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Abstract
This paper presents an approach for the optimisation of geological disposal canister loadings, combining high resolution

simulations of used nuclear fuel characteristics with an articial neural network and a genetic algorithm. The used nuclear

fuels (produced in an open fuel cycle without reprocessing) considered in this work come from a Swiss Pressurised Water

Reactor, taking into account their realistic lifetime in the reactor core and cooling periods, up to their disposal in the final

geological repository. The case of 212 representative used nuclear fuel assemblies is analysed, assuming a loading of 4 fuel

assemblies per canister, and optimizing two safety parameters: the fuel decay heat (DH) and the canister effective neutron

multiplication factor k eff . In the present approach, a neural network is trained as a surrogate model to evaluate the k eff

value to substitute the time-consuming-code Monte Carlo transport & depletion SERPENT for specific canister loading

calculations. A genetic algorithm is then developed to optimise simultaneously the canister k eff and DH values. The k eff

computed during the optimisation algorithm is using the previously developed artificial neural network. The optimisation

algorithm allows (1) to minimize the number of canisters, given assumed limits for both DH and k eff quantities and (2) to

minimize DH and k eff differences among canisters. This study represents a proof-of-principle of the neural network and

genetic algorithm capabilities, and will be applied in the future to a larger number of cases.

Keywords High-level nuclear waste � Neural network � Genetic algorithm

1 Introduction

Today, there remain three commercial nuclear power

plants (four reactors) in operation in Switzerland. Along

with the fifth reactor that was shutdown in 2019, a certain

amount of spent fuel assemblies discharged from the

reactors, hereinafter referred to as Used Nuclear Fuel

(UNF), has accumulated over the years. A typical fuel

assembly for a Pressurized Water Reactor (PWR) is about

4 to 5 m high, 20�20 cm large and weights about 400 to

500 kg; its content in radioactive isotopes varies depending

on irradiation time (e.g., fission products such as 99Tc, or

actinides such as 239Pu or 241Am). Consequently, after

being used in a reactor core for several years, the UNFs

need to be cooled, stored and eventually disposed of.

Facilities used to this aim, referred to as Spent Fuel

Management Systems (SFMS), include wet storage pools,

dry transport/storage casks and disposal canisters. In

Switzerland, UNF recycling in the form of reprocessed fuel

such as mixed oxide (MOX) fuel is no longer applied;

instead, the concept of so-called permanent direct disposal

into a deep geological repository was adopted through a

national sectoral plan approved in 2008 by the Swiss

Federal Council. The current plan is for the long-term

(virtually infinite) underground storage of more than

12,000 UNFs [1]. For illustration, a model of a canister

loaded with four UNFs and placed in a underground tunnel

(a few hundred meters deep) is presented Fig. 1. One can
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1 Section of Physics, École polytechnique fédérale de

Lausanne (EPFL), Lausanne, Switzerland

2 Paul Scherrer Institute, Forschungsstrasse 111,

5232 Villigen PSI, Switzerland

3 Uppsala University, Uppsala, Sweden

4 Texas A & M University, TX, USA

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-021-06258-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-6839-3435
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06258-2&amp;domain=pdf
https://doi.org/10.1007/s00521-021-06258-2


see four UNFs inside the steel container, surrounded by the

bentonite blocks and backfilling.

It can easily be understood that the disposal of such

canisters will be subject to very strict safety and environ-

mental requirements. A key aspect will also be to ensure

that all the UNF assemblies can be disposed of without

resulting in an unnecessary large number of canisters. To

achieve this, an optimization of the canister loadings will

therefore be needed, and the scope of this paper is to

present a methodology that could broaden the options for

such optimization. More specifically, for a given initial

population of UNF assemblies, the present optimization

will aim at finding loading combinations that allow using

the exact number of canisters required to dispose of all the

available UNF population, while ensuring strict compli-

ance with the two selected safety and design related con-

straints, namely the neutron multiplication (‘‘k eff ’’) and the

thermal heat output (or ‘‘decay heat’’) [4–6].

To this aim, the principles of the proposed methodology

are to take benefit of more knowledge on the UNF isotopic

contents through higher resolution neutronic simulations

and to combine this with artificial intelligence techniques

in order to search the state-space of allowed loadings. The

existing investigated methodology is based on the canister

loading with homogeneous UNFs (i.e., four UNFs with

similar neutronic characteristics, such as the initial fissile

material enrichment, the burnup (BU) achieved at the end

of irradiation, and their cooling time). The drawback of

such approach is that it does not take advantage of possible

combinations of different assemblies (for instance with

various burnup values), consequently leading to an increase

in the number of disposal canisters. Alternatively, the

methodology presented in this paper allows to take into

account heterogeneous UNFs in the same canister. The

effective neutron multiplication factor k eff for an hetero-

geneous canister loading can theoretically be computed

using a Monte Carlo transport and depletion code such as

SERPENT; however, it requires up to several calculation

hours for a single canister loading calculation. As a prac-

tical solution, artificial neural networks (ANNs) only

require a fraction of a second to evaluate the k eff of a

specific canister loading, once it has been trained, making it

possible to investigate optimization algorithm using

heterogeneous loading.

This paper is therefore structured as follows. To start, an

overview is provided on the context of the presented

optimization along with the associated assumptions and

strategy. The next section provides details on the geomet-

rical problem, the various input parameters, simulation

tools and the considered approximations; the third section

gives details on the ANN and its performances; the fourth

section presents the use of the ANN with the genetic

algorithm together with the main results of this study, and

finally in the last section, we discuss the advantages and

limitations of the present approach and the possible

improvements to be done for later studies.

2 Context of optimization assumptions
and strategy

For all stages of the post-operation lifecycle of the dis-

charged fuel, the management and handling of the UNF in

SFMS can be summarized as a very large optimization

problem (see, e.g., Ref. [7]). The whole optimization

combines a multi-dimensional range of interdependent

objectives and constraints: to achieve specific design and

technological characteristics, to provide sufficient capacity

without increasing the fuel cycle costs, to allow for cost

effective SFMS maintenance and operation, to ensure strict

compliance with all safety criteria and regulatory require-

ments, and to fulfil all constraints with regards to envi-

ronmental protection.

In general, this translates into five main SFMS opti-

mization areas: (1) materials and structural design, (2)

thermal performance, (3) nuclear criticality prevention, (4)

minimization of radiation emissions and dose rates, and (5)

operational and maintenance flexibility including logistics.

For the latter, not all UNFs will be available at once and

this will thus require proper scheduling and coordination,

for instance regarding transport, encapsulation and transfer

to the final repository.

Each of these components might moreover comprise

sub-areas of optimization. For instance, with regards to

nuclear sub-criticality, which refers to the required safety

margins to prevent the occurrence of a self-sustained

nuclear chain reaction, Burnup Credit (BUC) can upon

regulatory acceptance be implemented for the optimization

of SFMS loadings. This translates into allowing to take into

account for the fuel irradiation during reactor operation,

Fig. 1 Tunnel model for the disposal of used nuclear fuels in a

specific canister �LMS=EPFL, Underground laboratory in Mont Terri

[2, 3]
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when performing criticality safety evaluations. The reason

is that BUC will allow to significantly reduce the amount of

fissionable materials compared to calculations based on

assuming fresh fuel only.

For the work presented here and dealing with disposal

canisters, the optimization will focus only on two of the

above optimization components, namely criticality and

thermal performance, with the overall goal to search for

loading combinations that will allow (1) using the lowest

number of canisters required for a given UNF population,

and (2) having the decay heat distribution for all canisters

as uniform as possible. To this aim, it will be assumed that

BUC is allowed.

For criticality, the objective function will be the neutron

multiplication factor k eff of a canister containing UNFs. A

general definition of k eff is explained in the following. As

some fissile materials are present in the UNF after irradi-

ation (mainly 239;241Pu and 235U), there are possibilities to

obtain a system where the nuclear chain reaction is self-

sustaining, which is to be avoided (see for instance Ref. [8]

for details). Such risk depends on the content of the UNF,

their location in the canister, the possible water infiltration

over time, and on the canister geometry and materials.

As the content of the UNF varies over time (due to the

radioactive decay of some materials), the k eff needs to be

calculated for the full storage time. In neutronics, the cal-

culated quantity called k eff is used to represent the criti-

cality state of a system: if k eff ¼ 1, every fission produces

on average one more fission, leading to a constant fission

level (power plants operate at k eff ¼ 1); if k eff\1, the

system cannot sustain a chain reaction, and if k eff [ 1, the

number of fission reactions increases exponentially. In the

present study, an upper sub-criticality limit (USL) is con-

sidered: k eff must be lower than 0.95, allowing for a safety

margin of 5 % below 1, or also mentioned as 5000 pcm

(per cent mille) below 1 (this value is generally used in

criticality safety studies [9]). It must however be noted that

the USL used in real licensing applications will usually be

refined in order to take into account burnup (see, e.g., Ref.

[6]) as well as uncertainties and/or biases due to the

employed methods, data as well as SFMS/UNF structures,

geometries and materials.

Regarding thermal performance, the total decay heat

(DH), representing the canister heat load and thermal

output, will be considered here as second objective func-

tion. The DH corresponds to the amount of energy still

released by the used fuel, once it is unloaded from a reactor

core. It originates from the decay of radioactive isotopes

and can occur as long as all unstable isotopes have not

decayed to stable ones. If the amount of DH is too high, the

canister outer surface temperature might reach values high

enough to alter the physicochemical properties and

characteristics of the multi-barrier system surrounding the

canisters (e.g., bentonite buffer and host rock). In the long-

term, this might lead to an accelerated degradation of the

geological and engineering barriers and/or create migration

paths for radionuclide transport to the biosphere in case of

canister wall breaches and/or cracks. Currently, a total of

1.5 kW is being considered in Switzerland [10] as design

limit for the canister decay heat; this will therefore be used

here as second optimization constraint. This DH constraint

will consequently inuence the type of UNF loaded together

in the same canister, as the UNF decay heat depends on a

few characteristics: initial content of ssile materials (only
235U is considered here), how long it was irradiated in a

reactor core (or burnup, quantied in MWd/kgU), and how

long it stayed on-site after its last irradiation.

For the study presented here, the k eff and DH opti-

mization will be performed at the start of the disposal

period after an assumed post-discharge cooling and dry

storage time of 30 years. Although longer storage times are

actually anticipated in many countries, referred to as ‘‘an

extended intermediate storage’’ and which could span

between 40 to even 100 years, 30 years was considered as

sufficiently representative for the purpose of the opti-

mization study. Moreover, it must be underlined that for

certain configurations, the k eff could increase during the

disposal phase (before decreasing again). Such time-de-

pendent effects on the optimization will not be considered

here and sub-criticality will thus only be evaluated after 30

years of cooling, i.e. at start of disposal.

If the total decay heat for a loaded canister can be

obtained by summing the individual values of each UNF,

the k eff is not an additive parameter and it also depends on

the positions and orientations of each UNF. Additionally,

as explained earlier, one k eff calculation is usually per-

formed using a Monte Carlo neutron transport code, which

is relatively time consuming (several hours on a normal

computer). As a consequence, choosing combinations of

UNFs and their orientations to minimize k eff require a

massive amount of simulations. To illustrate the dimension

of the possibilities, a simple case of one canister and 4

UNFs leads to more than 104 combinations (presuming that

one UNF can be radially and axially rotated). For 2 can-

isters and 8 UNFs, the number of combination is over 109.

It is easily conceivable that with a few hours of calculation

per case, loading optimization becomes very challenging, if

not impossible.

In order to replace Monte Carlo simulations and to

effectively speed up the k eff calculation, a convenient

solution is to use an artificial neural network (ANN). The

advantage of such surrogate method is that once the ANN

is trained, then a k eff can be obtained only in a fraction of a
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second, therefore opening the possibility of multiple cal-

culations for the optimization purpose.

This is the first goal of the work described in this paper:

how to define a ANN for k eff calculations and which

performances are then obtained (in terms of bias or maxi-

mum deviations)? The second goal pursued here is then the

optimization of the canister loading with a genetic algo-

rithm, using an ANN for the calculations of k eff .

Finally, it must be noted that the optimization of SFMS

has been subject of a wide range of previous studies. This

also includes canister loading optimization for which

combinatorial approaches as well as heuristic methods

were for instance explored (see Refs. [11, 12]). Usage of

optimization techniques such as genetic algorithms and

simulated annealing were also investigated, for instance in

the context of minimizing costs related to on-site UNF

storage after reactor shutdown [13]. Concerning neural

networks, they have been successfully used in the past for

regression problems in multiple domains. These range from

predicting river daily flow [14] to asphalt concrete stability

[15] and include deriving electronic temperature in nuclear

fusion experiments [16] and many more. ANNs can be in

particular a very powerful tool for regression problems

with highly nonlinear relation [15, 17].

In relation to nuclear science and engineering, ANNs

and artificial intelligence methods have been applied for

loading optimization in relation to in-core fuel manage-

ment (e.g., Refs. [18–21]).

The work presented here constitutes thereby a continu-

ation of some of the previous studies but with the partic-

ularity that here, the intention will be to take benefit of

higher resolution methods for spent fuel characterization

and combine these with a dual optimization scheme com-

prising both an ANN and a genetic algorithm (GA) to

perform canister loading optimization.

3 UNF, canister and neutronic simulations

In this section, general descriptions of the UNFs, the ori-

gins of their contents and their characterizations are pro-

vided. Such models and the calculated k eff will be the

learning database for the ANN, and in total, about 46,000

different canister loadings are considered.

3.1 Description of the assemblies

For the present study, 212 representative UNFs operated in

a Swiss PWR are considered, spanning over the range of

initial fissile content enrichments (from 1.9 to 4.39%) and

burnup values (from 8 MWd/kgU to 66 MWd/kgU). In this

context, only uranium fuel (UO2) assemblies are here

considered, meaning that other operated fuel designs such

as MOX are for the time being not included in the

optimization.

The selected enrichments and burnup values are repre-

sentative of realistic cases, either for UNF being fully

burned, or for UNF expected from the last reactor cycle

before final shutdown (not fully burned). These UNFs

originate from a specific Swiss PWR, and can potentially

be loaded into a minimum of 53 canisters. If not all DH and

k eff values are below the limits, more canisters will have to

be used, unfortunately increasing the cost of the long-term

storage.

This number of 212 UNFs is sensibly smaller than the

expected 12,000 UNFs for final repository [5] (when con-

sidering all Swiss power plants, and assuming a base sce-

nario of 60 operating years for all the Swiss reactors). In

practice, as power plants are still in operation, a number of

assumptions would be necessary to cover the full 12,000

UNF cases. But as the range of UNFs selected for this

study is large, it still allows to study the applicability of a

ANN. The assemblies considered in this study are all

geometrically similar: made of 15� 15 vertical rods (225

in total): 20 of them are empty for control rode guide, and

205 are filled with fuel. These latter ones are initially made

from uranium oxide UO2 with a specific concentration of
235U (or enrichment). All rods have a zirconium cladding.

3.2 Simulation codes for reactor physics

A series of simulation codes are used to calculate the decay

heat and k eff for loaded canisters, as a function of the

selected UNFs and their location. Details are provided in

the next sections, the goal being to replace such codes for

criticality calculations by a neural network.

3.2.1 Reactor core and high resolution UNF simulations

As mentioned, the selected 212 UNFs were irradiated in a

Swiss PWR and their irradiation history as well as their

physical characteristics are thus known. The time spent in a

reactor core, the cycles of irradiation, as well as other

information on the reactor are extracted from the Paul

Scherrer Institute (PSI) in-house Core Management SYS-

tem (CMSYS) computational platform for reactor core

simulations [22, 23]. Within CMSYS, reference assem-

bly/core models based on the Studsvik codes CASMO [24]

and SIMULATE [25] are being continuously developed

and validated for all the Swiss reactors and operated cycles.

Recently, CMSYS was enlarged to couple the core models

to the SNF inventory code [26] also belonging to the

Studsvik suite.

On this basis, a computational scheme was established

such as to allow reconstructing the isotope inventories and

Neural Computing and Applications

123



associated post-discharge source terms for each axial layer

(typically 30 to 50 vertical segments), for each individual

fuel rod in each of the operate fuel assemblies, taking into

account the detailed irradiation environment that sur-

rounded the assembly during operation. This constitutes a

significant advance in terms of spent fuel characterization,

and is defined here as high resolution predictions of real-

istic UNF contents. In addition, this opens perspectives for

new optimisation alternatives.

To illustrate this, Fig. 2 presents two simplified views of

the central cross section of canisters loaded with 4 different

UNFs. The UNFs were selected arbitrary and for demon-

stration purposes only. The same assemblies are inside both

canisters, only their radial rotations are different. Numbers

indicate the initial enrichments, as well as their burnup

values at loading. The colors inside each UNF are pro-

portional to their fissile isotope contents: red for high

concentrations, blue for low and white for average (the

fission product contents are not presented, but are usually

inversely proportional to the fissile content). White and

black rods indicate the position of the empty control rod

guides. The canister geometry is schematically represented

by the red circle (inside: light brown, outside: blue). As

observed, each UNF has a unique pattern of fissile isotope

concentrations, due to their unique irradiation life (e.g.,

reactor cycles, positions in the cores). These particularities

play a role in the calculation of k eff , as well as the relative

position of each UNF. For these canisters, the k eff values

are 0.94803 for the top one and 0.95533 for the bottom one

[27]. Such difference is non-negligible as in the first case k

eff is below the limit of 0.95, whereas in the second case it

is above. This example illustrates the importance of the

position of the UNFs within the canister. Note that also the

orientation of each UNFs might influence the k eff value of

the canister.

Based on the above high resolution characterization of

the UNF isotope contents, the decay heat as function of

time is thus also computed by SNF for each individual

material region. The decay heat value for a loaded canister

is then simply obtained from a linear sum of the DH of the

individual UNFs. These values do not depend on the rel-

ative location of the UNFs inside a canister and are com-

puted by the SNF code (along with the inventories) [27, 28]

at any given time (in this study, calculations are performed

at 30 cooling/storage years). The k eff is calculated based on

the same isotopic contents using a Monte Carlo neutronic

simulation code (see next section), thus providing a con-

sistent approach between the DH and k eff calculations.

3.2.2 Monte Carlo simulations for k eff

As mentioned, the Monte Carlo neutronic transport code

used to compute k eff is called SERPENT [29]. Specific

information is needed in order to perform such simulations:

the canister geometry, its material, the location of the four

UNFs (relative locations, axial and radial rotations), as well

as the content of the assemblies: cladding, spacers and

most importantly the actinides and fission products (basi-

cally actinides can generate neutrons, and fission products

are neutron absorbers); the transfer of the isotopic com-

positions from the SNF code to the SERPENT code is

Fig. 2 Examples of two canisters loaded with four different UNF

assemblies (same ones are used in both canisters). Colors are

proportional to the concentration of fissile materials (see text for

details). For the top canister, k eff ¼ 0:94803; for the bottom one, k

eff ¼ 0:95533
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realized with the help of the COMPLINK code (for details

see Ref. [30]). In the current models, the different contents

of each rod of each UNF are considered. Additionally, as

mentioned, each UNF is typically divided vertically in 30

to 50 segments, the content of each segment being different

due to the axial power profile in a reactor core. The canister

geometry includes realistic dimensions, based on the model

used in Ref. [27]. As it is customary in this type of safety

analysis studies, the canister is considered flooded with

water (apart from the UNF locations).

The SERPENT calculation time depends on the number

of neutrons considered (also called neutron histories) and

directly define the statistical precision of the calculated k eff

values. In the criticality safety analysis, it is typical to

perform calculations with a precision in the order of 10-

50 pcm (or 0.01 %), and in the present study, the number

of neutrons is selected to obtain a statistical uncertainty of

about 10-15 pcm. As mentioned, the SERPENT calcula-

tions are usually time consuming and a first approximation

is considered in the following by taking into account only a

two-dimensional model with the central assemblies and

canister axial segment (reflective boundaries are assumed).

This allows to divide the calculation time by almost a

factor 20. The consequence of this approximation is an

artificial increase in the k eff values, but does not change the

general study. Considering the 212 UNFs mentioned, var-

ious loading configurations have been randomly selected

and a total of 46,000 k eff values were calculated. Figure 3

displays the number of appearances of k eff values given by

SERPENT. The spread of the k eff values is relatively large,

from about 0.75 to almost 1.05. Certainly such distribution

depends on the selection of UNFs and on their random

loadings, but it allows here to train a specific ANN and to

explore its performances. One can notice that close to 30 %

of the samples are above the safety requirement of 0.95. A

similar distribution for the decay heat is presented in

Fig. 4. As mentioned, such values are obtained by linearly

summing the individual four components (one for each

UNF), independently of their location and rotation in the

canister. As observed, nearly 3% of the cases are also

above the design limit.

This suggests that for the specific UNF designs inves-

tigated here, the DH might no longer be a limiting design

factor for longer storage times (e.g., 40 years or more),

consequently reducing the number of loading optimization

constraints.

4 Development of an artificial neural
network

As mentioned, artificial neural networks have been suc-

cessfully used in multiple domains for regression problems.

In the present study, the computing system is a supervised

learning algorithm as it requires a labeled data set.

4.1 Description of the ANN

In order to predict the desired outputs (namely k eff values

for specific canister loadings), the ANN needs to be

trained. To that purpose, more than 46,000 samples

(46 746 to be exact) were obtained with random canister

loadings. In order to have an estimation of the spread of

results due to the selection of training/testing sets, the 10-

fold method is applied: the samples are once randomly

mixed, then 10 % are used for testing the ANN and the rest

is used for training. The procedure is repeated through the

Fig. 3 Number of appearances of the k eff values from the ’ 46000

Monte Carlo simulation samples computed after 30 years of cooling

time

Fig. 4 Number of appearances of the decay heat (DH) values from the

’ 46,000 Monte Carlo simulation samples computed after 30 years of

cooling time
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whole sample set, such that each sample is being used to

test the ANN only once. Such approach would then provide

10 different biases (between the SERPENT k eff and the

ANN k eff ), providing a certain amount of confidence in the

results, while keeping a reasonable training time (a few

days). It is made with the Matlab environment and the

‘‘Neural Network Fitting app’’ [31].

The ANN’s loss function is the mean squared error

function. The ANN is composed of fifty hidden layers; the

training function is ‘‘trainbr’’, using the Levenberg-Mar-

quardt optimization to update the weight and bias values,

and uses the bayesian regularization in order to find a

neural ’’network that generalize well’’ [31]. Other param-

eters are given in Table 1. Such selection of hyperparam-

eters was performed using a trial and error process, and

parameters leading to the best results are used in this study.

4.2 Description of the input and output

As mentioned, each UNF is composed of 225 rods, with

only 205 of them filled with fissile materials and fission

products, the 20 other rods being empty. Initially, the SNF

code provides 205 isotopes for each rod. As observed, the

number of initial features is higher than the number of

samples available, and there is therefore a need to reduce

the dimension of the input. It is in particular motivated by

the fact that some of these isotopes have a low concen-

tration, or a low reaction rate, and their impact on the k eff

is small enough to neglect them. The initial number of

isotopes was then reduced to 38 by removing all isotopes

below a certain concentration threshold, such threshold

being also chosen by the trial and error process on k eff . The

remaining 38 isotopes are the following: 87Rb, 90Sr, 90Y,
93Zr, 93;94Nb, 107Pd, 113Cd, 126Sn, 125Sb, 129I, 137Cs, 148Nd,
147Pm, 147;151Sm, 154;155Eu, 230Th, 231Pa, 233;234;235;236;238U,
237Np, 238�242Pu, 241;243Am, 242�246Cm. From the aspect of

nuclear cross sections, the remaining isotopes are indeed

significant, given the characteristics of the UNFs.

Considering a limited number of 38 isotopes per rod, the

total number of inputs for one specific k eff value is 38�
4� 205 ¼ 31; 160 values (4 UNFs, and each of them with

205 rods). Additionally, some isotopic concentrations are

strongly correlated as concentrations are often slowly

changing through radial neighbouring rods (see the smooth

variations of colors in Fig. 2). It is therefore possible to

reduce the input dimension, and a principal component

analysis (PCA) is applied to the training set (and subse-

quently for all the 10 training sets from the 10-fold

method). In the following, only the variables responsible

for 99% of the variance will be used for the ANN, reducing

the number of features to only 38. It was found that only

3300 features (inputs) are linearly independent from the

31,160 initial ones. Moreover, the case without PCA

requires up to a few weeks to be computed and is thus not

practical. Once performed, the PCA decomposition is

stored and the same decomposition is applied to the testing

set and with the genetic algorithm. All features were pre-

viously normalised with respect to the mean and standard

deviation before the use of the PCA, otherwise only the

highest concentrations will explain most of the variance. In

the following, the ‘‘residual’’ is presented, defined as the

difference between the k eff value computed by SERPENT

and k eff value calculated by the ANN (expressed in pcm, or

per cent mille).

4.3 Results of the ANN

After training the ANN with the 10-fold method, the mean

residual for the test sets is 0 pcm, with an uncertainty of

1 pcm. Likewise, the standard deviation on the residual of

the test sets is 45 ± 3 pcm. The quoted uncertainties are as

one standard deviation (later mentioned as ‘‘std’’ or r)
given by the 10 ANN due to the 10-fold cross-validation.

As an example, Fig. 5 displays a comparison between

the k eff values from SERPENT and from the ANN, for one

Table 1 Selection of parameters used for the ANN in the present

work

Number of hidden layers 2

Activation function for hidden layers Sigmoid function

Activation function for output layers Linear function

Number of neurons per layer 50

Epoch 1000

0.75 0.8 0.85 0.9 0.95 1 1.05

Target (keff from Serpent)

0.75

0.8

0.85

0.9

0.95

1

1.05

O
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k
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e 

A
N

N
)

Test: R2=0.999932

Fig. 5 Comparison between the target value (k eff value from

SERPENT) and the output (k eff from the ANN) for the testing set
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specific case of the 10 test groups. This relation can be

approximated by a linear regression. The R2 value of the

training set is 0.999954, whereas it is 0.999932 for the

testing set.

In the following, only one ANN will be used with the

genetic algorithm, being the one with the smallest standard

deviation on the residuals for the test set (42 pcm). The

bias of residual is 0 pcm and the extreme values are -740

and ?467 pcm, see Fig. 6 for the distribution of the

residuals.

As observed, the residual distribution is strongly peaked

(with a kurtosis of 37.5), and only 1.6% of the cases are

above 100 pcm (almost 2r). It indicates that for the vast

majority of the cases, the k eff values are extremely well

reproduced by the selected ANN.

In order to find the best configuration, other designs for

the neural network were tested. In Fig. 7, one can observe

that results for neural networks with one or two layers.

Also, two different activation functions for the hidden

layers were investigated. It was then observed that the

neural network with two layers and 50 neurons per layer

using the sigmoid activation function provides the smallest

standard deviation on the residual of the test set (45 ± 3

pcm). Additional configurations using three layers were

also tested and did not show significant improvements. For

clarity, these cases are not presented in the figure.

In order to assess the robustness of the model, the iso-

topic concentrations for each of the 38 isotopes of all the

rods were perturbed using a normal distribution with a

standard deviation of 1%. We found that the maximum

difference between the nominal value from the ANN and

the perturbed one was 40 pcm, corresponding to variations

of the isotopic composition for 238U. Such value is still less

than the standard deviation of the residual on the test set

(42 pcm), as previously found.

4.4 Convergence

One should also ensure that the number of samples used to

train and test the ANN is optimum. By choosing the same

parameters as for the optimised ANN, the 10-fold proce-

dure has been repeated with a reduced number of samples.

The samples were still chosen randomly among the total

set. Figure 8 presents the standard deviation on the testing

set as a function of the total number of samples, used to

both train and test the ANN. The last point is, therefore, the

same value as found in Sect. 4.3. One can observe that the

Fig. 6 Distribution of the residuals for the ANN, later used as an input

for the genetic algorithm (1r corresponds to 42 pcm)
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Fig. 7 Standard deviation of the residual on the test sets depending on

the number of neurons per layer, the number of layers and the

activation function used in the hidden layer(s)

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Number of samples 104

40

60

80

100

120

140

S
td

 [p
cm

]

Fig. 8 Standard deviation as a function of the number of samples. The

last point corresponds to the one presented in Sect. 4.3
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convergence seems to be reached for sample numbers

above 40,000.

Such numbers certainly vary as a function of the initial

UNF selection, and also as a function of how many UNFs

are selected. But for the present study, the number of

samples seems to be enough to reach convergence of the

standard deviation.

5 Loading optimisation with the ANN
and a genetic algorithm

Once the ANN is sufficiently trained, with a known

residual and standard deviation, it can be confidently used

in combination with a genetic algorithm (GA) to optimize

the loading of canisters. Such final steps are presented in

the following sections.

For the present problem definition, the GA is well suited

as there is no specific structure for the ‘‘fitness function’’ to

be optimized, but the search path is well constrained

(minimisation of k eff and decay heat for each canister).

Additionally, thanks to the ANN, the evaluation process is

not computationally expensive.

5.1 Description of the genetic algorithm

The same previous UNFs are considered for the opti-

mization of the canister loading: 212 UNFs to be loaded in

a minimum of 53 canisters. As mentioned, their isotopic

concentrations are determined from their irradiation history

in the reactor core and cooling time, and are considered as

fixed quantities in this study. For each canister, the first

criteria are that their k eff and decay heat must be below the

safety limits (0.95 for the criticality and 1.5 kW for the

decay heat). The second criteria for the optimization are

that the distribution of k eff and decay heat values for all

canisters must be as homogeneous as possible. The GA will

then pursue these four goals.

The genetic algorithm developed in that purpose is

described in Fig. 9. At the initial step, all positions and

orientations of each UNFs within the canisters are ran-

domly chosen. The GA ends after 10,000 iterations. In each

iteration, a loop is made over all canisters. In this loop, a

random number will decide if the location or orientation of

one UNF chosen will be randomly changed (within the

same canister, or involving two canisters). If the k eff of the

canister is smaller then the modification is accepted (if the

swapping is within the same canister, the decay heat is not

affected). In the case where the algorithm will swap an

UNF with another canister, the alteration is kept if the

maximum k eff and maximum decay heat between the two

canisters are smaller than for the original configuration.

5.2 Optimisation for k eff and the decay heat

Figures 10 and 11 display the evolution of the k eff and

decay heat values as a function of the number of iterations

in the GA.

As observed, the maximum k eff and decay heat values

are well below the limits above 10 to 50 iterations. The

final maxima are k max
eff ¼ 0:9178 and DHmax ¼ 1:12 kW

(note that the k eff at iteration 0 is well above 1). Addi-

tionally, if the maximum values start to be unchanged

above a few hundred iterations, the standard deviations are

still decreasing up to a few thousand iterations (300 pcm

for k eff and 11 W for the decay heat; the difference

between maxima is 1800 pcm and 50 W for k eff and the

decay heat, respectively). Taking into account the maxi-

mum absolute bias from the ANN (740 pcm, see Sect. 4.3)

and the SERPENT statistical uncertainty (15 pcm) for k eff ,

it can be confidently assumed that all safety criteria are

fulfilled.

5.3 Verification with SERPENT

Once the optimised loading pattern is found, one can check

the agreement between the ANN-GA solutions and the

SERPENT k eff values for the 53 canister loadings. To that

purpose, additional 53 SERPENT calculations have been

performed, corresponding to the loadings provided by the

last iteration of the GA.

The agreement between the SERPENT k eff values and

the ones from the ANN is found such that all the 53 k eff

values agree within 740 pcm. Indeed, the maximum over-

estimation of the k eff by the ANN is of 340 pcm, and the

maximum underestimation is 260 pcm. Apart from the

cases at 340 and 260 pcm, all the other comparisons are

within 120 pcm. The average deviation of the difference of

k eff is 20 pcm. Given such small deviations, it can be

concluded that the the ANN-GA results are validated by

the reference SERPENT calculations.

6 Discussion of the present results

Based on these results, one can consider that the goal of our

study is reached, namely optimizing the canister loading,

by minimizing the k eff and decay heat values for each

canister, as well as the the standard deviation of their

distributions. Some additional comments are provided in

this section.

Neural Computing and Applications

123



6.1 Advantages of combining the ANN and GA

One of the goals of this study aimed at replacing the time-

consuming Monte Carlo code SERPENT, the advantage

being that once the ANN is trained, it only needs a fraction

of a second to evaluate k eff for any specific canister

loading (being an homogeneous or heterogeneous group of

UNFs). Once the ANN trained, the use of a GA becomes

possible. Such combination of ANN and GA allows to

consider heterogeneous canister loadings from a practical

aspect, opening additional optimization possibilities com-

pared to existing approaches based on homogeneous

loading (the direct use of SERPENT would inhibits the

study of heterogeneous cases). For a more realistic case

scenario with all the UNFs expected for the final reposi-

tory, a new set of samples is required. Indeed, a large

number of samples will be required to train sufficiently the

ANN, which can also be limited by SERPENT’s comput-

ing time. The advantage of the ANN/GA combination is

that the SERPENT calculation can be parallelized (random

loadings), contrary to the SERPENT’s direct use in the GA.

6.2 Additional variability of the input data

The present study considers a number of 212 UNFs, with

their fixed characteristics, coming from the ‘‘high resolu-

tion UNF simulations’’. Such simulations are nevertheless

based on a number of assumptions, such as nuclear data

cross sections, manufacturing and engineering tolerances

or impurities. These assumptions definitively impact k eff

and DH values, as presented in Refs. [22, 28], and conse-

quently can modify the training data for the ANN. It was

for instance demonstrated in Ref. [33] that variation of

nuclear data can lead to k eff distributions following the

‘‘Extreme Value Theory’’, potentially heavily impacting

the results presented in this study. Such variabilities are not

Random number
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Choose randomly the posi-
tion and orientation of all
UNFs within the canisters

Swap an UNF with
another canister

Exchange location of 2
UNFs within the canister

Adjust the radial ori-
entation of an UNF
within the canister

Alteration accepted
if the maximum keff
value and decay heat
is smaller or equal

loop over all canisters

10 000 iterations

if > 0.2 and < 0.8if <
0.2 if > 0.8

Fig. 9 Schematic overview of

the genetic algorithm for the

canister loading optimisation.

The k eff is evaluated with the

trained ANN presented in the

previous sections
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Fig. 10 Maximum, minimum, mean and standard deviation of k eff for

the 53 canisters as a function of the number of iterations while

optimising at the same time k eff and the decay heat
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considered in this work, as well as possible biases from the

high resolution UNF simulations (for instance differences

between the real isotopic concentrations and the calculated

ones), and accountability errors (such as wrong UNF

labelling or registration).

6.3 Current limitations and future
improvements

The neural network is therefore a powerful tool to predict k

eff values: if SERPENT calculations would have been run

for 1000 GA iterations, more than 2000 days of Monte

Carlo calculations would be needed (using a single CPU).

However, its current implementation and the input data

contain some limitations.

One limitation concerns the approximation of a two-

dimensional geometry for the reference (SERPENT) cal-

culations. Calculations with three-dimensional geometry

can be performed, but it increases the number of input data

(the multiplication factor is 40, as 40 vertical zones are

considered). One needs to study the possibility of consid-

ering less zones, or apply a PCA with a limited impact on

the k eff values computed by the ANN.

It is also expected that the current ANN is adequate for

UNFs similar to the ones considered. Indeed, the ANN

seems to reproduce the k eff values successfully for canister

loaded with the 212 known UNFs. Nonetheless, the number

of UNFs taken into account is small compared to the

12,000 used nuclear fuel expected for the final repository in

Switzerland. The ability of the ANN to accurately compute

k eff values for canisters with UNFs not yet considered

during the training needs to be evaluated.

Moreover, under specific circumstances, one may wish

to load a canister with fewer UNFs, if the decay heat of the

UNFs is too high (for instance for the UNFs used in the last

reactor cycle before decommissioning: such UNFs will

have neutronic characteristics beyond the considered ran-

ges). In that case, the current ANN needs to be re-

evaluated.

An additional physical constraint not considered here is

the availability of UNFs over time. Indeed, not all UNFs

will be available at once at the docking/undocking stations

of the final repository. A limited amount of transport casks

can be unloaded at once, thus requiring a cask selection

prior to the canister loading [21, 32]. Such practical limi-

tation is not considered in this work. Additional aspects

will need to be considered for the further development of

the optimization methodology. Among other things, the

following can be mentioned:

• Dose rate constraints were not considered here while

this constitutes a third key safety and design require-

ment. And when taking dose rates into account, the

flexibility for the loading of the assemblies (e.g.,

rotation) might be reduced, meaning that the optimal

loadings found here might no longer be valid. However,

adding this third safety parameter will not change the

results of the ANN to compute the k eff for the presented

assemblies.

• Only a static ANN/GA optimization was performed

here since the k eff optimization was made at a given

precise time, namely start of disposal. As mentioned

earlier, the k eff might however vary with time and

incorporating such dynamical effects in the ANN/GA

optimization scheme will need to be assessed.

• The usage of high resolution UNF simulations com-

bined with the assumption that UNFs could be loaded in

any arbitrary manner (e.g., orientation, rotation) was

shown to allow using the exact minimum number of

required canisters. However, it remains to be verified if

this could also be achieved (or if a higher number of

canisters would be required) when the optimization is

performed without allowing anymore for arbitrary

assembly placements and/or when assuming assem-

bly-average UNF contents. Addressing this is relevant

since as shown here, arbitrary placements could be

advantageous from a loading point of view. On the

other hand, it could reduce flexibility in terms of

manageability and operations. And it would also lead to

stricter requirements in terms of safety assessments

since the risk for inadvertent fuel assembly loadings due

to machine and/or human errors would become larger.

In the light of these limitations, additional efforts are

needed towards the full application of this method for

industrial goals. A large part of the necessary information

is already in place (realistic input data), but its full usage

for the optimization of the canister loading is not yet fully

demonstrated.

7 Conclusion

This work is oriented towards finding optimised canister

loadings for used nuclear fuel for the Swiss deep geological

repository. The optimization was performed on two quan-

tities: the canister criticality and its UNF decay heat.

Additionally, uniform distributions for both quantities were

required. This study contains a description of the surrogate

model used to replace the Monte Carlo transport code to

compute the k eff for each canister and presents the genetic

algorithm applied to optimise the loading.

The surrogate model is an artificial neural network

aiming at evaluating k eff values of canisters. The artificial

neural network was therefore trained and tested on a lim-

ited set of UNFs. The evaluation of the surrogate model on
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the testing set used was presented. The test set was com-

posed of the same UNFs as in the training set but loaded

differently.

Once a surrogate model has been developed, a genetic

algorithm was used to optimise the loading, based on the

ANN evaluations. The same UNFs used to train and test the

model have been used for this loading optimisation prob-

lem. The final optimized loading complied with the

requirements, namely that all quantities were below max-

imum allowed values, and that the distributions of decay

heat and k eff among canisters were as uniform as possible.

Finally, a number of points of improvements were pre-

sented, but the good performances of the present results are

encouraging for future developments, involving more

realistic constrains.
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