3, it follows that
dim(V 1) = dim(V 2) = 6. Now, the weight (� � �2) jT 0= 3!1 admits a maximal vector
in V 1, therefore V 1 has a composition factor isomorphic to LL2(3!1). Moreover, we note
that the dominant weight (� � �1 � �2) jT 0= !1 occurs in V 1 with multiplicity 2. We now
distinguish the following two cases:

Case 1: Assume that p 6= 3. Then !1 is a sub-dominant weight with multiplicity 1 in the
composition factor of V 1 isomorphic to LL2(3!1). Now, by dimensional considerations, we
deduce that V 1 admits exactly two composition factors, one isomorphic to LL2(3!1) and one
isomorphic to LL2(!1). Using [Jan07, II.2.14], we determine that V 1 �= LL2(3!1)� LL2(!1),
therefore V 2 �= LL2(3!1)� LL2(!1), by Lemma 2.4.3, and so:

V j[L2;L2]
�= LL2(!1)� LL2(3!1)� LL2(!1)� LL2(3!1)� LL2(!1)� LL2(!1):

We apply Lemma 3.3.3 and Proposition 3.3.12 to determine that dim(Vx�1 (1)(1)) = 6.
Case 2: Assume that p = 3. Then V 1, respectively V 2, admits exactly three composition

factors: two isomorphic to LL2(!1) and one isomorphic to LL2(!1)(3). In this case, using
Lemmas 2.4.9 and 3.3.3, we determine that dim(Vx�1 (1)(1)) � 8.

In conclusion, we have shown that dim(Vu(1)) � 8 for all non-identity unipotent elements
u 2 G and that there exist unipotent elements u 2 G for which the bound is attained, for
example x�2(1). Therefore, dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proposition 4.3.15. Let k be an algebraically closed field of characteristic p 6= 2. Assume
‘ = 2 and let V = LG(2!2). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 8:

In particular, we have dim(Vu(1)) < dim(V ) �
p

dim(V ) for all non-identity unipotent
elements u 2 G.

Proof. Let u 2 G be a non-identity unipotent element. We recall Inequality (4.41), which
states that:

dim(Vu(1)) � maxfdim(Vx�1 (1)(1)); dim(Vx�2 (1)(1))g:
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Therefore, in order to establish a bound for dim(Vu(1)), we need to determine dim(Vx�1 (1)(1))
and dim(Vx�2 (1)(1)). We begin with the latter. For this, we recall the decomposition of
V j[L1;L1] from Proposition 4.2.10, which, in the case of p = 5, states that:

V j[L1;L1]
�= LL1(2!2)� LL1(!2)� LL1(2!2)� LL1(!2)� LL1(2!2);

see (4.24). Then, by Lemma 3.3.3 and Proposition 3.3.5, we determine that dim(Vx�2 (1)(1)) =
5. Similarly, by (4.25), in the case of p 6= 5, we have

V j[L1;L1]
�= LL1(2!2)� LL1(!2)� LL1(2!2)� LL1(0)� LL1(!2)� LL1(2!2):

Then, by Lemma 3.3.3 and Proposition 3.3.5, it follows that dim(Vx�2 (1)(1)) = 6.
We will now determine dim(Vx�1 (1)(1)). For this, we consider the Levi subgroup L2 of

the maximal parabolic subgroup P2 of G. Let T 0 denote the maximal torus T \ [L2; L2] of
[L2; L2]. Now, as p 6= 2, we have dim(V ) = 14� �p;5. Set � = 2!2. By Lemma 2.4.5 we have
e2(�) = 4 and so:

V j[L2;L2]= V 0 � � � � � V 4;

where V i =
M
2N�2

V��i�2� for i = 0; 1; 2; 3 and i = 4. By [Smi82, Proposition], it follows that

V 0 �= LL2(0) and so V 4 �= LL2(0), by Lemma 2.4.3. Now, the weight (���2) jT 0= 2!1 admits
a maximal vector in V 1, therefore V 1 has a composition factor isomorphic to LL2(2!1) and
dim(V 1) � 3, as p 6= 2. By Lemma 2.4.3, we also have dim(V 3) � 3, thus dim(V 2) � 6+�p;5.
In V 2, the dominant weight (� � 2�2) jT 0= 4!1 admits a maximal vector, therefore V 2

has a composition factor isomorphic to LL2(4!1). We also note that the dominant weight
(�� 2�1 � 2�2) jT 0= 0 occurs with multiplicity 2� �p;5 in V 2. We distinguish the following
three case:

Case 1: Assume that p � 7. Then dim(V 2) � 6 and the multiplicity of the weight 0 in
V 2 is 2. As the weight 0 is a sub-dominant weight with multiplicity 1 in the composition
factor of V 2 isomorphic to LL2(4!1) and as dim(V 2) � 6, it follows that V 2 consists of
exactly two composition factors: one isomorphic to LL2(4!1) and one isomorphic to LL2(0).
Furthermore, by [Jan07, II.2.14], we deduce that V 2 �= LL2(4!1) � LL2(0). Moreover, we
have V 1 �= LL2(2!1), hence V 3 �= LL2(2!1), and so:

V j[L2;L2]
�= LL2(0)� LL2(2!1)� LL2(4!1)� LL2(0)� LL2(2!1)� LL2(0):

We now use Proposition 3.3.5 and Proposition 3.3.12 to determine that dim(Vx�1 (1)(1)) = 6.
Case 2: Assume that p = 5. Then dim(V 2) � 5 and, consequently, V 2 �= LL2(4!1).

Furthermore, we have V 1 �= LL2(2!1), hence V 3 �= LL2(2!1), and so:

V j[L2;L2]
�= LL2(0)� LL2(2!1)� LL2(4!1)� LL2(2!1)� LL2(0):

Once more, by Propositions 3.3.5 and 3.3.12, we determine that dim(Vx�1 (1)(1)) = 5.
Case 3: Assume that p = 3. Then, as in Case 1, we have dim(V 2) � 6 and the multiplicity

of the weight 0 in V 2 is 2. However, as p = 3, the weight 0 is not a sub-dominant weight in the
composition factor of V 2 isomorphic to LL2(4!1). Therefore, V 2 consists of 3 composition
factors: one isomorphic to LL2(4!1) �= LL2(!1) 
 LL2(!1)(3), see Theorem 2.3.8, and two
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isomorphic to LL2(0). Moreover, as in the previous two cases, we have V 1 �= LL2(2!1),
hence V 3 �= LL2(2!1). Lastly, by Proposition 3.3.5, we establish that dim(Vx�1 (1)(1)) =

4 + dim(V 2
x�1 (1)(1)). Now, as x�1(1) acts as J2 on LL2(!1) and on LL2(!1)(3), respectively, by

Lemmas 2.9.4 and 2.4.9, we determine that dim(V 2
x�1 (1)(1)) � 4, hence dim(Vx�1 (1)(1)) � 8.

In conclusion, we have shown that dim(Vu(1)) � 8 < dim(V ) �
p

dim(V ) for all non-
identity unipotent elements u 2 G.

Proposition 4.3.16. Let k be an algebraically closed field of characteristic p 6= 2; 3. Assume
‘ = 2 and let V = LG(3!1). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 10;

where there exist u 2 G for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. Let u 2 G be a non-identity unipotent element. We recall Inequality (4.41), which
states that:

dim(Vu(1)) � maxfdim(Vx�1 (1)(1)); dim(Vx�2 (1)(1))g:

Therefore, in order to establish a bound for dim(Vu(1)), we need to determine dim(Vx�1 (1)(1))
and dim(Vx�2 (1)(1)). We begin with the former. For this, we recall the Decomposition (4.26)
of V j[L2;L2] from Proposition 4.2.11, which states:

V j[L2;L2]
�= LL2(3!1)� LL2(3!1)� LL2(!1)� LL2(3!1)� LL2(!1)� LL2(3!1):

Applying Lemma 3.3.3 and Proposition 3.3.12, it follows that dim(Vx�1 (1)(1)) = 6.
We will now determine dim(Vx�2 (1)(1)). For this we consider the Levi factor L1 of the

maximal parabolic subgroup P1 of G. Let T 0 denote the maximal torus T\[L1; L1] of [L1; L1].
Set � = 3!1 and note that dim(V ) = 20. By Lemma 2.4.5, we have e1(�) = 6, therefore:

V j[L1;L1]= V 0 � V 1 � � � � � V 6;

where V i =
M
2N�1

V��i�1� for 0 � i � 6. By [Smi82, Proposition], it follows that V 0 �=

LL1(0) and so V 6 �= LL1(0), by Lemma 2.4.3. Now, in V 1, the weight (� � �1) jT 0= !2

admits a maximal vector, therefore V 1 has a composition factor isomorphic to LL1(!2) and
dim(V 1) � dim(LL1(!2)) = 2. By Lemma 2.4.3, we also have dim(V 5) � 2. Similarly,
the weight (� � 2�1) jT 0= 2!2 admits a maximal vector in V 2, thus V 2 has a composition
factor isomorphic to LL1(2!2). Moreover, we also note that the dominant weight (�� 2�1�
�2) jT 0= 0, which occurs with multiplicity 2 in V 2, as p 6= 2, is a sub-dominant weight in the
composition factor of V 2 isomorphic to LL1(2!2), in which it has multiplicity 1. Therefore
dim(V 2) � 4, hence dim(V 4) � 4, by Lemma 2.4.3. It follows that dim(V 3) � 6. Lastly, the
weight (�� 3�1) jT 0= 3!2 admits a maximal vector in V 3, thus V 3 has a composition factor
isomorphic to LL1(3!2). Moreover, the dominant weight (��3�1��2) jT 0= !2, which occurs
with multiplicity 2 in V 3, as p 6= 2; 3, is a sub-dominant weight in the composition factor of
V 3 isomorphic to LL1(3!2), in which it has multiplicity 1. Therefore, as dim(V 3) � 6, we
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determine that V 3 consists of exactly two composition factors: one isomorphic to LL1(3!2)
and one isomorphic to LL1(!2). Moreover, by [Jan07, II.2.14], we have V 3 �= LL1(3!2) �
LL1(!2). Now, by dimensional considerations, it follows that V 1 �= LL1(!2), V 5 �= LL1(!2),
by Lemma 2.4.3, V 2 �= LL1(2!2)� LL1(0), by [Jan07, II.2.14], and V 4 �= LL1(2!2)� LL1(0),
by Lemma 2.4.3. We have shown that:

V j[L1;L1]
�= LL1(0)� LL1(!2)� LL1(2!2)� LL1(0)� LL1(3!2)� LL1(!2)� LL1(2!2)

� LL1(0)� LL1(!2)� LL1(0):

We now use Lemma 3.3.3, Proposition 3.3.5 and Proposition 3.3.12 to determine that
dim(Vx�2 (1)(1)) = 10.

In conclusion, we have shown that dim(Vu(1)) � 10 for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bound is attained, for example x�2(1). Lastly
we have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 G.

Proposition 4.3.17. Let k be an algebraically closed field of characteristic p = 7. Assume
‘ = 2 and let V = LG(!1 + 2!2). Then for all non-identity unipotent elements u 2 G we
have

dim(Vu(1)) � 7;

where there exist u 2 G for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. Let u 2 G be a non-identity unipotent element. We recall Inequality (4.41), which
states that:

dim(Vu(1)) � maxfdim(Vx�1 (1)(1)); dim(Vx�2 (1)(1))g:

Therefore, in order to establish a bound for dim(Vu(1)), we need to determine dim(Vx�1 (1)(1))
and dim(Vx�2 (1)(1)). We begin with the latter. For this, we recall the Decomposition (4.27)
of Proposition 4.2.12, which states:

V j[L1;L1]
�= LL1(2!2)� LL1(3!2)� LL1(2!2)� LL1(3!2)� LL1(2!2)� LL1(3!2)� LL1(2!2):

Using Proposition 3.3.5 and Proposition 3.3.12, it follows that dim(Vx�2 (1)(1)) = 7.
We will now determine dim(Vx�1 (1)(1)). For this, we consider the Levi subgroup L2 of

the maximal parabolic subgroup P2 of G. Let T 0 denote the maximal torus T \ [L2; L2] of
[L2; L2]. Set � = !1 + 2!2 and note that dim(V ) = 24, as p = 7. By Lemma 2.4.5, we have
e2(�) = 5, therefore

V j[L2;L2]= V 0 � V 1 � � � � � V 5;

where V i =
M
2N�2

V��i�2� for 0 � i � 5. By [Smi82, Proposition], it follows that V 0 �=

LL2(!1) and so V 5 �= (LL2(!1))� �= LL2(!1), by Lemma 2.4.3. Now, in V 1, the weight
(���2) jT 0= 3!1 admits a maximal vector, therefore V 1 has a composition factor isomorphic
to LL2(3!1) and dim(V 1) � dim(LL2(3!1)) = 4, since p = 7. Moreover, by Lemma 2.4.3,
we also have dim(V 4) � 4, therefore dim(V 2) = dim(V 3) � 6, as V 3 �= (V 2)�. Lastly,
the weight (� � 2�2) jT 0= 5!1 admits a maximal vector in V 2, thus V 2 has a composition
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factor isomorphic to LL2(5!1) and, as dim(LL2(5!1)) = 6, since p = 7, it follows that
V 2 �= LL2(5!1). Therefore, we also have V 3 �= LL2(5!1). Now, since dim(V 1) = 4, it follows
that V 1 �= LL2(3!1) and so V 4 �= LL2(3!1), by Lemma 2.4.3. We have shown that:

V j[L2;L2]
�= LL2(!1)� LL2(3!1)� LL2(5!1)� LL2(5!1)� LL2(3!1)� LL2(!1):

Using Lemma 3.3.3 and Proposition 3.3.12 we determine that dim(Vx�1 (1)(1)) = 6.
In conclusion, we have shown that dim(Vu(1)) � 7 for all non-identity unipotent elements

u 2 G and that there exist u 2 G for which the bound is attained, for example x�2(1). Lastly,
we have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 G.

Proposition 4.3.18. Let k be an algebraically closed field of characteristic p = 7. Assume
‘ = 2 and let V = LG(3!2). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 7;

where there exist u 2 G for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. Let u 2 G be a non-identity unipotent element. We recall Inequality (4.41), which
states that:

dim(Vu(1)) � maxfdim(Vx�1 (1)(1)); dim(Vx�2 (1)(1))g:
Therefore, in order to establish a bound for dim(Vu(1)), we need to determine dim(Vx�1 (1)(1))
and dim(Vx�2 (1)(1)). We begin with the latter. For this, we recall the Decomposition (4.28)
of Proposition 4.2.13, which states:

V j[L1;L1]
�= LL1(3!2)� LL1(2!2)� LL1(3!2)� LL1(2!2)� LL1(3!2)� LL1(2!2)� LL1(3!2):

Using Proposition 3.3.5 and Proposition 3.3.12, it follows that dim(Vx�2 (1)(1)) = 7.
We will now determine dim(Vx�1 (1)(1)). For this we consider the Levi subgroup L2 of

the maximal parabolic subgroup P2 of G. Let T 0 denote the maximal torus T \ [L2; L2] of
[L2; L2]. Set � = 3!2 and note that dim(V ) = 25, as p = 7. By Lemma 2.4.5, we have
e2(�) = 6, therefore

V j[L2;L2]= V 0 � � � � � V 6;

where V i =
M
2N�2

V��i�2� for 0 � i � 6. By [Smi82, Proposition], it follows that V 0 �=

LL2(0) and thus V 6 �= LL2(0), by Lemma 2.4.3. Now, the weight (� � �2) jT 0= 2!1 admits
a maximal vector in V 1, therefore V 1 has a composition factor isomorphic to LL2(2!1) and
dim(V 1) � dim(LL2(2!1)) = 3, since p = 7. Moreover, by Lemma 2.4.3, we also have
dim(V 5) � 3. The weight (� � 2�2) jT 0= 4!1 admits a maximal vector in V 2, therefore
V 2 has a composition factor isomorphic to LL2(4!1) and dim(V 2) � dim(LL2(4!1)) = 5,
since p = 7. Once more, by Lemma 2.4.3, we also have dim(V 4) � 5. Lastly, the weight
(� � 3�2) jT 0= 6!1 admits a maximal vector in V 3, therefore V 3 has a composition factor
isomorphic to LL2(6!1) and dim(V 3) � 7, as p = 7. We deduce that:

V j[L2;L2]
�= LL2(0)� LL2(2!1)� LL2(4!1)� LL2(6!1)� LL2(4!1)� LL2(2!1)� LL2(0):
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Using Proposition 3.3.5 and Proposition 3.3.12 we determine that dim(Vx�1 (1)(1)) = 7.
In conclusion, we showed that dim(Vu(1)) � 7 for all non-identity unipotent elements

u 2 G and that there exist u 2 G for which the bound is attained, for example x�1(1) and
x�2(1). Moreover, we have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proposition 4.3.19. Let k be an algebraically closed field of characteristic p = 3. Assume
‘ = 2 and let V = LG(2!1 + !2). Then for all non-identity unipotent elements u 2 G we
have

dim(Vu(1)) � 13:

In particular, we have dim(Vu(1)) < dim(V ) �
p

dim(V ) for all non-identity unipotent
elements u 2 G.

Proof. Let u 2 G be a non-identity unipotent element. We recall Inequality (4.41), which
states that:

dim(Vu(1)) � maxfdim(Vx�1 (1)(1)); dim(Vx�2 (1)(1))g:

Therefore, in order to establish a bound for dim(Vu(1)), we need to determine dim(Vx�1 (1)(1))
and dim(Vx�2 (1)(1)). We begin with the former. For this, we recall the decomposition of
V j[L2;L2] from Proposition 4.2.14, which states:

V j[L2;L2]
�= LL2(2!1)� V 1 � V 2 � V 3 � LL2(2!1);

where V 1 and V 3 each have three composition factors: one isomorphic to LL2(!1)
LL2(!1)(3)

and two isomorphic to LL2(0); and V 2 has two composition factors: one isomorphic to
LL2(!1) 
 LL2(!1)(3) and one isomorphic to LL2(2!1). Now, as x�1(1) acts as J2 on both
LL2(!1) and LL2(!1)(3), by Lemma 2.9.4, it follows that dim((LL2(!1)
LL2(!1)(3))x�1 (1)(1)) =
2. Thus, by Lemma 2.4.9, we have dim(V 1

x�1 (1)(1)) � 4, dim(V 3
x�1 (1)(1)) � 4 and, by

Proposition 3.3.5, we also have dim(V 2
x�1 (1)(1)) � 3. Lastly, applying Proposition 3.3.5

one more time, we deduce that dim(Vx�1 (1)(1)) � 13.
We will now determine dim(Vx�2 (1)(1)). For this we consider the Levi factor L1 of the

maximal parabolic subgroup P1 of G. Let T 0 denote the maximal torus T\[L1; L1] of [L1; L1].
Set � = 2!1 +!2 and note that dim(V ) = 25, as p = 3. By Lemma 2.4.5, we have e1(�) = 6,
therefore:

V j[L1;L1]= V 0 � V 1 � � � � � V 6;

where V i =
M
2N�1

V��i�1� for 0 � i � 6. By [Smi82, Proposition], it follows that V 0 �=

LL1(!2) and so V 6 �= (LL1(!2))� �= LL1(!2), by Lemma 2.4.3. Now, the weight (���1) jT 0=
2!2 admits a maximal vector in V 1, thus V 1 has a composition factor isomorphic to LL1(2!2)
and dim(V 1) � 3, as p = 3. Then, dim(V 5) � 3, by Lemma 2.4.3. Similarly, in V 3, the
dominant weight (� � 3�1 � �2) jT 0= 2!2 admits a maximal vector, therefore V 3 has a
composition factor isomorphic to LL1(2!2) and dim(V 3) � 3, as p = 3. Then, by Lemma
2.4.3, it follows that dim(V 2) = dim(V 4) � 6. Now, the weight (�� 2�1) jT 0= 3!2 admits a
maximal vector in V 2, thus V 2 has a composition factor isomorphic to LL1(3!2) �= LL1(!2)(3),
as p = 3. Moreover, since p = 3, the dominant weight (�� 2�1 � �2) jT 0= !2, which occurs
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with multiplicity 2 in V 2, does not appear as a sub-dominant weight in the composition
factor of V 2 isomorphic to LL1(!2)(3). Since dim(V 2) � 6, it follows that V 2 consists of
exactly three composition factors: one isomorphic to LL1(!2)(3) and another two isomorphic
to LL1(!2). Thus, by Lemma 2.4.3, V 4 also consists of exactly three composition factors:
one isomorphic to LL1(!2)(3) and two isomorphic to LL1(!2). Lastly, as dim(V 3) = 3 and
dim(V 1) = 3, we determine that V 3 �= LL1(2!2), V 1 �= LL1(2!2) and so V 5 �= LL1(2!2),
by Lemma 2.4.3. Having determined the decomposition V j[L1;L1], we use Lemma 3.3.3,
Proposition 3.3.5 and Lemma 2.4.9 to deduce that dim(Vx�2 (1)(1)) � 11.

In conclusion, we showed that dim(Vu(1)) � 13 < dim(V )�
p

dim(V ) for all non-identity
unipotent elements u 2 G.

At this point, we have determined max
u2Gunf1g

dim(Vu(1)) for all the irreducible modules V

of G of type C2 featured in Table 2.7.2. We will now assume that ‘ � 3 and focus on the
kG-modules of Table 2.7.3. Let u 2 G be a unipotent element and write u =

Y
�2Su

x�(c�),

where the product is taken with respect to the total order � on �, see Section 1.3, Su � �+

and c� 2 k� for all � 2 Su. In what follows, we will prove that each non-identity unipotent
conjugacy class in G admits a representative u0 with the property that Su0 \ f�2; : : : ; �‘g,
see Proposition 4.3.22.

First, assume that p 6= 2. Theorem 2.9.2 tells us that unipotent conjugacy classes in
G are completely determined by the Jordan form on W of a representative. Moreover, we
know that odd sized Jordan blocks occur with even multiplicity. With that in mind, let
u 2 G be a non-identity unipotent element and let Vi, 1 � i � ord(u), be the unique, up to
isomorphism, indecomposable k[u]-module with dim(Vi) = i and on which u acts as the full
Jordan block of size i. Following [Kor18, Subsection 2.8.2], we associate to u the (possibly
empty) sequences (oi)1�i�t and (ej)1�j�s such that:

W jk[u]=
tM
i=1

V 2
oi
�

sM
j=1

V2ej ;

where 1 � o1 � � � � � ot are odd and 1 � e1 � � � � � es are such that
tX
i=1

oi +
sX
j=1

ej = ‘.

Note that the above decomposition completely determines the conjugacy class of u in G.
We now assume that p = 2. Theorems 2.9.11 and 2.9.15 tell us that unipotent conjugacy

classes in G are completely determined by the Hesselink normal form of a representative.
With this in mind, let u 2 G be a non-identity unipotent element and let (o10 ; : : : ; ot0 ; 2e11 ; : : : ;
2es1) be its Hesselink normal form, where t � 0, s � 0, 1 � o1 � � � � � ot and 1 � e1 �

� � � � es are such that
tX
i=1

oi +
sX
j=1

ej = ‘. Then W admits the following decomposition as

on orthogonal direct sum of indecomposable k[u]-modules:

W jk[u]=
tM
i=1

W (oi)�
sM
j=1

V (2ej):
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Note that the above decomposition completely determines the conjugacy class of u in G.

Lemma 4.3.20. [Kor18, Lemmas 2.8.11 and 2.8.12] Let k be an algebraically closed field
of characteristic p � 0. Let 1 � o1 � � � � � ot, where the oi’s are odd if p 6= 2, and let

1 � e1 � � � � � es be such that
tX
i=1

oi +
sX
j=1

ej = ‘. Set ot+j = ej, for all 1 � j � s. Further,

set k1 = 1 and ki = 1 + o1 + � � �+ oi�1, 2 � i � t+ s. Lastly, for all 1 � i � t+ s� 1, define:

ui =

8>>>>>>>>>><>>>>>>>>>>:

1; if 1 � i � t and oi = 1;
ki+1�2Y
j=ki

x�j(1); if 1 � i � t and oi > 1;

x2�ki+1�1+���+2�‘�1+�‘(1); if t+ 1 � i � t+ s� 1 and oi = 1;
ki+1�2Y
j=ki

x�j(1) � x2�ki+1�1+���+2�‘�1+�‘(1); if t+ 1 � i � t+ s� 1 and oi > 1;

and ut+s =

8>><>>:
x�‘(1); if ot+s = 1;

‘Y
j=kt+s

x�j(1); if ot+s > 1:

Then, one of the following holds:

(1) If p 6= 2, then u = u1 � � �ut+s lies in the unipotent conjugacy class of G determined by

the decomposition W jk[u]=
tM
i=1

V 2
oi
�

sM
j=1

V2ej .

(2) If p = 2, then u = u1 � � �ut+s lies in the unipotent conjugacy class of G determined by

the decomposition W jk[u]=
tM
i=1

W (oi)�
sM
j=1

V (2ej).

Remark 4.3.21. In this remark we will determine Su0 for a non-identity unipotent element

u0 2 G. If p 6= 2, let W jk[u0]=
tM
i=1

V 2
oi
�

sM
j=1

V2ej be the corresponding decomposition of

W as a k[u0]-module. Similarly, if p = 2, let W jk[u0]=
tM
i=1

W (oi) �
sM
j=1

V (2ej) be the

corresponding decomposition of W as a k[u0]-module. In both situations, by Lemma 4:3:20,
there exists a representative u of the unipotent G-conjugacy class of u0 with the property that
u = u1 � � �ut+s.

Case 1: Assume that t = 0. If os = 1, then oi = 1 for all 1 � i � s � 1, and we
have Sui = f2�ki+1�1 + � � � + 2�‘�1 + �‘g, for all 1 � i � s � 1, and Sus = f�‘g. Clearly,
Sui \ Suj = ;, for all 1 � i < j � s. We now use the commutator relations, see [MT11,
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Theorem 11.8], to determine that the ui’s commute, i.e. we have:

u = u1 � u2 � � �us =
s�1Y
i=1

x2�ki+1�1+���+2�‘�1+�‘(1) � x�‘(1)

= x�‘(1) �
�
x2�ks�1+���+2�‘�1+�‘(1) � � �x2�k2�1+���+2�‘�1+�‘(1)

�
= us � us�1 � � �u1:

This gives Su = f�‘; 2�ks�1 + � � �+ 2�‘�1 + �‘; : : : ; 2�k2�1 + � � �+ 2�‘�1 + �‘g.
On the other hand, if os � 2, let 1 � j � s be such that oj�1 = 1 and oj > 1. Now, for all

1 � i � j�1, we have Sui = f2�ki+1�1+� � �+2�‘�1+�‘g, while, for all j � i � s�1, we have
Suj = f�kj ; : : : ; �kj+1�2; 2�kj+1�1 + � � �+ 2�‘�1 + �‘g and Sus = f�ks ; : : : ; �‘g. To determine
Su, we once again apply the commutator relations, [MT11, Theorem 11.8], by which all the
terms in the product u1 � � �us commute, and it follows that:

u = u1 � � �uj�1 � uj � � �us

=

j�1Y
i=1

x2�ki+1�1+���+2�‘�1+�‘(1) �
s�1Y
i=j

�� ki+1�2Y
r=ki

x�r(1)

�
� x2�ki+1�1+���+2�‘�1+�‘(1)

�
�

‘Y
r=ks

x�r(1)

=
s�1Y
i=j

� ki+1�2Y
r=ki

x�r(1)

�
�

‘Y
r=ks

x�r(1) �
�
x2�ks�1+���+2�‘�1+�‘(1) � � �x2�kj+1�1+���+2�‘�1+�‘(1)

�
�

�
�
x2�kj�1+���+2�‘�1+�‘(1) � � �x2�k2�1+���+2�‘�1+�‘(1)

�
:

This shows that

Su = f�kj ; : : : ; �kj+1�2; �kj+1
; : : : ; �kj+2�2; : : : ; �ks�1 ; : : : ; �ks�2; �ks ; : : : ; �‘; 2�ks�1 + � � �+ 2�‘�1 + �‘;

: : : ; 2�kj+1�1 + � � �+ 2�‘�1 + �‘; 2�kj�1 + � � �+ 2�‘�1 + �‘; : : : ; 2�k2�1 + � � �+ 2�‘�1 + �‘g:

Case 2: Assume t � 1. If ot = 1, then oi = 1, for all 1 � i � t, and so ui = 1, for all
1 � i � t. In this case, Su is as in one of the two situations in Case 1. On the other hand, if
ot � 2, let 1 � j1 � t be such that oj1�1 = 1 and oj1 � 2. Then ui = 1, for all 1 � i � j1� 1,

and ui =

ki+1�2Y
r=ki

x�r(1), for all j1 � i � t. In this case, we have

u = u1 � � �uj1�1 � uj1 � � �ut � ut+1 � � �ut+j2 � ut+j2+1 � � �ut+s =
tY

i=j1

� ki+1�2Y
r=ki

x�r(1)

�
�

�
t+j2Y
i=t+1

x2�ki+1�1+���+2�‘�1+�‘(1) �
t+s�1Y

i=t+j2+1

�� ki+1�2Y
r=ki

x�r(1)

�
� x2�ki+1�1+���+2�‘�1+�‘(1)

�
� ut+s;

where 1 � j2 � s is such that ot+j2 = 1 and ot+j2+1 > 1. We determine that

Su1���ut = f�kj1 ; : : : ; �kj1+1�2; �kj1+1
; : : : ; �kj1+2�2; : : : ; �kt ; : : : ; �kt+1�2g:
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Moreover, we argue as we did in Case 1 to show that, if j2 = s, then:

Sut+1���ut+s = f�‘; 2�kt+s�1 + � � �+ 2�‘�1 + �‘; : : : ; 2�kt+2�1 + � � �+ 2�‘�1 + �‘g;

while, if j2 < s, then:

Sut+1���ut+s = f�kt+j2+1
; : : : ; �kt+j2+2�2; �kt+j2+2

; : : : ; �kt+j2+3�2; : : : ; �kt+s�1 ; : : : ; �kt+s�2; �kt+s ;

: : : ; �‘; 2�kt+s�1 + � � �+ 2�‘�1 + �‘; : : : ; 2�kt+j2+2�1 + � � �+ 2�‘�1 + �‘;

2�kt+j2+1�1 + � � �+ 2�‘�1 + �‘; : : : ; 2�kt+2�1 + � � �+ 2�‘�1 + �‘g:

Therefore, if we write Su1���ut = f�1; : : : ; �m1g and Sut+1���ut+s = f1; : : : ; m2g, wherem1;m2 �
1, we have that �i � j and �i 6= j, for all 1 � i � m1 and all 1 � j � m2, thus
Su = f�1; : : : ; �m1 ; 1; : : : ; m2g.

Proposition 4.3.22. Let k be an algebraically closed field of characteristic p � 0. Assume
that ‘ � 3. Then all non-identity unipotent conjugacy classes in G admit a representative u
with the property that Su \ f�2; : : : ; �‘g 6= ;.

Proof. Let u0 2 G be a non-identity unipotent element. If p 6= 2, let W jk[u0]=
tM
i=1

V 2
oi
�

sM
j=1

V2ej be the corresponding decomposition of W as a k[u0]-module. Similarly, if p = 2,

let W jk[u]=
tM
i=1

W (oi) �
sM
j=1

V (2ej) be the corresponding decomposition of W as a k[u0]-

module. Then, there exists a representative u in the unipotent G-conjugacy class of u0 such
that u = u1 � � �ut+s with ui’s as in Lemma 4:3:20.

We first consider the case when there are no odd sized blocks in the Jordan form of
u on W , i.e. t = 0. Then Su is as in Case 1 of Remark 4.3.21. Therefore, we see that
Su \ f�2; : : : ; �‘g 6= ;. We can now assume that there exist odd blocks in the Jordan form
of u on W , i.e. t � 1. Then Su is as given in Case 2 of Remark 4.3.21. We distinguish the
following two cases:

Case 1: Assume that s = 0. Then, since u is nontrivial, it follows that ot > 1. Let
1 � j1 � t be such that oj1�1 = 1 and oj1 > 1. Therefore,

Su = Su1���ut = f�kj1 ; : : : ; �kj1+1�2; �kj1+1
; : : : ; �kj1+2�2; : : : ; �kt ; : : : ; �kt+1�2g;

by Case 2 of Remark 4.3.21. Now, since
tX
i=1

ot = ‘ and kt+1 = 1 + o1 + � � � + ot, we have

kt+1 � 2 = ‘� 1 and so �‘�1 2 Su, thereby Su \ f�2; : : : ; �‘g 6= ;.
Case 2: Assume that s > 1. Then, by Case 2 of Remark 4.3.21, it follows that �‘ 2 Su,

hence Su \ f�2; : : : ; �‘g 6= ;. This completes the proof of the proposition.

We now continue with the proofs of Theorems 4.3.1 and 4.3.2 in the case of the irreducible
kG-modules LG(�), where the p-restricted dominant weight � is listed in Table 2.7.3.
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Proposition 4.3.23. Let k be an algebraically closed field of characteristic p = 2. Assume
‘ = 3 and let V = LG(!3). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 6;

where there exist u 2 G for which equality holds.
In particular, there exist non-identity unipotent elements u 2 G for which dim(Vu(1)) �

dim(V )�
p

dim(V ).

Proof. To begin, we recall the Decomposition (4.29) in the case of ‘ = 3 of Proposition
4.2.15, which states:

V j[L1;L1]
�= LL1(!3)� LL1(!3): (4.42)

Let u 2 G be a non-identity unipotent element and let u0 be a representative of the
unipotent G-conjugacy class of u with the property that u0L1

6= 1. Note that, by Proposition
4.3.22, such a representative always exists. Then, by Inequality (2.7) and Decomposition
(4.42), it follows that:

dim(Vu(1)) � dim(Vu0L1
(1)) = 2 dim((LL1(!3))u0L1

(1)):

Since p = 2, we apply Proposition 4.3.10 to determine that dim((LL1(!3))u0L1

(1)) � 3,
thereby dim(Vu(1)) � 6. Now, consider the unipotent element x�2(1) 2 G. We first note that
(x�2(1))L1 = x�2(1) and (x�2(1))Q1 = 1. Therefore, by Equality (2.8) and Decomposition
(4.42), we have dim(Vx�2 (1)(1)) = 2 dim((LL1(!3))x�2 (1)(1)), thus dim(Vx�2 (1)(1)) = 6, by
Proposition 4.3.10 and Table 4.3.3.

In conclusion, we showed that dim(Vu(1)) � 6 for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bound is attained, for example x�2(1).
Therefore, there exist non-identity unipotent elements u 2 G such that dim(Vu(1)) �
dim(V )�

p
dim(V ).

Proposition 4.3.24. Let k be an algebraically closed field of characteristic p 6= 2. Assume
‘ = 3 and let V = LG(!3). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 9;

where there exist unipotent elements u 2 G for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. To begin, we recall the Decomposition (4.30) of Proposition 4.2.16, which states:

V j[L1;L1]
�= LL1(!3)� LL1(!2)� LL1(!3):

Let u 2 G be a non-identity unipotent element and let u0 be a representative of the
unipotent G-conjugacy class of u with the property that u0L1

6= 1. Note that, by Proposition
4.3.22, such a representative always exists. Then, by Inequality (2.7) and Decomposition
(4.30), we have:

dim(Vu(1)) � dim(Vu0L1
(1)) = 2 dim((LL1(!3))u0L1

(1)) + dim((LL1(!2))u0L1

(1)):
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Since p 6= 2, we apply Corollary 4.3.8 to determine that dim((LL1(!3))u0L1

(1)) � 3, while,
by Lemma 4.3.3, it follows that dim((LL1(!2))u0L1

(1)) � 3. Therefore, dim(Vu(1)) � 9.
Now, consider the unipotent element x�3(1) 2 G. We first note that (x�3(1))L1 = x�3(1)
and (x�3(1))Q1 = 1. Thus, by Equality (2.8) and Decomposition (4.30), it follows that
dim(Vx�3 (1)(1)) = 2 dim((LL1(!3))x�3 (1)(1))+dim((LL1(!2))x�3 (1)(1)) and so dim(Vx�3 (1)(1)) =
9, by Corollary 4.3.8, Lemma 4.3.3 and Table 4.3.2. This shows that there exist u 2 G for
which dim(Vu(1)) = 9.

In conclusion, we have shown that dim(Vu(1)) � 9 for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bound is attained, for example x�3(1). Lastly,
we have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 G.

Proposition 4.3.25. Let k be an algebraically closed field of characteristic p = 2. Assume
‘ = 3 and let V = LG(!1 +!3). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 28;

where there exist u 2 G, u 6= 1, for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. To begin, we recall the Decomposition (4.31) from Proposition 4.2.17, which states:

V j[L1;L1]
�= LL1(!3)� LL1(!2 + !3)� LL1(!3)� LL1(!3)� LL1(!2 + !3)� LL1(!3):

Let u 2 G be a non-identity unipotent element and let u0 be a representative of the
unipotent G-conjugacy class of u with the property that u0L1

6= 1, see Proposition 4.3.22.
Then, by Inequality (2.7) and Decomposition (4.31), we have:

dim(Vu(1)) � dim(Vu0L1
(1)) � 4 dim((LL1(!3))u0L1

(1)) + 2 dim((LL1(!2 + !3))u0L1

(1)):

Using Proposition 4.3.10, we determine that dim((LL1(!3))uL1
(1)) � 3, while, by Proposition

4.3.14, we have dim((LL1(!2 + !3))uL1
(1)) � 8. It follows that dim(Vu(1)) � 28. Now,

consider the unipotent element x�2(1) 2 G. We first note that (x�2(1))L1 = x�2(1) and
(x�2(1))Q1 = 1. Therefore, by Equality (2.8) and Decomposition (4.31), it follows that
dim(Vx�2 (1)(1)) = 4 dim((LL1(!3))x�2 (1)(1)) + 2 dim((LL1(!2 + !3))x�2 (1)(1)) and this gives
dim(Vx�2 (1)(1)) = 28, by Proposition 4.3.10, the second paragraph of the proof of Proposition
4.3.14 and Table 4.3.3. This shows that there exist u 2 G for which dim(Vu(1)) = 28.

In conclusion, we have shown that dim(Vu(1)) � 28 for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bound is attained, for example x�2(1). Lastly,
we have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 G.

Proposition 4.3.26. Let k be an algebraically closed field of characteristic p = 2. Assume
‘ = 3 and let V = LG(2!1 + !3). Then for all non-identity unipotent elements u 2 G we
have

dim(Vu(1)) � 28;

where there exist u 2 G, u 6= 1, for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.
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Proof. To begin, we note that, by Theorem 2.3.8, as p = 2, we have the following isomorphism
of kG-modules:

V �= LG(!1)(2) 
 LG(!3): (4.43)

We first focus on the kG-module LG(!1)(2). We remark that dim(LG(!1)(2)) = 6 and, by
Lemma 2.4.5, we have e1(2!1) = 4, therefore

LG(!1)(2) j[L1;L1]= V 0 � � � � � V 4;

where V i =
M
2N�1

V2!1�i�1� for all 0 � i � 4. By [Smi82, Proposition], it follows that

V 0 �= LL1(0) and so, by Lemma 2.4.3, we also have V 4 �= LL1(0). As p = 2, we have
V 1 = f0g and V 3 = f0g. Lastly, as the weight (� � 2�1) jT 0= 2!2 admits a maximal
vector in V 2, it follows that V 2 has a composition factor isomorphic to LL1(2!2) and, as
dim(LL1(2!2)) = 4, since p = 2, we determine that V 2 �= LL1(2!2). Therefore, we have:

LG(!1)(2) j[L1;L1]
�= LL1(0)� LL1(2!2)� LL1(0): (4.44)

In the case of the kG-module LG(!3), by Decomposition (4.29), we have:

LG(!3) j[L1;L1]
�= LL1(!3)� LL1(!3): (4.45)

Coming back to (4.43), by (4.44) and (4.45), using Theorem 2.3.8, we determine that:

LG(2!1 + !3) j[L1;L1]
�= (LL1(0)� LL1(2!2)� LL1(0))
 (LL1(!3)� LL1(!3))
�= LL1(!3)4 � (LL1(2!2)
 LL1(!3))2

�= LL1(!3)4 � LL1(2!2 + !3)2:

(4.46)

Let u 2 G be a non-identity unipotent element and let u0 be, as usual, a representative
of the unipotent G-conjugacy class of u with the property that u0L1

6= 1. Then, by Inequality
(2.7) and Decomposition (4.46), we have:

dim(Vu(1)) � dim(Vu0L1
(1)) � 4 dim((LL1(!3))u0L1

(1)) + 2 dim((LL1(2!2 + !3))u0L1

(1)):

We will first determine dim((LL1(2!2 + !3))u0L1
(1)). By Theorem 2.3.8, we note that:

LL1(2!2 + !3) �= LL1(!2)(2) 
 LL1(!3):

Now, by Table 4.3.3, we have that the Hesselink normal form of u0L1
on LL1(!2) is one of

(12
0; 21), (22

0), (22
1) and (41). Thus, the Jordan form of the action of u0L1

on LL1(!2)(2) is one of
J2� J2

1 , J2
2 , J2

2 and J4, respectively. Using the second paragraph of the proof of Proposition
4.3.10 and Theorem 5.3.5 cases (b), (c.3), (b) and (c.3), respectively, we determine that
the Jordan form of the action of u0L1

on LL1(!3) is J2
2 , J2 � J2

1 , J2
2 and J4, respectively.

We now calculate the Jordan form of the action of u0L1
on LL1(!2)(2) 
 LL1(!3), either by

hand or using a computer, keeping in mind that p = 2, and we get that it is J8
2 , J8

2 , J8
2

and J4
4 , respectively. Thus, dim((LL1(2!2 + !3))u0L1

(1)) � 8. Furthermore, by Proposition
4.3.10, we determine that dim((LL1(!3))u0L1

(1)) � 3, and so, it follows that dim(Vu(1)) � 28.
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Now, consider the unipotent element x�2(1) 2 G. We first note that (x�2(1))L1 = x�2(1)
and (x�2(1))Q1 = 1. Therefore, by Equality (2.8) and Decomposition (4.46), it follows that
dim(Vx�2 (1)(1)) = 4 dim((LL1(!3))x�2 (1)(1)) + 2 dim((LL1(2!2 + !3))x�2 (1)(1)) and this gives
dim(Vx�2 (1)(1)) = 28, by the above, Proposition 4.3.10 and Table 4.3.3. This shows that
there exist u 2 G for which dim(Vu(1)) = 28.

In conclusion, we have shown that dim(Vu(1)) � 28 for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bound is attained, for example x�2(1). Lastly,
we have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 G.

Proposition 4.3.27. Let k be an algebraically closed field of characteristic p = 3. Assume
‘ = 4 and let V = LG(!3). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 27;

where there exist u 2 G for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. To begin, we recall the Decomposition (4.32) of Proposition 4.2.19, which states:

V j[L1;L1]
�= LL1(!3)� LL1(!4)� LL1(!3):

Let u 2 G be a non-identity unipotent element and let u0 be, as usual, a representative
of the unipotent G-conjugacy class of u with the property that u0L1

6= 1. Then, by Inequality
(2.7) and Decomposition (4.32), we have:

dim(Vu(1)) � dim(Vu0L1
(1)) � 2 dim((LL1(!3))u0L1

(1)) + dim((LL1(!4))u0L1

(1)):

Since p = 3, we apply Propositions 4.3.10 and 4.3.24 to determine that dim((LL1(!3))u0L1

(1)) �
9 and dim((LL1(!4))u0L1

(1)) � 9, respectively. It follows that dim(Vu(1)) � 27. Now consider
the unipotent element x�4(1) 2 G. First, we note that (x�4(1))L1 = x�4(1) and (x�4(1))Q1 =
1. Therefore, by Equality (2.8) and Decomposition (4.32), we have dim(Vx�4 (1)(1)) =
2 dim((LL1(!3))x�4 (1)(1))+dim((LL1(!4))x�4 (1)(1)) and so dim(Vx�4 (1)(1)) = 27, by Proposition
4.3.10, the proof of Proposition 4.3.24 and [LS12, Subsection 3.3.2]. This shows that there
exist u 2 G with dim(Vu(1)) = 27.

In conclusion, we have shown that dim(Vu(1)) � 27 for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bound is attained, for example x�4(1). Lastly,
we have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 G.

Proposition 4.3.28. Let k be an algebraically closed field of characteristic p 6= 2. Assume
‘ = 4 and let V = LG(!4). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 28� �p;3:

In particular, we have dim(Vu(1)) < dim(V ) �
p

dim(V ) for all non-identity unipotent
elements u 2 G.
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Proof. To begin, we recall the Decomposition (4.33) of Proposition 4.2.21, which states:

V j[L1;L1]
�= LL1(!4)� LL1(!3)� LL1(!4):

Let u 2 G be a non-identity unipotent element and let u0 be, as usual, a representative
of the unipotent G-conjugacy class of u with the property that u0L1

6= 1. Then, by Inequality
(2.7) and Decomposition (4.33), we have:

dim(Vu(1)) � dim(Vu0L1
(1)) = dim((LL1(!3))u0L1

(1)) + 2 dim((LL1(!4))u0L1

(1):

Using Proposition 4.3.24, we have dim((LL1(!4))u0L1

(1)) � 9. If p = 3, then by Proposition
4.3.10, it follows that dim((LL1(!3))u0L1

(1)) � 9, while, if p 6= 3, then by Corollary 4.3.8, we
have dim((LL1(!3))u0L1

(1)) � 10. We obtain dim(Vu(1)) � 28� �p;3.
In conclusion, we showed that dim(Vu(1)) � 28 � �p;3 < dim(V ) �

p
dim(V ) for all

non-identity unipotent elements u 2 G.

Proposition 4.3.29. Let k be an algebraically closed field of characteristic p 6= 3. Assume
‘ = 4 and let V = LG(!3). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 34;

where there exist u 2 G for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. To begin, we recall the decomposition of V j[L1;L1] from Proposition 4.2.20, which
states:

V j[L1;L1]
�= LL1(!3)� V 1 � LL1(!3);

where, if p 6= 2, V 1 has two composition factors: one isomorphic to LL1(!4) and one
isomorphic to LL1(!2); while, if p = 2, then V 1 has three composition factors: one isomorphic
to LL1(!4) and two isomorphic to LL1(!2).

We first consider the case when p 6= 2. Then, by [Jan07, II.2.14], it follows that V 1 �=
LL1(!4)� LL1(!2) and so

V j[L1;L1]
�= LL1(!3)� LL1(!4)� LL1(!2)� LL1(!3): (4.47)

Let u 2 G be a non-identity unipotent element and let u0 be a representative of the
unipotent G-conjugacy class of u with the property that u0L1

6= 1, see Proposition 4.3.22.
Then, by Inequality (2.7) and Decomposition (4.47), we have:

dim(Vu(1)) � dim(Vu0L1
(1)) = 2 dim((LL1(!3))u0L1

(1)) + dim((LL1(!4))u0L1

(1))+

+ dim((LL1(!2))u0L1

(1)):

Since p 6= 2; 3, we use Corollary 4.3.8, Lemma 4.3.3 and Proposition 4.3.24 to determine
that dim((LL1(!3))u0L1

(1)) � 10, dim((LL1(!2))u0L1

(1)) � 5 and dim((LL1(!4))u0L1

(1)) � 9,
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respectively. It follows that dim(Vu(1)) � 34. Now, consider the unipotent element x�4(1) 2
G. First, we note that (x�4(1))L1 = x�4(1) and (x�4(1))Q1 = 1. Therefore, by Identity
(2.8) and Decomposition (4.47), it follows that dim(Vx�4 (1)(1)) = 2 dim((LL1(!3))x�4 (1)(1)) +
dim((LL1(!4))x�4 (1)(1)) + dim((LL1(!2))x�4 (1)(1)) and so dim(Vx�4 (1)(1)) = 34, by Corollary
4.3.8, Lemma 4.3.3, proof of Proposition 4.3.24 and [LS12, Subsection 3.3.2]. This shows
that there exist u 2 G for which dim(Vu(1)) = 34.

We can now assume that p = 2. Again, let u 2 G be a non-identity unipotent element
and let u0 be a representative of the unipotent G-conjugacy class of u with the property
that u0L1

6= 1, see Proposition 4.3.22. We apply Proposition 4.3.23 and Lemma 4.3.3 to
determine that dim((LL1(!4))u0L1

(1)) � 6 and that dim((LL1(!2))u0L1

(1)) � 5. Therefore, by
Lemma 2.4.9, we obtain dim(V 1

u
0
L1

(1)) � 16. Moreover, by Corollary 4.3.8, as p 6= 3, we

have dim((LL1(!3))u0L1

(1)) � 10, therefore dim(Vu(1)) � 36. However, we will show that
dim(Vu(1)) � 34 for all unipotent elements u 2 G, u 6= 1.

Assume there exists u 2 G, u 6= 1, such that dim(Vu(1)) > 34. Then, by the above
discussion, keeping in mind that V 1 has two composition factors isomorphic to LL1(!2),
it follows that dim((LL1(!2))u0L1

(1)) = 5, where u0 is a representative of the unipotent
G-conjugacy class of u such that u0L1

6= 1. Furthermore, by Lemma 4.3.3, we have that
dim((LL1(!2))u0L1

(1)) = 5 if and only if the Jordan form of the action of u0L1
on LL1(!2) is

J2 � J4
1 . Thus, by [Kor18, Lemma 3.2.3], the possibilities for the Jordan form of u0 on W

are J2 � J6
1 , J2

2 � J4
1 and J3

2 � J2
1 . Now, as p = 2, by [McN98, Lemma 4:8:2], we have the

following kG-module isomorphism:

^3(W ) �= LG(!3)� LG(!1):

Therefore, in order to determine dim(Vu0(1)), we only need to know dim((^3(W ))u0(1)) and
dim((LG(!1))u0(1)).

Case 1: The Jordan form of u0 on W is J2� J6
1 . Then W jk[u0]

�= V2� V 6
1 , where Vi is the

unique, up to isomorphism, indecomposable k[u0]-module with dim(Vi) = i and on which u0
acts as Ji. This gives rise to the following k[u0]-module isomorphism:

^3(W ) �= ^3(V2 � V 6
1 ) �= ^3(V2)� ^2(V2)
 V 6

1 � V2 
 ^2(V 6
1 )� ^3(V 6

1 )
�= V1 
 V 6

1 � V2 
 V 15
1 � V 20

1

�= V 15
2 � V 26

1 :

Therefore, u0 acts on ^3(W ) as J15
2 � J26

1 , hence dim((^3(W ))u0(1)) = 41. It follows that
dim(Vu0(1)) = 41� 7 = 34, as dim((LG(!1))u0(1)) = 7.

Case 2: The Jordan form of u0 on W is J2
2 �J4

1 . Then W jk[u0]
�= V 2

2 �V 4
1 , where Vi is the

unique, up to isomorphism, indecomposable k[u0]-module with dim(Vi) = i and on which u0
acts as Ji. This gives rise to the following k[u0]-module isomorphism:

^3(W ) �= ^3(V 2
2 )� ^2(V 2

2 )
 V 4
1 � V 2

2 
 ^2(V 4
1 )� ^3(V 4

1 )
�= [^3(V2)� ^2(V2)
 V2]2 � [^2(V2)2 � V2 
 V2]
 V 4

1 � V 2
2 
 V 6

1 � V 4
1

�= [V1 
 V2]2 � [V 2
1 � V 2

2 ]
 V 4
1 � V 12

2 � V 4
1

�= V 22
2 � V 12

1 :
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Therefore, u0 acts on ^3(W ) as J22
2 � J12

1 , hence dim((^3(W ))u0(1)) = 34. It follows that
dim(Vu0(1)) = 34� 6 = 28, as dim((LG(!1))u0(1)) = 6.

Case 3: The Jordan form of u0 on W is J3
2 �J2

1 . Then W jk[u0]
�= V 3

2 �V 2
1 , where Vi is the

unique, up to isomorphism, indecomposable k[u0]-module with dim(Vi) = i and on which u0
acts as Ji. This gives rise to the following k[u0]-module isomorphism:

^3(W ) �= ^3(V 3
2 )� ^2(V 3

2 )
 V 2
1 � V 3

2 
 ^2(V 2
1 )� ^3(V 2

1 )
�= [^3(V 2

2 )� ^2(V 2
2 )
 V2 � V 2

2 
 ^2(V2)� ^3(V2)]�
� [^2(V 2

2 )� V 2
2 
 V2 � ^2(V2)]
 V 2

1 � V 3
2 
 V1

�= [V 2
2 � (V 2

2 � V 2
1 )
 V2 � V 2

2 
 V1]� [V 2
2 � V 2

1 � V 4
2 � V1]
 V 2

1 � V 3
2

�= V 25
2 � V 6

1 :

Therefore, u0 acts on ^3(W ) as J25
2 � J6

1 , hence dim((^3(W ))u0(1)) = 31. It follows that
dim(Vu0(1)) = 31� 5 = 26, as dim((LG(!1))u0(1)) = 5.

In conclusion, by Cases 1, 2 and 3, it follows that dim(Vu(1)) � 34 for all non-identity
unipotent elements u 2 G. Moreover, we have showed that there exist u 2 G for which the
bound is attained, for example those with Jordan form onW given by J2�J6

1 . Lastly, we note
that dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 G.

Proposition 4.3.30. Let k be an algebraically closed field of characteristic p = 2. Assume
‘ = 5 and let V = LG(!3). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 74;

where there exist u 2 G for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. To begin, we recall the Decomposition (4.34) of Proposition 4.2.22, which states:

V j[L1;L1]
�= LL1(!3)� LL1(!4)� LL1(!3):

Let u 2 G be a non-identity unipotent element and let u0 be a representative of the unipotent
G-conjugacy class of u with the property that u0L1

6= 1, see Proposition 4.3.22. Then, by
Inequality (2.7) and Decomposition (4.34), we have:

dim(Vu(1)) � dim(Vu0L1
(1)) = 2 dim((LL1(!3))u0L1

(1)) + dim(LL1(!4))u0L1

(1)):

By Proposition 4.3.10, as p = 2, we have dim((LL1(!3))u0L1
(1)) � 20, while, by Proposition

4.3.29, we have dim((LL1(!4))u0L1
(1)) � 34. It follows that dim(Vu(1)) � 74. Now, consider

the unipotent element x�5(1) 2 G. First, we note that (x�5(1))L1 = x�5(1) and (x�5(1))Q1 =
1. Therefore, by Identity (2.8) and Decomposition (4.34), it follows that dim(Vx�5 (1)(1)) =
2 dim((LL1(!3))x�5 (1)(1)) + dim((LL1(!4))x�5 (1)(1)) and this gives dim(Vx�5 (1)(1)) = 74, by
[LS12, Section 6.1], using Proposition 4.3.10 and the proof of Proposition 4.3.29. This shows
that there exist u 2 G for which dim(Vu(1)) = 74.

In conclusion, we have shown that dim(Vu(1)) � 74 for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bound is attained, for example x�5(1). Lastly,
we have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 G.
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Proposition 4.3.31. Let k be an algebraically closed field of characteristic p = 2. Assume
‘ � 4 and let V = LG(!‘). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 3 � 2‘�2;

where there exist u 2 G for which the bound is attained.
In particular, in the case of ‘ = 4 there exist non-identity unipotent elements u 2 G for

which dim(Vu(1)) � dim(V ) �
p

dim(V ), while, for ‘ � 5 we have dim(Vu(1)) < dim(V ) �p
dim(V ) for all non-identity unipotent elements u 2 G.

Proof. To begin, we recall the Decomposition (4.29) of Proposition 4.2.15, which states:

V j[L1;L1]
�= LL1(!‘)� LL1(!‘):

Let u 2 G be a non-identity unipotent element and let u0 be a representative of the unipotent
G-conjugacy class of u with the property that u0L1

6= 1, see Proposition 4.3.22. Then, by
Inequality (2.7) and Decomposition (4.29), we have:

dim(Vu(1)) � dim(Vu0L1
(1)) = 2 dim((LL1(!‘))u0L1

(1)):

Recursively and using Proposition 4.3.23 for the base case of ‘ = 4, we get dim((LL1(!‘))u0L1
(1))

� 3 � 2‘�3, therefore dim(Vu(1)) � 3 � 2‘�2. Now, consider the unipotent element x�2(1) 2 G.
First, we note that (x�2(1))L1 = x�2(1) and (x�2(1))Q1 = 1. Therefore, by Identity (2.8)
and Decomposition (4.29), it follows that dim(Vx�2 (1)(1)) = 2 dim((LL1(!‘))x�2 (1)(1)) and so
dim(Vx�2 (1)(1)) = 3 � 2‘�2, by [LS12, Section 6.1], the proof of Proposition 4.3.23 in the case
of ‘ = 4 and recursively for ‘ � 5.

In conclusion, we showed that dim(Vu(1)) � 3�2‘�2 for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bound is attained, for example x�2(1).
Therefore, in the case of ‘ � 4, we see that there exist non-identity unipotent elements
u 2 G for which dim(Vu(1)) � dim(V )�

p
dim(V ). On the other hand, for ‘ � 5, we have

0 < 2‘(2‘�4 � 1), therefore the inequality 3 � 2‘�2 < 2‘ �
p

2‘ holds for all ‘ � 5 and thus
dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 G.

We conclude this subsection by noting that Proposition 4.3.13 through 4.3.31 complete
the proof of Theorems 4.3.1 and 4.3.2, as they cover all the irreducible kG-modules correspon-
ding to p-restricted dominant weights featured in one of the Tables 2.7.2 and 2.7.3.

4.4 Results
In this section we collect the results proven in this chapter. In Proposition 4.4.1 we give the
values of max

s2TnZ(G)
fdim(Vs(�)) j � 2 k�g, max

u2Gunf1g
dim(Vu(1)) and �G(V ) for all kG-modules

V belonging to one of the families we had to consider. Similarly, Proposition 4.4.2 records
the same data for the particular kG-modules treated in this chapter.

Proposition 4.4.1. Let k be an algebraically closed field of characteristic p � 0 and let G be
a simple simply connected linear algebraic group of type C‘, ‘ � 2. Let T be a fixed maximal
torus in G and let V = LG(�), where � 2 FC‘. Then the value of �G(V ) is given in the table
below:
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V Char. Rank max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g max
u2Gunf1g

dim(Vu(1)) �G(V )

LG(!1) p � 0 ‘ � 2 2‘� 2 2‘� 1 1
LG(2!1) p 6= 2 ‘ � 2 2‘2 � 3‘+ 4 2‘2 � ‘ 2‘

LG(!2)

p - ‘

‘ = 2 4 3 1
‘ = 3 8 10 4
‘ = 4 16 21 6
‘ � 5 2‘2 � 5‘+ 3 2‘2 � 3‘+ 1 2‘� 2

p j ‘
‘ = 2 2 3 1
‘ = 3 8 9 4
‘ � 4 2‘2 � 5‘+ 2 2‘2 � 3‘ 2‘� 2

Table 4.4.1: The value of �G(V ) for the families of modules of groups of type C‘.

Proof. The result follows by Proposition 2.2.3 from Lemmas 4.2.3 and 4.3.3 for V = LG(!1);
from Propositions 4.2.4 and 4.3.12 for V = LG(2!1); and from Corollaries 4.2.6 and 4.3.8 in
the case of p - ‘, respectively from Corollary 4.2.7 and Proposition 4.3.10 in the case of p j ‘,
for V = LG(!2).

Proposition 4.4.2. Let k be an algebraically closed field of characteristic p � 0 and let G be
a simple simply connected linear algebraic group of type C‘, ‘ � 2. Let T be a fixed maximal
torus in G and let V = LG(�), where � is featured in one of the Tables 2:7:2 and 2:7:3. The
value of �G(V ) is given in the table below:

Rank � Char. max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g max
u2Gunf1g

dim(Vu(1)) �G(V )

‘ = 2 LG(!1 + !2) p � 0 8� 2�p;5 8� 3�p;5 8� 2�p;5
‘ = 2 LG(2!2) p 6= 2 10� �p;5 � 8 4
‘ = 2 LG(3!1) p 6= 2; 3 10 10 10
‘ = 2 LG(!1 + 2!2) p = 7 12 7 12
‘ = 2 LG(3!2) p = 7 16 7 9
‘ = 2 LG(2!1 + !2) p = 3 16 � 13 9

3 � ‘ � 8 LG(!‘) p = 2 2‘�1 3 � 2‘�2 2‘�2

‘ = 3 LG(!3) p 6= 2 10 9 4
‘ = 3 LG(!1 + !3) p = 2 � 24 28 20
‘ = 3 LG(2!1 + !3) p = 2 20 28 20
‘ = 4 LG(!3) p � 0 � 30� 4�p;3 34� 7�p;3 14� �p;3
‘ = 4 LG(!4) p 6= 2 28 � 28� �p;3 14� �p;3
‘ = 5 LG(!3) p = 2 � 58 74 26

Table 4.4.2: The value of �G(V ) for the particular modules of groups of type C‘.

Proof. The result follows by Proposition 2.2.3, using the detailed results of Subsections 4.2.2
and 4.3.2.
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Chapter 5

Groups of type B‘

In this chapter we prove Theorems 1.1.1 and 1.1.3 for simple simply connected linear algebraic
groups of type B‘, ‘ � 3. The structure is as follows: in the first section we construct G the
simple adjoint group of type B‘ and exhibit some properties of its semisimple and unipotent
elements. In Section 5.2 we determine max

s2 ~TnZ( ~G)
fdim(Vs(�)) j � 2 k�g, where ~G is a simple

simply connected linear algebraic group of type B‘, ‘ � 3, ~T is a maximal torus in ~G and V
runs through the list of k ~G-modules we identified in Subsection 2.7.3. Similarly, in Section
5.3, we determine max

u2 ~Gunf1g
dim(Vu(1)) for the same k ~G-modules V . Lastly, Section 5.4 records

all the results of this chapter.
We will now give some notation which will be used throughout the chapter. We fix k

to be an algebraically closed field of characteristic p 6= 2, G to be a simple adjoint linear
algebraic group of type B‘, ‘ � 3, and ~G to be the simple simply connected linear algebraic
group of the same type as G. We also fix � : ~G ! G a central isogeny with d� 6= 0 and
ker(�) = Z( ~G). In G, we let T , X(T ), �, B, � = f�1; : : : ; �‘g and !1; : : : ; !‘ be as usual.
Moreover, we let ~T , respectively ~B, be a preimage of T , respectively of B, in ~G, and we
note that ~T is a maximal torus of ~G contained in the Borel subgroup ~B of ~G. As for G, we
let X( ~T ), ~�, ~� = f~�1; : : : ; ~�‘g and ~!1; : : : ; ~!‘ be the rational character group of ~T , the root
system of ~G determined by ~T , the set of simple roots in ~� given by ~B, and the fundamental
dominant weights of ~G corresponding to ~�.

5.1 Construction of linear algebraic groups of type B‘

LetW be a 2‘+1-dimensional k-vector space, for some ‘ � 3, equipped with a nondegenerate
symmetric bilinear form with associated quadratic formQ. We fixBW = fu1; u2; : : : ; u‘; w; v‘;

: : : ; v2; v1g to be an ordered basis in W with the property that W =
‘M
i=1

hui; vii � hwi is an

orthogonal direct sum, where fui; vig is a hyperbolic pair for all 1 � i � ‘, and w is such
that Q(w) = 1, see Corollary 2.1.4. Let D, respectively U , be the set of diagonal matrices,
respectively the set of upper-triangular matrices, in SL(W ). Let G = SO(W ) and note that
G is a simple adjoint group of type B‘, see [Car89, Theorem 11.3.2]. Now, we have that
T = G \D is a maximal torus in G contained in the Borel subgroup B = G \ U of G.
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Remark 5.1.1. We recall from Subsection 2:7:3 that FB‘, the set of p-restricted dominant
weights ~� 2 X( ~T ) with the property that the associated irreducible k ~G-module L ~G(~�) satisfies
the dimensional criteria (2.17) for all ‘ � 3, is given by FB‘ = f~!1; 2~!1; ~!2g. We remark
that for all ~� 2 f~!1; 2~!1; ~!2g, there exists � 2 X(T ) such that ~� is the image of � when
viewed as an element of X( ~T ), see Subsection 2:3:3. More precisely, the weight !1 2 X(T )
is denoted by ~!1 when viewed as an element of X( ~T ), the weight 2!1 2 X(T ) is 2~!1 2 X( ~T )
and the weight !2 2 X(T ) is ~!2 2 X( ~T ). In all of these cases, by Lemma 2:3:10, we have:

(1) ~Ms = max
~s2 ~TnZ( ~G)

fdim(L ~G(~�)~s(~�)) j ~� 2 k�g = max
s2TnZ(G)

fdim(LG(�)s(�)) j � 2 k�g = Ms.

(2) ~Mu = max
~u2 ~Gunf1g

dim(L ~G(~�)~u(1)) = max
u2Gunf1g

dim(LG(�)u(1)) = Mu, where Gu is the set

of unipotent elements in G.

(3) � ~G(L ~G(~�)) = �G(LG(�)).

5.1.1 Semisimple elements

Let s 2 T . Then s = diag(a1; a2; : : : ; a‘; 1; a
�1
‘ ; : : : ; a�1

2 ; a�1
1 ) with ai 2 k�. Let �1; �2; : : : ; �m,

where m � 1, denote the distinct aj’s, where �j 6= 1, and, for all 1 � i � m, let ni denote
the multiplicity of �i in s. Furthermore, let n be the multiplicity of 1 in s. Then n is odd

and, if s =2 Z(G), then 1 � n � 2‘� 1. Moreover, we have n+ 2
mX
i=1

ni = 2‘+ 1. Further, we

can assume without loss of generality that ‘ � n1 � n2 � � � � � nm � 1 and, by conjugating
s by an element of NG(T ), we can also assume that

s = diag(�1 � In1 ; �2 � In2 ; : : : ; �m � Inm ; 1 � In; ��1
m � Inm ; : : : ; ��1

2 � In2 ; �
�1
1 � In1):

We recall that W = NG(T )=T is the Weyl group of G associated to T and that s� 2 W is
the reflection corresponding to � 2 �. Let n� 2 NG(T ) be an arbitrary fixed preimage of s�.

Lemma 5.1.2. With the notation introduced above, assume there exist 1 � i < j � m with
�j = ��1

i . Then there exists w 2 W with arbitrary fixed preimage n 2 NG(T ) such that

n � s � n�1 =

0@A In
A?

1A ;

where

A = diag(�1 � In1 ; : : : ; �i�1 � Ini�1
; �i � Ini+nj ; �i+1 � Ini+1

; : : : ; �j�1 � Inj�1
; �j+1 � Inj+1

; : : : ; �m � Inm)

and A� = (A�i;j)i;j is the diagonal matrix with A�r;r = A�1
n1+���+nm+1�r;n1+���+nm+1�r, for all

1 � r � n1 + � � �+ nm.

Proof. Let s�r 2 W be the reflection corresponding to the simple root �r 2 �. We remark
that when we conjugate s by n�r , where 1 � r � ‘� 1, we interchange the entry in position
(r; r) with the one in position (r+ 1; r+ 1), the entry in position (2‘+ 1� r; 2‘+ 1� r) with
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the one in (2‘+ 2� r; 2‘+ 2� r), and all the other entries are fixed. When we conjugate s
by n�‘ we interchange the entry in position (‘; ‘) with the one in position (‘+ 2; ‘+ 2) and
all the other entries are fixed. Hence, in order to interchange the entry in position (r; r) with
the one in position (2‘+ 2� r; 2‘+ 2� r) we conjugate s by

nr := n�rn�r+1 � � �n�‘n�‘�1
� � �n�r :

Therefore, conjugating s by
n1+���+njY

r=n1+���+nj�1+1

nr gives a matrix of the form

diag(�1 � In1 ; : : : ; �j�1 � Inj�1
; �i � Inj ; �j+1 � Inj+1

; : : : ; �m � Inm ; 1 � In; ��1
m � Inm ; : : : ; ��1

j+1 � Inj+1
;

��1
i � Inj ; ��1

j�1 � Inj�1
; : : : ; ��1

1 � In1):

Finally, reordering as before, we arrive at the desired matrix form.

Now, let s 2 T , s = diag(�1 � In1 ; �2 � In2 ; : : : ; �m � Inm ; 1 � In; ��1
m � Inm ; : : : ; ��1

2 � In2 ; �
�1
1 � In1)

with �i 6= �j for all 1 � i < j � m. Lemma 5.1.2 allows us to assume as well that �i 6= ��1
j

for all 1 � i < j � m. Therefore, for the remainder of the chapter, we fix the following
hypothesis on semisimple elements in G:

(yHs) : any s 2 T n Z(G) is such that s = diag(�1 � In1 ; : : : ; �m � Inm ; 1 � In; ��1
m � Inm ; : : : ;

��1
1 � In1) with �i 6= ��1

j ; for all 1 � i < j � m; �i 6= 1; for all 1 � i � m; and

n+ 2
mX
i=1

ni = 2‘+ 1; where 1 � n � 2‘� 1 and ‘ � n1 � � � � � nm � 1:

5.1.2 Unipotent elements

Since the algebraically closed field k has characteristic p 6= 2, by Theorem 2.9.2, we know
that unipotent elements in G are G-conjugate if and only if they are GL(W )-conjugate,
i.e. if and only if they have the same Jordan form on W . Let u be a unipotent element

of G and let
mM
i=1

Jrini be its Jordan form on W . Then,
mX
i=1

niri = 2‘ + 1 and ri � 1 is

even for all even ni, see Theorem 2.9.2. We can assume without loss of generality that
2‘+ 1 � n1 > n2 > � � � > nm � 1 and we also note that if u 6= 1 and m = 1, then n1 � 3.

5.2 Eigenspace dimensions for semisimple elements
Before we state the main results of this section, we recall that FB‘ = f~!1; ~!2; 2~!1g, see
Subsection 2.7.3.

Theorem 5.2.1. Let k be an algebraically closed field of characteristic p 6= 2 and let ~G be a
simple simply connected linear algebraic group of type B‘, ‘ � 3. Let ~T be a fixed maximal
torus in ~G and let V = L ~G(~�), where ~� 2 FB‘ or ~� is given in Table 2:7:4. Then there exist
s 2 ~T n Z( ~G) and � 2 k�, an eigenvalue of s on V , such that

dim(Vs(�)) � dim(V )�
p

dim(V )
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if and only if ~� = ~!1.

Theorem 5.2.2. Let k be an algebraically closed field of characteristic p 6= 2 and let ~G be
a simple simply connected linear algebraic group of type B‘, ‘ � 3. Let ~T and V be as in
Theorem 5:2:1. Then the value of max

s2 ~TnZ( ~G)
fdim(Vs(�)) j � 2 k�g is given in the table below:

V Char. Rank max
s2 ~TnZ( ~G)

fdim(Vs(�)) j � 2 k�g

L ~G(~!1) p 6= 2 ‘ � 3 2‘
yL ~G(~!2) p 6= 2 ‘ � 3 2‘2 � ‘
yL ~G(2~!1)

p 6= 2 and p - 2‘+ 1 ‘ � 3 2‘2 + ‘
p 6= 2 and p j 2‘+ 1 ‘ � 3 2‘2 + ‘� 1

yLG(2~!3) p 6= 2 ‘ = 3 20
yLG(~!1 + ~!3) p 6= 2 ‘ = 3 24� 4�p;7
yLG(~!‘) p 6= 2 3 � ‘ � 8 2‘�1

Table 5.2.1: The value of max
s2 ~TnZ( ~G)

fdim(Vs(�)) j � 2 k�g.

In particular, for each V in Table 5.2.1 labeled yV we have dim(Vs(�)) < dim(V ) �p
dim(V ) for all s 2 ~T n Z( ~G) and all eigenvalues � 2 k� of s on V .

We will give the proofs of Theorems 5.2.1 and 5.2.2 in a series of results, each treating
one of the candidate-modules. In Subsection 5.2.1, we determine max

s2TnZ(G)
fdim(Vs(�)) j � 2

k�g, see Remark 5.1.1, where V belongs to one of the families of kG-modules we have
to consider, i.e. V is an irreducible kG-module LG(�) with p-restricted dominant weight
� 2 f!1; 2!1; !2g. In Subsection 5.2.2, we establish max

s2 ~TnZ( ~G)
fdim(Vs(�)) j � 2 k�g for the

irreducible k ~G-modules L ~G(~�) with p-restricted dominant weight ~� featured in Table 2.7.4.

5.2.1 The families of modules

Lemma 5.2.3. Let V = LG(!1). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s
on V we have

dim(Vs(�)) � 2‘;

where equality holds if and only if � = �1 and, up to conjugation, s = diag(�1; : : : ;�1; 1;�1;
: : : ;�1).

In particular, there exist s 2 T n Z(G) that afford an eigenvalue � 2 k� on V for which
dim(Vs(�)) � dim(V )�

p
dim(V ).

Proof. To begin, note that V �= W as kG-modules, therefore V is self-dual and dim(V ) =
2‘ + 1. Let s 2 T n Z(G). Then dim(Vs(�)) � 2‘ for all eigenvalues � 2 k� of s on
V . Now, as dim(Vs(1)) = n, where n is odd, and dim(Vs(�)) � dim(V )

2
for all eigenvalues

� 6= ��1 of s on V , it follows that dim(Vs(�)) = 2‘ if and only if � = �1 and s =
diag(�1; : : : ;�1; 1;�1; : : : ;�1).
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In conclusion, we have shown that dim(Vs(�)) � 2‘ for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound
is attained, for example s = diag(�1; : : : ;�1; 1;�1; : : : ;�1) and � = �1. Now, as the
inequality 2‘ � 2‘ + 1 �

p
2‘+ 1 holds for all ‘ � 2, we have shown that there exist

s 2 T n Z(G) such that dim(Vs(�)) � dim(V )�
p

dim(V ) for some eigenvalue � 2 k� on V .
This completes the proof of the lemma.

Proposition 5.2.4. Let V = LG(!2). Then for all s 2 T n Z(G) and all eigenvalues � 2 k�
of s on V we have

dim(Vs(�)) � 2‘2 � ‘;
where equality holds if and only if � = 1 and, up to conjugation, s = diag(�1; : : : ;�1; 1;�1;
: : : ;�1).

In particular, dim(Vs(�)) < dim(V )�
p

dim(V ) for all s 2 T n Z(G) and all eigenvalues
� 2 k� of s on V .

Proof. Let s 2 T n Z(G) be as in hypothsis (yHs). By Lemma 2.8.4, since p 6= 2, it follows
that V �= ^2(W ), therefore dim(V ) = 2‘2 + ‘, and we determine that the eigenvalues of s on
V , not necessarily distinct, are:

(5.1)

8>>>>>>>><>>>>>>>>:

�2
i and �

�2
i , where 1 � i � m, each with multiplicity at least ni(ni�1)

2
;

�i�j and ��1
i ��1

j , where 1 � i < j � m, each with multiplicity at least ninj;
�i�

�1
j and ��1

i �j, where 1 � i < j � m, each with multiplicity at least ninj;
�i and ��1

i , where 1 � i � m, each with multiplicity at least nni;

1 with multiplicity at least n(n�1)
2

+
mX
r=1

n2
r:

Let � 2 k� be an eigenvalue of s on V . If � is such that � 6= ��1, then:

dim(Vs(�)) � dim(V )� dim(Vs(�
�1));

where, since V is self-dual, we have that dim(Vs(�)) = dim(Vs(�
�1)). Keeping in mind that

‘ � 3, we deduce that:

dim(Vs(�)) � 2‘2 + ‘

2
< 2‘2 � ‘:

Therefore, we can assume that � = �1.
First, consider the case of m = 1. As s =2 Z(G), it follows that �1 6= 1. Moreover, by

(5.1), we determine that the eigenvalues of s on V , not necessarily distinct, are �2
1 and ��2

1 ,
each with multiplicity at least n1(n1�1)

2
, �1 and ��1

1 , each with multiplicity at least nn1, and
1 with multiplicity at least n(n�1)

2
+ n2

1.
Let � = 1. Then, as s =2 Z(G), we have ��1

1 6= 1 and it follows that

dim(Vs(1)) � 2‘2 + ‘� 2nn1: (5.2)

Suppose that dim(Vs(1)) � 2‘2 � ‘. Then, keeping in mind that 2n1 = 2‘+ 1� n, we have:

(2‘� n)(1� n) � 0: (5.3)
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As 1 � n � 2‘ � 1, Inequality (5.3) holds if and only if n = 1. Then n1 = ‘ and, by (5.2),
we have dim(Vs(1)) � 2‘2 � ‘. Now, equality holds if and only if all eigenvalues of s on V
different than ��1

1 are equal to 1, hence if and only if �2
1 = 1. Therefore dim(Vs(1)) = 2‘2� ‘

if and only if �1 = �1 and, up to conjugation, s = diag(�1; : : : ;�1; 1;�1; : : : ;�1).
Let � = �1. Then, as �1 6= 1, we distinguish the two cases:
Case 1: �1 = �1. Then dim(Vs(�1)) = 2nn1. Keeping in mind that 2n1 = 2‘ + 1 � n,

1 � n � 2‘� 1, and that ‘ � 3, we have

2‘2 � ‘� 2nn1 = 2‘2 � ‘� (2‘+ 1� n)n = (‘� n)2 + ‘2 � ‘� n
� (‘� n)2 + ‘2 � 3‘+ 1 > 0;

therefore 2‘2 � ‘ > dim(Vs(�1)).
Case 2: �2

1 = �1. Then dim(Vs(�1)) = n1(n1 � 1). Since 1 � n1 � ‘, we have 2‘2 � ‘�
n2

1 + n1 = (‘� n1)(‘+ n1 � 1) + ‘2 > 0, therefore 2‘2 � ‘ > dim(Vs(�1)).
We have shown that for all s 2 T nZ(G) with m = 1 we have dim(Vs(1)) � 2‘2� ‘, where

equality holds if and only if s = diag(�1; � � � ;�1; 1;�1; � � � ;�1); and that dim(Vs(�1)) <
2‘2 � ‘.

We can now assume thatm � 2 and start by considering the eigenvalue 1 of s on V . Since
�i 6= ��1

j for all 1 � i < j � m, we have that ��1
i ��1

j 6= 1 for all 1 � i < j � m. Furthermore,

we also have ��1
i 6= 1. By (5.1), all of the above account for at least 4

X
i<j

ninj + 2n
mX
i=1

ni

additional eigenvalues of s on V different than 1. Therefore, we have:

dim(Vs(1)) � 2‘2 + ‘� 4
X
i<j

ninj � 2n
mX
i=1

ni:

If dim(Vs(1)) � 2‘2 � ‘, then:

2‘� 4
X
i<j

ninj � 2n
mX
i=1

ni � 0 (5.4)

and, since 2
mX
i=1

ni = 2‘+ 1� n, it follows that:

(2‘� n)(1� n)� 4
X
i<j

ninj � 0: (5.5)

Since 1 � n � 2‘�1, we have (2‘�n)(1�n) � 0, while, sincem � 2, we have�4
X
i<j

ninj < 0,

therefore Inequality (5.5) does not hold, hence dim(Vs(1)) < 2‘2 � ‘.
Finally, let � = �1. If �i 6= �1 for all 1 � i � m, then:

dim(Vs(�1)) � 2‘2 + ‘� n(n� 1)

2
�

mX
r=1

n2
r � 2n

mX
r=1

nr:
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Suppose that dim(Vs(�1)) � 2‘2 � ‘. Then

2‘� n(n� 1)

2
�

mX
r=1

n2
r � 2n

mX
r=1

nr � 0:

Since 2
mX
r=1

nr = 2‘+ 1� n, we have:

(2‘� n)(1� n)� n(n� 1)

2
�

mX
r=1

n2
r � 0: (5.6)

But (2‘�n)(1�n) � 0, �n(n�1)
2
� 0 and �

mX
r=1

n2
r < 0, as n � 1 and nr � 1 for all 1 � r � m.

Therefore, Inequality (5.6) does not hold. We can now assume that there exist 1 � i � m
such that �i = �1. Then, since the �i’s are distinct, we have ��1

j 6= �1 for all 1 � j � m,
j 6= i. Moreover, since �j 6= 1 for all 1 � j � m, we also have ��1

i ��1
j = ���1

j 6= �1 for all
1 � j � m, j 6= i. By (5.1), the latter account for at least 4ni

X
r 6=i

nr additional eigenvalues

of s on V different than �1. Further, we have �2
i = ��2

i = 1 and so:

dim(Vs(�1)) � 2‘2 + ‘� n(n� 1)

2
�

mX
r=1

n2
r � 2n

X
r 6=i

nr � 4ni
X
r 6=i

nr � ni(ni � 1):

Suppose that dim(Vs(�1)) � 2‘2 � ‘. It follows that:

2‘� n(n� 1)

2
�

mX
r=1

n2
r � 2n

X
r 6=i

nr � 4ni
X
r 6=i

nr � ni(ni � 1) � 0: (5.7)

We have that
mX
r=1

n2
r �

mX
r=1

nr, as nr � 1 for all 1 � r � m, and that 2‘ = 2
mX
r=1

nr + n� 1.

By (5.7), it follows:

2
mX
r=1

nr + n� 1� n(n� 1)

2
�

mX
r=1

nr � 2n
X
r 6=i

nr � 4ni
X
r 6=i

nr � ni(ni � 1) � 0;

which we rewrite as:X
r 6=i

nr(1� 2n) + ni(2� ni � 4
X
r 6=i

nr)�
(n� 1)(n� 2)

2
� 0: (5.8)

As n � 1, it follows that � (n�1)(n�2)
2

� 0 and
X
r 6=i

nr(1 � 2n) < 0. Moreover, since m � 2

and nr � 1 for all 1 � r � m, we have ni(2� ni � 4
X
r 6=i

nr) < 0, thus Inequality (5.8) does

not hold. This proves that dim(Vs(�1)) < 2‘2 � ‘ for all s 2 T n Z(G) with m � 2.
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In conclusion, we have shown that dim(Vs(�)) � 2‘2 � ‘ for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V . In particular, as the inequality 0 < 2‘2 � ‘ holds for all
‘ � 3, it follows that 2‘2 � ‘ < 2‘2 + ‘�

p
2‘2 + ‘ for all ‘ � 3 and therefore dim(Vs(�)) <

dim(V )�
p

dim(V ) for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V .

Proposition 5.2.5. Let V 0 = S2(W ). Then for all s 2 T n Z(G) and all eigenvalues � 2 k�
of s on V 0 we have

dim(V
0

s (�)) � 2‘2 + ‘+ 1;

where equality holds if and only if � = 1 and, up to conjugation, s = diag(�1; : : : ;�1; 1;
�1; : : : ;�1).

Proof. Let s 2 TnZ(G) be as in hypothesis (yHs). We first remark that, as p 6= 2, V 0 = S2(W )
is a self-dual module, see [McN98, Lemma 4.7.1(b)]. Secondly, we note that dim(V ) =
2‘2 + 3‘+ 1 and we determine that the eigenvalues of s on V 0 , not necessarily distinct, are:

(5.9)

8>>>>>>>><>>>>>>>>:

�2
i and �

�2
i , 1 � i � m, each with multiplicity at least ni(ni+1)

2
;

�i�j and ��1
i ��1

j , 1 � i < j � m, each with multiplicity at least ninj;
�i�

�1
j and ��1

i �j, 1 � i < j � m, each with multiplicity at least ninj;
�i and ��1

i , 1 � i � m, each with multiplicity at least nni;

1 with multiplicity at least
mX
r=1

n2
r +

n(n+ 1)

2
:

Let � be an eigenvalue of s on V 0 . If � 6= ��1, then:

dim(V
0

s (�)) � 2‘2 + 3‘+ 1� dim(V
0

s (��1))

and, since dim(V
0
s (�)) = dim(V

0
s (��1)), as V 0 is self-dual, and ‘ � 3, we have that

dim(V
0

s (�)) � 2‘2 + 3‘+ 1

2
< 2‘2 + ‘+ 1: (5.10)

Therefore we can assume that � = �1.
Suppose that m = 1. We note that, in this case, as s =2 Z(G), we have �1 6= 1. Then,

by (5.9), the eigenvalues of s on V
0 , not necessarily distinct, are �2

1 and ��2
1 , each with

multiplicity at least n1(n1+1)
2

, �1 and ��1
1 , each with multiplicity at least nn1, and 1 with

multiplicity at least n(n+1)
2

+ n2
1.

For � = 1, since s =2 Z(G), we have ��1
1 6= 1 and so

dim(V
0

s (1)) � 2‘2 + 3‘+ 1� 2nn1: (5.11)

If dim(V
0
s (1)) � 2‘2 + ‘+ 1, then, keeping in mind that 2n1 = 2‘+ 1� n, we have:

(2‘� n)(1� n) � 0:

But, this is just Inequality (5.3) which holds if and only if n = 1. Then n1 = ‘ and, by
(5.11), we have dim(V

0
s (1)) � 2‘2 + ‘ + 1. Equality holds if and only if all eigenvalues
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of s on V
0 different than ��1

1 are equal to 1, hence if and only if �2
1 = 1. We deduce that

dim(V
0
s (1)) = 2‘2+‘+1 if and only if, up to conjugation, s = diag(�1; : : : ;�1; 1;�1; : : : ;�1),

as in the statement of the proposition.
For � = �1 we have that

dim(V
0

s (�1)) � 2‘2 + 3‘+ 1� n2
1 �

n(n+ 1)

2
: (5.12)

If dim(V
0
s (�1)) � 2‘2 + ‘+ 1, then:

2‘� n2
1 �

n(n+ 1)

2
� 0

and, since 2‘+ 1 = 2n1 + n, we have:

�(n1 � 1)2 + n
1� n

2
� 0: (5.13)

Inequality (5.13) holds if and only if n = 1 and n1 = 1, contradicting ‘ � 3. Therefore
dim(V

0
s (�1)) < 2‘2 + ‘+ 1 for all s 2 T n Z(G) with m = 1.

We can now assume that m � 2. For � = 1, we first recall that ��1
i 6= 1 for all 1 � i � m.

Secondly, as �i 6= ��1
j for all 1 � i < j � m, we have that ��1

i ��1
j 6= 1 for all 1 � i < j � m.

Hence, by (5.9), it follows that:

dim(V
0

s (1)) � 2‘2 + 3‘+ 1� 2n
mX
i=1

ni � 4
X
i<j

ninj:

If dim(V
0
s (1)) � 2‘2 + ‘+ 1, then:

2‘� 2n
mX
i=1

ni � 4
X
i<j

ninj � 0:

We see that this is just Inequality (5.4), which does not hold. Therefore, dim(V
0
s (1)) <

2‘2 + ‘+ 1 for all s 2 T n Z(G) with m � 2.
Lastly, let � = �1. Suppose that �i 6= �1 for all 1 � i � m. Then ��1

i 6= �1 for all
1 � i � m and, by (5.9), it follows that:

dim(V
0

s (�1)) � 2‘2 + 3‘+ 1�
mX
r=1

n2
r �

n(n+ 1)

2
� 2n

mX
r=1

nr: (5.14)

If dim(V
0
s (�1)) � 2‘2 + ‘+ 1, then:

2‘�
mX
r=1

n2
r �

n(n+ 1)

2
� 2n

mX
r=1

nr � 0

and, since 2‘+ 1 = n+ 2
mX
r=1

nr, we have:

n
1� n

2
+

mX
r=1

nr(2� nr � 2n) � 1; (5.15)
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contradicting n � 1 and nr � 1 for all 1 � r � m. Therefore we can assume that there
exists 1 � i � m such that �i = �1. Then ��1

r 6= �1 for all r 6= i. By (5.9), these account
for at least 2n

X
r 6=i

nr additional eigenvalues which are different than �1. Furthermore, we

have �2
i = ��2

i = 1 and so:

dim(V
0

s (�1)) � 2‘2 + 3‘+ 1�
mX
r=1

n2
r �

n(n+ 1)

2
� 2n

X
r 6=i

nr � ni(ni + 1): (5.16)

Assume dim(V
0
s (�1)) � 2‘2 + ‘+ 1. Then

2‘�
mX
r=1

n2
r �

n(n+ 1)

2
� 2n

X
r 6=i

nr � ni(ni + 1) � 0

and, since 2‘+ 1 = n+ 2
mX
r=1

nr, we have:

n
1� n

2
+
X
r 6=i

nr(2� nr � 2n)� (2n2
i � ni + 1) � 0: (5.17)

Since n � 1 and nr � 1 for all 1 � r � m, one sees that

n
1� n

2
+
X
r 6=i

nr(2� nr � 2n)� (2n2
i � ni + 1) < 0;

therefore, Inequality (5.17) does not hold. We conclude that dim(V
0
s (�1)) < 2‘2 + ‘+ 1 for

all s 2 T n Z(G) with m � 2, completing the proof of the proposition.

Corollary 5.2.6. Assume that p - 2‘ + 1 and let V = LG(2!1). Then for all s 2 T n Z(G)
and all eigenvalues � 2 k� of s on V we have

dim(Vs(�)) � 2‘2 + ‘;

where equality holds if and only if � = 1 and, up to conjugation, s = diag(�1; : : : ;�1; 1;
�1; : : : ;�1).

In particular, we have dim(Vs(�)) < dim(V ) �
p

dim(V ) for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V .

Proof. Let s 2 T n Z(G) be as in hypothesis (yHs). Let V
0

= S2(W ). Then, since p - 2‘+ 1,
by Lemma 2.8.4, it follows that V 0 = V � LG(0) and so dim(V ) = 2‘2 + 3‘, dim(Vs(�)) =
dim(V

0
s (�)) for all eigenvalues � 6= 1 of s on V , and dim(Vs(1)) = dim(V

0
s (1))� 1.

For the eigenvalue 1, by Proposition 5.2.5, we have dim(Vs(1)) � 2‘2 + ‘, where equality
holds if and only if s is as in the statement of the result. Furthermore, as ‘ � 3, by Inequality
(5.10), we have dim(Vs(�)) � 2‘2+3‘+1

2
< 2‘2 + ‘ for all eigenvalues � 6= ��1 of s on V . What

is left is to determine dim(Vs(�1)).
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Suppose that m = 1. Then, by (5.12), we have:

dim(Vs(�1)) � 2‘2 + 3‘+ 1� n2
1 �

n(n+ 1)

2
:

If dim(Vs(�1)) � 2‘2 + ‘, we proceed as in the proof for V 0s (�1), see (5.13), and arrive at

n
1� n

2
+ n1(2� n1) � 0: (5.18)

Since n � 1, it follows that n1 � 2. If n1 = 2, then, by (5.18), we have n = 1, contradicting
‘ � 3. On the other hand, if n1 = 1, then, by (5.18), we have n� n2 + 2 � 0 and, since n is
odd, it follows that n = 1, again contradicting ‘ � 3.

We can now assume that m � 2. If �i 6= �1 for all 1 � i � m, then, by (5.14), we have:

dim(Vs(�1)) � 2‘2 + 3‘+ 1�
mX
r=1

n2
r �

n(n+ 1)

2
� 2n

mX
r=1

nr:

If dim(Vs(�)) � 2‘2 + ‘, we proceed as in the proof for V 0s (�1), see (5.15), and arrive at

n
1� n

2
+

mX
r=1

nr(2� nr � 2n) � 0;

contradicting n � 1 and nr � 1 for all 1 � r � m. On the other hand, if there exists
1 � i � m such that �i = �1, then, by (5.16), we have:

dim(Vs(�1)) � 2‘2 + 3‘+ 1�
mX
r=1

n2
r �

n(n+ 1)

2
� 2n

X
r 6=i

nr � ni(ni + 1):

If dim(Vs(�1)) � 2‘2 + ‘, we proceed as in the proof for V 0s (�1), see (5.17), and arrive at

n
1� n

2
+
X
r 6=i

nr(2� nr � 2n)� ni(2ni � 1) � 0:

Since n � 1 and nr � 1 for all 1 � r � m, the above inequality does not hold. It follows
that dim(Vs(�1)) < 2‘2 + ‘ for all s 2 T n Z(G).

We conclude that dim(Vs(�)) � 2‘2 + ‘ for all s 2 T n Z(G) and all eigenvalues � 2 k�
of s on V . Moreover, as the inequality 0 < 2‘2 � 3‘ holds for all ‘ � 3, it follows that
2‘2 + ‘ < 2‘2 + 3‘�

p
2‘2 + 3‘ for all ‘ � 3, and so dim(Vs(�)) < dim(V )�

p
dim(V ) for all

s 2 T n Z(G) and all eigenvalues � 2 k� of s on V .

Corollary 5.2.7. Assume that p j 2‘ + 1 and let V = LG(2!1). Then for all s 2 T n Z(G)
and all eigenvalues � 2 k� of s on V we have

dim(Vs(�)) � 2‘2 + ‘� 1;

where equality holds if and only if � = 1 and, up to conjugation, s = diag(�1; : : : ;�1; 1;
�1; : : : ;�1).

In particular, we have dim(Vs(�)) < dim(V ) �
p

dim(V ) for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V .
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Proof. Let s 2 T nZ(G) be as in hypothesis (yHs). Let V
0
= S2(W ). Then, since p j 2‘+1, by

Lemma 2.8.4, we have V 0 = LG(0) j V j LG(0) and so dim(V ) = 2‘2 + 3‘� 1, dim(Vs(�)) =
dim(V

0
s (�)) for all eigenvalues � 6= 1 of s on V , and dim(Vs(1)) = dim(V

0
s (1))� 2.

For the eigenvalue 1, by Proposition 5.2.5, we have dim(Vs(1)) � 2‘2 + ‘ � 1, where
equality holds if and only if s is as in the statement of the result. Furthermore, as ‘ � 3, by
Inequality (5.10), we have dim(Vs(�)) � 2‘2+3‘+1

2
< 2‘2 + ‘� 1 for all eigenvalues � 6= ��1 of

s on V . What is left is to determine dim(Vs(�1)).
Suppose that m = 1. Then, by (5.12), we have:

dim(Vs(�1)) � 2‘2 + 3‘+ 1� n2
1 �

n(n+ 1)

2
:

If dim(Vs(�1)) � 2‘2 + ‘� 1, we proceed as for V 0s (�1), see (5.13), and arrive at

n
1� n

2
+ (2n1 � n2

1 + 1) � 0: (5.19)

Since n � 1, then 2n1 � n2
1 + 1 � 0 and so, we have n1 2 f1; 2g. If n1 = 2, then, by (5.19),

it follows that n � n2 + 2 � 0 and, since n is odd, we have n = 1, contradicting ‘ � 3. On
the other hand, if n1 = 1, then, by (5.19), we have n�n2 + 4 � 0 and so n = 1, which again
contradicts ‘ � 3.

We can now assume that m � 2. If �i 6= �1 for all 1 � i � m, then, by (5.14), we have:

dim(Vs(�1)) � 2‘2 + 3‘+ 1�
mX
r=1

n2
r �

n(n+ 1)

2
� 2n

mX
r=1

nr:

If dim(Vs(�)) � 2‘2 + ‘� 1, we proceed as in the proof for V 0s (�1), see (5.15), and arrive at

n
1� n

2
+ 1 +

mX
r=1

nr(2� nr � 2n) � 0: (5.20)

We have that
mX
r=1

nr(2 � nr � 2n) < 0, as n � 1 and nr � 1 for all 1 � r � m, therefore

n1�n
2

+ 1 � 0. Since n is odd, it follows that n = 1 and substituting in (5.20) gives:

1�
mX
r=1

n2
r � 0;

contradicting m � 2. On the other hand, if there exists 1 � i � m such that �i = �1, then,
by (5.16), we have:

dim(Vs(�1)) � 2‘2 + 3‘+ 1�
mX
r=1

n2
r �

n(n+ 1)

2
� 2n

X
r 6=i

nr � ni(ni + 1):

If dim(Vs(�1)) � 2‘2 + ‘�1, we proceed as in the proof for V 0s (�1), see (5.17), and arrive at

n
1� n

2
+
X
r 6=i

nr(2� nr � 2n) + (�2n2
i + ni + 1) � 0:
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Since n � 1 and nr � 1 for all 1 � r � m, the above inequality does not hold. It follows
that dim(Vs(�1)) < 2‘2 + ‘� 1.

We conclude that dim(Vs(�)) � 2‘2+‘�1 for all s 2 T nZ(G) and all eigenvalues � of s on
V . Moreover, as the inequality 0 < 2‘2�3‘+1 holds for all ‘ � 3, it follows that 2‘2 +‘�1 <
2‘2 + 3‘ � 1 �

p
2‘2 + 3‘� 1 for all ‘ � 3, therefore dim(Vs(�)) < dim(V ) �

p
dim(V ) for

all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V .

To conclude this subsection, we remark that Lemma 5.2.3, Proposition 5.2.4 and Corollaries
5.2.6 and 5.2.7 give the proof of Theorems 5.2.1 and 5.2.2 for the families of kG-modules
corresponding to p-restricted dominant weights � 2 f!1; !2; 2!1g. Therefore, in view of
Remark 5.1.1, they prove Theorems 5.2.1 and 5.2.2 for the families of k ~G-modules with
p-restricted dominant weights ~� 2 FB‘ .

5.2.2 The particular modules

As previously mentioned, in this subsection we will give an upper-bound for dim(Vs(�)),
where (s; �) 2 ~T n Z( ~G) � k� and V is an irreducible k ~G-module with associated highest
weight featured in Table 2.7.4. In order to achieve our goal, we will use the same inductive
algorithm as for groups of type A‘ and C‘, see Subsection 2.4.3 for a description of this
method. To begin, let L1 be a Levi subgroup of the maximal parabolic subgroup P1 of ~G, as
given in Section 2.4. We recall that L1 = Z(L1)�[L1; L1], where Z(L1)� is a one-dimensional
torus and [L1; L1] is a simple simply connected linear algebraic group of type B‘�1 with
maximal torus T 0 = ~T \ [L1; L1]. We note that, although we do not mention the result
explicitly, we make great use of the data in [Lü01b] when discussing weights and weight
multiplicities in this subsection.

Let s 2 ~T . Then s = z � h, where z 2 Z(L1)� and h 2 [L1; L1]. As z 2 Z(L1)�,

it follows that z =
‘Y
i=1

h~�i(c
ki), where c 2 k� and ki 2 Z for all 1 � i � ‘. Moreover,

we have that ~�j(z) = 1 for all 2 � j � ‘. It follows that z =
‘�1Y
i=1

h~�i(c
2) � h~�‘(c) with

c 2 k�. As h 2 [L1; L1], we have h =
‘Y
i=2

h~�i(ai), where ai 2 k� for all 2 � i � ‘. Hence,

s = h~�1(c2) �
‘�1Y
i=2

h~�i(c
2ai) � h~�‘(ca‘) with c 2 k� and ai 2 k� for all 2 � i � ‘.

Let V be an irreducible k ~G-module of highest weight ~� 2 X( ~T ), ~� = d1 ~!1 + � � � + d‘~!‘
with 0 � d1; : : : ; d‘ � p� 1. We consider the decomposition:

V j[L1;L1]=

e1(~�)M
i=0

V i;

where V i =
M

~2N ~�1

V~��i~�1�~ for all 0 � i � e1(~�). Let s 2 ~T and write s = z � h, as above. By
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(2.5), we have that:

siz := (~�� i~�1 � ~)(z) = (~�� i~�1)

� ‘�1Y
i=1

h~�i(c
2) � h~�‘(c)

�
=

‘�1Y
j=1

c2dj � cd‘ � c�2i:

Therefore, z acts on V i, 0 � i � e1(~�), as the scalar siz = c2d1+���+2d‘�1+d‘�2i. Now, let
�i1; : : : ; �

i
ti
, ti � 1, be the distinct eigenvalues of h on V i, 0 � i � e1(~�), and let ni1; : : : ; niti be

their respective multiplicities. Then, by Lemma 2.4.8, it follows that the distinct eigenvalues
of s on V i are siz�i1; : : : ; siz�iti , with respective multiplicities ni1; : : : ; niti .

Proposition 5.2.8. Assume that ‘ = 3 and let V = L ~G(~!3). Then for all s 2 ~T n Z( ~G) and
all eigenvalues � 2 k� of s on V we have

dim(Vs(�)) � 4;

where there exist pairs (s; �) 2 ~T n Z( ~G)� k� for which the bound is attained.
In particular, we have dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 ~T n Z( ~G) and all

eigenvalues � 2 k� of s on V .

Proof. Let ~� = ~!3. Then dim(V ) = 8 and, by Lemma 2.4.6, we have e1(~�) = 1, therefore

V j[L1;L1]= V 0 � V 1;

where V i =
M

~2N ~�1

V~��i~�1�~ for i = 0 and i = 1. By [Smi82, Proposition], it follows that

V 0 �= LL1(~!3) and so, by Lemma 2.4.3, we also have V 1 �= (LL1(~!3))� �= LL1(~!3). Therefore

V j[L1;L1]
�= LL1(~!3)� LL1(~!3): (5.21)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0 or i = 1,

then s 2 Z(L1)� nZ( ~G), and so s = z with c2 6= 1. In this case, as s acts on each V i, i = 0; 1,
as scalar multiplication by c1�2i, we determine that the distinct eigenvalues of s on V are:(

c with dim(Vs(c)) = dim(V 0) = 4;

c�1 with dim(Vs(c
�1)) = dim(V 1) = 4:

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V and

for both i = 0 and i = 1. We write s = z �h, where z 2 Z(L1)� and h 2 [L1; L1]. Since z acts
by scalar multiplication on V i, i = 0; 1, it follows that dim(V i

h(�h)) < dim(V i) for i = 0; 1,
where �h is any eigenvalue of h on V i. Now, by Lemma 4.2.3, we have dim(V 0

h (�h)) � 2
and dim(V 1

h (�h)) � 2 for all eigenvalues �h of h on V 0 and V 1, respectively. We deduce that
dim(Vs(�)) � 4 for all eigenvalues � 2 k� of s on V .

In conclusion, we have shown that dim(Vs(�)) � 4 for all s 2 ~T nZ( ~G) and all eigenvalues
� 2 k� of s on V , and that there exist pairs (s; �) 2 ~T n Z( ~G) � k� for which the bound is
attained. Moreover, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 ~T n Z( ~G) and all

eigenvalues � 2 k� of s on V .
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Proposition 5.2.9. Assume ‘ � 4 and let V = L ~G(~!‘). Then for all s 2 ~T n Z( ~G) and all
eigenvalues � 2 k� of s on V we have

dim(Vs(�)) � 2‘�1;

where there exist pairs (s; �) 2 ~T n Z( ~G)� k� for which the bound is attained.
In particular, we have dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 ~T n Z( ~G) and all

eigenvalues � 2 k� of s on V .

Proof. Let ~� = ~!‘. Then dim(V ) = 2‘ and, by Lemma 2.4.6, we have e1(~�) = 1, therefore

V j[L1;L1]= V 0 � V 1;

where V i =
M

~2N ~�1

V~��i~�1�~ for i = 0 and i = 1. By [Smi82, Proposition], it follows that

V 0 �= LL1(~!‘) and so, by Lemma 2.4.3, we also have V 1 �= (LL1(~!‘))
� �= LL1(~!‘). Therefore

V j[L1;L1]
�= LL1(~!‘)� LL1(~!‘): (5.22)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0 or i = 1,

then s 2 Z(L1)� nZ( ~G), and so s = z, with c2 6= 1. In this case, as s acts on each V i, i = 0; 1,
as scalar multiplication by c1�2i, we determine that the distinct eigenvalues of s on V are:(

c with dim(Vs(c)) = dim(V 0) = 2‘�1;

c�1 with dim(Vs(c
�1)) = dim(V 1) = 2‘�1:

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V and

for both i = 0 and i = 1. We write s = z � h, where z 2 Z(L1)� and h 2 [L1; L1]. Since
z acts by scalar multiplication on V i, i = 0; 1, it follows that dim(V i

h(�h)) < dim(V i) for
i = 0; 1, where �h is any eigenvalue of h on V i. In the case of ‘ = 4, by Proposition 5.2.8,
we have dim(V 0

h (�h)) � 22 and dim(V 1
h (�h)) � 22 for all eigenvalues �h of h on V 0 and V 1,

respectively. This gives dim(Vs(�)) � 23 for all eigenvalues � 2 k� of s on V . Now, for ‘ � 5,
by recurrence and using the result for ‘ = 4 as base case, one shows that dim(V 0

h (�h)) � 2‘�2

and dim(V 1
h (�h)) � 2‘�2 for all eigenvalues �h of h on V 0 and V 1, respectively. It follows

that dim(Vs(�)) � 2‘�1 for all eigenvalues � 2 k� of s on V .
In conclusion, we have shown that dim(Vs(�)) � 2‘�1 for all s 2 ~T n Z( ~G) and all

eigenvalues � 2 k� of s on V , and that there exist pairs (s; �) 2 ~T n Z( ~G)� k� for which the
bound is attained. Moreover, as the inequality 0 < 2‘�2� 1 holds for all ‘ � 4, we have that
2‘�1 < 2‘ �

p
2‘ for all ‘ � 4, hence dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 ~T n Z( ~G)

and all eigenvalues � 2 k� of s on V .

Proposition 5.2.10. Assume ‘ = 3 and let V = L ~G(2~!3). Then for all s 2 ~T n Z( ~G) and
all eigenvalues � 2 k� of s on V we have

dim(Vs(�)) � 20;

where there exist pairs (s; �) 2 ~T n Z( ~G)� k� for which the bound is attained.
In particular, we have dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 ~T n Z( ~G) and all

eigenvalues � 2 k� of s on V .
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Proof. Let ~� = 2~!3. Then dim(V ) = 35 and, by Lemma 2.4.6, we have e1(~�) = 2, therefore

V j[L1;L1]= V 0 � V 1 � V 2;

where V i =
M

~2N ~�1

V~��i~�1�~ for all 0 � i � 2. By [Smi82, Proposition], it follows that V 0 �=

LL1(2~!3) and so, by Lemma 2.4.3, we also have V 2 �= (LL1(2~!3))� �= LL1(2~!3). This gives
dim(V 1) = 15. Now, in V 1, the weight (~�� ~�1� ~�2� ~�3) jT 0= 2~!3 admits a maximal vector,
therefore V 1 has a composition factor isomorphic to LL1(2~!3). Moreover, the dominant
weight (~�� ~�1� ~�2�2~�3) jT 0= ~!2, which occurs with multiplicity 2 in V 1, is a sub-dominant
weight in the composition factor of V 1 isomorphic to LL1(2~!3), in which it has multiplicity 1.
Comparing dimensions, we determine that V 1 has two composition factors: one isomorphic
to LL1(2~!3) and one isomorphic to LL1(~!2); therefore V 1 �= LL1(2~!3)� LL1(~!2), by [Jan07,
II.2.14]. This gives

V j[L1;L1]
�= LL1(2~!3)� LL1(2~!3)� LL1(~!2)� LL1(2~!3): (5.23)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0; 1 or i = 2,

then s 2 Z(L1)� n Z( ~G), and so s = z, with c2 6= 1. In this case, as s acts on each V i,
0 � i � 2, as scalar multiplication by c2�2i, we determine that the eigenvalues of s on V , not
necessarily distinct, are:8><>:

c2 with dim(Vs(c
2)) � dim(V 0) = 10;

1 with dim(Vs(1)) = dim(V 1) = 15;

c�2 with dim(Vs(c
�2)) � dim(V 2) = 10:

As c2 6= 1, it follows that dim(Vs(�)) � 20 for all eigenvalues � 2 k� of s on V . Moreover,
for s = h�1(�1)h�2(�1)h�3(c) 2 Z(L1)� n Z( ~G) with c2 = �1 we have dim(Vs(�1)) = 20.

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V

and all 0 � i � 2. We write s = z � h, where z 2 Z(L1)� and h 2 [L1; L1]. Since z acts
by scalar multiplication on V i, 0 � i � 2, it follows that dim(V i

h(�h)) < dim(V i) for all
0 � i � 2, where �h is any eigenvalue of h on V i. We will first show that dim(V 1

h (�h)) � 8
for all eigenvalues �h of h on V 1. For this, we use (4.1) of Proposition 4.2.4 and (4.9) of
Proposition 4.2.5, keeping in mind that p 6= 2, to determine that the eigenvalues of h on V 1,
not necessarily distinct, are:8><>:

d2; d�2; e2 and e�2; each with multiplicity at least 1;

de; d�1e�1; d�1e and de�1 each with multiplicity at least 2;

1 with multiplicity at least 3;

where d; e 2 k� not both simultaneously equal to 1. Thus, one can show that dim(V 1
h (�h)) �

8 for all eigenvalues �h of h on V 1. Now, by Proposition 4.2.4, we have dim(V 0
h (�h)) � 6

and dim(V 2
h (�h)) � 6 for all eigenvalues �h of h on V 0 and V 2, respectively. It follows that

dim(Vs(�)) � 20 for all eigenvalues � 2 k� of s on V .
In conclusion, we have shown that dim(Vs(�)) � 20 for all s 2 ~T nZ( ~G) and all eigenvalues

� 2 k� of s on V , and that there exist pairs (s; �) 2 ~T n Z( ~G) � k� for which the bound is
attained. Moreover, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 ~T n Z( ~G) and all

eigenvalues � 2 k� of s on V .
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Proposition 5.2.11. Let k be an algebraically closed field of characteristic p = 7. Assume
‘ = 3 and let V = L ~G(~!1 + ~!3). Then for all s 2 ~T n Z( ~G) and all eigenvalues � 2 k� of s
on V we have

dim(Vs(�)) � 20;

where there exist pairs (s; �) 2 ~T n Z( ~G)� k� for which the bound is attained.
In particular, we have dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 ~T n Z( ~G) and all

eigenvalues � 2 k� of s on V .

Proof. Let ~� = ~!1 + ~!3. Then dim(V ) = 40, as p = 7, and, by Lemma 2.4.6, we have
e1(~�) = 3, therefore

V j[L1;L1]= V 0 � V 1 � V 2 � V 3;

where V i =
M

~2N ~�1

V~��i~�1�~ for all 0 � i � 3. By [Smi82, Proposition], it follows that

V 0 �= LL1(~!3) and so, by Lemma 2.4.3, we also have V 3 �= (LL1(~!3))� �= LL1(~!3). This
gives dim(V 1) = 16, since, by Lemma 2.4.3, we have V 2 �= (V 1)�. Now, in V 1 the weight
(~� � ~�1) jT 0= ~!2 + ~!3 admits a maximal vector, therefore V 1 has a composition factor
isomorphic to LL1(~!2 + ~!3) and, as dim(LL1(~!2 + ~!3)) = 16, since p = 7, we deduce that
V 1 �= LL1(~!2 + ~!3). Lastly, we use Lemma 2.4.3 once more to determine that V 2 �= (LL1(~!2 +
~!3))� �= LL1(~!2 + ~!3), and so

V j[L1;L1]
�= LL1(~!3)� LL1(~!2 + ~!3)� LL1(~!2 + ~!3)� LL1(~!3): (5.24)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0; 1; 2 or i = 3,

then s 2 Z(L1)� n Z( ~G), and so s = z with c2 6= 1. In this case, as s acts on each V i,
0 � i � 3, as scalar multiplication by c3�2i, we determine that the eigenvalues of s on V , not
necessarily distinct, are:8>>><>>>:

c3 with dim(Vs(c
3)) � dim(V 0) = 4;

c with dim(Vs(c)) � dim(V 1) = 16;

c�1 with dim(Vs(c
�1)) � dim(V 2) = 16;

c�3 with dim(Vs(c
�3)) � dim(V 3) = 4:

As c2 6= 1, it follows that dim(Vs(�)) � 20 for all eigenvalues � 2 k� of s on V . Moreover,
for s = h�1(�1)h�2(�1)h�3(c) 2 Z(L1)� n Z( ~G) with c2 = �1 we have dim(Vs(�c)) = 20.

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V and

all 0 � i � 3. We write s = z � h, where z 2 Z(L1)� and h 2 [L1; L1]. Since z acts by scalar
multiplication on V i, 0 � i � 3, it follows that dim(V i

h(�h)) < dim(V i) for all 0 � i � 3,
where �h is any eigenvalue of h on V i. Now, by Lemma 4.2.3, it follows that dim(V 0

h (�h)) � 2
and dim(V 3

h (�h)) � 2 for all eigenvalues �h of h on V 0 and V 3, respectively. By Proposition
4.2.9, we have dim(V 1

h (�h)) � 8 and dim(V 2
h (�h)) � 8 for all eigenvalues �h of h on V 1 and

V 2, respectively. It follows that dim(Vs(�)) � 20 for all eigenvalues � 2 k� of s on V .
In conclusion, we have shown that dim(Vs(�)) � 20 for all s 2 ~T nZ( ~G) and all eigenvalues

� 2 k� of s on V , and that there exist pairs (s; �) 2 ~T n Z( ~G) � k� for which the bound is
attained. Moreover, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 ~T n Z( ~G) and all

eigenvalues � 2 k� of s on V .
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Proposition 5.2.12. Let k be an algebraically closed field of characteristic p 6= 2; 7. Assume
‘ = 3 and let V = L ~G(~!1 + ~!3). Then for all s 2 ~T n Z( ~G) and all eigenvalues � 2 k� of s
on V we have

dim(Vs(�)) � 24;

where there exist pairs (s; �) 2 ~T n Z( ~G)� k� for which the bound is attained.
In particular, we have dim(Vs(�)) < dim(V ) �

p
dim(V ) for all s 2 ~T n Z( ~G) and all

eigenvalues � 2 k� of s on V .

Proof. Let ~� = ~!1 + ~!3. Then dim(V ) = 48, as p 6= 7, and, by Lemma 2.4.6, we have
e1(~�) = 3, therefore

V j[L1;L1]= V 0 � V 1 � V 2 � V 3;

where V i =
M

~2N ~�1

V~��i~�1�~ for all 0 � i � 3. By [Smi82, Proposition], it follows that

V 0 �= LL1(~!3) and so, by Lemma 2.4.3, we also have V 3 �= (LL1(~!3))� �= LL1(~!3). This gives
dim(V 1) = 20, since V 2 �= (V 1)�, by Lemma 2.4.3. Now, in V 1 the weight (~��~�1) jT 0= ~!2+~!3

admits a maximal vector, thus V 1 has a composition factor isomorphic to LL1(~!2 + ~!3). We
also note that the dominant weight (~� � ~�1 � ~�2 � ~�3) jT 0= ~!3 occurs with multiplicity 3
in V 1. Now, if p 6= 5, then ~!3 is a sub-dominant weight in the composition factor of V 1

isomorphic to LL1(~!2 + ~!3), in which it has multiplicity 2. Thereby, when p 6= 5, V 1, hence
V 2 by Lemma 2.4.3, has exactly two compositions factors: one isomorphic to LL1(~!2 + ~!3)
and one isomorphic to LL1(~!3). On the other hand, if p = 5, then ~!3 has multiplicity 1 in
the composition factor of V 1 isomorphic to LL1(~!2 + ~!3). In this case, we determine that
V 1, hence V 2 by Lemma 2.4.3, has exactly three compositions factors: one isomorphic to
LL1(~!2 + ~!3) and two isomorphic to LL1(~!3).

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0; 1; 2 or i = 3,

then s 2 Z(L1)� n Z( ~G), and so s = z, with c2 6= 1. In this case, as s acts on each V i,
0 � i � 3, as scalar multiplication by c3�2i, we determine that the eigenvalues of s on V , not
necessarily distinct, are:8>>><>>>:

c3 with dim(Vs(c
3)) � dim(V 0) = 4;

c with dim(Vs(c)) � dim(V 1) = 20;

c�1 with dim(Vs(c
�1)) � dim(V 2) = 20;

c�3 with dim(Vs(c
�3)) � dim(V 3) = 4:

As c2 6= 1, it follows that dim(Vs(�)) � 24 for all eigenvalues � 2 k� of s on V . Moreover,
for s = h�1(�1)h�2(�1)h�3(c) 2 Z(L1)� n Z( ~G) with c2 = �1 we have dim(Vs(�c)) = 24.

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V and

all 0 � i � 3. We write s = z � h, where z 2 Z(L1)� and h 2 [L1; L1]. Since z acts by scalar
multiplication on V i, 0 � i � 3, it follows that dim(V i

h(�h)) < dim(V i) for all 0 � i � 3,
where �h is any eigenvalue of h on V i. Now, by Lemma 4.2.3, we have dim(V 0

h (�h)) � 2 and
dim(V 3

h (�h)) � 2 for all eigenvalues �h of h on V 0 and V 3, respectively. By Lemma 4.2.3 and,
if p = 5 by Proposition 4.2.8, or, if p 6= 5 by Proposition 4.2.9, we have dim(V 1

h (�h)) � 10
and dim(V 2

h (�h)) � 10 for all eigenvalues �h of h on V 1 and V 2, respectively. We deduce
that dim(Vs(�)) � 24 for all eigenvalues � 2 k� of s on V .
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In conclusion, we have shown that dim(Vs(�)) � 24 for all s 2 ~T nZ( ~G) and all eigenvalues
� 2 k� of s on V , and that there exist pairs (s; �) 2 ~T n Z( ~G) � k� for which the bound is
attained. Moreover, we have dim(Vs(�)) < dim(V )�

p
dim(V ) for all s 2 ~T n Z( ~G) and all

eigenvalues � 2 k� of s on V .

We conclude this subsection by noting that Propositions 5.2.8 through 5.2.12 complete
the proofs of Theorems 5.2.1 and 5.2.2, as they cover all the irreducible k ~G-modules L ~G(~�)
with p-restricted dominant weight ~� featured in Table 2.7.4.

5.3 Eigenspace dimensions for unipotent elements
This section is dedicated to the proofs of the following two theorems, analogs of Theorems
5.2.1 and 5.2.2, in the case of the unipotent elements. Similar to the semisimple case, the
proofs will be given in a series of results, each treating one of the candidate.modules. In
Subsection 5.3.1, we determine max

u2Gunf1g
dim(Vu(1)), see Remark 5.1.1, where V belongs to

one of the families of kG-modules we have to consider, i.e. V is an irreducible kG-module
LG(�) with � 2 f!1; 2!1; !2g. We complete the proofs of these two results in Subsection
5.3.2, where we establish max

u2 ~Gunf1g
dim(Vu(1)) for the irreducible k ~G-modules L ~G(~�) with

p-restricted dominant weight ~� listed in Table 2.7.4.

Theorem 5.3.1. Let k be an algebraically closed field of characteristic p 6= 2 and let ~G be a
simple simply connected linear algebraic group of type B‘, ‘ � 3. Let ~T be a fixed maximal
torus in ~G and let V = L ~G(~�), where either ~� 2 FB‘, or ~� is featured in Table 2:7:4. Then
there exist unipotent elements ~u 2 ~G, ~u 6= 1, for which

dim(V~u(1)) � dim(V )�
p

dim(V )

if and only if ‘ and ~� appear in the following list:

(1) ‘ � 3 and ~� = ~!1;

(2) ‘ = 3; 4 and ~� = ~!‘.

Theorem 5.3.2. Let k be an algebraically closed field of characteristic p 6= 2 and let ~G be
a simple simply connected linear algebraic group of type B‘, ‘ � 3. Let ~T and V be as in
Theorem 5:3:1. Then the value of max

u2 ~Gunf1g
dim(Vu(1)) is given in the table below:
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V Char. Rank max
u2 ~Gunf1g

dim(Vu(1))

L ~G(~!1) p 6= 2 ‘ � 3 2‘� 1
yL ~G(~!2) p 6= 2 ‘ � 3 2‘2 � 3‘+ 4

yL ~G(2~!1)
p 6= 2 and p - 2‘+ 1 ‘ � 3 2‘2 � ‘
p 6= 2 and p j 2‘+ 1 ‘ � 3 2‘2 � ‘� 1

yL ~G(2~!3) p 6= 2 ‘ = 3 21
yL ~G(~!1 + ~!3) p 6= 2 ‘ = 3 28� 6�p;7
zL ~G(~!‘) p 6= 2 3 � ‘ � 8 3 � 2‘�2

Table 5.3.1: The value of max
u2 ~Gunf1g

dim(Vu(1)).

In particular, for each V in Table 5.3.1 labeled as yV , respectively as zV with ‘ � 5, we
have dim(Vu(1)) < dim(V )�

p
dim(V ) for all unipotent elements u, u 6= 1, of ~G

5.3.1 The families of modules

For the rest of this chapter, we fix the following hypothesis on unipotent elements in G:

(yHu) : every u 2 Gu n f1g has Jordan normal form on W given by
mM
i=1

Jrini ; where

mX
i=1

niri = 2‘+ 1; ri � 1 is even for all even ni and 2‘+ 1 � n1 > n2 > � � � > nm � 1:

Moreover, if m = 1; then n1 � 3:

Lemma 5.3.3. Let V = LG(!1). Then for all non-identity unipotent elements u 2 G we
have

dim(Vu(1)) � 2‘� 1;

where we have equality if and only if the Jordan form of u on W is one of J3 � J2‘�2
1 and

J2
2 � J2‘�3

1 .
In particular, there exist non-identity unipotent elements u 2 G for which dim(Vu(1)) �

dim(V )�
p

dim(V ).

Proof. To begin, we note that V �= W as kG-modules. Now, let u be a unipotent element
of G as in hypothesis (yHu). Let uW denote the action of u on W . Then, keeping in mind

that
mX
i=1

niri = 2‘+ 1, we have:

dim(Vu(1)) = dim(WuW (1)) =
mX
i=1

ri = 2‘+ 1�
mX
i=1

(ni � 1)ri: (5.25)

Assume that dim(Vu(1)) � 2‘� 1. Then, by (5.25), it follows that

2 �
mX
i=1

(ni � 1)ri (5.26)
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and, in particular, that 3 � n1, as 2 � (n1 � 1)r1 � n1 � 1. Now, if n1 = 3, then, by (5.26),

it follows that r1 = 1 and
mX
i=2

(ni � 1)ri = 0, hence m = 2, n2 = 1 and r2 = 2‘� 2, as ‘ � 3.

Thus, u has Jordan form J3 � J2‘�2
1 on W , and, by (5.25), dim(Vu(1)) = 2‘ � 1. Similarly,

if n1 = 2, then r1 is even and, by (5.26), it follows that r1 = 2 and
mX
i=2

(ni � 1)ri = 0. We

argue as before to deduce that the Jordan form of u on W is J2
2 � J2‘�3

1 and, by (5.25), that
dim(Vu(1)) = 2‘� 1.

Having treated all possible cases, we conclude that dim(Vu(1)) � 2‘ � 1 for all non-
identity unipotent elements u 2 G. Moreover, we have shown that equality holds if and only
if the Jordan form of u on W is one of J2

2 � J2‘�3
1 and J3 � J2‘�2

1 . Then, as the inequalityp
2‘+ 1 � 2 holds for all ‘ � 3, we have shown that there exist non-identity unipotent

elements u 2 G for which dim(Vu(1)) � dim(V )�
p

dim(V ).

Proposition 5.3.4. Let V = LG(!2). Then for all non-identity unipotent elements u 2 G
we have

dim(Vu(1)) � 2‘2 � 3‘+ 4;

where equality holds if and only if the Jordan form of u on W is J2
2 � J2‘�3

1 .
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. First, we note that, by Lemma 2.8.4, we have V �= ^2(W ), as kG-modules. Now, let
u be a unipotent element of G as in hypothesis (yHu). We first consider the case when u
has Jordan form J2‘+1 on W . Then u acts as a single Jordan block on W and so, by Lemma
2.9.4, we have:

dim(Vu(1)) =

�
2‘+ 1

2

�
= ‘ < 2‘2 � 3‘+ 4;

since 0 < 2‘2� 4‘+ 4 for all ‘ � 3. We now assume that the Jordan form of u on W consists
of at least two blocks.

Secondly, we consider the case when exactly one block, Jn1 , appearing in the Jordan form
of u on W , is nontrivial. Then the Jordan form of u is Jn1 � J2‘+1�n1

1 , where, since r1 = 1,
n1 is odd, thus 3 � n1 � 2‘� 1. We write W = W1 �W2, where dim(W1) = n1 and u acts
as Jn1 on W1, and dim(W2) = 2‘+ 1�n1 and u acts trivially on W2. Then, as k[u]-modules,
we have

V �= ^2(W1)� (W1 
W2)� ^2(W2)

and so

dim(Vu(1)) = dim((^2(W1))u(1)) + dim((W1 
W2)u(1)) + dim((^2(W2))u(1)): (5.27)

Now, by Lemma 2.9.4, we have dim((^2(W1))u(1)) =
jn1

2

k
=
n1 � 1

2
and, moreover, as u

acts as Jn1 
 J2‘+1�n1
1 on W1 
W2, we also have dim((W1 
W2)u(1)) = 2‘+ 1� n1. Lastly,
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as u acts trivially on W2, it also acts trivially on ^2(W2), and so dim((^2(W2))u(1)) =
(2‘� n1)(2‘� n1 + 1)

2
. It follows that:

dim(Vu(1)) =
n1 � 1

2
+ 2‘+ 1� n1 +

(2‘� n1)(2‘� n1 + 1)

2

=
4‘2 � 4‘n1 + n2

1 + 6‘� 2n1 + 1

2

= 2‘2 � 3‘+ 4 +
n2

1 � 4‘n1 � 2n1 + 12‘� 7

2
:

One checks that the inequality

n2
1 � 4‘n1 � 2n1 + 12‘� 7 < 0 (5.28)

holds for all n1 2 (2‘ + 1 � 2
p

(‘� 1)2 + 1; 2‘ + 1 + 2
p

(‘� 1)2 + 1) and all ‘ � 1. Since
2‘+1�2

p
(‘� 1)2 + 1 < 2‘+1�2

p
(‘� 1)2 = 3 and since 2‘+1+2

p
(‘� 1)2 + 1 > 2‘�1,

it follows that, in particular, Inequality (5.28) holds for all 3 � n1 � 2‘ � 1 and all ‘ � 3.
We conclude that dim(Vu(1)) < 2‘2 � 3‘+ 4 for all ‘ � 3 and all unipotent elements u of G
with Jordan form Jn1 � J2‘+1�n1

1 on W , where 3 � n1 � 2‘� 1.
Lastly, we consider the case when the Jordan form of u onW admits at least two nontrivial

blocks. Then 2 � n1 � 2‘� 1. We write W = W
0
1 �W

0
2, where dim(W

0
1) = n1 and u acts as

Jn1 onW
0
1, and dim(W

0
2) = 2‘+1�n1 and u acts as Jr1�1

n1
�

mM
i=2

Jrini onW
0
2. Now, by (5.27), in

order to determine dim(Vu(1)), we only need to know dim((^2(W
0
1))u(1)), dim((W

0
1
W

0
2)u(1))

and dim((^2(W
0
2))u(1)). As u acts as a single Jordan block on W 0

1, by Lemma 2.9.4, we have

dim((^2(W
0

1))u(1)) =
jn1

2

k
=
n1 + �

2
, where � = 0 if n1 is even, or � = �1 if n1 is odd. Now,

since u acts as (Jn1 
 Jn1)r1�1 �
mM
i=2

(Jn1 
 Jni)ri on W
0
1 
W

0
2, we again use Lemma 2.9.4 to

deduce:

dim((W
0

1 
W
0

2)u(1)) = (r1 � 1)n1 +
mX
i=2

niri = 2‘+ 1� n1: (5.29)

Furthermore, since the Jordan form of u admits at least two nontrivial blocks, it follows
that u acts nontrivially on W

0
2 and by, Proposition 3.3.4, we have dim((^2(W

0

2))u(1)) �
(2‘� n1)2 � (2‘� n1) + 2

2
. Moreover, we note that equality holds if and only if u acts on

W
0
2 as J2 � J2‘�n1�1

1 . Now, by (5.27) and keeping in mind that � � 0, we have:
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dim(Vu(1)) � n1 + �

2
+ 2‘+ 1� n1 +

(2‘� n1)2 � (2‘� n1) + 2

2

=
4‘2 � 4‘n1 + n2

1 + 2‘+ 4 + �

2

� 4‘2 � 4‘n1 + n2
1 + 2‘+ 4

2

= 2‘2 � 3‘+ 4 +
n2

1 � 4‘n1 + 8‘� 4

2

= 2‘2 � 3‘+ 4 +
(n1 � 2)(n1 + 2� 4‘)

2
:

Since 2 � n1 � 2‘ � 1, it follows that (n1 � 2)(n1 + 2 � 4‘) � 0 for all ‘ � 3, thus
dim(Vu(1)) � 2‘2 � 3‘ + 4 for all ‘ � 3 and all unipotent elements u of G whose Jordan
form on W admits at least two nontrivial blocks. Moreover, equality holds if and only if

dim((^2(W
0

2))u(1)) =
(2‘� n1)2 � (2‘� n1) + 2

2
, n1 is even and (n1 � 2)(n1 + 2 � 4‘) = 0,

hence, if and only if u acts as J2 � J2‘�n1�1
1 on W 0

2 and as J2 on W 0
1. We deduce that u has

Jordan form J2
2 � J2‘�3

1 on W .
Having considered all possible cases, we conclude that dim(Vu(1)) � 2‘2 � 3‘ + 4 for

all non-identity unipotent elements u 2 G, where equality holds if and only if the Jordan
form of u on W is J2

2 � J2‘�3
1 . Furthermore, since the inequality 14‘2 � 33‘ + 16 > 0

holds for all ‘ � 3, it follows that 2‘2 � 3‘ + 4 < 2‘2 + ‘ �
p

2‘2 + ‘ for all ‘ � 3, thus
dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 G.

We will now consider the irreducible kG-module LG(2!1). We have seen in Lemma 2.8.4
that LG(2!1) is a composition factor of the kG-module S2(W ). This is a relevant fact, as
we can use Lemma 2.9.4 to calculate the dimension of the fixed point space on S2(W ) of
any unipotent element u 2 G, see Proposition 5.3.7. Having determined dim((S2(W ))u(1)),
where u 2 G is unipotent, we apply [Kor19, Corollary 6:3] to deduce dim(LG(2!1)u(1)).
Before we give the statement of this result, we recall that rt(u) is the number of Jordan
blocks of size t � 1 appearing in the Jordan form of u, and that �p is the p-adic valuation
on the integers.

Theorem 5.3.5. [Kor19, Corollary 6:3] Assume p > 2 and let H = SO(V ), where dim(V ) =
n for some n � 5. Let u 2 H be a unipotent element and let V jk[u]= Vn1 � � � � � Vnm, where
m � 1 and ni � 1 for all 1 � i � m. Set � = �p(gcd(n1; : : : ; nm)). Let u0 be the action of
u on S2(V ) and let u0 be the action of u on LH(2!1). Then the Jordan block sizes of u0 are
determined from those of u0 in the following way:

(a) If p - n, then r1(u0) = r1(u
0
)� 1 and rt(u0) = rt(u

0
) for all t 6= 1.

(b) If p j n and � = 0, then r1(u0) = r1(u
0
)� 2 and rt(u0) = rt(u

0
) for all t 6= 1.

(c) If p j n and � > 0, then:
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(c.1) If p j n
p�

, then rp�(u0) = rp�(u
0
) � 2, rp��1(u0) = 2 and rt(u0) = rt(u

0
) for all

t 6= p�; p� � 1.

(c.2) If p -
n

p�
, then rp�(u0) = rp�(u

0
) � 1, rp��2(u0) = 1 and rt(u0) = rt(u

0
) for all

t 6= p�; p� � 2.

Remark 5.3.6. Let V = LG(2!1). By Theorem 5:3:5, for all unipotent elements u 2 G, we
have that:

(1) If p - 2‘+ 1, then dim(Vu(1)) = dim((S2(W ))u(1))� 1.

(2) If p j 2‘+ 1 and � = 0, then dim(Vu(1)) = dim((S2(W ))u(1))� 2.

(3) If p j 2‘+ 1 and � > 0, then dim(Vu(1)) = dim((S2(W ))u(1)).

Proposition 5.3.7. Let V 0 = S2(W ). Then for all non-identity unipotent elements u 2 G
we have

dim(V
0

u(1)) � 2‘2 � ‘+ 1:

Moreover, equality holds if and only if the Jordan form of u on W is one of J3 � J2‘�2
1 and

J2
2 � J2‘�3

1 .

Proof. Let u be a unipotent element of G as in hypothesis (yHu). We first consider the case
when u has Jordan form J2‘+1 on W . Then, as p 6= 2, we apply Lemma 2.9.4 and obtain:

dim(V
0

u(1)) = 2‘+ 1�
�

2‘+ 1

2

�
= ‘+ 1 < 2‘2 � ‘+ 1; (5.30)

since the inequality 0 < 2‘2 � 2‘ holds for all ‘ � 3. We can thus assume that the Jordan
form of u on W consists of at least two blocks.

We now consider the case when exactly one block, Jn1 , appearing in the Jordan form of
u on W , is nontrivial. Then u has Jordan form Jn1�J2‘+1�n1

1 , where n1 is odd, since r1 = 1,
thus 3 � n1 � 2‘ � 1. We write W = W1 �W2, where dim(W1) = n1 and u acts as Jn1 on
W1, and dim(W2) = 2‘+ 1� n1 and u acts trivially on W2. Then, as k[u]-modules, we have

V
0 �= S2(W1)� (W1 
W2)� S2(W2)

and so

dim(V
0

u(1)) = dim((S2(W1))u(1)) + dim((W1 
W2)u(1)) + dim((S2(W2))u(1)): (5.31)

Now, since p 6= 2, we apply Lemma 2.9.4, which gives dim((S2(W1))u(1)) = n1 �
jn1

2

k
=

n1 + 1

2
and, moreover, as u acts as Jn1 
 J2‘+1�n1

1 on W1 
W2, we also have
dim((W1 
W2)u(1)) = 2‘+ 1� n1. Lastly, as u acts trivially on W2, it also acts trivially on

190



S2(W2), and so dim((S2(W2))u(1)) =
(2‘� n1 + 1)(2‘� n1 + 2)

2
. It follows that:

dim(V
0

u(1)) =
n1 + 1

2
+ 2‘+ 1� n1 +

(2‘� n1 + 1)(2‘� n1 + 2)

2

=
4‘2 � 4‘n1 + n2

1 + 10‘� 4n1 + 5

2

= 2‘2 � ‘+ 1 +
n2

1 � 4‘n1 � 4n1 + 12‘+ 3

2

= 2‘2 � ‘+ 1 +
(n1 � 3)(n1 � 1� 4‘)

2
:

(5.32)

Since 3 � n1 � 2‘ � 1, we have (n1 � 3)(n1 � 1 � 4‘) � 0 for all ‘ � 3, and, consequently,
dim(V

0
u(1)) � 2‘2� ‘+ 1 for all unipotent elements u of G with Jordan form Jn1 � J2‘+1�n1

1 ,
where 3 � n1 � 2‘�1, onW . Moreover, equality holds if and only if (n1�3)(n1�1�4‘) = 0,
hence, if and only if the Jordan form of u on W is J3 � J2‘�2

1 .
Lastly, we consider the case when the Jordan form of u onW admits at least two nontrivial

blocks. Then 2 � n1 � 2‘� 1. We write W = W
0
1 �W

0
2, where dim(W

0
1) = n1 and u acts as

Jn1 onW
0
1, and dim(W

0
2) = 2‘+1�n1 and u acts as Jr1�1

n1
�

mM
i=2

Jrini onW
0
2. Now, by (5.31), in

order to determine dim(V
0
u(1)), we only need to know dim((S2(W

0
1))u(1)), dim((W

0
1
W

0
2)u(1))

and dim((S2(W
0
2))u(1)). As u acts as a single Jordan block on W 0

1, by Lemma 2.9.4, we have

dim((S2(W
0

1))u(1)) = n1 �
jn1

2

k
=

n1 � �
2

, where � = 0 if n1 is even, or � = �1 if n1 is

odd. Since u acts as (Jn1 
 Jn1)r1�1 �
mM
i=2

(Jn1 
 Jni)
ri on W

0
1 
 W

0
2, by (5.29), we have

dim((W
0
1 
W

0
2)u(1)) = 2‘ + 1 � n1. Furthermore, since the Jordan form of u on W admits

at least two nontrivial blocks, it follows that u acts nontrivially on W 0
2 and, by Proposition

3.3.5, we have dim((S2(W
0

2))u(1)) � (2‘� n1)(2‘+ 1� n1)

2
. Moreover, by the same result,

equality holds if and only if u acts on W 0
2 as J2 � J2‘�n1�1

1 . Thus, by (5.31) we have:

dim(V
0

u(1)) � n1 � �
2

+ 2‘+ 1� n1 +
(2‘� n1)(2‘+ 1� n1)

2

=
4‘2 � 4‘n1 + n2

1 + 6‘� 2n1 + 2� �
2

= 2‘2 � ‘+ 1 +
n2

1 � 4‘n1 � 2n1 + 8‘� �
2

:

If n1 = 2, then � = 0,
n2

1 � 4‘n1 � 2n1 + 8‘

2
= 0 and, consequently, dim(V

0
u(1)) � 2‘2� ‘+ 1.

We have remarked earlier that equality holds if and only if u acts on W 0
2 as J2 � J2‘�n1�1

1 ,
hence, equality holds if and only if u has Jordan form J2

2 � J2‘�3
1 on W .

We can now assume that n1 � 3. One checks that the inequality

n2
1 � 4‘n1 � 2n1 + 8‘� � < 0 (5.33)
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holds for all n1 2 (2‘ + 1 �
p

(2‘� 1)2 + �; 2‘ + 1 +
p

(2‘� 1)2 + �) and all ‘ � 1. Since
2‘+ 1�

p
(2‘� 1)2 + � < 3, as 3 + � < 4‘ for all ‘ � 3, and 2‘+ 1 +

p
(2‘� 1)2 + � > 2‘�1,

it follows that, in particular, Inequality (5.33) holds for all 3 � n1 � 2‘ � 1 and all ‘ � 3.
Therefore dim(V

0
u(1)) < 2‘2 � ‘ + 1 for all ‘ � 3 and all unipotent elements u of G whose

Jordan form on W admits at least two nontrivial blocks and n1 � 3.
Having considered all possible cases, we conclude that dim(V

0
u(1)) � 2‘2 � ‘ + 1 for all

non-identity unipotent elements u 2 G. Moreover, we have shown that equality holds if and
only if the Jordan form of u on W is one of J3 � J2‘�2

1 and J2
2 � J2‘�3

1 .

The following result will be required for the proof of Proposition 5.3.10.

Proposition 5.3.8. Let u be a non-identity unipotent element of G whose Jordan form on
W is different than J3 � J2‘�2

1 and J2
2 � J2‘�3

1 . Let V 0 = S2(W ), then:

dim(V
0

u(1)) < 2‘2 � ‘� 1:

Proof. Let u be a unipotent element of G as in hypothesis (yHu) and assume that its Jordan
form on W is different than J3�J2‘�2

1 and J2
2 �J2‘�3

1 . We first consider the case when u has
Jordan form J2‘+1. Then by (5.30), we have dim(V

0
u(1)) = ‘+ 1 and therefore dim(V

0
u(1)) <

2‘2 � ‘� 1, since 0 < ‘2 � ‘� 1 for all ‘ � 3. We thus assume that the Jordan form of u on
W consists of at least two blocks.

We now consider the case when exactly one block, Jn1 , appearing in the Jordan form of
u on W , is nontrivial. We remark that since r1 = 1, n1 is odd and, since the Jordan form
of u is different than J3 � J2l�2

1 , we have 5 � n1 � 2‘ � 1. Furthermore, arguing as in the
proof of Proposition 5.3.7, we see that (5.32) applies and we have

dim(V
0

u(1)) =
4‘2 � 4‘n1 + n2

1 + 10‘� 4n1 + 5

2
= 2‘2 � ‘� 1 +

n2
1 � 4‘n1 � 4n1 + 12‘+ 7

2
:

One checks that the inequality

n2
1 � 4‘n1 � 4n1 + 12‘+ 7 < 0

holds for all n1 2 (2‘ + 2 �
p

4‘2 � 4‘� 3; 2‘ + 2 +
p

4‘2 � 4‘� 3) and all ‘ � 1. Since
2‘ + 2 +

p
4‘2 � 4‘� 3 > 2‘� 1 and 2‘ + 2�

p
4‘2 � 4‘� 3 < 5, as 3 < 4‘ for all ‘ � 3, it

follows that, in particular, the inequality holds for all 5 � n1 � 2‘ � 1 and all ‘ � 3. We
conclude that dim(V

0
u(1)) < 2‘2 � ‘� 1 for all unipotent elements u of G with Jordan form

Jn1 � J2‘+1�n1
1 on W , where 5 � n1 � 2‘� 1.

Lastly, we consider the case when the Jordan form of u onW admits at least two nontrivial
blocks. Then 2 � n1 � 2‘�1 and we distinguish two cases. First, if n1 = 2, then the Jordan
form of u on W is Jr1

2 �J2l+1�2r1
1 , where r1 is even and so, by hypothesis, r1 � 4. We remark

that, in this case, we have ‘ � 4. We write W = W1 �W2, where

dim(W1) = 4, dim(W2) = 2‘� 3 and u acts as J2
2 on W1 and as Jr1�2

2 � J2‘+1�2r1
1 on W2:

Now, by Proposition 3.3.5, we have dim((S2(W1))u(1)) < 6 and dim((S2(W2))u(1)) � (2‘�4)(2‘�3)
2

= 2‘2 � 7‘ + 6. Using Lemma 2.9.4 we determine that dim((W1 
W2)u(1)) = 2(2r1 � 4) +
4‘ + 2 � 4r1 = 4‘ � 6 and so, by (5.31), we have dim(V

0
u(1)) < 2‘2 � 3‘ + 6. Therefore,
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since ‘ � 4, we determine that dim(V
0
u(1)) < 2‘2 � ‘ � 1 for all unipotent elements u

of G whose Jordan form on W is Jr1
2 � J2‘+1�2r1

1 , where r1 � 4. We now consider the
case when n1 � 3. We proceed as in the proof of Proposition 5.3.7, see the third-to-last
paragraph, and write W = W

0
1 �W

0
2, where dim(W

0
1) = n1 and u acts as Jn1 on W

0
1, and

dim(W
0
2) = 2‘+1�n1 and u acts as Jr1�1

n1
�

mM
i=2

Jrini onW
0
2. Then dim((S2(W

0

1))u(1)) =
n1 � �

2

and dim((W
0
1 
W

0
2)u(1)) = 2‘ + 1 � n1. Moreover, we remark that, since n1 � 3 and ri is

even for even ni, it follows that u does not act on W 0
2 as J2 � J2‘�3

1 and so, by Proposition

3.3.5, we have dim((S2(W
0

2))u(1)) <
(2‘� n1)(2‘+ 1� n1)

2
. Therefore, by (5.31), we have

dim(V
0

u(1)) <
n1 � �

2
+ 2‘+ 1� n1 +

(2‘� n1)(2‘+ 1� n1)

2

=
4‘2 � 4‘n1 + n2

1 + 6‘� 2n1 + 2� �
2

= 2‘2 � ‘� 1 +
n2

1 � 4‘n1 � 2n1 + 8‘+ 4� �
2

:

One checks that the inequality

n2
1 � 4‘n1 � 2n1 + 8‘+ 4� � < 0 (5.34)

holds for all n1 2 (2‘+1�
p

4‘2 � 4‘� 3 + �; 2‘+1+
p

4‘2 � 4‘� 3 + �) and all ‘ � 1. Since
2‘+ 1 +

p
4‘2 � 4‘� 3 + � > 2‘+ 1 and since 2‘+ 1�

p
4‘2 � 4‘� 3 + � < 3, as 7� � < 4‘

for all ‘ � 3, it follows that, in particular, Inequality (5.34) holds for all 3 � n1 � 2‘ + 1
and all ‘ � 3. Therefore dim(V

0
u(1)) < 2‘2 � ‘ � 1 for all unipotent elements u of G whose

Jordan form on W admits at least two nontrivial blocks and n1 � 3.
Having considered all possible cases, we conclude that dim(V

0
u(1)) < 2‘2 � ‘ � 1 for all

non-identity unipotent elements u 2 G whose Jordan form on W is different than J3� J2‘�2
1

and J2
2 � J2‘�3

1 .

Corollary 5.3.9. Assume p - 2‘ + 1 and let V = LG(2!1). Then for all non-identity
unipotent elements u 2 G we have

dim(Vu(1)) � 2‘2 � ‘;

where equality holds if and only if the Jordan form of u on W is one of J3 � J2‘�2
1 and

J2
2 � J2‘�3

1 .
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. To begin, set V 0 = S2(W ). Then, as p 6= 2 and p - 2‘ + 1, by Lemma 2.8.4, we
have the following kG-module isomorphism V

0 �= V � LG(0). It follows that dim(Vu(1)) =
dim(V

0
u(1)) � 1 and, consequently, by Proposition 5.3.7, dim(Vu(1)) � 2‘2 � ‘ for all non-

identity unipotent elements u 2 G. Moreover, we have equality if and only if dim(V
0
u(1)) =

2‘2 � ‘ + 1, hence, by Proposition 5.3.7, if and only if the Jordan form of u on W is one of
J3 � J2‘�2

1 and J2
2 � J2‘�3

1
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In conclusion, we proved that dim(Vu(1)) � 2‘2�‘ for all non-identity unipotent elements
u 2 G and that there exist u 2 G for which the bound is attained. Lastly, we note that, as
the inequality 14‘2�3‘ > 0 holds for all ‘ � 3, it follows that 2‘2�‘ < 2‘2+3‘�

p
2‘2 + 3‘ for

all ‘ � 3 and, consequently, dim(Vu(1)) < dim(V )�
p

dim(V ) for all non-identity unipotent
elements u 2 G.

Proposition 5.3.10. Assume p j 2‘ + 1 and let V = LG(2!1). Then for all non-identity
unipotent elements u 2 G we have

dim(Vu(1)) � 2‘2 � ‘� 1;

where equality holds if and only if the Jordan form of u on W is one of J3 � J2‘�2
1 and

J2
2 � J2‘�3

1 .
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. To begin, set V 0 = S2(W ) and let u be a unipotent element of G as in hypothesis
(yHu). If we denote by u0 , respectively by uV , the action of u on V 0 , respectively on V , then
by Theorem 5.3.5 we know that we can determine the Jordan form of uV from that of u0 .
Moreover, by Remark 5.3.6, we also know that dim(Vu(1)) � dim(V

0
u(1)).

Set � = �p(gcd(n1; : : : ; nm)). If � = 0, then, since p j 2‘ + 1, we have dim(Vu(1)) =
dim(V

0
u(1))�2, see item (2) of Remark 5.3.6. Therefore, by Proposition 5.3.7, it follows that

dim(Vu(1)) � 2‘2� ‘�1, where equality holds if and only if dim(V
0
u(1)) = 2‘2� ‘+ 1, hence,

if and only if the Jordan form of u on W is one of J3 � J2‘�2
1 and J2

2 � J2‘�3
1 .

We can now assume that � > 0. Then, by item (3) of Remark 5.3.6, as p j 2‘ + 1, we
have dim(Vu(1)) = dim(V

0
u(1)). Moreover, we note that since � > 0, the Jordan form of u

on W is different than J3 � J2‘�2
1 and J2

2 � J2‘�3
1 . Therefore, we use Proposition 5.3.8 to

deduce that dim(V
0
u(1)) < 2‘2 � ‘ � 1 and, consequently, dim(Vu(1)) < 2‘2 � ‘ � 1 for all

unipotent elements u 2 G with � > 0
We have shown that dim(Vu(1)) � 2‘2 � ‘ � 1 for all non-identity unipotent elements

u 2 G. In particular, since the inequality 0 < 14‘2 � 3‘ + 1 holds for all ‘ � 3, it follows
that 2‘2 � ‘ � 1 < 2‘2 + 3‘ � 1 �

p
2‘2 + 3‘� 1 for all ‘ � 3 and, consequently, we have

dim(Vu(1)) < dim(V )�
p

dim(V ) for all non-identity unipotent elements u 2 G.

To conclude this subsection, we remark that Lemma 5.3.3, Proposition 5.3.4 and Corollaries
5.3.9 and 5.3.10 give the proof of Theorems 5.3.1 and 5.3.2 for the families of kG-modules
corresponding to p-restricted dominant weights � 2 f!1; !2; 2!1g. Therefore, in view of
Remark 5.1.1, they prove Theorems 5.3.1 and 5.3.2 for the families of k ~G-modules with
p-restricted dominant weights ~� 2 FB‘ .

5.3.2 The particular modules

As previously mentioned, this subsection is dedicated to the proofs of Theorems 5.3.1 and
5.3.2 for the particular k ~G-modules, i.e. the irreducible k ~G-modules L ~G(~�) with corresponding
p-restricted dominant highest weight ~� listed in Table 2.7.4. For each such k ~G-module V
we will establish max

u2 ~Gunf1g
dim(Vu(1)), where ~Gu is the set of unipotent elements of ~G, see
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Propositions 5.3.11, 5.3.12, 5.3.13, 5.3.14 and 5.3.19. In order to achieve this goal, we will
use the inductive algorithm of Subsection 2.4.4.

Now, let u 2 ~G be a unipotent element. We write u =
Y

~�2~�+

x~�(c~�), where the product is

taken with respect to the total order � on ~�, see Section 1.3, and c~� 2 k for all ~� 2 ~�+. To
u we associate the subset Su � ~�+ with the property that u =

Y
~�2Su

x~�(c~�), where c~� 2 k� for

all ~� 2 Su. Now, as p 6= 2, by Lemma 2.9.1 and Theorem 2.9.2, we know that the unipotent
conjugacy class of u in ~G is completely determined by the Jordan form of u on W .

We first assume that ‘ = 3. Let L1 be the Levi subgroup of the maximal parabolic
subgroup P1 of ~G given in Section 2.4. In Table 5.3.2 we list all the unipotent conjugacy
classes in ~G and give a class representative. Note that all the chosen non-identity class
representatives u0 have the property that u0L1

6= 1.

[LS12, Subsection 3:3:2], [MKT21, Table 10]
Class representative Jordan normal form

1 J7
1

x~�2(1) J2
2 � J3

1

x~�3(1) J3 � J4
1

x~�1(1)x~�3(1) J3 � J2
2

x~�1(1)x~�2(1) J2
3 � J1

x~�2(1)x~�3(1) J5 � J2
1

x~�1(1)x~�2(1)x~�3(1) J7

Table 5.3.2: Unipotent class representatives in B3 when p 6= 2.

Let u 2 ~G be a non-identity unipotent element and let u0 be the class representative
featured in Table 5.3.2 of the unipotent ~G-conjugacy class of u. Then, as dim(Vu(1)) =
dim(Vu0(1)) and dim(Vu0(1)) � dim(Vu0L1

(1)), by Inequality (2.7), it follows that dim(Vu(1)) �
dim(Vu0L1

(1)) and, consequently:

dim(Vu(1)) � maxfdim(Vv0L1

(1)) j v0 in Table 5:3:2g (5.35)

for all non-identity unipotent elements u 2 ~G. Note that, since all v0 of Table 5.3.2 have
been chosen such that v0L1

6= 1, we have that the bound in (5.35) is strictly less than dim(V ).
Now, let v0max be the representative of Table 5.3.2 with the property that dim(V(v

0
max)L1

(1))

realizes maxfdim(Vv0L1

(1)) j v0 in Table 5:3:2g. If v0max is such that (v
0
max)Q1 = 1, where

Q1 = Ru(P1), then, by Identity (2.8), we deduce that there exist unipotent elements u 2 ~G
for which the bound in (5.35) is attained.

Proposition 5.3.11. Assume that ‘ = 3 and let V = L ~G(~!3). Then for all non-identity
unipotent elements u 2 ~G we have

dim(Vu(1)) � 6;
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where there exist u 2 ~G for which the bound is attained.
In particular, there exist non-identity unipotent elements u 2 ~G for which dim(Vu(1)) �

dim(V )�
p

dim(V ).

Proof. We begin by recalling the Decomposition (5.21) of Proposition 5.2.8, which states:

V j[L1;L1]
�= LL1(~!3)� LL1(~!3):

Let u 2 ~G be a non-identity unipotent element. Then, by Inequality (5.35) and Decomposition
(5.21), we have:

dim(Vu(1)) � 2 max
v0
fdim((LL1(~!3))v0L1

(1))g;

where the maximum is taken over all non-identity unipotent class representatives v0 in
Table 5.3.2. Using Lemma 4.3.3, we determine that maxv0 dim((LL1(~!3))v0L1

(1)) = 3 and
so dim(Vu(1)) � 6 for all non-identity unipotent elements u 2 ~G.

We will now show that there exist u 2 ~G for which dim(Vu(1)) = 6. For this, consider
x~�2(1) 2 ~G. First, we note that (x~�2(1))Q1 = 1. Secondly, by Lemma 4.3.3 and Table 4.3.2,
we have dim((LL1(~!3))x~�2

(1)(1)) = 3 and so dim(Vx~�2
(1)(1)) = 6.

In conclusion, we showed that dim(Vu(1)) � 6 for all non-identity unipotent elements
u 2 ~G and that there exist u 2 ~G for which the bound is attained, for example u = x~�2(1).
This proves that there exist non-identity unipotent elements u 2 ~G for which dim(Vu(1)) �
dim(V )�

p
dim(V ).

Proposition 5.3.12. Assume ‘ = 3 and let V = L ~G(2~!3). Then for all non-identity
unipotent elements u 2 ~G we have

dim(Vu(1)) � 21;

where there exist u 2 ~G for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 ~G.

Proof. To begin, we recall the Decomposition (5.23) from Proposition 5.2.10, which states:

V j[L1;L1]= LL1(2~!3)� LL1(2~!3)� LL1(~!2)� LL1(2~!3):

Let u 2 ~G be a non-identity unipotent element. Then, by Inequality (5.35) and Decomposition
(5.23), we have:

dim(Vu(1)) � 3 max
v0
fdim((LL1(2~!3))v0L1

(1))g+ max
v0
fdim((LL1(~!2))v0L1

(1))g;

where the maximum is taken over all non-identity unipotent class representatives v0 in Table
5.3.2. By Corollary 4.3.8, as p 6= 2, we have maxv0 dim((LL1(~!2))v0L1

(1)) = 3, while, by
Proposition 4.3.12, we have maxv0 dim((LL1(2~!3))v0L1

(1)) = 6. It follows that dim(Vu(1)) �
21 for all non-identity unipotent elements u 2 ~G.

We will now show that there exist u 2 ~G for which dim(Vu(1)) = 21. For this,
consider x~�2(1) 2 G. First, we note that (x~�2(1))Q1 = 1. Secondly, by Table 4.3.2,
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Corollary 4.3.8 and Proposition 4.3.12, respectively, we have dim((LL1(~!2))x~�2
(1)(1)) = 3

and dim((LL1(2~!3))x~�2
(1)(1)) = 6, therefore dim(Vx~�2

(1)(1)) = 21.
In conclusion, we have shown that dim(Vu(1)) � 21 for all non-identity unipotent elements

u 2 ~G and that there exist u 2 ~G for which the bound is attained, for example x~�2(1). Lastly,
we have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 ~G.

Proposition 5.3.13. Let k be an algebraically closed field of characteristic p = 7. Assume
‘ = 3 and let V = L ~G(~!1 + ~!3). Then for all non-identity unipotent elements u 2 ~G we have

dim(Vu(1)) � 22;

where there exist u 2 ~G for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 ~G.

Proof. To begin, we recall Decomposition (5.24) of Proposition 5.2.11, which states:

V j[L1;L1]
�= LL1(~!3)� LL1(~!2 + ~!3)� LL1(~!2 + ~!3)� LL1(~!3):

Let u 2 ~G be a non-identity unipotent element. Then, by Inequality (5.35) and Decomposition
(5.24), we have:

dim(Vu(1)) � 2 max
v0
fdim((LL1(~!3))v0L1

(1))g+ 2 max
v0
fdim((LL1(~!2 + ~!3))v0L1

(1))g;

where the maximum is taken over all non-identity unipotent class representatives v0 in Table
5.3.2. By Lemma 4.3.3, we have maxv0 dim((LL1(~!3))v0L1

(1)) = 3, while, by Proposition
4.3.14, as p = 7, we have maxv0 dim((LL1(~!2 + ~!3))v0L1

(1)) = 8. It follows that dim(Vu(1)) �
22 for all non-identity unipotent elements u 2 ~G.

We will now show that there exist unipotent elements u 2 ~G for which dim(Vu(1)) = 22.
For this, we consider x~�2(1) 2 ~G and note that (x~�2(1))Q1 = 1. Now, using Table 4.3.2,
we determine that dim((LL1(~!3))x~�2

(1)(1)) = 3, by Lemma 4.3.3, while, by the proof of
Proposition 4.3.14, we have dim((LL1(~!2 + ~!3))x~�2

(1)(1)) = 8. Thus, dim(Vx~�2
(1)(1)) = 22.

In conclusion, we have shown that dim(Vu(1)) � 22 for all non-identity unipotent elements
u 2 ~G and that there exist u 2 ~G for which the bound is attained, for example x~�2(1). Lastly,
we have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 ~G.

Proposition 5.3.14. Let k be an algebraically closed field of characteristic p 6= 2; 7. Assume
‘ = 3 and let V = L ~G(~!1 + ~!3). Then for all non-identity unipotent elements u 2 ~G we have

dim(Vu(1)) � 28;

where there exist u 2 ~G for which the bound is attained.
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 ~G.
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Proof. To begin, we recall the decomposition of V j[L1;L1] from Proposition 5.2.12, which
states:

V j[L1;L1]= LL1(~!3)� V 1 � V 2 � LL1(~!3);

where, if p 6= 5, V 1 and V 2 each have two composition factors: one isomorphic to LL1(~!2+~!3)
and one isomorphic to LL1(~!3); while, if p = 5, V 1 and V 2 each have three composition
factors: one isomorphic to LL1(~!2 + ~!3) and two isomorphic to LL1(~!3).

First, assume that p 6= 5. Then, by [Jan07, II.2.14], we have V i �= LL1(~!2 + ~!3)�LL1(~!3),
i = 1; 2, and so

V j[L1;L1]= LL1(~!3)� LL1(~!2 + ~!3)� LL1(~!3)� LL1(~!2 + ~!3)� LL1(~!3)� LL1(~!3): (5.36)

Let u 2 ~G be a non-identity unipotent element. Then, by Inequality (5.35) and Decomposition
(5.36), we have:

dim(Vu(1)) � 4 max
v0
fdim((LL1(~!3))v0L1

(1))g+ 2 max
v0
fdim((LL1(~!2 + ~!3))v0L1

(1))g;

where the maximum is taken over all non-identity unipotent class representatives v0 in Table
5.3.2. Now, by Lemma 4.3.3, we have maxv0 dim((LL1(~!3))v0L1

(1)) = 3, while, by Proposition
4.3.14, as p 6= 5, we have maxv0 dim((LL1(~!2 + ~!3))v0L1

(1)) = 8. It follows that dim(Vu(1)) �
28 for all non-identity unipotent elements u 2 ~G.

We will now show that there exists u 2 ~G for which dim(Vu(1)) = 28. For this consider
x~�2(1) 2 ~G. First, we note that (x~�2(1))Q1 = 1. Secondly, using Table 4.3.2, we determine
that dim((LL1(~!3))x~�2

(1)(1)) = 3, by Lemma 4.3.3, while, by the proof of Proposition 4.3.14,
we have dim((LL1(~!2 + ~!3))x~�2

(1)(1)) = 8. Therefore, dim(Vx~�2
(1)(1)) = 28.

We can now assume that p = 5. We first determine an upper-bound for dim(Vx~�3
(1)(1)).

Afterwards, we will assume that the unipotent element u 2 ~G, u 6= 1, is not conjugate to
x~�3(1) and we will bound dim(Vu(1)). Recall that, when p = 5, V 1 and V 2 each have three
composition factors: one isomorphic to LL1(~!2 + ~!3) and two isomorphic to LL1(~!3). Now,
by Table 4.3.2, it follows that dim((LL1(~!3))x~�3

(1)(1)) = 2, while, by Proposition 4.3.13, we
have dim((LL1(~!2 + ~!3))x~�3

(1)(1)) � 5. Therefore, dim(Vx~�3
(1)(1)) � 22, by Lemma 2.4.9.

Let u 2 ~G be a non-identity unipotent element that does not belong to the conjugacy
class of x~�3(1). In what follows, we will determine an upper-bound for dim(Vu(1)). Let L3 be
the Levi subgroup of the maximal parabolic subgroup P3 of ~G given in Section 2.4. We note
that [L3; L3] is a simple simply connected linear algebraic group of type A2 with maximal
torus T 0 = ~T \ [L3; L3]. Set ~� = ~!1 + ~!3 and note that dim(V ) = 48, as p 6= 7. By Lemma
2.4.6, we have e3(~�) = 5 and so:

V j[L3;L3]= V 0 � � � � � V 5;

where V i =
M

~2N ~�3

V~��i~�3�~ for all 0 � i � 5. Now, by [Smi82, Proposition], we have V 0 �=

LL3(~!1) and so, by Lemma 2.4.3, we also have V 5 �= LL3(~!1). The weight (~��~�3) jT 0= ~!1+~!2

admits a maximal vector in V 1, therefore V 1 has a composition factor isomorphic to LL3(~!1+
~!2). Moreover, we note that the dominant weight (~�� ~�1� ~�2� ~�3) jT 0= 0, which occurs with
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multiplicity 3 in V 1, as p 6= 3, has multiplicity 2 in the composition factor of V 1 isomorphic to
LL3(~!1 + ~!2). Therefore, dim(V 1) � 9 and so dim(V 4) � 9, as V 4 �= (V 1)�, by Lemma 2.4.3.
This gives dim(V 2) = dim(V 3) � 12. Now, in V 2, the dominant weight (~��~�2�2~�3) jT 0= 2~!1

admits a maximal vector and so V 2 has a composition factor isomorphic to LL3(2~!1). We also
note that the dominant weight (~�� ~�1 � ~�2 � 2~�3) jT 0= ~!2, which occurs with multiplicity
3 in V 2, as p 6= 7, is a sub-dominant weight in the composition factor of V 2 isomorphic
to LL3(2~!1), in which it has multiplicity 1. Thus, as dim(V 2) � dim(LL3(2~!1)) � 6 and
dim(LL3(~!2)) = 3, it follows that V 2 has exactly three composition factors: one isomorphic
to LL3(2~!1) and two isomorphic to LL3(~!2). Moreover, as p 6= 2, using [Jan07, II.2.12 and
2.14], we determine that V 2 �= LL3(2~!1)�LL3(~!2)�LL3(~!2). Then, by Lemma 2.4.3, we also
have V 3 �= LL3(2~!1)� LL3(~!2)� LL3(~!2), since V 3 �= (V 2)�. This gives dim(V 1) = 9 and so
V 1 has exactly two composition factors: one isomorphic to LL3(~!1 + ~!2) and one isomorphic
to LL3(0). We use [Jan07, II.2.14] once more, to show that V 1 �= LL3(~!1 + ~!2) � LL3(0).
Lastly, by Lemma 2.4.3, we have V 4 �= LL3(~!1 + ~!2)� LL3(0) and so:

V j[L3;L3]
�= LL3(~!1)� LL3(~!1 + ~!2)� LL3(0)� LL3(2~!1)� LL3(~!2)� LL3(~!2)� LL3(2~!1)�

� LL3(~!2)� LL3(~!2)� LL3(~!1 + ~!2)� LL3(0)� LL3(~!1):

(5.37)

Let u0 be the representative listed in Table 5.3.2 of the unipotent ~G-conjugacy class of
u. Now, as u and x~�3(1) are not conjugate, it follows that u0 and x~�3(1) are not conjugate.
Using Table 5.3.2, we determine that u0L3

6= 1. Then, by Decomposition (5.37) and Inequality
(2.7), it follows that:

dim(Vu(1)) � 2 + 2 dim((LL3(~!1))u0L3
(1)) + 2 dim((LL3(~!1 + ~!2))u0L3

(1))+

+ 4 dim((LL3(~!2))u0L3
(1)) + 2 dim((LL3(2~!1))u0L3

(1)):

By Lemma 3.3.3, we have dim((LL3(~!1))u0L3
(1)) � 2 and dim((LL3(~!2))u0L3

(1)) � 2, while, by
Proposition 3.3.5 and Corollary 3.3.9, we have dim((LL3(2~!1))u0L3

(1)) � 3 and dim((LL3(~!1+

~!2))u0L3
(1)) � 4, respectively. It follows that dim(Vu(1)) � 28.

We will now show that there exists u 2 ~G for which dim(Vu(1)) = 28. For this, we consider
x~�2(1) 2 ~G. First, we note that (x~�2(1))Q3 = 1, where Q3 = Ru(P3). Secondly, by Table
4.3.2, we have dim((LL3(~!1))x~�2

(1)(1)) = 2 and dim((LL3(~!2))x~�2(1)
(1)) = 2, see Lemma 3.3.3;

dim((LL3(2~!1))x~�2
(1)(1)) = 3, see Proposition 3.3.5; and dim((LL3(~!1 + ~!2))x~�2

(1)(1)) = 4,
see Corollary 3.3.9. Therefore, dim(Vx~�2

(1)(1)) = 28, by Identity (2.8).
In conclusion, we have shown that dim(Vu(1)) � 28 for all non-identity unipotent elements

u 2 ~G and that there exist u 2 ~G for which the bound is attained, for example x~�2(1). Lastly,
we have dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 ~G.

At this point, we have determined max
u2 ~Gunf1g

dim(Vu(1)) for all the irreducible modules

V of ~G of type B3 with highest weights featured in Table 2.7.4. In order to determine
these maximums, we used the fact that all nontrivial unipotent ~G-conjugacy classes admit
a representative u0 such that u0L1

6= 1. We can now assume that ‘ � 4. Let L1 be the Levi
subgroup of the maximal parabolic subgroup P1 of ~G given in Section 2.4. In Proposition
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5.3.18 we will show that each non-identity unipotent ~G-conjugacy class has a representative
~u0 such that ~u0L1

6= 1. To achieve this, we will use the algorithm presented in [Kor18,
Subsection 2.8.5], which constructs unipotent class representatives in G, and we will show
that each unipotent G-conjugacy class admits a representatives u0, u0 =

Y
�2Su0

x�(c�), where

Su0 � �+, the product respects the order � on �, see Section 1.3, and c� 2 k� for all � 2 Su0 ,
such that Su0 \ f�2; : : : ; �‘g 6= ;, see Proposition 5.3.17. We describe the algorithm below.

For the moment, we focus on G = SO(W ), the simple adjoint group of type B‘, ‘ � 4.
By Theorem 2.9.2, since p 6= 2, we know that the Jordan normal form completely determines
unipotent conjugacy classes in G. We also know that even sized Jordan blocks occur with
even multiplicity, thus, since dim(W ) is odd, we deduce that the number of odd sized Jordan
blocks is odd. Now, let u be a non-identity unipotent element in G and let Vi, 1 � i � ord(u),
be the unique, up to isomorphism, indecomposable k[u]-module with dim(Vi) = i and on
which u acts as the full Jordan block of size i. To u we associate the (possibly empty)
sequences (ei)1�i�t, (oi)t+1�i�t+s+1 and (o0i)t+1�i�t+s such that

W jk[u]=
tM
i=1

V 2
ei
�

t+sM
j=t+1

�
V2oj+1 � V2o0j+1

�
� V2ot+s+1+1; (5.38)

where 2 � e1 � � � � � et are even and 0 � ot+1 � o0t+1 � � � � � ot+s � o0t+s � ot+s+1 are such

that
tX
i=1

ei +
t+sX
j=t+1

(oj + o0j + 1) + ot+s+1 = ‘. We note that the above decomposition of W jk[u]

completely determines the conjugacy class of u in G.
In [Kor18, p.46], it is explained how to construct subspaces W1 and W2 of W with the

property thatW = W1�W2 is an orthogonal direct sum. Furthermore, it is shown that u1 �u2

is a representative of the unipotent conjugacy class determined by the Decomposition (5.38),

where u1 2 SO(W1) and W1 jk[u1]=
tM
i=1

V 2
ei
�

t+sM
j=t+1

(V2oj+1 � V2o0j+1) and where u2 2 SO(W2)

and W2 jk[u2]= V2ot+s+1+1. The construction of u2 is given in [Kor18, p.47]. For u1, if
dim(W1) = 2, we choose u1 = 1, while, if dim(W1) > 2, we use Lemma 6.3.17, a correction
of [Kor18, Lemma 2.8.17], and [Kor18, Tables 2.7 and 2.8] to determine that u1 is as in the
lemma below.

Lemma 5.3.15. Let 2 � e1 � � � � � et be even and let 0 � ot+1 � o0t+1 � � � � � ot+s �

o0t+s � ot+s+1 be such that
tX
i=1

ei +
t+sX
j=t+1

(oj + o0j + 1) + ot+s+1 = ‘. Set ei = oi + o0i + 1,

for all t + 1 � i � t + s, and, moreover, set k1 = 1 and ki = 1 + e1 + � � � + ei�1, for all
2 � i � t+ s+ 1. For all t+ 1 � i � t+ s with oi > 0, define:

wi =

ki+oi�2Y
j=ki

x�j(1) � x�ki+oi�1+���+�ki+1�2
(1) � x�ki+oi�1+���+�ki+1�2+2�ki+1�1+���+2�‘(1):
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For all t+ 1 � i � t+ s with o0i > 0, define:

w
0

i =

ki+1�2Y
j=ki+oi

x�j(1) � x�ki+1�2+2�ki+1�1+���+2�‘(�1):

For all 1 � i � t+ s, define:

vi =

8>>>>>>>>>><>>>>>>>>>>:

ki+1�2Y
j=ki

x�j(1); if 1 � i � t;

1; if t+ 1 � i � t+ s and oi = o0i = 0;
ki+1�2Y
j=ki

x�j(1) � x�ki+1�2+2�ki+1�1+���+2�‘(1); if t+ 1 � i � t+ s and oi = 0; o0i > 0;

wiw
0
i; if t+ 1 � i � t+ s and oi; o0i > 0:

Set u1 = v1 � � � vt+s and u2 =

8>><>>:
1; if ot+s+1 = 0;

‘Y
j=ks+1

x�j(1); if ot+s+1 > 0:

Then u = u1u2 satisfies W jk[u]=
tM
i=1

V 2
ei
�

t+sM
j=t+1

�
V2oj+1 � V2o0j+1

�
� V2ot+s+1+1.

Remark 5.3.16. Let C be a non-identity unipotent conjugacy class in G. The goal of this
remark is to establish Su for the representative u 2 C, u = u1 � u2 with u1 = v1 � � � vt+s,

constructed in Lemma 5.3.15. For this, let W jk[u]=
tM
i=1

V 2
ei
�

t+sM
j=t+1

�
V2oj+1 � V2o0j+1

�
�

V2ot+s+1+1 be the corresponding decomposition of W as a k[u]-module. We distinguish the
following cases:

Case 1: t = 0. Then
sX
j=1

(oj + o0j + 1) + os+1 = ‘ with 0 � o1 � o01 � � � � � os � o0s � os+1.

Now, as u is nontrivial, it follows that os+1 > 0 and so u2 =
‘Y

j=ks+1

x�j(1). With u2 identified,

we will now determine u1. We have the following sub-cases:
Sub-case 1:1: If o0s = 0, then oi = o0i = 0 for all 1 � i � s and, in this case, we have

u1 = 1, therefore u = u2 and Su = f�ks+1 ; : : : ; �‘g.
Sub-case 1:2: If o0s > 0, let 1 � j � s be such that o0j�1 = 0 and o0j > 0. Then, oi = o0i = 0

for all 0 � i � j � 1, hence vi = 1, for all 0 � i � j � 1. Moreover, for all j + 1 � i � s,
since oi; o0i > 0, we have:

vi = wiw
0
i =

ki+oi�2Y
j=ki

x�j(1) � x�ki+oi�1+���+�ki+1�2
(1) � x�ki+oi�1+���+�ki+1�2+2�ki+1�1+���+2�‘(1)�

�
ki+1�2Y
j=ki+oi

x�j(1) � x�ki+1�2+2�ki+1�1+���+2�‘(�1)
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Now, for all j + 1 � i � s, set

�i := �ki+oi�1 + � � �+ �ki+1�2

�i := �ki+oi�1 + � � �+ �ki+1�2 + 2�ki+1�1 + � � �+ 2�‘

i := �ki+1�2 + 2�ki+1�1 + � � �+ 2�‘:

We apply the commutator relations [MT11, Theorem 11.8] and use [Cav10, Lemma 2.5.4] to
determine that:

(1) x�j(1), ki + oi � j � ki+1 � 3, commutes with both x�i(1) and x�i(1);

(2) [x�i(1); x�ki+1�2
(1)] = x�i(�1), where

�i := �ki+oi�1 + � � �+ �ki+1�3 + 2�ki+1�2 + � � �+ 2�‘:

Moreover, x�i(�1) commutes with both x�ki+1�2
(1) and x�i(1);

(3) x�ki+1�2
(1) commutes with x�i(1);

(4) xi(�1) commutes with both x�i(1) and x�i(�1).

Thus, for all j + 1 � i � s, we have:

vi =

ki+oi�2Y
j=ki

x�j(1) �
ki+1�2Y
j=ki+oi

x�j(1) � x�i(1) � xi(�1) � x�i(1) � x�i(�1):

We use the commutator relations, [MT11, Theorem 11.8] once more, and obtain:

u1 = v1 � � � vs = vj � vj+1 � � � vs

= vj �
sY

i=j+1

� ki+oi�2Y
r=ki

x�r(1) �
ki+1�2Y
r=ki+oi

x�r(1) � x�i(1) � xi(�1) � x�i(1) � x�i(�1)

�

= vj �
sY

i=j+1

� ki+oi�2Y
r=ki

x�r(1) �
ki+1�2Y
r=ki+oi

x�r(1)

�
�

sY
i=j+1

x�i(1) �
sY

i=j+1

xi(�1) �
sY

i=j+1

x�i(1) �
sY

i=j+1

x�i(�1):

If oj = 0, then, by [MT11, Theorem 11.8], it follows that:

u1 =

kj+1�2Y
r=kj

x�r(1) �
sY

i=j+1

� ki+oi�2Y
r=ki

x�r(1) �
ki+1�2Y
r=ki+oi

x�r(1)

�
�

sY
i=j+1

x�i(1) � xj(1) �
sY

i=j+1

xi(�1)�

�
sY

i=j+1

x�i(1) �
sY

i=j+1

x�i(�1):

Similarly, if oj > 0, then

u1 =
sY
i=j

� ki+oi�2Y
r=ki

x�r(1) �
ki+1�2Y
r=ki+oi

x�r(1)

�
�

sY
i=j

x�i(1) �
sY
i=j

xi(�1) �
sY
i=j

x�i(1) �
sY
i=j

x�i(�1):
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Lastly, recalling that u2 =
‘Y

j=ks+1

x�j(1), by [MT11, Theorem 11.8], we determine that, if

oj = 0, then:

u =

kj+1�2Y
r=kj

x�r(1) �
sY

i=j+1

� ki+oi�2Y
r=ki

x�r(1) �
ki+1�2Y
r=ki+oi

x�r(1)

�
�

sY
i=j+1

x�i(1) �
‘Y

j=ks+1

x�j(1) � xj(1)�

�
sY

i=j+1

xi(�1) �
sY

i=j+1

x�i(1) �
sY

i=j+1

x�i(�1):

(5.39)

Similarly, if oj > 0, then:

u =
sY
i=j

� ki+oi�2Y
r=ki

x�r(1) �
ki+1�2Y
r=ki+oi

x�r(1)

�
�

sY
i=j

x�i(1) �
‘Y

j=ks+1

x�j(1) �
sY
i=j

xi(�1) �
sY
i=j

x�i(1) �
sY
i=j

x�i(�1):

(5.40)
In both cases we see that �‘ 2 Su.

Case 2: t � 1. We distinguish the following sub-cases:
Sub-case 2:1: s = 0. If ot+1 = 0, then u2 = 1, u1 = v1 � � � vt and we have:

u =
tY
i=1

� ki+1�2Y
j=ki

x�j(1)

�
;

thereby Su = f�1; : : : ; �k2�2; �k2 ; : : : ; �k3�2; : : : ; �kt ; : : : ; �kt+1�2g, as k1 = 1. On the other

hand, if ot+1 > 0, we have u2 =
‘Y

j=kt+1

x�j(1) and so:

u =
tY
i=1

� ki+1�2Y
j=ki

x�j(1)

�
�

‘Y
j=kt+1

x�j(1):

In this case, Su = f�1; : : : ; �k2�2; : : : ; �kt ; : : : ; �kt+1�2; �kt+1 ; : : : ; �‘g.
Sub-case 2:2: s � 1. If ot+s+1 = 0, then ot+j = o0t+j = 0, for all 1 � j � s, and

so u2 = 1 and vt+j = 1, for all 1 � j � s. In this case, u = v1 � � � vt and so Su =
f�1; : : : ; �k2�2; �k2 ; : : : ; �k3�2; : : : ; �kt ; : : : ; �kt+1�2g. On the other hand, if ot+s+1 > 0, then

u2 =
‘Y

j=kt+1

x�j(1). It follows that

u = v1 � � � vt � vt+1 � � � vt+s � u2 =
tY
i=1

� ki+1�2Y
j=ki

x�j(1)

�
� vt+1 � � � vt+s � u2; (5.41)

where vt+1 � � � vt+s � u2 is as in (5.39), or (5.40), depending on whether oj = 0 or oj > 0,
where 1 � j � s + 1 is such that o0j�1 = 0 and o0j > 0. Now, since all � 2 Sv1���vt and all
 2 Svt+1���vt+s�u2 are such that � � , we determine that the product in (5.41) respects the
total order � on �. Lastly, we note that, in both cases, �‘ 2 Su.
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Proposition 5.3.17. Each non-identity unipotent G-conjugacy class, admits a representative
u0 with the property that

Su0 \ f�2; : : : ; �‘g 6= ;:

Proof. Let C be a non-identity unipotent G-conjugacy class and let u 2 C, u = u1 � u2 with
u1 = v1 � � � vt+s, be the representative of C constructed in Lemma 5.3.15. Let

W jk[u]=
tM
i=1

V 2
ei
�

t+sM
j=t+1

�
V2oj+1 � V2o0j+1

�
� V2ot+s+1+1

be the corresponding decomposition of W as a k[u]-module.
If ot+s+1 > 0, then, by Case 1 and (5.41) of Remark 5.3.16, we have that �‘ 2 Su. We

can thus assume that ot+s+1 = 0, in which case oj = o0j = 0 for all t + 1 � j � t + s.
As u is nontrivial, it follows that t � 1. Then, by Case 2 of Remark 5.3.16, we have
Su = f�1; : : : ; �k2�2; �k2 ; : : : ; �k3�2; : : : ; �kt ; : : : ; �kt+1�2g. If t � 2, then �k2 2 Su, where
k2 = 1 + e1 � 3. We can thus assume that t = 1. If e1 � 4, then �k2�2 2 Su, where
k2�2 = e1�1 � 3. Lastly, if e1 = 2, then u = x�1(1) andW jk[x�1 (1)]= V 2

2 �V 2‘�3
1 . However,

by [LS12, Subsection 3.3.2], x�2(1) is another unipotent element of G with corresponding
decomposition W jk[x�2 (1)]= V 2

2 � V 2‘�3
1 . Therefore, x�1(1) and x�2(1) are G-conjugate and

we choose x�2(1) as representative of the unipotent class of u.
Having considered all possible cases, we conclude that all nontrivial unipotent conjugacy

classes of G admit a representative u0 with the property that Su0 \ f�2; : : : ; �‘g 6= ;.

We can now state the analog of Proposition 5.3.17 for the simple simply connected linear
algebraic group ~G of type B‘, ‘ � 4.

Proposition 5.3.18. Each non-identity unipotent ~G-conjugacy class admits a representative
~u0 with the property that S~u0 \ f~�2; : : : ; ~�‘g 6= ;.

Proof. Assume by contradiction that there exists a non-identity unipotent ~G-conjugacy class
~C such that for all ~u0 2 ~C we have S~u0 \ f~�2; : : : ; ~�‘g = ;. Now, as � : ~G ! G is a central
isogeny and �(U~�) = U�, for all ~� 2 ~�, by Lemma 2.9.1, it follows that the unipotent
conjugacy class C of G given by C = �( ~C) has the property that Su0 \ f�2; : : : ; �‘g = ;
for all u0 2 C. However, this contradicts Proposition 5.3.17. We conclude that all non-
identity unipotent ~G-conjugacy classes admit a representative ~u0 with the property that
S~u0 \ f~�2; : : : ; ~�‘g 6= ;.

Proposition 5.3.19. Assume ‘ � 4 and let V = L ~G(~!‘). Then for all non-identity unipotent
elements u 2 ~G we have

dim(Vu(1)) � 3 � 2‘�2;

where there exist u 2 ~G for which the bound is attained.
In particular, for ‘ = 4 there exist non-identity unipotent elements u 2 ~G for which

dim(Vu(1)) � dim(V ) �
p

dim(V ). On the other hand, for ‘ � 5, we have dim(Vu(1)) <

dim(V )�
p

dim(V ) for all non-identity unipotent elements u 2 ~G
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Proof. To begin, we recall Decomposition (5.22) of Proposition 5.2.9, which states:

V j[L1;L1]
�= LL1(~!‘)� LL1(~!‘):

Let u 2 ~G be a non-identity unipotent element and let u0 be a representative of the
unipotent ~G-conjugacy class of u with u0L1

6= 1. Note that, by Proposition 5.3.18, such a
representative always exists. Then, by Inequality (2.7) and Decomposition (5.22), we have:

dim(Vu(1)) � dim(Vu0L1
(1)) = 2 dim((LL1(~!‘))u0L1

(1)):

Now, for ‘ = 4, by Proposition 5.3.11, we have dim((LL1(~!4))u0L1
(1) � 3 � 2, therefore

dim(Vu(1)) � 3 � 22 for all non-identity unipotent elements u 2 ~G. Moreover, by [LS12,
Subsection 3.3.2] and by the proof of Proposition 5.3.11, it follows that dim((LL1(~!4))x~�3

(1)(1))

= 3 � 2, therefore dim(Vx~�3
(1)(1)) = 3 � 22. Recursively, one shows that dim(Vu(1)) � 3 � 2‘�2

for all ‘ � 4 and all non-identity unipotent elements u 2 ~G and that there exist u 2 ~G for
which equality is attained, for example x~�‘�1

(1).
In conclusion, we showed that dim(Vu(1)) � 3 � 2‘�2, for all ‘ � 4 and all non-identity

unipotent elements u 2 ~G, and that there exist u 2 ~G for which equality holds, for example
x~�‘�1

(1). Now, if ‘ = 4, it follows that there exist non-identity u 2 ~G for which dim(Vu(1)) �
dim(V )�

p
dim(V ). However, for ‘ � 5, the inequality 1 < 2‘�4 holds, therefore 3 � 2‘�2 <

2‘�
p

2‘ for all ‘ � 5, and so dim(Vu(1)) < dim(V )�
p

dim(V ) for all non-identity unipotent
elements u 2 ~G.

We conclude this subsection by noting that Propositions 5.3.11, 5.3.12, 5.3.13, 5.3.14
and 5.3.19 complete the proof of Theorems 5.3.1 and 5.3.2, as they cover all the irreducible
k ~G-modules correspon-ding to p-restricted dominant weights featured in Table 2.7.4.

5.4 Results
In this section, we collect the results proven in this chapter. In Proposition 5.4.1 we give the
values of max

s2 ~TnZ( ~G)
fdim(Vs(�)) j � 2 k�g, max

u2 ~Gunf1g
dim(Vu(1)) and � ~G(V ) for all k ~G-modules

V belonging to one of the families we had to consider. Similarly, Proposition 5.4.2 records
the same data for the particular k ~G-modules treated in this chapter.

Proposition 5.4.1. Let k be an algebraically closed field of characteristic p 6= 2 and let ~G be
a simple simply connected linear algebraic group of type B‘, ‘ � 3. Let ~T be a fixed maximal
torus ~T in ~G and let V = L ~G(~�), where ~� 2 FB‘. Then the value of � ~G(V ) is given in the
table below:
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V Char. max
s2 ~TnZ( ~G)

fdim(Vs(�)) j � 2 k�g max
u2 ~Gunf1g

dim(Vu(1)) � ~G(V )

L ~G(~!1) p 6= 2 2‘ 2‘� 1 1
L ~G(~!2) p 6= 2 2‘2 � ‘ 2‘2 � 3‘+ 4 2‘

L ~G(2~!1)
p 6= 2, p - 2‘+ 1 2‘2 + ‘ 2‘2 � ‘ 2‘
p 6= 2, p j 2‘+ 1 2‘2 + ‘� 1 2‘2 � ‘� 1 2‘

Table 5.4.1: The value of � ~G(V ) for the families of modules of groups of type B‘.

Proof. The result follows by Proposition 2.2.3, using Lemmas 5.2.3 and 5.3.3 for V = L ~G(~!1);
Propositions 5.2.4 and 5.3.4 for V = L ~G(~!2); and Corollaries 5.2.6 and 5.3.9, in the case of
p - 2‘ + 1, respectively Corollary 5.2.7 and Proposition 5.3.10, in the case of p j 2‘ + 1, for
V = L ~G(2~!1).

Proposition 5.4.2. Let k be an algebraically closed field of characteristic p 6= 2 and let ~G be
a simple simply connected linear algebraic group of type B‘, ‘ � 3. Let ~T be a fixed maximal
torus in ~G and let V = L ~G(~�), where ~� is featured in Table 2:7:4. The value of � ~G(V ) is
given in the table below:

Rank ~� Char. max
s2 ~TnZ( ~G)

fdim(Vs(�)) j � 2 k�g max
u2 ~Gunf1g

dim(Vu(1)) � ~G(V )

‘ = 3 2~!3 p 6= 2 20 21 14
‘ = 3 ~!1 + ~!3 p = 7 20 22 18
‘ = 3 ~!1 + ~!3 p 6= 2; 7 24 28 20

3 � ‘ � 8 ~!‘ p 6= 2 2‘�1 3 � 2‘�2 2‘�2

Table 5.4.2: The value of � ~G(V ) for the particular modules of groups of type B‘.

Proof. The result follows by Proposition 2.2.3, using the detailed results of Subsections 5.2.2
and 5.3.2.
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Chapter 6

Groups of type D‘

In this chapter we prove Theorems 1.1.1 and 1.1.3 for the simple simply connected linear
algebraic groups of type D‘, ‘ � 4. To begin, we fix k, an algebraically closed field of
characteristic p � 0, and we let W be a 2‘-dimensional k-vector space, for some ‘ � 4,
equipped with a nondegenerate quadratic form Q. The structure of this chapter is as follows:
in the first section we construct the simple linear algebraic group G = SO(W ) of type D‘ and
exhibit some properties of its semisimple and unipotent elements. In Section 6.2 we determine

max
s2 ~TnZ( ~G)

fdim(Vs(�)) j � 2 k�g, where ~G is a simple simply connected linear algebraic group

of type D‘ with maximal torus ~T and V runs through the list of k ~G-modules we identified
in Subsection 2.7.4. Similarly, in Section 6.3, we determine max

u2 ~Gunf1g
dim(Vu(1)) for the same

k ~G-modules V . Lastly, Section 6.4 records all the results of this chapter.
We will now fix some notation which will be used throughout the chapter. We let G be a

simple linear algebraic group of type D‘, ‘ � 4, and we let ~G be the simple simply connected
linear algebraic group of the same type as G. We also fix � : ~G! G, a central isogeny with
d� 6= 0 and ker(�) = Z( ~G). In G, we let T , X(T ), �, B, � = f�1; : : : ; �‘g and !1; : : : ; !‘
be as usual. We also let ~T , respectively ~B, be a preimage of T , respectively of B, in ~G, and
note that ~T is a maximal torus of ~G contained in the Borel subgroup ~B of ~G. As for G, we
let X( ~T ), ~�, ~� = f~�1; : : : ; ~�‘g and ~!1; : : : ; ~!‘ be the rational character group of ~T , the root
system of ~G determined by ~T , the set of simple roots in ~� given by ~B, and the fundamental
dominant weights of ~G corresponding to ~�.

6.1 Construction of linear algebraic groups of type D‘

Let W be a 2‘-dimensional k-vector space, where ‘ � 4, equipped with a nondegenerate
quadratic form Q. We fix BW = fu1; u2; : : : ; u‘; v‘; : : : ; v2; v1g to be an ordered basis in

W with the property that W =
‘M
i=1

hui; vii is an orthogonal direct sum, where fui; vig is a

hyperbolic pair for all 1 � i � ‘, see Corollary 2.1.4, in the case of p 6= 2, or Theorem 2.1.1,
in the case of p = 2. We denote by D the set of diagonal matrices and by U the set of
upper-triangular matrices in GL(W ). Set G = SO(W ) and note that G is a simple linear
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algebraic group of type D‘, see [Car89, Theorem 11.3.2]. Set T = D \ G and B = U \ G,
and note that T is a maximal torus in G and B is a Borel subgroup of G with the property
that T � B.

Remark 6.1.1. We recall from Subsection 2:7:4 that FD‘, the set of p-restricted dominant
weights ~� 2 X( ~T ) with the property that the associated irreducible k ~G-module L ~G(~�) satisfies
the dimensional criteria (2.18) for all ‘ � 4, is given by FD‘ = f~!1; 2~!1; ~!2g. As for groups
of type B‘, see Remark 5:1:1, we note that for all ~� 2 f~!1; 2~!1; ~!2g, there exists � 2 X(T )
such that ~� is the image of � when viewed as an element of X( ~T ), see Subsection 2:3:3. In
particular, for ~!1 2 X( ~T ), we have !1 2 X(T ), for 2~!1 2 X( ~T ), we have 2!1 2 X(T ) and for
~!2 2 X( ~T ), we have !2 2 X(T ). In all cases, by Lemma 2:3:10, we determine that:

(1) ~Ms = max
~s2 ~TnZ( ~G)

fdim(L ~G(~�)~s(~�)) j ~� 2 k�g = max
s2TnZ(G)

fdim(LG(�)s(�)) j � 2 k�g = Ms.

(2) ~Mu = max
~u2 ~Gunf1g

dim(L ~G(~�)~u(1)) = max
u2Gunf1g

dim(LG(�)u(1)) = Mu, where Gu is the set

of unipotent elements in G.

(3) � ~G(L ~G(~�)) = �G(LG(�)).

6.1.1 Semisimple elements

In the previous subsection, we took W to be a 2‘-dimensional k-vector space equipped with
a nondegenerate quadratic form Q. We fixed the basis BW in W and we built the subgroup
G = SO(W;Q) of GL(W ). We now take W and equip it with a nondegenerate alternating
bilinear form a. We fix a basis B0W , as in Theorem 2.1.1, in W and we set H = Sp(W;a).
We note that TH = D \H, where D is the set of diagonal matrices in GL(W ), is a maximal
torus in H. Moreover, recall from Subsection 4.1.1 that an element sH 2 TH has the form
sH = diag(�1 � Im1 ; �2 � Im2 ; : : : ; �t � Imt ; ��1

t � Imt ; : : : ; ��1
2 � Im2 ; �

�1
1 � Im1), where �i 6= �j for all

1 � i < j � t,
tX
i=1

mi = ‘ and ‘ � m1 � � � � � mt � 1.

Let s 2 T . Then s = diag(a1; a2; : : : ; a‘; a
�1
‘ ; : : : ; a�1

2 ; a�1
1 ) with ai 2 k� for all 1 � i � ‘.

Let f�1; �2; : : : ; �mg, where m � 1, be the set of distinct aj’s and let ni, 1 � i � m, be the

multiplicity of each �i in s. Then
mX
i=1

ni = ‘ and we can assume, without loss of generality,

that ‘ � n1 � n2 � � � � � nm � 1. By conjugating s by an element of NG(T ), we have that
s = diag(�1 �In1 ; �2 �In2 ; : : : ; �m �Inm ; ��1

m �Inm ; : : : ; ��1
2 �In2 ; �

�1
1 �In1). Thus, any element s 2 T

has the the form s = diag(�1 � In1 ; �2 � In2 ; : : : ; �m � Inm ; ��1
m � Inm ; : : : ; ��1

2 � In2 ; �
�1
1 � In1), where

�i 6= �j for all 1 � i < j � m,
mX
i=1

ni = ‘ and ‘ � n1 � n2 � � � � � nm � 1. Consequently,

we see that T = TH , since every s 2 T is an element in TH , see the previous paragraph,
and, analogously, every sH 2 TH is an element in T . Moreover, we also have Z(G) = Z(H).
Therefore, if s 2 T n Z(G), then s 2 TH n Z(H) and vice versa.

Lastly, let s 2 T . Then, in particular s 2 TH and, by Lemma 4.1.1, s is conjugate
in H to an element sH 2 TH with the property that sH = diag(�1 � Im1 ; �2 � Im2 ; : : : ; �t �
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Imt ; �
�1
t � Imt ; : : : ; ��1

2 � Im2 ; �
�1
1 � Im1) with �i 6= ��1

j for all 1 � i < j � t,
tX
i=1

mi = ‘ and

‘ � m1 � � � � � mt � 1.

6.1.2 Unipotent elements

First, we suppose that the algebraically closed field k has characteristic p 6= 2. Now, by
Theorem 2.9.2, we know that two unipotent elements u; u0 2 O(W;Q) are O(W;Q)-conjugate
if and only if they have the same Jordan normal form on W . Furthermore, by the same

result, we have that a unipotent element u 2 SL(W ) with Jordan form
mM
i=1

Jrini is an element

in O(W;Q) if and only if ri � 1 is even for all even ni. Lastly, we recall that the unipotent
class uO(W;Q) splits into two G-classes if and only if ni is even for all i. Thus, if u is a

unipotent element of G, then u has Jordan form
mM
i=1

Jrini on W , where m � 1 and ri � 1

is even for all even ni. Furthermore, if there exists 1 � i � m such that ni is odd, then
the Jordan form of u on W completely characterizes its unipotent conjugacy class in G.
However, if ni is even for all 1 � i � m, then there are two unipotent classes associated to

that Jordan form. Lastly, for u 2 G unipotent with Jordan form
mM
i=1

Jrini , we can assume

without loss of generality that 2‘� 1 � n1 > n2 > � � � > nm � 1 and if u 6= 1, that n1 � 2.
Having established a characterization of unipotent conjugacy classes in G over fields of

characteristic p 6= 2, we now consider the case when p = 2. In this case, the classification
of unipotent conjugacy classes in G is given by Proposition 2.9.20. To make this section
more self-contained, we recall the aforementioned result. As p = 2, we have that G <
Sp(W;a), where a is the nondegenerate alternating bilinear form on W with the property
that a(w1; w2) = Q(w1) +Q(w2) +Q(w1 +w2) for all w1; w2 2 W . Let u 2 G be a unipotent
element. Then, in particular, u is a unipotent element of Sp(W;a) and, therefore, by Theorem
2.9.11, we know that the unipotent class of u in Sp(W;a) is completely determined by the
Hesselink normal form of u. Let (nr1

10
; : : : ; nrtt0 ; n

rt+1

t+11
; : : : nrmm1

) be the Hesselink normal form

of u, see Theorem 2.9.15. Now, since u 2 G, by Proposition 2.9.20, we have that
mX

i=t+1

ri is

even. Moreover, the conjugacy class of u in Sp(W;a) splits into two G-classes if and only
if for all 1 � i � m we have that ni is even and t = m. Therefore, the Hesselink normal
form of a unipotent element, (nr1

10
; : : : ; nrtt0 ; n

rt+1

t+11
; : : : nrmm1

), completely characterizes unipotent
conjugacy classes in G over fields of characteristic p = 2, unless t = m and ni is even for all
1 � i � m, in which case there exist two classes associated to that Hesselink normal form.

6.2 Eigenspace dimensions for semisimple elements
Theorem 6.2.1. Let k be an algebraically closed field of characteristic p � 0 and let ~G be a
simple simply connected linear algebraic group of type D‘, ‘ � 4. Let ~T be a fixed maximal
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torus in ~G and let V = L ~G(~�), where ~� 2 FD‘, or ~� is given in Table 2:7:5. Then there exist
s 2 ~T n Z( ~G) and � 2 k�, an eigenvalue of s on V , such that

dim(Vs(�)) � dim(V )�
p

dim(V )

if and only if ~� = ~!1.

Theorem 6.2.2. Let k be an algebraically closed field of characteristic p � 0 and let ~G be
a simple simply connected linear algebraic group of type D‘, ‘ � 4. Let ~T and V be as in
Theorem 6:2:1. Then the value of max

s2 ~TnZ( ~G)
fdim(Vs(�)) j � 2 k�g is given in the table below:

V Char. Rank max
s2 ~TnZ( ~G)

fdim(Vs(�)) j � 2 k�g

L ~G(~!1) p � 0 ‘ � 4 2‘� 2

yL ~G(~!2)
p 6= 2 ‘ � 4 2‘2 � 5‘+ 4
p = 2 ‘ � 4 2‘2 � 5‘+ 4� gcd(2; ‘)

yL ~G(2~!1)
p 6= 2 and p - ‘ ‘ � 4 2‘2 � 3‘+ 3
p 6= 2 and p j ‘ ‘ � 4 2‘2 � 3‘+ 2

yL ~G(~!3 + ~!4) p � 0 ‘ = 4 � 34� 6�p;2
yL ~G(~!3) p = 2 ‘ = 5 � 58
yL ~G(~!‘�1) p � 0 5 � ‘ � 9 � 5 � 2‘�4

Table 6.2.1: The value of max
s2 ~TnZ( ~G)

fdim(Vs(�)) j � 2 k�g.

In particular, for each yV in Table 6.2.1, we have dim(Vs(�)) < dim(V )�
p

dim(V ) for
all s 2 ~T n Z( ~G) and all eigenvalues � 2 k� of s on V .

We will give the proofs of Theorems 6.2.1 and 6.2.2 in a series of results, each treating
one of the candidate-modules. In Subsection 6.2.1, we determine max

s2TnZ(G)
fdim(Vs(�)) j � 2

k�g, see Remark 6.1.1, where V belongs to one of the families of kG-modules we have to
consider, i.e. V is an irreducible kG-module LG(�) with p-restricted dominant highest weight
� 2 f!1; 2!1; !2g. In Subsection 6.2.2, we establish max

s2 ~TnZ( ~G)
fdim(Vs(�)) j � 2 k�g for the

irreducible k ~G-modules L ~G(~�) with highest weight ~� featured in Table 2.7.5.

6.2.1 The families of modules

Lemma 6.2.3. Let V = LG(!1). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s
on V we have

dim(Vs(�)) � 2‘� 2;

where equality holds if and only if � = �1 and, up to conjugation, s = diag(�1; : : : ;�1; �2;
��1

2 ;�1; : : : ;�1) with �2 6= �1.
In particular, there exist s 2 T n Z(G) that afford an eigenvalue � 2 k� on V for which

dim(Vs(�)) � dim(V )�
p

dim(V ).
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Proof. We first remark that V �= W as kG-modules. Now, since T = TH and Z(G) = Z(H),
by Lemma 4.2.3, we determine that dim(Vs(�)) � 2‘ � 2 for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V . Moreover, by the same result, equality holds if and only if, up
to conjugation, s = diag(�1; : : : ;�1; �2; �

�1
2 ; �1; : : : ;�1), where �2 6= �1, and � = �1.

To conclude, we showed that dim(Vs(�)) � 2‘� 2 for all s 2 T nZ(G) and all eigenvalues
� 2 k� of s on V and that there exist pairs (s; �) 2 T n Z(G) � k� for which the bound
is attained. In particular, this shows that there exist s 2 T n Z(G) with the property that
dim(Vs(�)) � dim(V )�

p
dim(V ) for some eigenvalue � 2 k� on V .

Proposition 6.2.4. Let k be an algebraically closed field of characteristic p 6= 2 and let
V
0
= S2(W ). Then, for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V we have

dimV
0

s (�) � 2‘2 � 3‘+ 4;

where equality holds if and only if � = 1 and, up to conjugation, s = � diag(1; : : : ; 1;�1;
�1; 1; : : : ; 1).

Proof. Now, since T = TH and Z(G) = Z(H), by Lemma 2.8.2 and by Proposition 4.2.4, we
determine that dim(Vs(�)) � 2‘2 � 3‘ + 4 for all s 2 T n Z(G) and all eigenvalues � 2 k�
of s on V . Moreover, by the same result, we have equality if and only if � = 1 and, up to
conjugation, s = � diag(1; : : : ; 1;�1;�1; 1; : : : ; 1).

Corollary 6.2.5. Let k be an algebraically closed field of characteristic p 6= 2 and let V =
LG(2!1). Then, for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V we have

dimVs(�) � 2‘2 � 3‘+ 3� ";

where " = 0 if p - ‘, and " = 1 if p j ‘. Moreover, equality holds if and only if � = 1 and, up
to conjugation, s = � diag(1; : : : ; 1;�1; �1; 1; : : : ; 1).

In particular, we have dim(Vs(�)) < dim(V ) �
p

dim(V ) for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V .

Proof. Let V 0 = S2(W ). By Lemma 2.8.4, if p - ‘, we have that V 0 = V �LG(0), while, if p j ‘,
then V 0 = LG(0) j V j LG(0). Thus, dim(V ) = dim(V

0
) � 1 � ", dim(Vs(�)) = dim(V

0
s (�)),

for all eigenvalues � 6= 1 of s 2 T n Z(G) on V , and dim(Vs(1)) = dim(V
0
s (1))� 1� ".

Let s 2 T n Z(G) and let � 2 k� be an eigenvalue of s on V . If � = 1, then Proposition
6.2.4 gives the result. If � 6= ��1, then, since, in particular, s 2 TH n Z(H), we have
dim(Vs(�)) � ‘2, by Inequality (4.2). Thus, since ‘ � 4, we determine that dim(Vs(�)) �
‘2 < 2‘2�3‘+3�", for all eigenvalues � 6= ��1 of s on V . Therefore, to complete the proof,
we only need to treat the case of � = �1.

Now, as s 2 TH nZ(H), we have s = diag(�1 �Im1 ; : : : ; �t �Imt ; ��1
t �Imt ; : : : ; ��1

1 �Im1), where

�i 6= ��1
j for all 1 � i < j � t,

tX
i=1

mi = ‘ and m1 � m2 � � � � � mt � 1. If �i�j 6= �1 for all

1 � i < j � t, then, by Inequality (4.5), we have that dim(Vs(�1)) � ‘2 +‘ < 2‘2�3‘+3�",
since ‘ � 4. Similarly, if there exist 1 � i < j � t such that �i�j = �1, then, by Inequality
(4.6), we have:

dim(Vs(�1)) � 2‘2 + ‘�
tX

r=1

m2
r �mi(mi + 1)�mj(mj + 1)� 2(mi +mj)(‘�mi �mj):
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Assume that dim(Vs(�1)) � 2‘2 � 3‘+ 3� ". Then

4‘� 3 + "�
tX

r=1

m2
r �mi(mi + 1)�mj(mj + 1)� 2(mi +mj)(‘�mi �mj) � 0:

We proceed as in the proof for V 0s (�1), see (4.7), and arrive at

‘(4�mi �mj)� 3 + "�
X
r 6=i;j

m2
r � (mi �mj)

2 � (mi +mj)(‘+ 1�mi �mj) � 0: (6.1)

As ‘ + 1 > mi + mj, by (6.1), it follows that mi + mj < 4 and so, as mi � mj, we have
(mi;mj) 2 f(1; 1); (2; 1)g. If (mi;mj) = (1; 1), then, as ‘ � 4, we have

�1 + "�
X
r 6=i;j

m2
r � 0:

If p - ‘, i.e. " = 0, we see that the above inequality does not hold, while, if p j ‘, i.e. " = 1, by
the above, it follows that t = 2, contradicting ‘ � 4. On the other hand, if (mi;mj) = (2; 1),
then we have

�2‘+ 2 + "�
X
r 6=i;j

m2
r � 0;

which clearly does not hold. Therefore, dim(Vs(�1)) < 2‘2� 3‘+ 3� " for all s 2 T n Z(G).
In conclusion, we have shown that dim(Vs(�)) � 2‘2 � 3‘+ 3� " for all s 2 T n Z(G)

and all eigenvalues � 2 k� of s on V . As the inequality 0 < 14‘2 � 33‘+ 17 + " holds for
all ‘ � 4, we have 2‘2 � 3‘+ 3� " < 2‘2 + ‘� 1� "�

p
2‘2 + ‘� 1� " for all ‘ � 4, thus

dim(Vs(�)) < dim(V )�
p

dim(V ) for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V .

Corollary 6.2.6. Let k be an algebraically closed field of characteristic p 6= 2 and let V =
LG(!2). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V we have

dim(Vs(�)) � 2‘2 � 5‘+ 4;

where we have equality if and only if one of the following holds:

(1) ‘ = 4, � = 1 and, up to conjugation, s = diag(�1; �1; �1; �1; �
�1
1 ; ��1

1 ; ��1
1 ; ��1

1 ) with
�1 6= �1.

(2) ‘ = 4, � = �1 and, up to conjugation, s = diag(1; 1;�1;�1;�1;�1; 1; 1).

(3) ‘ � 4, � = 1 and, up to conjugation, s = � diag(1; : : : ; 1; �2; �
�1
2 ; 1; : : : ; 1) with �2 6= 1.

In particular, we have dim(Vs(�)) < dim(V ) �
p

dim(V ) for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V .

Proof. To begin, we remark that, as p 6= 2, by Lemma 2.8.4, we have V �= ^2(W ). Now, as
T = TH , the result follows by Proposition 4.2.5.
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Corollary 6.2.7. Let k be an algebraically closed field of characteristic p = 2 and let V =
LG(!2). Then for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on V we have

dim(Vs(�)) � 2‘2 � 5‘+ 4� gcd(2; ‘);

where we have equality if and only if one of the following holds:

(1) ‘ = 4, � = 1 and, up to conjugation, s = diag(�1; �1; �1; �1; �
�1
1 ; ��1

1 ; ��1
1 ; ��1

1 ) with
�1 6= 1.

(2) ‘ � 4, � = 1 and, up to conjugation, s = diag(1; : : : ; 1; �2; �
�1
2 ; 1; : : : ; 1) with �2 6= 1.

In particular, we have dim(Vs(�)) < dim(V ) �
p

dim(V ) for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V .

Proof. Set V 0 = ^2(W ). We first remark that, since p = 2, by Lemma 2.8.5, we have that
either V 0 �= V � LG(0), or V 0 has three composition factors: one isomorphic to V and two
isomorphic to LG(0), depending on whether 2 - ‘, or 2 j ‘. Thus, we determine that dim(V ) =
dim(V

0
) � gcd(2; ‘), dim(Vs(1)) = dim(V

0
s (1)) � gcd(2; ‘) and dim(Vs(�)) = dim(V

0
s (�)) for

all eigenvalues � 6= 1 of s 2 T n Z(G) on V .
Now, let s 2 T nZ(G) and let � 2 k� be an eigenvalue of s on V . Since, in particular, s 2

TH nZ(H), by Proposition 4.2.5, we have dim(Vs(1)) � 2‘2�5‘+4�gcd(2; ‘), where equality
holds if and only if s is as in the statement of the result. Having resolved the case of � = 1,
we can now assume that the eigenvalue � is such that � 6= ��1. Then, we use Inequality
(4.10) and the fact that ‘ � 4, to determine that dim(Vs(�)) � ‘2�‘ < 2‘2�5‘+4�gcd(2; ‘).

In conclusion, we have shown that dim(Vs(�)) � 2‘2�5‘+4�gcd(2; ‘) for all s 2 T nZ(G)
and all eigenvalues � 2 k� of s on V . Therefore, as the inequality 0 < 14‘2 � 31‘ + 16 +
gcd(2; ‘) holds for all ‘ � 4, it follows that 2‘2 � 5‘ + 4 � gcd(2; ‘) < 2‘2 � ‘ � gcd(2; ‘) �p

2‘2 � ‘� gcd(2; ‘) and so dim(Vs(�)) < dim(V ) �
p

dim(V ) for all s 2 T n Z(G) and all
eigenvalues � 2 k� of s on V .

To conclude this subsection, we remark that Lemma 6.2.3 and Corollaries 6.2.5, 6.2.6 and
6.2.7 give the proof of Theorems 6.2.1 and 6.2.2 for the families of kG-modules corresponding
to p-restricted dominant weights � 2 f!1; !2; 2!1g. Therefore, in view of Remark 6.1.1, they
prove Theorems 6.2.1 and 6.2.2 for the families of k ~G-modules with p-restricted dominant
weights ~� 2 FB‘ .

6.2.2 The particular modules

As previously mentioned, in this subsection we will give an upper-bound for dim(Vs(�)),
where (s; �) 2 ~T nZ( ~G)�k� and V is an irreducible k ~G-module with associated highest weight
featured in Table 2.7.5. In order to achieve our goal, we will use the inductive algorithm of
Subsection 2.4.3. To begin, let L1 be the Levi subgroup of the maximal parabolic subgroup
P1 of ~G constructed in Section 2.4. We recall that L1 = Z(L1)�[L1; L1], where Z(L1)� is a
one-dimensional torus and [L1; L1] is a simply connected linear algebraic group of type D‘�1

with maximal torus T 0 = ~T \ [L1; L1]. We note that, although we do not mention the result
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explicitly, we make great use of the data in [Lü01b] when discussing weights and weight
multiplicities in this subsection.

Let s 2 ~T . Then s = z � h, where z 2 Z(L1)� and h 2 [L1; L1]. As z 2 Z(L1)�,

we have z =
‘Y
i=1

h~�i(c
ki), where c 2 k� and ki 2 Z for all 1 � i � ‘. Moreover, as

~�j(z(c)) = 1 for all 2 � j � ‘, it follows that z =

� ‘�2Y
i=1

h~�i(c
2)

�
h~�‘�1

(c)h~�‘(c) with c 2 k�.

As h 2 [L1; L1], we have h =
‘Y
i=2

h~�i(ai) with ai 2 k� for all 2 � i � ‘, and therefore

s = h~�1(c2)

� ‘�2Y
i=2

h~�i(c
2ai)

�
h~�‘�1

(ca‘�1)h~�‘(ca‘) with c 2 k� and ai 2 k� for all 2 � i � ‘.

Let V be an irreducible k ~G-module with p-restricted dominant highest weight ~� 2 X( ~T ),

~� =
‘X
i=1

di ~!i with 0 � di � p� 1 for all 1 � i � ‘. We consider the decomposition:

V j[L1;L1]=

e1(~�)M
i=0

V i;

where V i =
M

~2N ~�1

V~��i~�1�~ for all 0 � i � e1(~�). Let s 2 ~T and write s = z � h, as above.

Then, by (2.5), we have:

siz := (~�� i~�1� ~)(z) = (~�� i~�1)

�� ‘�2Y
j=1

h~�j(c
2)

�
h~�‘�1

(c)h~�‘(c)

�
=

� ‘�2Y
j=1

c2dj

�
� cd‘�1+d‘ � c�2i:

Therefore, z acts on V i, 0 � i � e1(~�), as the scalar siz = c2d1+���+2d‘�2+d‘�1+d‘�2i. Now, let
�i1; : : : ; �

i
ti
, ti � 1, be the distinct eigenvalues of h on V i, 0 � i � e1(~�), and let ni1; : : : ; niti be

their respective multiplicities. Then, by Lemma 2.4.8, it follows that the distinct eigenvalues
of s on V i are siz�i1; : : : ; siz�iti , with respective multiplicities ni1; : : : ; niti .

Proposition 6.2.8. Let k be an algebraically closed field of characteristic p = 2. Assume
‘ = 4 and let V = L ~G(~!3 + ~!4). Then for all ~s 2 ~T n Z( ~G) and all eigenvalues ~� 2 k� of ~s
on V we have

dim(V~s(~�)) � 28:

In particular, we have dim(V~s(~�)) < dim(V ) �
p

dim(V ) for all ~s 2 ~T n Z( ~G) and all
eigenvalues ~� 2 k� of ~s on V .

Proof. First, we consider the weight � = !3 + !4 2 X(T ) and its associated irreducible
kG-module LG(�). We have seen in Subsection 2.3.3 that LG(�) is also a simple k ~G-module
and, as a k ~G-module, it is isomorphic to L ~G(~�), where ~� = ~!3 + ~!4 denotes � when viewed
as a weight in X( ~T ). Moreover, by Lemma 2.3.10, we have

dim((L ~G(~�))~s(~�)) � max
s2TnZ(G)

fdim(Vs(�)) j � 2 k�g
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for all ~s 2 ~T n Z( ~G) and all eigenvalues ~� 2 k� of ~s on V .
Secondly, let H = Sp(W;a), where a is the nondegenerate alternating bilinear form on

W given by a(w1; w2) = Q(w1 +w2) +Q(w1) +Q(w2), for all w1; w2 2 W . Note that H is a
simple simply connected linear algebraic group of type C4. Let TH denote the maximal torus
in H obtained by intersecting the set of diagonal matrices in SL(W ) with H. Now, consider
the irreducible kH-module LH(!H3 ) of highest weight !H3 , where !H3 is the fundamental
dominant weight of H corresponding to the simple root �H3 . As p = 2, G is a subgroup in
H, and, by [Sei87, Table 1], the following isomorphism of kG-modules holds:

LH(!H3 ) jG�= LG(!3 + !4):

In particular, for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on LG(!3 + !4), we have

dim((LG(!3 + !4))s(�)) � max
sH2THnZ(H)

fdim((LH(!H3 ))sH (�H)) j �H 2 k�g:

Now, max
sH2THnZ(H)

fdim((LH(!H3 ))sH (�H)) j �H 2 k�g � 28, by the second to last paragraph

of the proof of Proposition 4.2.20. We determine that dim((LG(!3 + !4))s(�)) � 28 for all
s 2 T n Z(G) and all eigenvalues � 2 k� of s on LG(!3 +!4). This gives dim(V~s(~�)) � 28 for
all ~s 2 ~T n Z( ~G) and all eigenvalues ~� 2 k� of ~s on V .

In conclusion, we have shown that dim(V~s(~�)) � 28 < dim(V ) �
p

dim(V ) for all ~s 2
~T n Z( ~G) and all eigenvalues ~� 2 k� of ~s on V .

Proposition 6.2.9. Let k be an algebraically closed field of characteristic p 6= 2. Assume
‘ = 4 and let V = L ~G(~!3 + ~!4). Then for all s 2 ~T n Z( ~G) and all eigenvalues � 2 k� of s
on V we have

dim(Vs(�)) � 34:

In particular, we have dim(Vs(�)) < dim(V ) �
p

dim(V ) for all s 2 ~T n Z( ~G) and all
eigenvalues � of s on V .

Proof. Set ~� = ~!3 + ~!4. Then, as p 6= 2, we have dim(V ) = 56 and, by Lemma 2.4.7, we
have e1(~�) = 2, therefore:

V j[L1;L1]= V 0 � V 1 � V 2;

where V i =
M

~2N ~�1

V~��i~�1�~ for i = 0; 1 and i = 2. By [Smi82, Proposition], it follows that

V 0 �= LL1(~!3+~!4) and so, by Lemma 2.4.3, we also have V 2 �= (LL1(~!3+~!4))� �= LL1(~!3+~!4).
This gives dim(V 1) = 26. Now, in V 1, both the weight (~� � ~�1 � ~�2 � ~�3) jT 0= 2~!4 and
the weight (~� � ~�1 � ~�2 � ~�4) jT 0= 2~!3 admit a maximal vector. Therefore V 1 has at
least two compositions factors: one isomorphic to LL1(2~!3) and one isomorphic to LL1(2~!4).
Moreover, since p 6= 2, the dominant weight (~� � ~�1 � ~�2 � ~�3 � ~�4) jT 0= ~!2, occurring
with multiplicity 3 in V 1, is a sub-dominant weight in both the composition factor of V 1

isomorphic to LL1(2~!3) and the one isomorphic to LL1(2~!4), and it has multiplicity 1 in each.
By comparing dimensions, we deduce that V 1 admits exactly three composition factors: the
two previously mentioned and a third isomorphic to LL1(~!2). Moreover, since p 6= 2, we use
[Jan07, II.2.14] to determine that V 1 �= LL1(2~!3)� LL1(2~!4)� LL1(~!2), and so

V j[L1;L1]= LL1(~!3 + ~!4)� LL1(2~!3)� LL1(2~!4)� LL1(~!2)� LL1(~!3 + ~!4): (6.2)
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If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0; 1 or i = 2,

then s 2 Z(L1)�nZ( ~G) and so s = z with c2 6= 1. In this case, as s acts on each V i, 0 � i � 2,
as the scalar c2�2i, it follows that the eigenvalues of s on V , not necessarily distinct, are:8><>:

c2 with dim(Vs(c
2)) � dim(V 0) = 15;

1 with dim(Vs(1)) = dim(V 1) = 26;

c�2 with dim(Vs(c
�2)) � dim(V 2) = 15:

Since c2 6= 1, we have dim(Vs(�)) � 30 for all eigenvalues � 2 k� of s on V .
We can now assume that dim(V i

s (�)) < dim(V i) for all eigenvalues � 2 k� of s on
V and all 0 � i � 2. Recall that V 0 �= LL1(~!3 + ~!4), V 2 �= LL1(~!3 + ~!4) and V 1 �=
LL1(2~!3) � LL1(2~!4) � LL1(~!2). We write s = z � h, where z 2 Z(L1)� and h 2 [L1; L1].
Since z acts by scalar multiplication on each V i, it follows that dim(V i

h(�h)) < dim(V i) for
all 0 � i � 2, where �h 2 k� is any eigenvalue of h on V i. Now, by Corollary 3.2.7, as p 6= 2,
we have dim(V 0

h (�h)) � 9 for all eigenvalues �h of h on V 0. Assume that dim(V 0
h (�h)) = 9.

Then, by Corollary 3.2.7, we have �h = 1 and h = h�2(�1)h�3(�2
1)h�4(�3

1) with �4
1 6= 1. We

will now determine the eigenvalues of h on V 1. Using (3.1), we determine that the eigenvalues
of h, not necessarily distinct, on the composition factor of V 1 isomorphic to LL1(2~!3) are �2

1

with multiplicity at least 6, ��6
1 with multiplicity at least 1, and ��2

1 with multiplicity at least
3. Therefore, as LL1(2~!4) �= (LL1(2~!3))�, it follows that the eigenvalues of h, not necessarily
distinct, on the composition factor of V 1 isomorphic to LL1(2~!4) are ��2

1 with multiplicity at
least 6, �6

1 with multiplicity at least 1, and �2
1 with multiplicity at least 3. Lastly, by (3.7),

we determine that the distinct eigenvalues of h, as �4
1 6= 1, on the composition factor of V 1

isomorphic to LL1(~!2) are �2
1 and ��2

1 , both with multiplicity 3. Since �4
1 6= 1, it follows

that dim(V 1
h (�h)) � 14 for all eigenvalues �h of h on V 1. Therefore, as dim(V 2

h (�h)) � 9
for all eigenvalues �h of h on V 2, see Corollary 3.2.7, it follows that dim(Vh(�h)) � 32 for
all eigenvalues �h of h on V , thereby dim(Vs(�)) � 32 for all eigenvalues � 2 k� of s on V .
We now consider the case when dim(V 0

h (�h)) � 8 for all eigenvalues �h of h on V 0. Then,
dim(V 2

h (�h)) � 8 for all eigenvalues �h of h on V 2, as V 2 �= (V 0)�. Lastly, since p 6= 2, by
Propositions 3.2.4 and 3.2.5, it follows that dim(V 1

h (�h)) � 18 for all eigenvalues �h of h on
V 1. Therefore, dim(Vh(�h)) � 34 for all eigenvalues �h of h on V and so dim(Vs(�)) � 34
for all eigenvalues � 2 k� of s on V .

In conclusion, we have shown that dim(Vs(�)) � 34 < dim(V ) �
p

dim(V ) for all s 2
~T n Z( ~G) and all eigenvalues � 2 k� of s on V .

Proposition 6.2.10. Assume ‘ � 5 and let V = L ~G(~!‘�1). Then for all s 2 ~T n Z( ~G) and
all eigenvalues � 2 k� of s on V we have

dim(Vs(�)) � 5 � 2‘�4:

In particular, for all ‘ � 5, we have dim(Vs(�)) < dim(V )�
p

dim(V ) for all s 2 ~T nZ( ~G)
and all eigenvalues � 2 k� of s on V .

Proof. Set ~� = ~!‘�1. We have dim(V ) = 2‘�1 and, by Lemma 2.4.7, we have e1(~�) = 1,
therefore:

V j[L1;L1]= V 0 � V 1;
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where V i =
M

~2N ~�1

V~��i~�1�~ for i = 0 and i = 1. By [Smi82, Proposition], it follows that

V 0 �= LL1(!‘�1). Therefore, we have dim(V 1) = 2‘�2. Now, since the weight (~�� ~�1 � � � � �
~�‘�1) jT 0= ~!‘ admits a maximal vector in V 1, it follows that V 1 has a composition factor
isomorphic to LL1(~!‘). We deduce V 1 �= LL1(~!‘) and:

V j[L1;L1]
�= LL1(~!‘�1)� LL1(~!‘): (6.3)

If dim(V i
s (�)) = dim(V i) for some eigenvalue � 2 k� of s on V , where i = 0 or i = 1, then

s 2 Z(L1)� n Z( ~G) and so s = z with c2 6= 1. In this case, as s acts as scalar multiplication
by c1�2i on V i, i = 0; 1, it follows that the distinct eigenvalues of s on V are:(

c with dim(Vs(c)) = dim(V 0) = 2‘�2;

c�1 with dim(Vs(c
�1)) = dim(V 1) = 2‘�2:

We can now assume that dim(V i
s (�)) < dim(V i) for all eigenvalues � 2 k� of s on V and

for both i = 0 and i = 1. We write s = z � h, where z 2 Z(L1)� and h 2 [L1; L1]. Since z
acts by scalar multiplication on each V i, it follows that dim(V i

h(�h)) < dim(V i) for i = 0; 1,
where �h 2 k� is any eigenvalue of h on V i.

First, consider the case of ‘ = 5. Let �0 : ~�1 ! ~�1 be the triality graph automorphism
of ~�1 = f~�2; ~�3; ~�4; ~�5g given by: ~�2 ! ~�4, ~�3 ! ~�3, ~�4 ! ~�5 and ~�5 ! ~�2. Then,
by [Ste16, Corollary (b) of Theorem 29] and [Car89, Lemma 6.4.4 (ii),(iii)], there exists an
automorphism � : [L1; L1] ! [L1; L1] such that �(h~�i(c)) = h�0(~�i)(c), where 2 � i � 5
and c 2 k�. Now, since ~!4 = �0(~!2) and ~!5 = �0(~!4), by Lemma 6.2.3, it follows that
dim((LL1(~!4))h(�h)) � 6 and dim((LL1(~!5))h(�h)) � 6 for all eigenvalues �h of h on LL1(~!4)
and LL1(~!5), respectively. Therefore, as V 0 �= LL1(~!4) and V 1 �= LL1(~!5), we determine that
dim(Vh(�h)) � 12 for all eigenvalues �h of h on V , hence dim(Vs(�)) � 12 for all eigenvalues
� 2 k� of s on V . However, we will show that dim(Vs(�)) � 10 for all eigenvalues � 2 k� of
s on V .

Assume there exist (s; �) 2 ~T nZ( ~G)� k� for which dim(Vs(�)) = 12. We write s = z � h,
where z 2 Z(L1)� and h = h~�2(a2)h~�3(a3)h~�4(a4)h~�5(a5) 2 [L1; L1] with aj 2 k�, 2 � j � 5.
Note that we have dim(V i

h(�ih)) < dim(V i) for both i = 0 and i = 1 and all eigenvalues �ih of
h on V i. Let �ih, i = 0; 1, be the eigenvalue of h on V i with the property that � = c1�2i�ih.
Since dim(Vs(�)) = 12, we have dim(V i

h(�ih)) = 6 for both i = 0 and i = 1. Moreover, using
Lemma 6.2.3, one can check that for any h0 2 [L1; L1], we have dim((LL1(~!2))h0(�h0)) = 6
if and only if either �h0 = 1 and, up to conjugacy, h0 = h~�4(a4)h~�5(a�1

4 ) with a2
4 6= 1; or

�h0 = �1 and, up to conjugacy, h0 = h~�2(�1)h~�4(a4)h~�5(�a�1
4 ) with a2

4 6= 1. Therefore,
dim(V 0

h (�ih)) = 6 if and only if h = �
0
(h0) and �ih = �h0 , i.e. dim(V 0

h (�ih)) = 6 if and only if
either h = h~�2(a�1

4 )h~�5(a4), with a2
4 6= 1, and �ih = 1; or h = h~�2(�a�1

4 )h~�4(�1)h~�5(a4), with
a2

4 6= 1, and �ih = �1. However, since the weights in LL1(~!5) are ~!5, ~!5 � ~�5, ~!5 � ~�3 � ~�5,
~!5 � ~�2 � ~�3 � ~�5, ~!5 � ~�3 � ~�4 � ~�5, ~!5 � ~�2 � ~�3 � ~�4 � ~�5, ~!5 � ~�2 � 2~�3 � ~�4 � ~�5 and
~!5 � ~�2 � 2~�3 � ~�4 � 2~�5, we determine that, in both cases, the distinct eigenvalues of h on
V 1 are a4 and a�1

4 , each with multiplicity 4. We have arrived at a contradiction.
Similarly, assume there exist (s; �) 2 ~T n Z( ~G) � k� for which dim(Vs(�)) = 11. We

write s = z � h, where z 2 Z(L1)� and h 2 [L1; L1]. As in the previous case, we have that
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dim(V i
h(�ih)) < dim(V i), i = 0; 1, for all eigenvalues �ih of h on V i. Let �ih, i = 0; 1, be the

eigenvalue of h on V i with the property that � = c1�2i�ih. Now, since dim(Vs(�)) = 11,
it follows that either dim(V 0

h (�0
h)) = 6 and dim(V 1

h (�1
h)) = 5, or dim(V 0

h (�0
h)) = 5 and

dim(V 1
h (�1

h)) = 6. We have seen that if dim(V 0
h (�0

h)) = 6, then dim(Vs(�)) � 10 for all
eigenvalues � of s on V . Therefore, we must have dim(V 0

h (�0
h)) = 5 and dim(V 1

h (�1
h)) = 6.

However, if dim(V 1
h (�1

h)) = 6, then, arguing exactly as in the case of dim(V 0
h (�0

h)) = 6, one
shows that dim(Vs(�)) � 10 for all eigenvalues � of s on V . Once more, we have arrived at
a contradiction.

In the case of ‘ = 5, we have shown that dim(Vs(�)) � 10 for all (s; �) 2 ~T n Z( ~G)� k�.
We now consider the case of ‘ � 6. By recurrence and using the result for ‘ = 5 as base
case, one shows that dim(V 0

h (�h)) � 5 � 2‘�5 and dim(V 1
h (�h)) � 5 � 2‘�5 for all eigenvalues

�h of h on V 0 and V 1, respectively. Therefore, dim(Vh(�h)) � 5 � 2‘�4 for all eigenvalues �h
of h on V and thus dim(Vs(�)) � 5 � 2‘�4 for all eigenvalues � 2 k� of s on V .

In conclusion, we have shown that dim(Vs(�)) � 5 � 2‘�4 for all s 2 ~T n Z( ~G) and all
eigenvalues � 2 k� of s on V . Moreover, as the inequality 1 < 9 � 2‘�7 holds for all ‘ � 5, it
follows that 5 � 2‘�4 < 2‘�1 �

p
2‘�1 for all ‘ � 5, and so dim(Vs(�)) < dim(V )�

p
dim(V )

for all (s; �) 2 ~T n Z( ~G)� k�.

Proposition 6.2.11. Let k be an algebraically closed field of characteristic p = 2. Assume
‘ = 5 and let V = L ~G(~!3). Then for all ~s 2 ~T n Z( ~G) and all eigenvalues ~� 2 k� of ~s on V
we have

dim(V~s(~�)) � 58:

In particular, dim(V~s(~�)) < dim(V )�
p

dim(V ) for all ~s 2 ~T n Z( ~G) and all eigenvalues
~� 2 k� of ~s on V .

Proof. First, we consider the weight !3 2 X(T ) and its associated irreducible kG-module
LG(!3). We have seen in Subsection 2.3.3 that LG(!3) is also a simple k ~G-module and, as a
k ~G-module, it is isomorphic to L ~G(~!3), where ~!3 2 X( ~T ). Moreover, by Lemma 2.3.10, for
all ~s 2 ~T n Z( ~G) and all eigenvalues ~� 2 k� of ~s, we have

dim((L ~G(~!3))~s(~�)) � max
s2TnZ(G)

fdim((LG(!3))s(�)) j � 2 k�g:

Secondly, let H = Sp(W;a), where a is the nondegenerate alternating bilinear form on
W given by a(w1; w2) = Q(w1 + w2) +Q(w1) +Q(w2) for all w1; w2 2 W . Note that H is a
simple simply connected linear algebraic group of type C5. Let TH denote the maximal torus
in H obtained by intersecting the set of diagonal matrices in SL(W ) with H. Now, consider
the irreducible kH-module LH(!H3 ) of highest weight !H3 , where !H3 is the fundamental
dominant weight of H corresponding to the simple root �H3 . As p = 2, G is a subgroup in
H, and, by [Sei87, Table 1], we have the following isomorphism of kG-modules:

LH(!H3 ) jG�= LG(!3):

In particular, for all s 2 T n Z(G) and all eigenvalues � 2 k� of s on LG(!3), we have

dim((LG(!3))s(�)) � max
sH2THnZ(H)

fdim((LH(!H3 ))sH (�H)) j �H 2 k�g
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and, as max
sH2THnZ(H)

fdim((LH(!H3 ))sH (�H)) j �H 2 k�g � 58, by Proposition 4.2.22, we

determine that dim((LG(!3))s(�)) � 58 for all s 2 T n Z(G) and all eigenvalues � 2 k�

of s on LG(!3). This gives dim(V~s(~�)) � 58 for all ~s 2 ~T n Z( ~G) and all eigenvalues ~� 2 k�
of ~s on V .

In conclusion, we have shown that dim(V~s(~�)) � 58 < dim(V ) �
p

dim(V ) for all ~s 2
~T n Z( ~G) and all eigenvalues ~� 2 k� of ~s on V .

We conclude this subsection by noting that Propositions 6.2.8 through 6.2.11 complete
the proofs of Theorems 6.2.1 and 6.2.2, as they cover all the particular k ~G-modules we had
to consider, i.e. all the irreducible k ~G-modules L ~G(~�) with p-restricted dominant highest
weight ~� listed in Table 2.7.5.

6.3 Eigenspace dimensions for unipotent elements
This section is dedicated to the proofs of the following two theorems, analogs of Theorems
6.2.1 and 6.2.2 in the case of the unipotent elements. Similar to the semisimple case, the
proofs will be given in a series of results, each treating one of the candidate-modules. In
Subsection 6.3.1, we determine max

u2Gunf1g
dim(Vu(1)), see Remark 6.1.1, where V belongs

to one of the families of modules, i.e. V is an irreducible kG-module LG(�) with � 2
f!1; 2!1; !2g. We complete the proofs of these two results in Subsection 6.3.2, where
we establish max

u2 ~Gunf1g
dim(Vu(1)) for the irreducible k ~G-modules L ~G(~�) with p-restricted

dominant weight ~� listed in Table 2.7.5.

Theorem 6.3.1. Let k be an algebraically closed field of characteristic p � 0 and let ~G be a
simple simply connected linear algebraic group of type D‘, ‘ � 4. Let ~T be a fixed maximal
torus in ~G and let V = L ~G(~�), where either ~� 2 FD‘, or ~� is listed in Table 2:7:5. Then
there exist non-identity unipotent elements u 2 ~G for which

dim(Vu(1)) � dim(V )�
p

dim(V )

if and only if ‘ and ~� appear in the following list:

(1) ‘ � 4 and ~� = ~!1;

(2) ‘ = 5 and V = L ~G(~!‘�1).

Theorem 6.3.2. Let k be an algebraically closed field of characteristic p � 0 and let ~G be
a simple simply connected linear algebraic group of type D‘, ‘ � 4. Let ~T and V be as in
Theorem 6:3:1. Then the value of max

u2 ~Gunf1g
dim(Vu(1)) is given in the table below:
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V Char. Rank max
u2 ~Gunf1g

dim(Vu(1))

L ~G(~!1) p � 0 ‘ � 4 2‘� 2

yL ~G(~!2)
p 6= 2 ‘ � 4 2‘2 � 5‘+ 6
p = 2 ‘ � 4 2‘2 � 5‘+ 6� gcd(2; ‘)

yL ~G(2~!1)
p 6= 2 and p - ‘ ‘ � 4 2‘2 � 3‘+ 1
p 6= 2 and p j ‘ ‘ � 4 2‘2 � 3‘

yL ~G(~!3 + ~!4) p � 0 ‘ = 4 34� 6�p;2
yL ~G(~!3) p = 2 ‘ = 5 60
zL ~G(~!‘�1) p � 0 5 � ‘ � 9 3 � 2‘�3

Table 6.3.1: The value of max
u2 ~Gunf1g

dim(Vu(1)).

In particular, for each V in Table 6.3.1 labeled as yV , respectively as zV with ‘ � 6, we
have that dim(Vu(1)) < dim(V )�

p
dim(V ) for all non-identity unipotent elements u 2 ~G.

6.3.1 The families of modules

Before we begin, we recall that over fields of characteristic p 6= 2, the Jordan normal form
mM
i=1

Jrini on W of a unipotent element u 2 G completely determines the unipotent conjugacy

class of u in G, unless ni is even for all i, in which case there exist two classes corresponding
to that Jordan form. Thus, when the field k has characteristic p 6= 2, we fix the following
hypothesis on unipotent elements u 2 G:

(yHu) : every u 2 Gu n f1g has Jordan normal form on W given by
mM
i=1

Jrini ; where

mX
i=1

niri = 2‘; ri � 1 is even for all even ni; 2‘� 1 � n1 > n2 > � � � > nm � 1

and n1 > 1:

Lemma 6.3.3. Let k be an algebraically closed field of characteristic p 6= 2 and let V =
LG(!1). Then for all non-identity unipotent elements u 2 ~G we have

dim(Vu(1)) � 2‘� 2;

where equality holds if and only if the Jordan form of u on W is one of J2
2 � J2‘�4

1 and
J3 � J2‘�3

1 .
In particular, there exist non-identity unipotent elements u 2 ~G for which dim(Vu(1)) �

dim(V )�
p

dim(V ).

Proof. To begin, we note that V �= W as kG-modules. Now, let u be a unipotent element
of G as in hypothesis (yHu). Let uW denote the action of u on W . Then:

dim(Vu(1)) = dim(WuW (1)) =
mX
i=1

ri = 2‘�
mX
i=1

(ni � 1)ri: (6.4)
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Assume that dim(Vu(1)) � 2‘� 2. Then, by (6.4), it follows that

2 �
mX
i=1

(ni � 1)ri (6.5)

and, in particular, that 2 � (n1 � 1)r1 � n1 � 1, hence 3 � n1.

If n1 = 3, then by (6.5), we have r1 = 1 and
mX
i=2

(ni� 1)ri = 0, hence 2 � m. Since ‘ � 4,

we deduce that m = 2, n2 = 1 and r2 = 2‘� 3. Thus, u has Jordan form J3 � J2l�3
1 on W .

Conversely, let u be a unipotent element of G whose Jordan form on W is J3� J2‘�3
1 . Then,

by (6.4), we have dim(Vu(1)) = 2‘� 2.

Similarly, if n1 = 2, then r1 is even and, by (6.5), it follows that r1 = 2 and
mX
i=2

(ni�1)ri =

0. We argue as before to deduce that the Jordan form of u on W is J2
2 � J2‘�4

1 . Conversely,
let u be a unipotent element of G whose Jordan form on W is J2

2 � J2‘�4
1 . Then, by (6.4),

we have dim(Vu(1)) = 2‘� 2.
We conclude that dim(Vu(1)) � 2‘ � 2 for all non-identity unipotent elements u 2 ~G.

Moreover, we have shown that equality holds if and only if the Jordan form of u on W is
one of J2

2 � J2‘�4
1 and J3 � J2‘�3

1 . Lastly, let u be such an element of G. Then, since the
inequality

p
2‘ � 2 holds for all ‘ � 4, it follows that 2‘ � 2 � 2‘ �

p
2‘ for all ‘ � 4 and,

consequently, dim(Vu(1)) � dim(V )�
p

dim(V ).

Lemma 6.3.4. Let k be an algebraically closed field of characteristic p = 2 and let V =
LG(!1). Then for all non-identity unipotent elements u 2 ~G we have

dim(Vu(1)) � 2‘� 2;

where equality holds if and only if the Jordan form of u on W is J2
2�J2‘�4

1 , i.e. the Hesselink
normal form of u is one of (22

0; 1
2‘�4
0 ) and (12‘�4

0 ; 22
1).

In particular, there exist non-identity unipotent elements u 2 ~G for which dim(Vu(1)) �
dim(V )�

p
dim(V ).

Proof. First, we note that V �= W as kG-modules. Secondly, as p = 2, we have that G <
Sp(W;a), where a is the nondegenerate alternating bilinear form on W given by a(w1; w2) =
Q(w1 +w2) +Q(w1) +Q(w2) for all w1; w2 2 W . Thus, in particular, we have u 2 Sp(W;a)
and, by Lemma 4.3.3, we determine that dim(Vu(1)) � 2‘� 1 for all non-identity unipotent
elements u 2 ~G.

Let u 2 Sp(W;a) be a unipotent element whose Jordan form onW is J2�J2‘�2
1 . Then the

Hesselink normal form of u is (12‘�2
0 ; 21) and, by Proposition 2.9.20, we deduce that u =2 G.

Consequently, by Corollary 4.3.4, we determine dim(Vu(1)) � 2‘ � 2 for all non-identity
unipotent elements u 2 ~G.

Now, let u 2 Sp(W;a) be a unipotent element whose Jordan form on W is J2
2 � J2‘�4

1 .
Then the Hesselink normal form of u is one of (22

0; 1
2‘�4
0 ) and (12‘�4

0 ; 22
1). In both cases we

use Proposition 2.9.20 to determine that u 2 G. We conclude, by Corollary 4.3.4, that
dim(Vu(1)) � 2‘ � 2 for all non-identity unipotent elements u 2 ~G, where equality holds if
and only if the Jordan form of u on W is J2

2 � J2‘�4
1 .
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Lastly, as in the proof of Lemma 6.3.3, there exist non-identity unipotent elements u 2 ~G,
for example those whose Jordan form on W is given by J2

2 � J2‘�4
1 , for which dim(Vu(1)) �

dim(V )�
p

dim(V ).

Proposition 6.3.5. Let k be an algebraically closed field of characteristic p 6= 2 and let
V = LG(!2). Then for all non-identity unipotent elements u 2 ~G we have

dim(Vu(1)) � 2‘2 � 5‘+ 6;

where equality holds if and only if the Jordan form of u on W is J2
2 � J2‘�4

1 .
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 ~G.

Proof. First, note that, by Lemma 2.8.4, as p 6= 2, we have the following isomorphism of
kG-modules: V �= ^2(W ). Now, let u be a unipotent element of G as in hypothesis (yHu).
As ri is even for all even ni, it follows that the Jordan form of u on W consists of at least
two blocks. We first consider the case when exactly one of these blocks, Jn1 , is nontrivial.
Then the Jordan form of u on W is Jn1 � J2‘�n1

1 , where, since r1 = 1, n1 is odd, thus
3 � n1 � 2‘ � 1. We write W = W1 �W2, where dim(W1) = n1 and u acts as Jn1 on W1,
and dim(W2) = 2‘� n1 and u acts trivially on W2. Then, as k[u]-modules, we have

V �= ^2(W1)� (W1 
W2)� ^2(W2)

and so

dim(Vu(1)) = dim((^2(W1))u(1)) + dim((W1 
W2)u(1)) + dim((^2(W2))u(1)): (6.6)

Now, by Lemma 2.9.4, as p 6= 2, we have dim((^2(W1))u(1)) =
jn1

2

k
=

n1 � 1

2
and,

moreover, as u acts as Jn1
J2‘�n1
1 on W1
W2, we also have dim((W1
W2)u(1)) = 2‘�n1.

Lastly, as u acts trivially onW2, it also acts trivially on ^2(W2), and so dim((^2(W2))u(1)) =
(2‘� n1 � 1)(2‘� n1)

2
. It follows that:

dim(Vu(1)) =
n1 � 1

2
+ 2‘� n1 +

(2‘� n1 � 1)(2‘� n1)

2

=
4‘2 � 4‘n1 + n2

1 + 2‘� 1

2

= 2‘2 � 5‘+ 6 +
n2

1 � 4‘n1 + 12‘� 13

2
:

One checks that the inequality

n2
1 � 4‘n1 + 12‘� 13 < 0 (6.7)

holds for all n1 2 (2‘ �
p

(2‘� 3)2 + 4; 2‘ +
p

(2‘� 3)2 + 4) and all ‘ � 1. Since 2‘ �p
(2‘� 3)2 + 4 < 2‘ �

p
(2‘� 3)2 = 3 and since 2‘ +

p
(2‘� 3)2 + 4 > 2‘ � 1, it follows

that, in particular, Inequality (6.7) holds for all 3 � n1 � 2‘ � 1 and all ‘ � 4. Therefore,
dim(Vu(1)) < 2‘2 � 5‘+ 6 for all u 2 G unipotent with Jordan form Jn1 � J2‘�n1

1 on W .

222



We now consider the second case, when the Jordan form of u on W admits at least two
nontrivial blocks. Then 2 � n1 � 2‘ � 3. We write W = W

0
1 �W

0
2, where dim(W

0
1) = n1

and u acts as Jn1 on W
0
1, and dim(W

0
2) = 2‘ � n1 and u acts as Jr1�1

n1
�

mM
i=2

Jrini on W
0
2.

Now, by (6.6), in order to determine dim(Vu(1)), we only need to know dim((^2(W
0
1))u(1)),

dim((W
0
1 
W

0
2)u(1)) and dim((^2(W

0
2))u(1)). As u acts as a single Jordan block on W 0

1, by

Lemma 2.9.4, we have dim((^2(W
0

1))u(1)) =
jn1

2

k
=
n1 + �

2
, where � = 0 if n1 is even, or

� = �1 if n1 is odd. Now, since u acts as (Jn1 
 Jn1)r1�1 �
mM
i=2

(Jn1 
 Jni)ri on W
0
1 
W

0
2, we

again use Lemma 2.9.4 to deduce:

dim((W
0

1 
W
0

2)u(1)) = (r1 � 1)n1 +
mX
i=2

niri = 2‘� n1: (6.8)

Furthermore, since the Jordan form of u onW admits at least two nontrivial blocks, it follows
that u acts nontrivially on W 0

2 and so, by Proposition 3.3.4, we have dim((^2(W
0

2))u(1)) �
(2‘� n1 � 1)2 � (2‘� n1 � 1) + 2

2
, where equality holds if and only if u acts onW 0

2 as one of

J2
2 and J2�J2‘�n1�2

1 . However, we note that u cannot act on W 0
2 as J2

2 , since if it did, then u
would act onW as J2‘�4�J2

2 , which contradicts the fact that even sized Jordan blocks occur

with even multiplicity. Therefore dim((^2(W
0

2))u(1)) =
(2‘� n1 � 1)2 � (2‘� n1 � 1) + 2

2
if

and only if u acts on W 0
2 as J2 � J2‘�n1�2

1 . Now, by (6.6) and keeping in mind that � � 0,
we have:

dim(Vu(1)) � n1 + �

2
+ 2‘� n1 +

(2‘� n1 � 1)2 � (2‘� n1 � 1) + 2

2

=
4‘2 � 4‘n1 + n2

1 + 2n1 � 2‘+ 4 + �

2

� 4‘2 � 4‘n1 + n2
1 + 2n1 � 2‘+ 4

2

= 2‘2 � 5‘+ 6 +
n2

1 � 4‘n1 + 2n1 + 8‘� 8

2

= 2‘2 � 5‘+ 6 +
(n1 � 2)(n1 + 4� 4‘)

2
:

Since 2 � n1 � 2‘ � 3, it follows that (n1 � 2)(n1 + 4 � 4‘) � 0 for all ‘ � 4, and thus
dim(Vu(1)) � 2‘2 � 5‘ + 6 for all ‘ � 4 and all unipotent elements u of G whose Jordan
form on W admits at least two nontrivial blocks. Moreover, equality holds if and only if

(n1�2)(n1 +4�4‘) = 0, � = 0 and dim((^2(W
0

2))u(1)) =
(2‘� n1 � 1)2 � (2‘� n1 � 1) + 2

2
,

hence, if and only if n1 = 2 and u acts as J2�J2‘�n1�2
1 on W 0

2. We deduce that, in this case,
u has Jordan form J2

2 � J2‘�4
1 on W .

Having considered all possible cases, we conclude that dim(Vu(1)) � 2‘2 � 5‘ + 6 for
all non-identity unipotent elements u 2 ~G. Moreover, we have shown that equality holds
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if and only if the Jordan form of u on W is J2
2 � J2‘�4

1 . In particular, as the inequality
0 < 14‘2 � 47‘ + 36 holds for all ‘ � 4, we have that 2‘2 � 5‘ + 6 < 2‘2 � ‘ �

p
2‘2 � ‘ for

all ‘ � 4 and, consequently, dim(Vu(1)) < dim(V )�
p

dim(V ) for all non-identity unipotent
elements u 2 ~G.

Proposition 6.3.6. Let k be an algebraically closed field of characteristic p = 2 and let
V
0
= ^2(W ).

(1) Then, for all non-identity unipotent elements u 2 ~G we have

dim(V
0

u(1)) � 2‘2 � 5‘+ 6;

where equality holds if and only if the Jordan form of u on W is J2
2 � J2‘�4

1 , i.e. the
Hesselink normal form is one of (22

0; 1
2‘�4
0 ) and (12‘�4

0 ; 22
1).

(2) If u 2 G is a non-identity unipotent element whose Jordan form on W is different than
J2

2 � J2‘�4
1 , then

dim(V
0

u(1)) � 2‘2 � 5‘+ 4;

where equality holds if and only if ‘ = 4 and the Hesselink normal form of u is one of
(24

0) and (24
1).

Proof. (1) First, we note that, as p = 2, we have that G < Sp(W;a), where a is the
nondegenerate alternating bilinear form onW that satisfies a(w1; w2) = Q(w1+w2)+Q(w1)+
Q(w2) for all w1; w2 2 W . Now, by Proposition 4.3.7, it follows that dim(V

0
u(1)) � 2‘2�3‘+2

for all non-identity unipotent elements u 2 Sp(W;a), therefore dim(V
0
u(1)) � 2‘2� 3‘+ 2 for

all non-identity unipotent elements u 2 ~G. However, we have seen in the second paragraph
of the proof of Lemma 6.3.4 that if v 2 Sp(W;a) is unipotent with Jordan form J2 � J2‘�2

1

on W , then v =2 G. Thus, by Lemma 4.3.9, we deduce that dim(V
0
u(1)) � 2‘2 � 5‘ + 6 for

all non-identity unipotent elements u 2 ~G. Let v 2 Sp(W;a) be such that its Jordan form
on W is J2

2 � J2‘�4
1 . Then the Hesselink normal form of v is either (12‘�2

0 ; 22
1) or (22

0; 1
2‘�2
0 ).

In both cases we apply Proposition 2.9.20 to determine that v 2 G. Therefore, by Lemma
4.3.9, it follows that dim(V 0u(1)) � 2‘2�5‘+6 for all non-identity unipotent elements u 2 ~G,
where equality holds if and only if the Jordan form of u on W is J2

2 � J2‘�4
1 .

(2) We now assume that u 2 Gu n f1g, has Jordan form on W different than J2
2 � J2‘�4

1 .
As p = 2, we have that, in particular, u 2 Sp(W;a) and thus, by Proposition 4.3.11, it follows
that dim(V

0
u(1)) � 2‘2 � 5‘ + 4. Moreover, by the same result, we have that dim(V

0
v (1)) =

2‘2 � 5‘+ 4 for v 2 Sp(W;a) is unipotent, if and only if ‘ = 4 and the Jordan form of v on
W is one of J4

2 and J3
2 � J2

1 .
Let v 2 Sp(W;a) be unipotent with Jordan form J4

2 on W . Then the Hesselink normal
form of v is either (24

0) or (24
1). In both cases we apply Proposition 2.9.20 to deduce that

v 2 G. On the other hand, let v0 2 Sp(W;a) be unipotent with Jordan form J3
2 � J2

1 on W .
Then the Hesselink normal form of v0 is (12

0; 2
3
1), thus v0 =2 G, by Proposition 2.9.20.

By Proposition 4.3.11, we conclude that dim(V
0
u(1)) � 2‘2 � 5‘ + 4 for all non-identity

unipotent elements u 2 G whose Jordan form onW is different than J2
2�J2‘�4

1 . Furthermore,
equality holds if and only if the Hesselink normal form of u is one of (24

0) and (24
1).
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Corollary 6.3.7. Let k be an algebraically closed field of characteristic p = 2. Assume that
2 - ‘ and let V = LG(!2). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 2‘2 � 5‘+ 5;

where equality holds if and only if the Jordan form of u on W is J2
2�J2‘�4

1 , i.e. the Hesselink
normal form of u is one of (22

0; 1
2‘�4
0 ) and (12‘�4

0 ; 22
1).

In particular, we have dim(Vu(1)) < dim(V ) �
p

dim(V ) for all non-identity unipotent
elements u 2 G.

Proof. Set V 0 = ^2(W ) and note that, by Lemma 2.8.5, since p = 2 and p - ‘, we have
V
0 �= V � LG(0), as kG-modules. Therefore dim(Vu(1)) = dim(V

0
u(1)) � 1. We apply

Proposition 6.3.6.(1), to deduce that dim(Vu(1)) � 2‘2�5‘+5 for all non-identity unipotent
elements u 2 G, and that equality holds if and only if dim(V

0
u(1)) = 2‘2 � 5‘ + 6, hence, if

and only if the Jordan form of u on W is J2
2 � J2‘�4

1 . Lastly, we note that, as the inequality
0 < 14‘2�47‘+37 holds for all ‘ � 4, we have that 2‘2�5‘+5 < 2‘2�‘�1�

p
2‘2 � ‘� 1 for

all ‘ � 4 and, consequently, dim(Vu(1)) < dim(V )�
p

dim(V ) for all non-identity unipotent
elements u 2 G.

Proposition 6.3.8. Let k be an algebraically closed field of characteristic p = 2. Assume
that 2 j ‘ and let V = LG(!2). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 2‘2 � 5‘+ 4:

Furthermore, we have equality if and only if one of the following holds:

(1) ‘ = 4 and the Hesselink normal form of u is (24
0).

(2) ‘ � 4 and the Jordan form of u on W is J2
2 � J2‘�4

1 , i.e. the Hesselink normal form of
u is one of (22

0; 1
2‘�4
0 ) and (12‘�4

0 ; 22
1).

In particular, we have dim(Vu(1)) < dim(V ) �
p

dim(V ) for all non-identity unipotent
elements u 2 G.

Proof. To begin, we note that, as p = 2, we have G < Sp(W;a), where a is the nondegenerate
alternating bilinear form on W that satisfies a(w1; w2) = Q(w1 + w2) + Q(w1) + Q(w2) for
all w1; w2 2 W . Set V 0 = ^2(W ) and let u 2 G be a non-identity unipotent element. Then,
in particular, u is a unipotent element of Sp(W;a). Let u0 denote the action of u on V 0 and
let uV denote the action of u on V . Then, by Theorem 4.3.6, we know we can determine the
Jordan form of uV from that of u0 .

Let (nr1
10
; : : : ; nrtt0 ; 2n

rt+1

t+11
; : : : ; 2nrmm1

) be the Hesselink normal form of u, where m � 1,

t � 0 and ri � 1 for all 1 � i � m. Moreover, as u 2 G, we have that
mX

i=t+1

ri is even. Set

� = �2(gcd(n1; : : : ; nt; nt+1; : : : ; nm)).
First, assume that � = 0. Then, by Theorem 4.3.6.(b), as 2 j ‘, it follows that

dim(Vu(1)) = dim(V
0
u(1))� 2. Now, by Proposition 6.3.6.(1), we deduce that dim(Vu(1)) �

2‘2�5‘+4 for all non-identity unipotent elements u 2 G, and that equality holds if and only
if dim(V

0
u(1)) = 2‘2 � 5‘+ 6, hence, if and only if the Jordan form of u on W is J2

2 � J2‘�4
1 .
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We can now assume that � > 0. Then, by Theorem 4.3.6.(c), it follows that dim(Vu(1)) �
dim(V

0
u(1)). As � > 0, the Jordan form of u on W is different than J2

2 � J2‘�4
1 and thus, by

Proposition 6.3.6.(2), we have dim(V
0
u(1)) � 2‘2 � 5‘ + 4, hence dim(Vu(1)) � 2‘2 � 5‘ + 4

for all non-identity unipotent elements u 2 G. Now, as � > 0, by Proposition 6.3.6.(2), we
have that dim(V

0
u(1)) = 2‘2 � 5‘+ 4 if and only if ‘ = 4 and the Hesselink normal form of u

is (24
0). In this case, we have � = 1, thus 2 j ‘

2�
and, by Theorem 4.3.6.(c.1), it follows that

dim(Vu(1)) = dim(V
0
u(1)) = 2‘2 � 5‘+ 4.

In conclusion, we have shown that dim(Vu(1)) � 2‘2�5‘+4 for all non-identity unipotent
elements u 2 G. In particular, as the inequality 0 < 14‘2 � 47‘ + 38 holds for all ‘ � 4,
we have that 2‘2 � 5‘ + 4 < 2‘2 � ‘ � 2 �

p
2‘2 � ‘� 2 for all ‘ � 4, and, consequently,

dim(Vu(1)) < dim(V )�
p

dim(V ) for all non-identity unipotent elements u 2 G.

We now consider the irreducible kG-module LG(2!1). We have seen in Lemma 2.8.4 that
LG(2!1) is a composition factor of the kG-module S2(W ). As for groups of type B‘, see
Subsection 5.3, we first determine dim((S2(W ))u(1)), where u 2 G is a unipotent element,
and then apply Theorem 5.3.5 to deduce dim(LG(2!1)u(1)).

Proposition 6.3.9. Let k be an algebraically closed field of characteristic p 6= 2 and let
V
0
= S2(W ). Then for all non-identity unipotent elements u 2 G we have

dim(V
0

u(1)) � 2‘2 � 3‘+ 2;

where equality holds if and only if the Jordan form of u on W is one of J3 � J2‘�3
1 and

J2
2 � J2‘�4

1 .

Proof. Let u be a unipotent element of G as in hypothesis (yHu). Since ri is even for all even
ni, it follows that the Jordan form of u on W admits at least two blocks. We first consider
the case when exactly one of these blocks, Jn1 , is nontrivial. Then u has Jordan form
Jn1 � J2‘�n1

1 , where n1 is odd, since r1 = 1, thus 3 � n1 � 2‘� 1. We write W = W1 �W2,
where dim(W1) = n1 and u acts as Jn1 on W1, and dim(W2) = 2‘ � n1 and u acts trivially
on W2. Then, as k[u]-modules, we have

V
0 �= S2(W1)� (W1 
W2)� S2(W2)

and so

dim(V
0

u(1)) = dim((S2(W1))u(1)) + dim((W1 
W2)u(1)) + dim((S2(W2))u(1)): (6.9)

Now, since p 6= 2, we apply Lemma 2.9.4, which gives dim((S2(W1))u(1)) = n1 �
jn1

2

k
=

n1 + 1

2
and, moreover, as u acts as Jn1 
 J2‘�n1

1 on W1 
 W2, we also have dim((W1 

W2)u(1)) = 2‘�n1. Lastly, as u acts trivially on W2, it also acts trivially on S2(W2), and so
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dim((S2(W2))u(1)) =
(2‘� n1)(2‘� n1 + 1)

2
. It follows that:

dim(V
0

u(1)) =
n1 + 1

2
+ 2‘� n1 +

(2‘� n1)(2‘� n1 + 1)

2

=
4‘2 � 4‘n1 + n2

1 + 6‘� 2n1 + 1

2

= 2‘2 � 3‘+ 2 +
n2

1 � 4‘n1 � 2n1 + 12‘� 3

2

= 2‘2 � 3‘+ 2 +
(n1 � 3)(n1 + 1� 4‘)

2
:

(6.10)

Since 3 � n1 � 2‘ � 1, we have (n1 � 3)(n1 + 1 � 4‘) � 0 for all ‘ � 4, and therefore
dim(V

0
u(1)) � 2‘2 � 3‘+ 2 for all unipotent elements u of G with Jordan form Jn1 � J2‘�n1

1 .
Moreover, equality holds if and only if (n1 � 3)(n1 + 1 � 4‘) = 0, hence, if and only if the
Jordan form of u on W is J3 � J2‘�3

1 .
We now consider the second case when the Jordan form of u on W admits at least two

nontrivial blocks. Then 2 � n1 � 2‘ � 3. We write W = W
0
1 �W

0
2, where dim(W

0
1) = n1

and u acts as Jn1 on W
0
1, and dim(W

0
2) = 2‘ � n1 and u acts as Jr1�1

n1
�

mM
i=2

Jrini on W
0
2.

Now, by (6.9), in order to determine dim(V
0
u(1)), we only need to know dim((S2(W

0
1))u(1)),

dim((W
0
1 
W

0
2)u(1)) and dim((S2(W

0
2))u(1)). As u acts as a single Jordan block on W 0

1, by

Lemma 2.9.4, as p 6= 2, we have dim((S2(W
0

1))u(1)) = n1 �
jn1

2

k
=
n1 � �

2
, where � = 0

if n1 is even, or � = �1 if n1 is odd. Since u acts as (Jn1 
 Jn1)r1�1 �
mM
i=2

(Jn1 
 Jni)ri on

W
0
1 
W

0
2, by (6.8), we have dim((W

0
1 
W

0
2)u(1)) = 2‘� n1. Furthermore, since the Jordan

form of u on W admits at least two nontrivial blocks, it follows that u acts nontrivially on

W
0
2. Thus, by Proposition 3.3.5, it follows that dim((S2(W

0

2))u(1)) � (2‘� n1 � 1)(2‘� n1)

2
,

where equality holds if and only if u acts as J2 � J2‘�n1�2
1 on W 0

2. Thus, by (6.9), we have:

dim(V
0

u(1)) � n1 � �
2

+ 2‘� n1 +
(2‘� n1 � 1)(2‘� n1)

2

=
4‘2 � 4‘n1 + n2

1 + 2‘� �
2

= 2‘2 � 3‘+ 2 +
n2

1 � 4‘n1 + 8‘� 4� �
2

:

If n1 = 2, then � = 0,
n2

1 � 4‘n1 + 8‘� 4� �
2

= 0 and, consequently, dim(V
0
u(1)) � 2‘2 �

3‘ + 2. Now, equality holds if and only if dim((S2(W
0

2))u(1)) =
(2‘� 3)(2‘� 2)

2
, hence if

and only if u acts as J2� J2‘�4
1 on W 0

2. It follows that, in this case, the Jordan form of u on
W is J2

2 � J2‘�4
1 . We now assume that n1 � 3. One checks that the inequality

n2
1 � 4‘n1 + 8‘� 4� � < 0 (6.11)
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holds for all n1 2 (2‘ �
p

4‘2 � 8‘+ 4 + �; 2‘ +
p

4‘2 � 8‘+ 4 + �) and all ‘ � 2. Since
2‘ �

p
4‘2 � 8‘+ 4 + � < 3, as 5 � � < 4‘ for all ‘ � 2, and since 2‘ +

p
4‘2 � 8‘+ 4 + � >

2‘ � 3, it follows that, in particular, Inequality (6.11) holds for all 3 � n1 � 2‘ � 3 and all
‘ � 4. Therefore dim(V

0
u(1)) < 2‘2 � 3‘+ 2 for all unipotent elements u of G whose Jordan

form on W admits at least two nontrivial blocks and n1 � 3.
Having considered all possible cases, we conclude that dim(V

0
u(1)) � 2‘2 � 3‘ + 2 for all

non-identity unipotent elements u 2 G. Moreover, we have shown that equality holds if and
only if the Jordan form of u on W is one of J3 � J2‘�3

1 and J2
2 � J2‘�4

1 .

Corollary 6.3.10. Let k be an algebraically closed field of characteristic p 6= 2. Assume
p - ‘ and let V = LG(2!1). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 2‘2 � 3‘+ 1;

where equality holds if and only if the Jordan form of u on W is one of J3 � J2‘�3
1 and

J2
2 � J2‘�4

1 .
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. To begin, set V 0 = S2(W ). As p 6= 2 and p - ‘, by Lemma 2.8.4, it follows that
V
0 �= V � LG(0), as kG-modules, and therefore dim(Vu(1)) = dim(V

0
u(1)) � 1. We now

apply Proposition 6.3.9, to see that dim(Vu(1)) � 2‘2� 3‘+ 1 for all non-identity unipotent
elements u 2 G. Moreover, we have equality if and only if dim(V

0
u(1)) = 2‘2� 3‘+ 2, hence,

if and only if the Jordan form of u on W is one of J3 � J2‘�3
1 and J2

2 � J2‘�4
1 .

Lastly, as the inequality 14‘2�17‘+5 > 0 holds for all ‘ � 4, it follows that 2‘2�3‘+1 <
2‘2 + ‘�1�

p
2‘2 + ‘� 1 for all ‘ � 4, and, consequently, dim(Vu(1)) < dim(V )�

p
dim(V )

for all non-identity unipotent elements u 2 G.

We will require the following result in the proof of Corollary 6.3.12.

Lemma 6.3.11. Let k be an algebraically closed field of characteristic p 6= 2 and let V 0 =
S2(W ). Let u 2 G be a non-identity unipotent element whose Jordan form on W is different
than J3 � J2‘�3

1 and J2
2 � J2‘�4

1 . Then

dim(V
0

u(1)) < 2‘2 � 3‘:

Proof. Let u be a unipotent element of G as in hypothesis (yHu). As ri is even for all even
ni, it follows that the Jordan form of u on W admits at least two blocks. We first consider
the case when exactly one of these blocks, Jn1 , is nontrivial. We remark that since r1 = 1, n1

is odd and, since the Jordan form of u is different than J3� J2‘�2
1 , we have 5 � n1 � 2‘� 1.

Now, by (6.10), it follows that

dim(V
0

u(1)) =
4‘2 � 4‘n1 + n2

1 + 6‘� 2n1 + 1

2
= 2‘2 � 3‘+

n2
1 � 4‘n1 � 2n1 + 12‘+ 1

2
:

One checks that the inequality

n2
1 � 4‘n1 � 2n1 + 12‘+ 1 < 0
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holds for all n1 2 (2‘ + 1 � 2
p
‘2 � 2‘; 2‘ + 1 + 2

p
‘2 � 2‘) and all ‘ � 2. Since 2‘ + 1 +

2
p
‘2 � 2‘ > 2‘ � 1 and 2‘ + 1 � 2

p
‘2 � 2‘ < 5, as 4 < 2‘ for all ‘ � 4, it follows that,

in particular, the inequality holds for all 5 � n1 � 2‘ � 1 and all ‘ � 4. We deduce that
dim(V

0
u(1)) < 2‘2 � 3‘ for all unipotent elements u of G with Jordan form Jn1 � J2‘�n1

1 on
W , where 5 � n1 � 2‘� 1.

We now consider the second case when the Jordan form of u on W admits at least two
nontrivial blocks. Then 2 � n1 � 2‘� 3 and, once again, we distinguish two cases.

First, if n1 = 2, then the Jordan form of u on W is Jr1
2 � J2‘�2r1

1 , where, by hypothesis,
r1 � 4 is even. For the moment, assume that ‘ = 4. Then the Jordan form of u on W
is J4

2 . Using Lemma 2.9.4, as p 6= 2, one determines that dim(Vu(1)) = 16 < 20. We
can now assume that ‘ � 5 and we write W = W1 � W2, where dim(W1) = 4 and u
acts as J2

2 on W1, and dim(W2) = 2‘ � 4 and u acts as Jr1�2
2 � J2‘�2r1

1 on W2. Now, by
Proposition 3.3.5, we have dim((S2(W1))u(1)) � 6 and dim((S2(W2))u(1)) � 2‘2 � 9‘ + 10,
respectively. Furthermore, as u acts on W1 
 W2 as (J2 
 J2)2r1�4 � (J2 
 J1)4‘�4r1 , by
Lemma 2.9.4, we have dim((W1
W2)u(1)) = 2(2r1� 4) + 4‘� 4r1 = 4‘� 8. We use (6.9) to
determine that dim(V

0
u(1)) � 2‘2 � 5‘ + 8 and therefore, as 8 < 2‘ for all ‘ � 5, we showed

that dim(V
0
u(1)) < 2‘2 � 3‘ for all unipotent elements u of G whose Jordan form on W is

Jr1
2 � J2‘�2r1

1 , where r1 � 4.
Secondly, if n1 � 3, then we proceed as in the proof of Proposition 6.3.9, see the second

to last paragraph, and write W = W
0
1 � W

0
2, where dim(W

0
1) = n1 and u acts as Jn1 on

W
0
1, and dim(W

0
2) = 2‘ � n1 and u acts as Jr1�1

n1
�

mM
i=2

Jrini on W
0
2. By Lemma 2.9.4, we

have dim((S2(W
0

1))u(1)) =
n1 � �

2
, where � = 0 if n1 is even, or � = �1 if n1 is odd, and

that dim((W
0
1 
 W

0
2)u(1)) = 2‘ � n1. Moreover, as n1 � 3 and as ri is even for even ni,

it follows that u does not act on W
0
2 as J2 � J2‘�4

1 and so, by Proposition 3.3.5, we have

dim((S2(W
0

2))u(1)) <
(2‘� n1 � 1)(2‘� n1)

2
. Therefore, by (6.9), it follows that

dim(V
0

u(1)) <
n1 � �

2
+ 2‘� n1 +

(2‘� n1 � 1)(2‘� n1)

2

=
4‘2 � 4‘n1 + n2

1 + 2‘� �
2

= 2‘2 � 3‘+
n2

1 � 4‘n1 + 8‘� �
2

:

One checks that the inequality

n2
1 � 4‘n1 + 8‘� � < 0 (6.12)

holds for all n1 2 (2‘ �
p

4‘2 � 8‘+ �; 2‘ +
p

4‘2 � 8‘+ �) and all ‘ � 3. Since 2‘ +p
4‘2 � 8‘+ � > 2‘�3 and since 2‘�

p
4‘2 � 8‘+ � < 3, as 9� � < 4‘ for all ‘ � 4, it follows

that, in particular, Inequality (6.12) holds for all 3 � n1 � 2‘ � 3 and all ‘ � 4. Therefore
dim(V

0
u(1)) < 2‘2� 3‘ for all unipotent elements u of G whose Jordan form on W admits at

least two nontrivial blocks and n1 � 3.

229



Having considered all possible cases, we conclude that dim(V
0
u(1)) < 2‘2� 3‘ for all non-

identity unipotent elements u 2 G whose Jordan form on W is different than J3� J2‘�3
1 and

J2
2 � J2‘�4

1 .

Corollary 6.3.12. Let k be an algebraically closed field of characteristic p 6= 2. Assume
p j ‘ and let V = LG(2!1). Then for all non-identity unipotent elements u 2 G we have

dim(Vu(1)) � 2‘2 � 3‘;

where equality holds if and only if the Jordan form of u on W is one of J3 � J2‘�3
1 and

J2
2 � J2‘�4

1 .
In particular, we have dim(Vu(1)) < dim(V ) �

p
dim(V ) for all non-identity unipotent

elements u 2 G.

Proof. To begin, set V 0 = S2(W ) and let u be a unipotent element of G as in hypothesis
(yHu). If we denote by u

0 , respectively by uV , the action of u on V 0 , respectively on V , then,
as p 6= 2, using Theorem 5.3.5 we can determine the Jordan form of uV from that of u0 .

Set � = �p(gcd(n1; : : : ; nm)). If � = 0, we apply Theorem 5.3.5.(b) to deduce that
dim(Vu(1)) = dim(V

0
u(1))�2. By Proposition 6.3.9, it follows that dim(Vu(1)) � 2‘2�3‘ for

all non-identity unipotent elements u 2 G, where equality holds if and only if dim(V
0
u(1)) =

2‘2 � 3‘ + 2, hence, if and only if the Jordan form of u on W is one of J3 � J2‘�3
1 and

J2
2 � J2‘�4

1 .
If � > 0, we apply Theorem 5.3.5.(c) to deduce that dim(Vu(1)) = dim(V

0
u(1)). Now,

since � > 0, it follows that the Jordan form of u on W is different than J3 � J2‘�3
1 and

J2
2 � J2‘�4

1 . We use Lemma 6.3.11 to deduce that dim(V
0
u(1)) < 2‘2 � 3‘ and, consequently,

dim(Vu(1)) < 2‘2 � 3‘ for all unipotent elements u 2 G with � > 0.
In conclusion, we have shown that dim(Vu(1)) � 2‘2 � 3‘ for all non-identity unipotent

elements u 2 G, and that equality holds if and only if the Jordan form of u on W is one of
J3� J2‘�3

1 and J2
2 � J2‘�4

1 . In particular, since the inequality 0 < 14‘2� 17‘+ 6 holds for all
‘ � 4, it follows that 2‘2 � 3‘ < 2‘2 + ‘� 2�

p
2‘2 + ‘� 2 for all ‘ � 4 and, consequently,

dim(Vu(1)) < dim(V )�
p

dim(V ) for all non-identity unipotent elements u 2 G.

To conclude this subsection, we remark that Lemmas 6.3.3 and 6.3.4, Propositions 6.3.5
and 6.3.8, and Corollaries 6.3.7, 6.3.10 and 6.3.12 give the proof of Theorems 6.3.1 and
6.3.2 for the families of kG-modules corresponding to p-restricted dominant weights � 2
f!1; !2; 2!1g. Therefore, in view of Remark 6.1.1, they prove Theorems 6.3.1 and 6.3.2 for
the families of k ~G-modules with p-restricted dominant weights ~� 2 FB‘ .

6.3.2 The particular modules

As previously mentioned, this subsection is devoted to the proofs of Theorems 6.3.1 and 6.3.2
for the particular k ~G-modules, i.e. the irreducible k ~G-modules L ~G(~�) with corresponding
p-restricted dominant highest weight ~� listed in Table 2.7.5. For each such k ~G-module V we
will establish max

u2 ~Gunf1g
dim(Vu(1)), see Propositions 6.3.13, 6.3.14, 6.3.26 and 6.3.27. In order

to achieve this goal, we will use the same inductive algorithm we used for groups of type A‘,
C‘ and B‘. For a description of this algorithm, we refer the reader to Subsection 2.4.4.
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Now, let ~u 2 ~G be a unipotent element. We write ~u =
Y

~�2~�+

x~�(c~�), where the product

respects the total order � on ~�, see Section 1.3, and c~� 2 k for all ~� 2 ~�+. To ~u we associate
the subset S~u � ~�+ with the property that ~u =

Y
~�2S~u

x~�(c~�), where the product respects �

and c~� 2 k� for all ~� 2 S~u. Similarly, to the unipotent element u 2 G we associate the subset
Su � �+ with the property that u =

Y
�2Su

x�(c�), where the product respects the total order

� on � and c� 2 k� for all � 2 Su.
When p 6= 2, Theorem 2.9.2 and Lemma 2.9.1 tell us that unipotent conjugacy classes in

~G are completely determined by the Jordan form,
mM
i=1

Jrini , on W of a class representative,

unless ni is even for all i, in which case there exists two classes corresponding to that
Jordan form. Similarly, when p = 2, we have seen that unipotent conjugacy classes in ~G
are completely determined by the Hesselink normal form, (nr1

10
; : : : ; nrtt0 ; n

rt+1

t+11
; : : : ; nrmm1

), of a
class representative, see Theorem 2.9.11, Proposition 2.9.20 and Lemma 2.9.1, unless ni is
even for all 1 � i � m and t = m, in which case there exist two classes corresponding to
that Hesselink form.

We end this introductory part by recalling some notation from Section 2.4. Let P1 be
the maximal parabolic subgroup of ~G corresponding to ~�1 = f~�2; : : : ; ~�‘g and let L1 be a
Levi subgroup of P1. We have L1 = Z(L1)�[L1; L1], where Z(L1)� is a one-dimensional torus
and [L1; L1] is a simply connected linear algebraic group of type D‘�1 with maximal torus
T 0 = ~T \ [L1; L1].

We first consider the case of ‘ = 4. In Table 6.3.2, respectively in Table 6.3.3, we list
all unipotent conjugacy classes in ~G when p 6= 2, respectively when p = 2, and we give a
representative for each class. Note that each chosen non-identity class representative u0 has
the property that u0L1

6= 1.

[MKT21, Table 12][LS12, Subsection 3:3:2]
Class representative Jordan form

1 J8
1

x~�2(1) J2
2 � J4

1

x~�1(1)x~�3(1) J4
2

x~�1(1)x~�4(1) J4
2

x~�3(1)x~�4(1) J3 � J5
1

x~�1(1)x~�3(1)x~�4(1) J3 � J2
2 � J1

x~�1(1)x~�2(1) J2
3 � J2

1

x~�1(1)x~�2(1)x~�3(1) J2
4

x~�1(1)x~�2(1)x~�4(1) J2
4

x~�2(1)x~�3(1)x~�4(1) J5 � J3
1

x~�1(1)x~�2(1)x~�3(1)x~�1+~�2+~�4(1) J5 � J3

x~�1(1)x~�2(1)x~�3(1)x~�4(1) J7 � J1

Table 6.3.2: Unipotent class representatives in D4 when p 6= 2.

231




























































































