000099986 001__ 99986
000099986 005__ 20190602064334.0
000099986 02470 $$2DAR$$a12510
000099986 02470 $$2ISI$$a000254425300002
000099986 0247_ $$a10.1142/S0219691308002288$$2doi
000099986 037__ $$aARTICLE
000099986 245__ $$aThe continuous wavelet transform on conic sections
000099986 269__ $$a2008
000099986 260__ $$c2008
000099986 336__ $$aJournal Articles
000099986 520__ $$aWe review the known construction of the continuous wavelet transform (CWT) on the two-sphere. Next we describe the construction of a CWT on the upper sheet of a two- sheeted hyperboloid, emphasizing the similarities between the two cases. Finally we give some indications on the CWT on a paraboloid and we introduce a unified approach to the CWT on conic sections.
000099986 6531_ $$awavelets
000099986 6531_ $$amanifolds
000099986 6531_ $$asurfaces
000099986 6531_ $$aconics
000099986 6531_ $$aharmonic analysis
000099986 6531_ $$aLTS2
000099986 6531_ $$alts2
000099986 700__ $$aAntoine, J.-P.
000099986 700__ $$0241302$$g128491$$aBogdanova, I.
000099986 700__ $$aVandergheynst, P.$$g120906$$0240428
000099986 773__ $$j6$$tInternational Journal of Wavelets, Multiresolution and Information Processing$$k2$$q137-156
000099986 8564_ $$zURL
000099986 8564_ $$uhttps://infoscience.epfl.ch/record/99986/files/conic_sections-HASSIP4_rev.pdf$$zn/a$$s4101243
000099986 909C0 $$xU10380$$0252392$$pLTS2
000099986 909CO $$qGLOBAL_SET$$pSTI$$ooai:infoscience.tind.io:99986$$particle
000099986 937__ $$aEPFL-ARTICLE-99986
000099986 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000099986 980__ $$aARTICLE