Controlled Multimedia Wireless Link Sharing via Enhanced Class-Based Queuing with Channel-State-Dependent Packet Scheduling

Christine Fragouli
Vijay Sivaraman
Mani B. Srivastava
University of California, Los Angeles

ABSTRACT: A key problem in transporting multimedia traffic across
wireless networks is a controlled sharing of the wireless link by
different packet streams. So far this problem has been treated as that
of providing support for quality of service in time division
multiplexing based medium access control protocols (MAC).
Adopting a different perspective to the problem, this paper describes
an approach based on extending the Class-Based Queuing (CBQ)
based controlled hierarchical link sharing model proposed for the
Internet [Floyd95]. Our scheme enhances CBQ, which works well in
wired links such as point-to-point wires of fixed bandwidth, to also
work well with wireless links based on radio channels that are (i)
inherently shared on-demand among multiple radios, and (ii) are
subject to highly dynamic bandwidth variations due to spatially and
temporally varying fadings with accompanying burst errors. The
proposed scheme is based on combining a modified version of CBQ
with Channel-State Dependent Packet Scheduling [Bhagwat96].

1.0 Introduction

A key problem in the emerging wireless multimedia packet
networks such as [Agrawal96] is providing a mechanism for
controlled sharing of the wireless link by different packet streams,
belonging to different applications and in general traversing to or
from different radios, that are sharing the link. In research literature,
this controlled wireless link sharing problem has largely been treated
as that of providing support for quality of service (QoS) in medium
access control protocols (MAC). Various proposed QoS-aware MAC
protocols [Karol95, Sivalingam97] typically accomplish this goal by
providing a centralized channel bandwidth reservation and
scheduling mechanism on top of a basic time division multiplexing
(TDM) structure with time divided into slots and frames. While
providing a QoS framework, such MAC protocols also have
complexities and inefficiencies associated with their underlying
virtual connection-oriented rigid temporal structure. While such an
approach might be good for overlaying multimedia on top of the
cellular phone network or for the virtual connection oriented
wireless ATM networks, it does not fit well with mobile IP based
wireless LANs using radios such as WaveLAN and RangeLAN.
Such radios, which are usually based on the 802.11 MAC protocol or
similar CSMA/CA variant MAC protocols, are being used in laptops
for wireless LAN access to the Internet.
11 Our approach

We have therefore taken a different approach to the problem,
viewing it not as a QoS-based MAC problem but as a problem of
making link sharing in Internet work in a wireless radio link.
Specifically, we have developed a scheme based on extending the
Class-Based Queuing (CBQ) based controlled hierarchical link
sharing model that has been proposed by Floyd and Jacobson
[Floyd95]. CBQ is intended to enable internet routers to control
distribution of bandwidth on local links in response to local needs
while retaining the decentralized flavor of the Internet. Controlled
link sharing via CBQ, by allowing different traffic types to be
isolated, is envisioned to work with priority-based packet scheduling
to meet end-to-end real-time service requirements on the Internet.

0-7803-4383-2/98/$10.00 © 1998 IEEE.

572

Our scheme enhances CBQ, which works well in wired links,
such as point-to-point wires of fixed bandwidth, to also work well
with wireless links based on radio channels that are (i) inherently
shared on-demand among multiple transceivers, and (ii) are subject
to highly dynamic bandwidth variations due to spatially and
temporally varying fadings with accompanying burst errors. Our
proposed controlled wireless link sharing scheme is based on
combining a modified version of CBQ with Channel-State
Dependent Packet Scheduling (CSDPS) [Bhagwat96]. Intuitively, the
CBQ component of our scheme provides the controlled sharing
among multiple packet streams (fairness) while the CSDPS
component improves channel utilization (throughput) by taking into
account the different states of the wireless link radio channel that
may be seen by the different spatially distributed receivers. This
allows our scheme to simultaneously achieve controlled sharing of
the wireless link and improved radio channel utilization.

A wireless link sharing scheme has to satisfy the twin goals of (i)
fairness, or controlled sharing of bandwidth among multiple packet
streams, and (ii) throughput, or high utilization of available radio
channel bandwidth. However, in order to achieve these goals a link-
layer protocol for a wireless environment has to deal with problems
associated with the radio propagation characteristics:

+ A transmitter cannot know by its own means the interference,
fading and general reception quality at the receiver. A variety of
link-layer protocols have been proposed [Karn90] for this prob-
lem, the most common solution being the exchange of RTS and
CTS (request to send and clear to send) control messages,
which we have also adopted.
If a transmitter communicates with N different terminals, then it
actually has to deal with N spatially distinct independent per-
destination links over a shared wireless radio channel. A “link”
here refers to the wireless path between a specific pair of trans-
mitter and receiver. The error behavior of the link between the
transmitter and each receiver is bursty, and both time and space
dependent. For example, only a subset of the receivers may be
in a fade zone or be subjected to interference at any given time.
When a transmitter has a FIFO queue of packets to transmit to
different receivers, through different links, a Head Of Line (HOL)
problem may occur [Bhagwat96]. Repeated RTS-CTS attempts are
done by MAC protocols with link level retransmissions such as
802.11 and CSMA/CA. The transmission of the head of line packet
to a specific receiver may repeatedly fail if the link to that receiver is
in a burst error state. This can happen if the specific receiver is in a
fade, or if there is another transmitter causing interference at that
receiver (e.g., due to frequency collision in slow frequency hopping
ISM band radios). This results in a blocking of the transmission of
packets that are further down the queue but destined to other
receivers. Thus, all receivers suffer even though only the link to the
receiver for the packet at the head of the FIFO queue is in a bad
condition. Since the wireless links to various destinations are
statistically independent, packets for other destinations could have
been successfully transmitted during this interval. Our CBQ and
CSDSP based link sharing scheme provides for controlled sharing of

the wireless link while coping with these intrinsic problems.
1.2 Related work

Most relevant to our scheme is the prior research on Class Based
Queueing for controlled (wired) link sharing for Internet, and on
Channel State Dependent Packet Scheduling for improved wireless
link performance. Link-level channel-state-dependent packet
scheduling (CSDPS) was prcposed in [Bhagwat96] to overcome the
aforementioned problem of head of line blocking and consequent
poor wireless link utilization. The key-function of the state
dependent scheduler, is that the terminal abandons the transmission
effort for the HOL packet as soon as it is “persuaded” that the
destination is for the time being not-reachable, proceeds with the
transmissions in the rest of the receivers and retries sending the
abandoned packet at a later time, when the link might have
improved. Although it attempts to maximize channel utilization,
CSDPS by itself, however, does not provide any mechanism for
making or meeting bandwidth commitments to different connections
or groups of connections in a wireless link. It is unfair in this sense
and needs to be associated with a link scheduler to ensure fairness.

Class Based Queuing (CBQ) link sharing mechanism was
proposed in [Floyd95] as the key component in enabling the
deployment of priority based packet scheduling algorithms to
support end-to-end service requirements of real time traffic in the
Internet. CBQ associates a hierarchical structure with a link, thus
aggregating the packet streams belonging to different connections
into classes consisting of one or more connections. CBQ associates
quantitative bandwidth commitments with the hierarchical class
organization and strives to provide controlled link sharing by
ensuring fairness in the sense that each interior and leaf class gets its
allocated bandwidth over a relevant time interval. As a secondary
goal of CBQ is to provide a guideline for distributing excess
available bandwidth among the classes instead of an arbitrary
allocation. A brief summary of the main functions and features of
CBQ [Floyd95] relevant to cur scheme is presented in Section 3.4.

2.0 Problem description

We are interested in the aforementioned architecture: one server
(transmitter), serving a number of different applications (queues),
each of which is destined to a possibly different receiver. For
example, a base-station transmitting downstream to the different
terminals in his cell, or one terminal, on which run a number of
applications each communicating with a different peer, possibly to a
different mobile through a different link or wireless path from the
receiver. We propose leveraging CBQ and combining it with a
CSDPS module, to achieve improvement of throughput and fairness
over a shared wireless channel.

In this architecture, we have two resources:

- The server/transmitter time: the server is sequential (for exam-
ple one radio transmitter that can transmit one packet at a time).
The bandwidth of the radio channel.

To each queue is allocated a specific percentage of bandwidth of
the shared channel. If all the transmitter-receiver links were error
free, then the assigned percentage of bandwidth would correspond to
the percentage of time the server devotes to each queue. CBQ could
then be employed to assure that every queue takes its demanding
percentage of the server’s time. In reality radio channels are bursty
due to fadings and frequency collisions. Their behavior can be often
modeled as a Markov chain of two or more states [Bhagwat96,
Swarts94, Wang95]. Transmitting unsuccessful RTS-CTS to a link in
a bad state causes the server to spend time on a queue/link without
improving its throughput. The CSDPS module tries to assure that if

573

possible the server will only spend time transmitting to each link
when this link is in a good state while CBQ ensures fairness.

Background: RTS-CTS handshake in wireless links

Many different variations of the RTS-CTS messages have been
proposed in the literature. In this paper, we use the following
approach, although any other could equally well be used: A sender,
sends an RTS (ready-to-send message) to its receiver, indicating that
it has data to send. The receiver may not receive the RTS correctly
due to errors. If it does, it replies with a CTS (clear-to-send reply),
accepting the transmission. The sender may also not receive the CTS
reply, because, for example, it is currently in a bad state. In this last
case too he will perceive an RTS-CTS failure. If the sender fails with
the RTS-CTS transmission, it persists, up to a specific maximum
number of times. The RTS-CTS message exchange has a dual role:

To probe the state of the receiver’s link: its duration is much
smaller than that of an actual packet, and thus the throughput
loss incurred in case of failure, much less. This is the primary
purpose we use the RTS-CTS exchange for in our scheme.

To deal with the hidden/exposed terminal problem: This is the
traditional role of RTS-CTS as proposed by [Karn90].

RTS-CTS use imposes an overhead to the channel throughput.
This overhead depends on the length of the transmitted packets, the
channel-behavior and the specific resource allocation. Assuming, for
example, that the whole RTS-CTS hand-shake consumes 20 bytes
worth of the senders time, the throughput in one of our specific
simulations testbed dropped as much as to 84% of the throughput we
could achieve if we had perfect knowledge of the receivers link
(which corresponds to the use of a zero-duration RTS-CTS).

3.0 Theoretical background

3.1 Motivation example

Let us consider the following simple case: a sender that has two
packet streams to send, one to each of two different receiver. Each
stream is assigned 50% of the throughput. Although they are sharing
the same radio channel, the states of the links from the transmitter to
each of the two receivers are independent because the two receivers
may be subject to different and independent fading and interference
mechanisms. For purposes of illustration in this example we will
assume that the state of the links to the two receivers change
deterministically between a good and bad state. Later in the paper,
however, we will use more realistic Markov models for fading
channels.

We declare a link to a specific receiver be in a bad state when
transmission to it is very likely to fail due to a corrupted packet, and
in a good state, respectively when transmission on it is likely to be
successful. We assume the bad state as being completely destructive
and the good error-free. Typically link layer protocols in wireless
LANSs employ cyclic redundancy codes (CRCs) to detect errors in a
packet. Even with more powerful error correcting codes, there is a
certain probability of the packet being damaged beyond repair by the
code. Depending on the MAC protocol, a retransmission of the
damaged packet may be attempted by the MAC protocol itself, or
left to a higher protocol layer. Irrespective of the final fate of the
packet, a link sharing scheme would be interested in selecting the
most appropriate packet transmission time in terms of the channel
state.

Consider for example having to transmit the two packet streams
in a wireless link where the links to the two receivers are as shown in
Figure 1. Basic CBQ (and conventional MAC protocols) is totally
unaware of the states of the links to individual receivers since this is
not something that happens on the wired links for which CBQ was

GOOD
BAD

Link to Receiver #1
GOOD ——-——‘ I————-—-l
BAD

Link to Receiver #2

Figure 1: Links to two receivers oscillating between good and
bad state

designed. In the scenario of Figure 1 CBQ would blindly assume that
links to all receivers are in good state and basically treat the problem
like that of sharing a fixed bandwidth wire. So, it will allow packets
from each of the two streams to be blindly transmitted.

Intuitively, we would like to transmit to receiver #1 when the link
to it is in a good state and link to receiver #2 is in a bad state.
Similarly, when link to receiver #1 enters a bad state and link to
receiver #2 the good state respectively, we would like to transmit
only to receiver #2. At the same time, however, we have to regularly
probe the link to the receiver to which we do not currently transmit.
This probing has to be done in order to keep an updated knowledge
of the states of the links to each of the receivers and to be aware of a
bad to good state transition in the link to any of the receiver. This can
be achieved by using channel-state-dependent (CSDPS) scheduling
which has been initially introduced in [Bhagwat96]. The following
subsection describes the idea behind CSDPS, and our variation.

3.2 Channel State Dependent Packet Scheduler (CSDPS)

Many studies in literature such as [Swarts94, Wang95] have
established that finite state Markovian models can be effectively
used to characterize the error behavior of wireless links. Based on
that, the authors in [Bhagwat96] use a two-state Markov model
(Good-Bad) for the link, to illustrate how using CSDPS scheduling
can improve the throughput performance. Through simulation, they
verify that head of line blocking causes poor utilization as well as
Round Trip Time (RTT) growth and fairness problem.As a solution
they propose that scheduling policies should take the wireless
channel state information into consideration.These policies upon
encountering a “bad link”, which might be detected by the loss of a
packet for example, defer transmission to that destination until the
start of the next good period for the wireless link corresponding to
that destination.

We adopt a variation of this approach in our work: we model the
actual links as two-state Markov models. As we mentioned before,
we assume that if a link is in a bad state, transmission to it is useless.
Ideally we would like the mobile to have exact knowledge of the
state each link is in. But this in reality never happens. So in our
simulations the mobile itself keeps its estimate of how good it thinks
the link is. This goodness of the link is expressed through parameter
g. The mobile updates this parameter, for each link, whenever it tries
to transmit packets for an application using that link. The parameter
g is allowed to take a number of integer values.

The intuition is, that the better we think the link to a receiver is
(the bigger the g), the more we should persist when we try to
transmit to that receiver, because we indeed have better chances to
succeed. On the other hand, if we think that the link to a receiver is
bad, we should not lose much time on it, but instead proceed to
another receiver and try this receiver again later. In our simulations g
is translated to the max number of RTS attempts allowed: if a CTS is
not successfully received even after g tries at sending RTS, then g is
decreased exponentially. If we succeed with less than g tries, g is
increased (up to a max value) inversely proportional to the number of

574

with the

CSDPS

03 S és 4
ok ol

0.25 -g"g gg N
25 8
A D

0.2 =371 4

o 1

queus numbers

Figure 2: Throughput of Round-Robin vs. Channel State
Dependent Packet Scheduler
attempts.

The main discrepancy between the actual channel state and the
mobile estimation stems from the fact that the mobile does not
monitor each link continuously but only for a fraction of time. Then
it turns its attention to other links. So when it eventually returns, the
link might have completely changed behavior.

Allowing g to take more than two values increases the flexibility
of the channel-state-dependent module. Multiple values of g permit
the sender to be conservative and take into account its previous
knowledge of the receiver’s link state. In reality good state is not
error-free or bad-state always destructive, so in order not to have
purposeless oscillations, one would like to gradually built up the link
state estimate based on more than one link probe. The performance
depends on the specific functions used to update g, and is a choice
for each system since no generic solution could possibly be optimum
for all the different optimizations desired. Another benefit of a multi-
valued g is that in our model we have assumed a two-state only
Markov-model for the individual links to the various receivers
sharing the wireless link. However, depending on the specific system
and radio channel, a multiple state Markov model may be better. In
such a case the “estimated channel state” could then be reflected in
the value of g.

33 Need for CBQ

Referring to the motivational example used previously, consider
Figure 2, where the first column represents the throughput achieved
for each queue using just Round-Robin scheduling while the second
column the throughput achieved using Channel-State-Dependent
Packet Scheduling. The traffic used is constant bit rate (CBR). As
expected from [Bhagwat96], one observes that the elimination of the
HOL problem due to the use of CSDPS significantly increases the
throughput for each queue. So the introduction of CSDPS is
beneficial, as will indeed be verified later by our simulation results
obtained under more realistic channel and traffic characteristics.

However, CSDPS with the round robin scheduler does not
provide any control over the wireless link sharing. CSDPS by itself
neither has any mechanism to commit specific fractions of the
available bandwidth to different connections nor does it have any
mechanism to enforce the allocations. It therefore is unfair in this
sense. For example, it might happen that the link for a particular
destination is constantly good, while the link for another destination
suffers from severe fades. CSDPS simply does round robin
scheduling among those receivers that currently have good
connections. This can result in misbehaving applications
communicating to receivers with constantly good connections (for
example, if they are nearby) getting more than their fair share while

GOOD
BAD

GOOD
BAD

Link to Receiver #1 (always good)

Link to Receiver #2 (oscillating between good & bad)

Figure 3: State of links to two receivers

penalizing applications communicating to receivers whose links
undergo fades and interference. A misbehaving application is one
that produces more traffic than its allocated share. Furthermore, it
might even happen that the link state checking period of CSDPS will
always coincide with the periodic occurrence of fades.

For example, assume that the application which is
communicating with receiver #1 in the previous example has a
constantly good link (see Figure 3), and is misbehaving by

Effect of misbehaving application one
0.7 T T

_——App #1 is not misbehaving

0.5

App #1 is misbehaving -
0.4
0.3

0.2

0.1

o

1 2

queue numbers

Figure 4: Sharing of throughput in CSDPS, when application #1
is not misbehaving versus when it is misbehaving

generating traffic at a rate much bigger than its allocated bandwidth
share of 50%. Then, in Figure 4, we observe that it gets more than its
allocated bandwidth, at the expense of the other application’s
throughput. The first column in Figure 4 represents the throughput
when the first application is not misbehaving, and the second when it
is misbehaving. The small increase in the total throughput is due to
the fact that we increased the packet duration of the first application
to make it misbehaving, and thus the RTS-CTS overhead decreased,
resulting in an overall throughput increase, all absorbed by the
misbehaving application.

The preceding example makes it clear there is a need for a
mechanism in addition to CSDPS that will try to guarantee to each
application that no other application will steal its allocated fair share
of the bandwidth. In the context of wired networks, a mechanism
that tries to ensure that different classes sharing a link receive their
allocated bandwidth is provided by CBQ introduced in [Floyd95],
which is presented in the following section.

3.4 Class Based Queuing

In this subsection a brief summary and terminology from
[Floyd95] is presented. We assume an hierarchical link-sharing
structure. All arriving packets are assigned to one of leaf classes by a
classifier. The interior classes are used to designate guidelines about
how “excess” bandwidth should be allocated, between leaf classes.
The root correspond to the link which is shared by the leaf classes. A
link sharing bandwidth is allocated to each class, expressed as a
percentage of the overall bandwidth. The link sharing goals are the
following:

575

i /

Figure 5: CBQ to estimate the throughput uses the rate of the
bytes sent to calculate the inter-departure time

1. Ensure that classes receive their allocated link-sharing

bandwidth over the relevant time-interval.
2. Distribute the excess of the bandwidth in a fair way.

To achieve these goals, the idea is to use a link-sharing
mechanism on top of the scheduler which performs hierarchical
class-based resource management (CBQ). Although conceptually we
can think of it as having a link-sharing and a general scheduler, all
implementations have a single integrated scheduler.

A class is called
overlimit if it has recently used more than its allocated band-
width
underlimit if it has used less than a specified fraction of its allo-
cated bandwidth
at limit if it is neither of the above two
unsatisfied if it is underlimit and has a persistent backlog.
regulated if packets are scheduled by the link-sharing scheduler,
and is restricted to transmit at no more than its allocated band-
width, and
unregulated when it is not rate-limited.

Formal link-sharing guidelines: A class can continue
unregulated if one of the following conditions hold:

The class is not overlimit
The class has no overlimit ancestor at level i, and there are no
unsatisfied classes at levels lower than i.

Otherwise, if neither of these conditions hold, i.e. the class is
overlimit and some other class is unsatisfied, then the class will be
regulated.

So CBQ’s main functions are:

- estimate the limit status of each class (overlimit, at limit, etc.)
- determine if each queue is satisfied or unsatisfied
- if a queue is unsatisfied, restrict the appropriate other queues.

The main module used is an estimator which estimates the
bandwidth used by each class over the appropriate time interval to
determine whether or not a class has been receiving its link sharing
bandwidth. An implementation of the estimator, presented in
[Floyd95] which we also initially used in our simulations, is the
following:

Consider a specific leaf-class/queue. Let s be the size of the most
recently transmitted packet in bytes, b the link-sharing bandwidth
allocated to the queue in bytes per simulation unit, and ¢ the
measured inter-departure time between the packet that was just
transmitted and the previous packet transmitted from that queue
(Figure 5) Ideally, we would like inter-departure time to be r=s/b. Let
diff=t-s/b be the discrepancy between the actual inter-departure time
and the allocated inter-departure time for that class for packets of
that size. So diff is negative when the class transmits more often than
its allocated bandwidth permit, and positive if it transmits less often
than allowed. The simulator computes the exponential weighted
moving avg of the diff variable using the equation avg — (I-w)avg +
w*diff. A class is considered to be overlimit if avg is negative and
underlimit if avg is positive.

The value of avg computed by the estimator is also used to
update the time_to_send field associated with each queue. This field
indicates the next time that the server is allowed to send a packet

.

from that queue. For a queue with positive avg, the estimator sets the
time_to_send field to zero, indicating that the class is under its limit.
For a regulated class with negative avg, the link sharing scheduler
sets the time_to_send field to s/b seconds ahead of the current
time.This is the earliest time the queue will next be able to send a
packet.Thus, a regulated queue is never restricted to less than its
allocated bandwidth, regardless of the “excess” bandwidth used by
that class in the past.

3.5 New CBQ estimator for wireless links

Using a CBQ module in our architecture, we indeed managed to
suppress the misbehaving source, as can be seen in Figure 6.

tolts

CBQ restricts misbehaving

o7 —T

CSDPS + CBQ

CSDES alone

CSDPS + CBQ

0.2

4CSDPS alone

0.1

o 1 2

queue numbers

Figure 6: Throughput of CSDPS alone, versus CSDPS+CBQ

We notice though, that CBQ with an estimator implemented in
the above described way (similar to [Floyd95]), provides fairness
only in the sense that it restricts the misbehaving source to its
allocated bandwidth of 50% of the nominal link bandwidth.
However, it does not rectify the problem of a connection not getting
its fair share because the link to its receiver goes into bad state.

Instead, the type of fairness that we would intuitively like to
achieve in a wireless link is to guarantee, to each class queue, its
allocated percentage of the effective throughput, where the effective
throughput is defined as the total throughput achieved at each
moment. That is, in the previous example, where the total throughput
is around 80%, we would like each queue to be allocated exactly half
of it, 40%. In other words, considering again the case in Figure 3
where link to receiver #1 is constantly good while link to receiver #2
is good only 50% of the time, we would like (i) our mobile to
transmit only to receiver #1 when link to receiver #2 is in a bad state,
and (ii) only to receiver #2 when the link to receiver #2 is in a good
state although link to receiver #1 is in a good state too.While (ii)
might appear counter-intuitive, such a strategy actually makes more
sense and is fairer because it allows receiver #2 to be compensated
for the bad phases underwent by the link to receiver #2.

So, we introduce the following implementation of a new CBQ
estimator tailored for wireless links: A queue is defined to be
unsatisfied, if it receives less than its allocated percentage of the
effective throughput:
avg=(allocated_percentage*effective_throughput)-
(queue_throughput)
effective_throughput=total_bytes_sent/time
queue_throughput=total_bytes_sent_by_queue/time

where time is a specified time-frame in the past, over which we
count the bytes sent. In our simulations we used the time since
beginning, but an appropriate window could be chosen as well. The
impact of the new CBQ estimator is illustrated by Figure 7 where the
first column shows the throughputs when the original CBQ estimator
from [Floyd95] is used, and the second column shows the throughput

576

Effect of the new-fairness estimator

()i'igin‘alv CBQ cstimator: -

Nm CBQ estim‘atdr
Original CBQ estim
New CBQestimutor

1 2
queue numbers

Figure 7: Throughput of original [Floyd95] vs. new CBQ
estimator

real-
tlme

12%

2%

25% 5% 15% 10%

25%

Figure 8: Throughput of Round-Robin, versus Channel-
State-Dependent scheduling
when we replace the CBQ estimator by our new estimator.

The throughout is indeed now evenly split among the two
applications as wished. As a consequence, a queue is not restricted
up to its allocated throughput, but up to its allocated percentage of
the effective throughput of the wireless channel.

Another important feature that we added to CBQ, is that we
permit a restricted queue to transmit even if there exist other
unsatisfied queues, provided that the restricted queue has a good link
and all the unsatisfied queues have bad links. This avoids needless
waste of wireless link bandwidth that results with unmodified CBQ.
The simplest example to consider is when link to receiver #1 is
constantly in good state and link to receiver #2 is constantly in bad
state. Then, there is no reason why not to permit the application
transmitting to receiver #1 to transmit as much as it wishes, even if it
becomes overlimit and queue for application sending to receiver #2
is unsatisfied since link to receiver #2 is currently useless anyway.
Moreover, it would be a loss of throughput and waste of resources to
restrict it.

Before we discuss the reasons that further justify the need of
these changes to CBQ, we present the remaining modules used in
our approach so as to complete the system architecture picture.

4.0 TImplementation of modified CBQ with CSDPS

The architecture we are interested in is a tree hierarchy of three
levels (see Figure 8) where:
the root stands for a transmitter (i.e., the server)
the interior nodes stand for the link to specific spatially sepa-
rated receivers to which each application wishes to transmit.
the leaf nodes stand for specific transmitting applications.
For example, one could have a scenario where a mobile is
exchanging real time speech and video with another mobile, and at
the same time downloading files from a server from the wired

network, or sending some data to a third mobile.

Each application’s packets are put in a different queue at the
transmitter. Applications generate traffic independently, although
they might have the same destination. Applications that indeed send
packets to the same receiver will share knowledge about the
estimated state of the link to that receiver. The architecture has three
main modules:

1. The channel-state determiner
2. The CBQ module
3. The scheduler

The simulations were performed using the Maisie discrete-event
simulator! [Short95]. The above modules were implemented as
functions that are called by the transmitting mobile module. For
reasons of completeness, we repeat some of the ideas presented
earlier in the first paragraph of the following subsection.

4.1 Channel-state determiner

It updates the estimation for g each time the link layer attempt to
send a packet, i.e., each time an RTS-CTS exchange takes place to a
specific receiver, where g corresponds to the maximum number of
RTS retries allowed on the link to that receiver the next time we are
going to use it. All the applications that use the same link obtain the
updated value of g. If up to g tries result in failure, g is decreased
exponentially, while if success occurs, g is increased inversely
proportional to the number of RTS-CTS tries required for the
success. The exact functions used for the g update should depend on
the characteristics of each specific application.

The wireless link is modeled as a collection of independent radio
link, one to each spatially separated receiver, that all temporally
share the wireless link. Each independent radio link is viewed as a
two-state Markov radio channel and there is one Maisie simulation
module instance for each one of them. These receiver link modules
change states with specific transition probabilities throughout the
simulation time, with the granularity of the simulation time,
independent of whether the raobile tries to transmit through them or
not.

Each time an RTS is send by the mobile, the corresponding link
module, depending on its state, decides if RTS is successful or not.
We reiterate that CTS reception failure could also happen at the
transmitter, but we assume that this probability of failure is
incorporated in the link module.

4.2 The enhanced CBQ module
Our CBQ module, which is an enhancement of the model in
[Floyd95], holds the following information for each packet queue:

1. Limit status: A queue can be overlimit, or underlimit,
depending on the value of avg, where

avg=(allocated_percentage*effective_throughput)-
(queue_throughput)

The limit status of each queue is recalculated each time a
packet from any queue departs, as avg is a function of the total
effective throughput. So actually avg is an instantaneous
value, rather than an average, we just kept the name used for
the respective function in CBQ.

. Satisfied or unsatisfied: A queue is considered to be
unsatisfied (unfairly treated), if it is underlimit (has sent less
than its percentage of the effective throughput) and has a
persistent backlog. Otherwise it is considered to be satisfied.

1. available from http://may.cs.ucla.edw/

577

A persistent backlog is declared when the queue’s
exponentially weighted average length (in bytes) exceeds a
specific threshold. This threshold could be different for each
queue. The exponentially weighted average length is updated
each time a packet enters or leaves the queue. If a queue is
unsatisfied, then CBQ regulates the rest of queues that are
satisfied and overlimit, that is, restricts them.

. Restricted or not: A queue is restricted if it is overlimit, and
there exists at least another unsatisfied queue (a queue might
be underlimit but not unsatisfied if it doesn’t have a backlog,
i.e. doesn’t produce traffic). A restricted queue is not allowed
to transmit unless there does not exist an unrestricted queue
with a good link. A queue cannot be restricted unless

(i} it is overlimit, and

(ii) there exist at least another unsatisfied queue.
A queue cannot be overlimit unless another one is underlimit,
and vice versa. Equivalently, a restricted queue gets
unrestricted, as soon as, either it is no longer overlimit, or,
there no longer exist any unsatisfied queues.

4.3 Scheduler

The scheduler could implement any kind of scheduling policy
such as FIFO, LIFO, priority scheduling, etc. Since we are mainly
interested in observing the effect of introducing and combining the
CBQ and CSDPS modules, our aim is to obtain comparative results.
Therefore, we used a simple round-robin scheduler which does
nothing else but checks the queues sequentially and determines
which is the next queue from which a packet should be send. If all
the queues are empty, the scheduler does nothing. Otherwise, it
applies the following rule. A queue is allowed to transmit if:

« it is not restricted

- it is restricted, which means its fairly treated and there do exist
other queues that are unfairly treated or unsatisfied, but the links
to the receivers of all the unsatisfied queues are in a bad state
while the link of the receiver for the restricted queue is in a good
state.

If the queue currently checked is not allowed to transmit, then
the scheduler goes on to the next queue, until it finds one.

4.4 Flow of events
Following is the exact sequence of events:

. When a packet enters a queue, the queue length changes, so it
is checked whether the queue now becomes unsatisfied. If it
does, all overlimit (satisfied) queues become restricted.

The link goodness estimation is updated on RTS-CTS
exchange. If RTS-CTS is successful, then a packet is sent.

3. Each time a packet is sent: (i) the sender queue length
changes, so possibly the satisfied/unsatisfied status of the
queue might change, (ii) the throughput of the specific queue
changes as well as the total throughput (iii) the limit status of
the all the queues might change, since the rate, of their
throughput recalculated at that specific moment, to the total
throughput has changed. So, the limit status is recalculated for
all queues, and queues are made restricted or unrestricted
accordingly.

2.

5.0 Discussion of the changes introduced in CBQ
The inefficiency observed in the original (unchanged)
implementation of CBQ from [Floyd95], stems from the fact that it
is targeted towards a wired network while we use in a wireless link in
our simulations. More specifically, we observe that:
+ The total throughput in a wired environment is a known con-
stant and thus can be allocated beforehand to the different

classes. So, if each queue is restricted within its initially allo-
cated throughput, everyone will indeed get their allocated
throughput. In contrast, in a wireless environment, we cannot
know the total throughput one can actually achieve beforehand,
because the channels to different receivers are temporally and
spatially varying. Moreover, we generally cannot even count on
average values of the achieved throughput or channel behavior
in long terms. That’s because, each class represents a single
queue communicating through its own specific link, so in con-
trast with a wired network, as new applications are initiated and
old applications are shut down, the whole hierarchical class tree
is dynamically changing, and the total throughput achieved var-
ies accordingly. So the total throughput is not something con-
stant, but a function of time, and we can only know its current
value over a small past time interval, which we call effective
throughput.

As a result, we think it makes sense to allocate to each queue a
percentage of the effective throughput, or in other words, a
percentage of the time the server transmits successfully. Then
we must have CBQ check if this percentage is indeed allocated
to each queue, every time a new packet is send, and restrict
accordingly. In our simulations, we used the instantaneous value
of avg calculated since initial time, but one could perhaps have
benefits by using a weighted average over a window instead.

+ We cannot guarantee (o a queue even its allocated percentage of
the throughput, because it depends not only on our scheduling
choices but also on the changing link state as well. If the link to
a receiver enters a bad state and gets stuck there (e.g., the
receiver sits still in a fading null), one cannot do anything about
it. Meanwhile, there would be no purpose served by restricting
applications that are communicating with receivers to whom the
links are in good states. It therefore makes sense to serve such
application even though they might become or already be over-
limit while applications with a bad link to receiver may be
underlimit. After all, the underlimit applications cannot anyway
transmit due to their link to the receiver being in the bad state.

In summary, we have introduced the following changes to CBQ:

1. We changed the CBQ estimator to adapt to the current value
of the effective throughput

2. We restrict a class only if there does exist some other class
that is unsatisfied and has a good link to its receiver.

6.0 Simulation of a three receiver scenario

In this section we briefly present and comment on results
obtained for a case of a CBQ class tree with three different
applications, each of which is transmitting to a different receiver. To
provide a controlled setting for studying, we arrange for the state of
the wireless links to the three receivers to change in a deterministic
fashion in order to achieve a specific flows of events that we want to
study. More specifically, we try to investigate the effect of a different
“offset” between the state of the links to the three receivers.

We assume that all three sources have requested one third of the
bandwidth each, and that the third source is misbehaving. The max
throughput achieved, due to RTS-CTS overhead, if all the links are
constantly in the good state, is 0.942.

We present the following two cases. In each case, in Figures 9
and 10, the first column represents what one would ideally like, the
second represents the throughput achieved with CBQ+CSDPS
scheduling, the third with CBQ only, the fourth with CSDPS only
and the fifth when only the Round Robin scheduler is used.

578

Ideal, both,onty fair, only link, nothing
—

0.3}

0.28

CBQ + CSDPS
CBQ + CSDPS

plain Round-Robin
plain Round-Robin

CSDPS only

0.1

1 2
quéue numbers

Figure 9: Throughput when all three links enter the bad and
good states simultaneously

3

First example:

Figure 9 shows the throughput when the good-bad state
transition patterns for the link to all the three receivers are
deterministic and identical, with 50% duty cycle, 1000 time units in
each state, and zero offset between receivers. This might be the case
if a high power interferer subjects all the three receivers to
interference at the same time. Intuitively, this case is identical to
having a link with half throughput, because actually the links to all
the receivers are good for half the time and bad for the other half. We
observe that the introduction of the CSDPS scheduler does not offer
any improvement, as expected, since all the links are coordinated and
simultaneously enter the bad and good states. So it makes no
difference whichever channel we choose to transmit. On the other
hand, the introduction of CBQ does restrict the misbehaving source
three to its share of the effective bandwidth. The total throughput
achieved is indeed, as expected, half of the maximum possible.

Second example:

In this case, the link to each of the three receivers is successively
in the good and the bad states for 1000 time units each, and the state
transitions for the second and third links are phase offset from the
first link by 333 and 666 time units respectively. The third source is
misbehaving as before. The throughput achieved are depicted in
Figure 10. We observe that, contrary to the previous case, the
introduction of CSDPS scheduler does pay a lot, because there is
much helpful information in the link-state. As a result the total
throughput almost triples.

‘We also observe the effect of this special type of offset: link one,
gets the least of throughput when no CBQ is used, because it has to
compete for the second third of its good state period with queue two,
and for the last third with both queues two and three, while queue
three (corresponding to the misbehaving application) gets the most
throughput, because during two thirds of its good period none else is
in a good state so its the only one to get to transmit, and moreover,
because it is made to misbehave by generating larger data packets, it
has the least overhead due to RTS-CTS transmission. The total
throughput is increased, but not to the maximum value as might be
expected since the transmitter is never idle because there is much
more overhead for probing unsuccessfully.

We also tried scenarios where we varied the frequency of
transition between the good-bad states in the links to the various
spatially distributed receivers while keeping the average time spent
in each state constant. The main observation was that the more
frequent the changes, the less is the total throughput because of the
extra overhead associated with updating g more often.

7.0 Simulations results for mixed traffic scenarios

We use the structure and bandwidth allocations shown in Figure
8. A node labeled “mobile i” refers to a link for communication with
the i-th mobile. The classes are numbered O through 7 starting from
left to right. We used three kinds of traffic sources:

CBR source, which generates packets periodically

- Poisson source, which generates packets with an exponentially
distributed inter-arrival time

Bursty source, which is characterized by two-states: an on state
in which it generates packets with an exponential inter-arrival
time, and an off state in which no packets are generated. The on
and off states have exponentially distributed durations.

Links A and C (to mobiles T and 3 respectively) are fed by three
sources each - one CBR, one Bursty, and one Poisson source, while
link B (to mobile 2) has two sources (a CBR and a Poisson) feeding
it. This is the general model that we use for simulating a mixed
traffic scenario (Figure 8).

The link-sharing bandwidth of each class is indicated as a
percentage of the total channel bandwidth in Figure 7. The packet
sizes are fixed and the inter-packet arrival times are chosen such that
each source generates traffic commensurate with its demand.

In our simulations we compare the throughput and fairness
perceived by each queue under each of the following situations:
Combined CBQ and channel-state dependent packet scheduling
(CSDPS) are employed
+ Only CSDPS is employed
Only CBQ is employed
Only a plain round robin scheduler

We investigate along two dimensions - the effect of changing the
traffic types and the effect of changing the loss characteristics of the
links. In the first case we used a specific lossy channel and each of
the following traffic sources:
only CBR traffic
« only Poisson traffic
only Bursty traffic
a mix of the above traffic types

We present here only the graphs obtained for the first and the last
case, and only comment on the remaining cases.

A lossy channel was chosen to magnify the performance
improvement for the cases which use channel state dependent
scheduling. For the second set of simulations, we fixed the traffic (a
mix of the three traffic types, presented above in the three graph) and
study the effect of changing channel characteristics.

.

.

.

-

ideal, ooth,only fair, only link, nothing

0.35

S

0.3

025

CBQ + CSDPS

[72]
& &
a 2
Q Q
+ +
< <
&]
] 9]

throughput

plain Round-Robin
plain Round-Robin

0.1

queus numbaers

Figure 10: Throughput when all three channels have an offset
of one third of their good period duration between their entering
the different states, and application three is misbehaving

579

bandwidth 100 Kbps
slot 10 ps
total simulation time 10 seconds
w_((average weight of queue length) 0.1
threshold (for backlog) 2 packets
RTS-CTS delay 20 slots

Table 1: Parameters used for simulations

Queue # 0 1 2 3 4 5 6 7
Interarrival | 1000 | 4000 { 836 | 1200 | 800 | 2000 | 2000 | 1600
Packet size | 60 80 | 100] 300 | 80 | 300 | 200 | 400

Table 2: CBR and Poisson traffic parameters

Throughput for the different queues when using on not the differant modulas
T v v T T T T T

0.2

0.15

0.08

g »
g [
2 37
0.1 =0 4
2+
FO!
o
=88
st
I
1:
;

Figure 11: Throughput for mixed traffic and relatively good links

Applications 4 and 6 are made to generate traffic at a rate higher
than their share (by making their packet sizes larger) to study the
faimess properties of the algorithms.We use a round-robin scheduler
that takes the CBQ state and channel-state information into account
for the scheduling. Each link is assumed to behave like a two-state
Markov chain with a bit error probability of 0 in the good state and 1
in the bad state. The RTS-CTS overhead is 20 bytes per handshake.

The simulations were done using the Maisie discrete event
simulator [Short95]. The data rate of the wireless channel was 800
Kbps, and a simulation time slot was chosen to be 10 us
corresponding to the transmission time of one byte.

Table 1 lists the various values we use for our simulations. For
the first set of results, with the two state Markov modules used to
simulate the links, the probability of transition from the good to bad
state in each slot was set to 0.5x10 and the transition probability
from bad to good state to 104, These numbers corresponds to an
average fade length of about 10,000 slots (10 ms), with average fades
separated by 30,000 slots (30 ms). This is a high loss link.

Figure 11 shows the throughput when all sources generate CBR
traffic with packet sizes and rates as indicated in Figure 2. In the
graph the first bar corresponds to the allocated percentage of the
achieved bandwidth (bytes/slot), the second to the CBQ+CSDPS
scheme, the third to the CBQ scheme (no CSDPS), the fourth to the
CSDPS scheme (no CBQ), and the fifth to neither CBQ nor CSDPS
(scheduler alone).

The following observations can be made from Figure 11:

+ Throughputs are very low if the link-scheduler is not used. This
is expected since the link has a high error rate and this causes
long head-of-line blocking delays.

« CBQ reduces the overall throughput a bit, but enforces fairness,
for example, we observe that queue 6, which is transmitting at
above it’s allocation, is restricted to stay within its allocation by
the use of CBQ since the other queues are unsatisfied. On the

Throughput for the different ues when using on not the different modules
T T T ™ T T

throughput
o
T
% allocated
7 %% + CSDPS
Di
PRobn

plain Roun

queue numbers

Figure 12: Throughput for mixed traffic and relatively bad links

Throughput for the different queues whan using on not the different modules
0.258 T T T

ozt

0.6

trogpn

0.1

B! on{
DPS oni
plain Round-!

% allocated
zaCBQ + CSDPS
iobm

.08l

S

queus numbers

Figure 13: Throughput for mixed traffic and relatively good links

other hand, when CBQ is not used, we see that 6 is getting an
unfair portion of the bandwidth thus reducing the throughput of
the other queues.

- Adding the CSDPS drastically affects the throughput.

- CSDPS improves delays drastically (the delay graphs are not
presented because no special effort was made for delay
improvement, it just occurred as a side-effect). CBQ reduces
delays for non-violating classes (e.g. class 6) while increasing it
for the violating ones - exactly as desired.

For Poisson traffic sources we used the same packet sizes and
interarrival delays as for the CBR case. The general shape of these
graphs is quite similar to the CBR case, though the average delay
values are slightly smaller. The overall throughput is about the same.

For bursty traffic the delays were larger and throughputs smaller,
since CBQ restricted a source during bursts of large length.

Figure 12 presents the throughput for a mix of traffic sources,
with sources 0, 3 and 5 being CBR, 1, 4 and 6 Poisson and 2 and 7
are bursty (with parameters for each source as in their respective
tables given above). This mix of traffic source types represents a
more real-world scenario. The throughput performance is observed
to be slightly better than the other cases since it is less deterministic
and this heterogeneity allows better link sharing. From the above
observations we conclude that our modified CBQ behaves more or
less fairly towards all types of traffic sources.

Figure 13 shows the effect of improving the link error
characteristics. The probability of transition from the good to bad
state in each slot is 10™ and the transition probability from bad to
good state 10>, This corresponds to an average fade length of about
1000 slots (1 ms), with fades separated by 10,000 slots (10 ms).

As expected, since the links are really good, the introduction of
the channel state dependent packet scheduler does not significantly
improve the performance. On the other hand, CBQ does indeed
ensure fairness and restricts the misbehaving sources. The overall
throughput of the link does approach its optimal value of close to

85% (i.e. no errors - only overhead incurred are due to the RTS-CTS
exchange). Also, the effect of CBQ on delay performance of is more
pronounced - it drastically increases for the violating classes and
decreases appreciably for the non-violating ones.

8.0 Conclusions

Maintaining a high channel utilization (throughput) and ensuring
distribution of bandwidth to different connections according to their
allocations (fairness) are major requirements in transporting real-
time multimedia traffic over wireless links. The challenge is made
hard not only by the shared nature of the wireless links but also by
the possibility of the links from a transmitter to spatially distributed
receivers being in different states. We have described how combining
Class Based Queuing and Channe! State Dependent Packet
Scheduling can enable controlled wireless link sharing. However, we
also saw that the basic CBQ and CSDSP needed to be modified to
work well with wireless links instead of a naive combination of the
two. The twin objectives of throughput and fairness can conflict:
throughput might have to be sacrificed for fairness or vice-versa. The
time frame of interest over which to provide fairness needs to be
selected carefully. Finally, the impact on buffer allocation at the
transmitter needs to be studied since a side effect of our approach is
that the burstiness of one connection may be modulated by fading
and interference affecting another connection.

9.0 References

[Agrawal96] P. Agrawal, E. Hyden, P. Krzyzanowski, P. Mishra, M.
B. Srivastava, and J. A. Trotter, “SWAN: a mobile multimedia
wireless network,” IEEE Personal Communications, vol.3, no.2, pp.
18-33, April 1996.

[Bhagwat96] P. Bhagwat, P. Bhattacharya, A. Krishna, and S.
Tripathi, “Enhancing throughput over wireless LANs using Channel
State Dependent Packet Scheduling,” Proceedings of IEEE Infocom
1996, vol. 3, pp. 1133-1140, March 1996.

[Chen94] K-C Chen, “Medium Access Control of Wireless LANs
for Mobile Computing,” IEEE Network Magazine, vol. 8, no. 5, pp.
50-63, September/October 1994,

[Floyd95] S. Floyd, and V. Jacobson, “Link-sharing and resource
management models for packet networks,” IEEE/ACM Trans. on
Networking, vol.3, no.4, pp. 365-86, August 1995.

[Karn90] Phil Karn, “MACA - a new channel access method for
packet radio,” in ARRL/CRRL Amateur Radio 9th Computer
Networking Conference, April 1990.

[Karol95] M.]. Karol, Zhao Liu, and K. Y. Eng, “Distributed-
queueing request update multiple access (DQRUMA) for wireless
packet (ATM) networks,” Proc. of the 1995 IEEE International Conf.
on Communications (ICC'95), vol. 2, pp. 1224-1231, June 1995.
[Short95] J. Short, R. Bagrodia, and L. Kleinrock, “Mobile wireless
network system simulation,” Wireless Networks, vol.1, no. 4, pp.
451-467, Baltzer, 1995.

[Sivalingam97] K. M. Sivalingam, M. B. Srivastava, P. Agrawal,
“Low Power Link and Access Protocols for Wireless Multimedia
Networks,” In the Proceedings of IEEE Vehicular Technology
Conference, Phoenix, AZ, May 4-7, 1997.

[Swarts94] F. Swarts, and H Ferreira, “Markov characterization of
digital fading mobile VHF channels,” IEEE Trans. on Vehicular
Technology, vol. 43, no. 4, pp. 977-985, Nov. 1994.

[Wang95] H. Wang, and N. Moayeri, “Finite State Markov Channel - a
useful model for radio communications,” IEEE Trans. on Vehicular
Technology, vol. 44, no. 1, pp. 163-171, Feb. 1995.

580

