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Abstract

Background. Supraspinatus deficiency is the most frequent and important problem associated to rotator cuff pathologies. It reduces
shoulder stability and can lead to osteoarthritis. The goal of this study was to develop a numerical model of the shoulder to analyse the
biomechanical consequences of this pathology.

Methods. A 3D finite element model of the shoulder was developed from a normal cadaver specimen. It included the scapula, the
humerus and the major abduction muscles. Instead of the usual ball-socket assumption, which prevents the natural translation of the
humerus, shoulder stability was actively achieved by muscles. A feedback algorithm was developed to synchronise muscle forces during
abduction. The numerical algorithm was validated against an algebraic model, and the calculated muscle moment arms were compared
to the literature. Two cases were considered: a normal shoulder and the same one without supraspinatus.

Findings. For the normal shoulder, the model predicted the initial upward migration of the humeral head. The maximal humerus
translation occurred at 30° of abduction and was 0.75 mm above its ideal centered position. Without supraspinatus, it was 1.6 times
higher and the contact point in the glenoid fossa was more eccentric. For the normal shoulder, the maximal glenohumeral force was
81% of the body weight, at 82° of abduction. Without supraspinatus, it increased by 8%, while the increase of muscle forces was 30%.

Interpretation. Supraspinatus deficiency increased the upward migration of the humerus, the eccentric loading, and the joint and muscle
forces, which may cause a limitation of active abduction and degenerative glenohumeral changes (osteoarthritis and the rotator cuff tear).

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The rotator cuff tear is one of the most frequent pathol-
ogies of the shoulder, especially for aging individuals. This
disease can affect all muscles of the rotator cuff, but the
supraspinatus is almost always involved, and the tear is
often limited to it. Rotator cuff tear is clinically associated
to pain and functional disability, and also to higher osteo-
arthritis occurrence (Hsu et al., 2003). From a biomechan-
ical point of view, the main consequence of a rotator cuff
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tear is a loss of stability, which results in a higher upward
migration of the humeral head during abduction, and pos-
sible impingement with the acromion (Kaneko et al., 1995;
Weiner and Macnab, 1970).

Several cadaver models have already been used to ana-
lyse the loss of shoulder stability in relation to a rotator
cuff tear. Using a dynamic shoulder testing apparatus,
active scapular abduction was simulated to study the effect
of massive rotator cuff tears (Konrad et al., 2006). For a
normal shoulder, there was only a slight upward transla-
tion of humeral head, while with massive rotator cuff tears,
the upward translation was much more important, and
could even lead to subacromial impingement. In another
cadaver study, repaired supraspinatus was compared to
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pathologic and simulated complete tear of the supraspina-
tus (Yu et al., 2005). A significant increase of contact pres-
sure was observed between repaired and simulated
complete supraspinatus tear, but only inferior translation
of the humeral head was observed. The anterior and pos-
terior stability were also measured before and after tearing
of the rotator cuff on cadaver shoulders (Hsu et al., 1997).
Applying predefined muscle forces on 10 cadaver shoul-
ders, the effect of a resection of the supraspinatus, associ-
ated with a resection of the infraspinatus, was analysed
more specifically (Mura et al., 2003). After a supraspinatus
resection, the average increase of upward migration of the
humeral head was about 1 mm, and it reached almost
3 mm without the infraspinatus. This study also showed
that there is an important inter-individual variation (after
supraspinatus resection, translation ranged from 0 to
5 mm). The effect of a progressive tear of the rotator cuff
on the glenohumeral joint force during abduction was also
evaluated (Parsons et al., 2002). No significant differences
was found after a complete tear of the supraspinatus, how-
ever, extension of tears beyond the supraspinatus tendon
into the anterior and posterior aspect of the rotator cuff
led to a significant decrease in the magnitude of joint reac-
tion force. In another simulated abduction on cadavers, the
supraspinatus deficiency required a higher force in the mid-
dle deltoid (101%) to initiate abduction, but only 12% at
full abduction (Thompson et al., 1996). No significant
alterations in humeral translation were observed in that
study.

Although all above cadaver studies confirmed a loss of
stability of the glenohumeral joint after a partial or massive
rotator cuff tear, some measurements and analyses could be
improved with numerical models. However, despite the
importance of this pathology, there are still no numerical
models that can predict the natural translation of the
humerus during abduction, which is a key factor for shoul-
der stability. This lack is probably caused by the relative

biomechanical complexity of the joint. Indeed, conversely
to the knee or the hip, which are mainly passively stabilized
(ligaments or congruency), the shoulder is mainly actively
stabilized by specific contractions of the surrounding mus-
cles, which provides its wide range of motion.

Therefore, the first objective of this paper was to
develop a 3D finite element model of the shoulder, using
muscle stabilization, rather than the usual ball-socket
assumption. The second objective was to analyse the effect
of a supraspinatus deficiency on the humerus translation
and the glenohumeral contact force, during continuous
active abduction in the scapular plane. The position of
the contact point on the glenoid surface and the muscle
forces were also analysed.

2. Methods

The present finite element model was built from the
same anatomical data as another shoulder model previ-
ously developed in our laboratory (Buchler et al., 2002).
Computed tomography scans of a normal cadaver shoulder
were used to reconstruct the geometry of the scapula and
humerus, and dissection of the same shoulder provided
muscle origins and insertions. Six muscles were considered
here: middle deltoid (MD), anterior deltoid (AD), posterior
deltoid (PD), supraspinatus (SS), subscapularis (SC), and
infraspinatus combined with teres minor (IS). The model
was then scaled so as to set the radius of the humeral head
to 24 mm, for future comparison purpose. The articular
cartilage was reconstructed from general anatomical
observations: an elliptical surface was fitted at the bony
side (McPherson et al., 1997), while the articular side was
represented by a spherical surface with a radius of
26 mm, which was positioned in such a way that the thick-
ness in the middle was 2 mm (Soslowsky et al., 1992a).
Muscles were modelled partly by 3D volumes and by cables

(Fig. 1).

i R,

T

F m"‘*

Fig. 1. 3D model (left) and the corresponding simplified 2D algebraic model (right). On the 3D model, rotator cuff muscles and MD are solid deformable
bodies that wrap around the humeral head to stabilize the joint. In the 2D model MD and SS also wrap around the humeral head, but the stability is

guaranteed by the ball-socket assumption.
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Even with only six muscles, there were more unknown
forces than available equilibrium equations. This indeter-
minate in the muscular forces was characterized by five
ratios, relating each muscle force to the MD force:

MD AD PD
MP = F_ 1, P = £ P = r_
FMD = 5 FMD FMD
ss 1S SC
sc _ I s _ 1 ss _ I
~ pMD> =MD MD

To numerically constrain these ratios to a predefined value,
a user-defined element (UEL) was developed and imple-
mented within the finite element software Abaqus (Abaqus,
Inc.). This UEL synchronized the muscles through a feed-
back mechanism, where the shortening of MD controlled
the muscle forces and the elevation of the arm. As for stan-
dard deformable finite elements, the UEL was called at
each increment of the Newton—-Raphson algorithm. There-
fore, at each increment, both mechanical equilibrium equa-
tions and ratios relations were fulfilled. The UEL had six
pairs of nodes: one for each muscle. The first two nodes
were used as a force captor for the MD, while the other five
pairs were used to set the amplitude and direction of the
other muscles. The contribution of the UEL to the Jaco-
bian operator (tangent stiffness of the Newton—-Raphson
algorithm) matrix is

dFM

duN
where F™M are the contributions of the UEL to the residual
vector force, and u™ are the nodal displacements of the
UEL. Each F™ is a function of u' to «°, the three orthog-
onal displacements of the first two nodes used for the
MD force captor. Except for MD, each FM additionally
depends on the six displacements of the two points that
define the orientation of the muscle associated to F™. An
exact algebraic expression for all forces F* and matrix ele-
ments K™Y was obtained and implemented in the UEL.

Bones were rigid, while cartilage and muscles were
deformable. Cartilage was characterized by a Neo-Hook-
ean potential w = 1.8(/; — 3), where I, is the first invariant
of the Cauchy—Green tensor (Buchler and Farron, 2004).
The muscle anisotropy was modelled with parallel stiff
fibres embedded along the principal direction of the muscle
volume, which was described by a soft Neo-Hookean
potential w = 0.5(/; — 3). Linear hexahedral elements were
used for cartilage and solid muscles, while truss elements
(no bending stiffness) were used for embedded fibres. The
same truss elements were also used for the cable part of
the muscles (Fig. 1). The wrapping of the muscles on the
humerus was achieved through the interaction between
the contact surfaces.

Abduction was simulated in the scapular plane and in
neutral rotation. The ratios of the muscle forces were deter-
mined from the product between electromyography (EMG)
and physiological cross-sectional area (PCSA), as initially
proposed by Poppen and Walker (1978). EMG and PSCA
were estimated from the literature (Ringelberg, 1985; John-

KMN —

Table 1

The muscles ratios were estimated by the product between PCSA and
EMG, which were obtained from the literature (Ringelberg, 1985; Johnson
et al., 1996; Kronberg et al., 1990), and normalized to the MD values

MD AD PD SS SC IS
PCSA 1.0 1.0 1.0 0.5 1.5 1.5
EMG 1.0 0.8 0.2 1.0 0.3 0.3
Ratios 1.0 0.8 0.2 0.5 0.5 0.5

son et al., 1996; Kronberg et al., 1990). Since EMG are
nearly proportional during scapular abduction, the ratios
were assumed constant in this case (Table 1), solving this
way the indeterminate. The arm weight was set to 37.5 N
(5% of the body weight) and applied at the arm gravity cen-
ter, 32 cm from the humeral head center (Poppen and
Walker, 1978). To reproduce the correct orientation of
the arm weight force, the scapula was continuously rotated
during arm elevation, according to the scapulohumeral
rhythm, which was set to 2:1 (e.g. Poppen and Walker,
1976).

This model was validated in two steps. First, the numer-
ical accuracy of the UEL was assessed by restricting the
numerical model in such a way as to correspond to a sim-
plified algebraic 2D model (illustrated in Fig. 1 and fully
described in Supplementary data). The difference in the gle-
nohumeral force of the simplified numerical model and the
algebraic one was a measure of the numerical error. Sec-
ond, the biomechanical coherence of the model was con-
firmed by comparing the moment arms of the muscles to
cadaver measurements reported in the literature.

To evaluate the effect of a SS deficiency, the SS was com-
pletely removed and the following variables were compared
to those of the normal shoulder: inferior—superior transla-
tion of the humerus, glenohumeral contact force, position
of the contact area center on the glenoid surface and mus-
cle forces.

3. Results

The comparison of the simplified numerical model with
the algebraic model produced a relative error in the gleno-
humeral contact force that was below 1% (Fig. 2). The dif-
ference between the glenohumeral contact force obtained
with the complete 3D model (Fig. 5) and the algebraic
one was less than 3%. The moment arms curves (Fig. 3)
confirmed that MD is the main abductor muscle. During
abduction, AD increased its moment arm, as well as PD,
the latter being antagonist below 50° of glenohumeral
abduction. Conversely, SS was more efficient at lower
angles of abduction. SC and IS moment arms were smaller
and also decreasing during abduction.

The translation of the humeral head was measured rela-
tively to the glenoid, in the inferior—superior direction.
Zero translation corresponded to a perfect centering of
the humeral head in the glenoid fossa (Fig. 4). In the initial
neutral position, the humeral head was in equilibrium on
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Fig. 2. Glenohumeral contact force obtained from the exact algebraic
solution of the simplified model (continuous curve) compared to the

numerical solution of the simplified model (circles). The relative error is
below 1%.
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Fig. 3. Moment arms of the muscles during abduction in the scapular
plane, as a function of the glenohumeral angle. The dominant role of MD
is confirmed. SS becomes less efficient during abduction, while AD and PD
become more efficient. PD is antagonist below 50° of glenohumeral angle,
which corresponds to 75° of abduction angle.
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Fig. 4. Inferior—superior translation of the humeral head relatively to the
glenoid during scapular abduction, for the normal shoulder (continuous
line) and without SS (dotted line). In the vertical axis, zero corresponds to
a perfect centering of the humeral head in the glenoid fossa.

the inferior border of the glenoid (Fig. 6A). During the first
30° of abduction, the humeral head migrated superiorly by
about 3 mm, but was only 0.75 mm above its ideal center.
From 30° of abduction, there was an almost constant
downward translation, with a perfect centering of the hum-
eral head near 130° of abduction. At 150° of abduction the
humerus head was only 0.5 mm below the ideal center posi-
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Fig. 5. Glenohumeral (GH) contact force and MD force, for the normal
shoulder (continuous line) and without SS (dotted line), during shoulder
abduction. For the normal shoulder the maximal GH force occurred at
82° of abduction and corresponded to 81% of the body weight. Without
SS, the maximal GH force increased by 8%, while the maximal DM force
increased by 30%.

tion. Without SS, the translation of the humeral head fol-
lowed the same trend, but the maximal upward migration
above the ideal center was 1.6 times higher and reached
1.2 mm.

For the normal shoulder, the glenohumeral force was
maximal at 82° of abduction and corresponded to 81% of
the body weight (608 N). The MD force was maximal at
75° of abduction and reached 25% of the body weight
(190 N). The other muscle forces were proportional to
the MD force, according to the muscle ratios. Without
SS, glenohumeral and muscle forces followed the same
trend, but the maximum glenohumeral force was 8%
higher, while the maximum muscle forces were 30% higher
(Fig. 5). Note also that these maxima occurred earlier (at
70, respectively, 64° of abduction).

As it might be expected, the inferior—superior position of
the contact area on the glenoid surface was correlated to
the translation of the humeral head (Fig. 6). For the nor-
mal shoulder, the contact was initially located on the infe-
rior rim of the glenoid (Fig. 6A) and moved on the superior
part of the glenoid during the first 30° of abduction. It
slowly returned to the inferior part during the rest of the
abduction, being in the center of the glenoid near 130° of
abduction (Fig. 6D). Without SS, the center of the contact
area on the glenoid surface was more eccentric, particularly
during the initial upward migration of the humeral head.

4. Discussion

Although the rotator cuff tear is a common pathology of
the shoulder after 60 years of age, it is still not well under-
stood. The goal of the present study was first to develop a
3D numerical model of the shoulder and second to analyse
the effect of a rupture of the supraspinatus tendon on the
translation of the humerus and the forces in the glenohu-
meral joint. The numerical part of the model was validated
against a simplified algebraic model, while the biomechan-
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Fig. 6. The two curves represent the inferior—superior position of the
contact point on the glenoid, for the normal shoulder (continuous line)
and without SS (dotted line). In the vertical axis, zero corresponds to the
center of the glenoid, and the lower and upper limits to the inferior and
superior edge of the glenoid surface. Below is the corresponding contact
area at five typical positions (A-E), for the normal shoulder (first line) and
without SS (second line). The contact area (gray zone) corresponds to non-
zero contact pressure, and contact point (black dot) correspond to the
application point of the equivalent contact force.

Contact position (mm)

ical part was validated against published measurements of
the muscle moment arms. The results of this model con-
firmed that a SS deficiency has an important effect on the
natural translation of the humeral head, but also on the
muscle and joint forces during scapular abduction.

The comparison of the numerical solution to the alge-
braic one, for the simplified model, proved that the numer-
ical model, and in particular the UEL subroutine, could
reproduce the exact solution of the mechanical system with
a sufficient accuracy. For the shoulder, as for any joint, it is
clear that moment arms of the muscles are crucial in the
biomechanics of the joint. Moment arms were measured
using the standard excursion method, for each muscle, dur-
ing the entire abduction. The resulting curves corresponded
well with published cadaver measurements (e.g. Liu et al.,
1997; Otis et al., 1994). Although the humerus was free
to translate in any direction, only the translation in the
inferior—superior direction was presented here. The
media-lateral translation was obviously constrained by
the glenoid surface, and the amplitude of the translation
in the anterior—posterior direction was small (less than
0.5 mm) during the entire range of abduction. After its ini-
tial upward migration, the humeral head remained rather
centered in the glenoid fossa during the entire movement.
The increase in the initial upward migration caused by

the resection of the SS tendon, clearly demonstrated the
loss of stability that may occur after a tearing of this ten-
don. The effect of the SS deficiency on the glenohumeral
contact force was not as obvious as its effect on the muscle
forces. It seems indeed rational that the removal of the SS
muscle, which is an important abductor muscle, regarding
to its moment arm, should be compensated by the others
muscles. However, the increase of the glenohumeral force
caused by the SS deficiency is not so intuitive and can only
be explained through the equilibrium equations; the same
effect was predicted with the simplified algebraic model.
Even if limited to abduction, the biomechanical analysis
of the shoulder remains difficult, not only because of the
central role of the muscles in the stabilization of the joint,
but mainly due to the mathematical indeterminate of this
mechanical system. In the literature, the indeterminate
problem has been solved by four different methods: by
avoiding it altogether by using only one muscle (Inman
et al., 1944), by using EMG measurements (Poppen and
Walker, 1978), by using optimization methods (van der
Helm, 1994; Karlsson and Peterson, 1992; Favre et al.,
2005), and by using constant force ratios (Wuelker et al.,
1995; Apreleva et al., 2000) or other predetermined muscle
forces (Soslowsky et al., 1992b). As for the above cadaver
models, the constant ratios method used in the present
paper seems quite reasonable for abduction in the scapular
plane, since all abductor muscles are nearly symmetrical in
this plane and produce nearly proportional EMG signals
(Ringelberg, 1985). Most biomechanical models simplify
the muscular stabilization mechanism by modelling the gle-
nohumeral joint as a ball-socket joint (Poppen and Walker,
1978; van der Helm, 1994; Karlsson and Peterson, 1992).
Although this hypothesis is quite reasonable for a force
analysis (only 3% difference of maximal joint force when
ball-socket was used in the model), the joint stability can
only be estimated by the projection of the reaction force
on the glenoid surface, rather than with the humeral head
translation. The glenohumeral force obtained here was
very close to the classical 80-90% of the body weight
reported by Poppen and Walker (1978). Using the cadaver
model of Soslowsky et al. (1992b), Kelkar et al. (2001)
measured the natural translations of the humerus during
scapular abduction. The general trend and amplitude of
translation predicted by the present numerical model were
very close to these experimental measurements. Using
open-MRI, Graichen et al. (2000) obtained also similar
results, which confirms the initial observations of Poppen
and Walker (1976). The effect of a progressive cuff defi-
ciency was investigated by Konrad et al. (2006), using the
cadaver model of Debski et al. (1995). After a complete
SS tear and 50% tear of SC and IS, they also observed
an increase of the initial upward migration. Similar results
were obtained on cadavers by Mura et al. (2003), who
measured 0.8 mm of average increase in initial upward
migration after SS resection. The predicted change of force
in MD after SS deficiency also corresponded fairly well
with the cadaver study of Sharkey et al. (1994), where a
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progressive deactivation of the rotator cuff muscle was
simulated. Indeed, after SS deactivation, the maximum
MD force occurred about 15° earlier and was about 10%
higher, compared to 11° and 30% of force increase pre-
dicted by the model.

As for most of the cadaver studies, this numerical anal-
ysis was limited to abduction since it is the most important
movement of the shoulder: mechanically, because it
induces large glenohumeral forces, and functionally, since
it is essential for most activities of daily living. More pre-
cisely, abduction was performed in the scapular plane,
which can justify the simplifying hypothesis of constant
muscle ratios during the entire abduction. Indeed, EMG
signals measured in those abductor muscles were almost
proportional during abduction in that plane (Ringelberg,
1985). Moreover, when the elevation is performed in the
plane of the scapula, the muscles are almost symmetric
about that plane.

The original feature of the present model is its ability
to account for the stability of the glenohumeral joint
through the muscles and the articular contact surfaces,
instead of the usual ball-socket assumption. The main
advantage of this method is to allow for the natural trans-
lation of the humeral head, which is crucial to analyse the
stability of the glenohumeral joint. This model was used to
analyse the effect of a deficiency of the supraspinatus,
which can be caused by a rotator cuff tear. The resulting
increase of humerus upward migration and muscle forces
may partly explain the occurrence of osteoarthritis and
progression of the tearing to the other tendons of the rota-
tor cuff.
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