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Abstract-This paper presents a method for efficient cod- 
ing at high spectral efficiency using parallel concatenated 
trellis coded modulation (PCTCM) with symhol interleav- 
ing. The constituent encoders are optimized for symhol- 
wise free distance, and each has an infinite symbol-wise 
impulse response. In many eases of practical interest, the 
optimal structure for these constituent encoders connects 
the memory elements in a single row. Simulation results 
show that performance is as close as 0.5 d B  to constrained 
capacity. 

I .  INTRODUCTION 

This paper presents a method for parallel concatenated 
trellis coded modulation (PCTCM) with constituent en- 
coders of rate k ln ,  k > 1. The k binary inputs can 
be thought of as one symbol input over the extension 
field G F ( 2 9 .  This approach uses one symbol interleaver 
between the Constituent encoders instead of k bit inter- 
leavers. 

The use of a symbol interleaver implies that the cou- 
stituent encoders should be optimized for “symbol effec- 
tive free distance.” This term refers to  the minimum out- 
put distance when the input symbol sequence has exactly 
two symbols different from zero, as opposed to the usual 
notion of effective free distance which refers to the min- 
imum output distance for a binary input Hamming dis- 
tance of two. 

Section I1 presents previous work, and determines 
where our approach stands. Section I11 motivates the use 
of symbol interleaving. Section IV illustrates our proposed 
method for symbol interleaved PCTCM. Section V derives 
guidelines for the design of the constituent encoders, ex- 
tends the effective distance bounds to symbol-wise inputs, 
and discusses the appropriate encoder structures for con- 
stituent encoders. Tables of codes that achieve the upper 
bound of effective free distance are included. Section VI 
presents simulation results. Section VI1 compares bit and 
symbol interleaving, and Section VI11 concludes the pa- 
per. 

11. PREVIOUS WORK 

For high spectral efficiency, two main approaches are 
proposed in the literature for the turbo encoder structure, 
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one employing bit interleaving 111, and the other employ- 
ing symbol interleaving [2 ] ,  [3]. 

For bit interleaving, k bit interleavers are used to keep 
the bit streams separate. The method in [l], for k/(k + 1) 
(k even), uses the k/2 systematic outputs and the parity 
bit of the first encoder and does not transmit the remain- 
ing k / 2  systematic bits. The second constituent encoder 
is the same as the first, but the roles of the two groups 
of k / 2  input bits are reversed. Thus the overall turbo 
encoder is systematic. 

The symbol interleaver in [a] ,  [3], maps even symbol po- 
sitions to even symbol positions and odd ones to  odd. This 
is equivalent to using two separate symbol interleavers of 
half the length, one for the odd positions and another 
for the even ones. The output of the second encoder is 
de-interleaved and the output symbols from each encoder 
are punctured alternatively. Again, the overall encoder is 
systematic. 

The following section provides motivation for preferring 
symbol interleaving to  bit interleaving. However, in the 
approach of [Z], the additional structure of the symbol 
interleaver reduces the interleaving gain, and puncturing 
complicates the design of the constituent encoders. There- 
fore in Section IV our proposed approach combines the 
encoder structure of [l], with a symbol interleaver. 

111. MOTIVATION FOR USING SYMBOL INTERLEAVING 

Parallel turbo code performance is based on the cou- 
pling of recursive constituent convolutional encoders with 
a large random interleaver of length N .  The use of this 
interleaver makes the complexity of the maximum likeli- 
hood decoder too large, so a suboptimal iterative decoding 
structure is used instead. 

The iterative decoding structure consists of two sep- 
arate decoding blocks, each implementing the forward- 
backward algorithm for the respective constituent en- 
coder. The blocks exchange probabilities for the input 
symbols. 

Consider why this procedure doesn’t give the correct 
result P ( U , Y ~ I Y I )  after one iteration. The problem lies 
in the assumption that the exchanged input symbol prob- 
abilities are independent. This is not true because they 
are conditioned on the observed output sequence: 

P(,IYl) # ~*P(UtlYl)  
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Using bit interleaving leads to the additional assumption, 
that not only every input symbol is independent from ev- 
ery other input symbol, but also the bits within each sym- 
bol are also independent. Again this is not true: 

P(utlY1) # n,P(ut,,lYl) 

Symbol interleaving avoids this additional assumption of 
independence. 

IV. PROPOSED PARALLEL CONCATENATED TRELLIS 
CODED MODULATION (PCTCM) STRUCTURE 

q I6 QAM 
-_  ~~ ~ 

0 0 . 0  

0 0 . 0  .... -. 0. .  

16 QAM 
0 . 0 .  ,.... 
0 . 0 .  .... 

Fig. 1. 2 bits/sec/Hs PCTCM Turbo Code With Rate 414 Con- 
stituent Encoders 

An example of the proposed parallel turbo code struc- 
ture, that employs 16 QAM modulation in connection 
with rate 414 constituent encoders, is depicted in Fig. 1. 
The generalization to kin encoders using Zn-point con- 
stellations is straightforward when k is even. 

The upper constituent encoder has as systematic out- 
puts the k/Z MSB input bits, while the lower constituent 
encoder has as systematic outputs the k / 2  LSB input bits. 
Thus the systematic bits are evenly divided between the 
constituent encoders, appear only once at the turbo code 
output, and there is no need for puncturing or interleaver 
constraints as in [Z]. 

Our iterative decoder implements the Soft Input Soft 
Output (SISO) equations appearing in [4], with input bit 
probabilities substituted by input symbol probabilities. 

V. CONSTITUENT ENCODER DESIGN 
In the rest of this paper, we use several variations of 

effective free distance. The superscript refers to the out- 
put distance, Hamming ( H )  or Euclidean (E) and the 
subscript to  the input weight, bit-wise (b)  or symbol-wise 
(s). For example, d 2  stands for the output Euclidean 
distance when the symbol-wise input weight is two. 

A .  Desired Distance Properties 
An analytical upper bound to the bit error probability 

of turbo codes in [5] identified effective free distance as 
a key parameter. A similar analysis still holds when the 
input of the constituent encoders is over GF(Zk), with the 

slight modification that the input Hamming weight now 
refers to Hamming weight in the extension Galois field 
GF(Zk) .  

Repeating the analysis for symbol-wise input along the 
lines of [5], two main guidelines for the design of con- 
stituent encoders can be derived: 

For a given symbol interleaver length, to  achieve in- 
terleaver gain, the constituent convolutional encoders 
must have infinite output weight when the input sym- 
bol sequence contains only one symbol different than zero 
( d z  =CO).  

Among the encoders with d z  = CO, the ones with the 
best symbol effective distance profile ( d z  or d$ depending 
on the application) optimize the turbo code performance. 

The first guideline equivalently states that there should 
be no parallel transitions in the trellis diagram, and was 
also presented in [2]. 

B .  Distance Upper Bounds 

an upper bound on the effective free distance d g .  

Theorem 1 (Divsalar and McEliece) 
Consider the convolutional codes with k inputs, m mem- 
ory elements, and r parity (not systematic) outputs. As- 
sume that d: = CO, i.e. the impulse response of every 
one of the k binary inputs is infinite. Then the highest 
effective free distance achievable is bounded by:  

The following theorem, presented in [6] and [7], gives 

This theorem refers to  encoders with k binary inputs. For 
symbol interleaved PCTCM, it is interesting to  examine 
the d z  bound: 

Theorem 2 An upper bound to the d z ,  when d$ = 00, 

with r parity (not systematic) outputs and k binary inputs, 
is given b y  substituting k with 2k - 1 in Theorem 1: 

Proof 
The proof goes along the same lines as the proof of The- 
orem 1 in [6]. The main point is the following: 

If the feedback polynomial of a convolutional encoder is 
primitive, then the state diagram has one loop with zero 
inputs, and not-zero outputs. This loop includes all the 
2"-1 states except the all-zero one. A two-input sequence 
causes the encoder to enter the loop (with the first non 
zero input) and exit it (with the second non zero input). 
The output weight of any parity output going around the 
whole loop is Z"-'. If k binary inputs exist, there are k 
ways to enter and leave the loop via single input bits, and 
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thus the output weight of the parity output, along the 
part of the loop that it travels before it exits, can be in 
the best case, 2"-'/k. Considering symbol inputs, there 
are instead 2k - 1 ways to  join/exit this loop, and thus 
the output weight can be, in the best case, Z m - ' / ( Z k  - 1). 
Similar arguments apply when the feedback polynomial is 
not primitive. 0 

C. Range of Encoders to Search 

Up to now, searching for good trellis codes, required 
examining one code within each group of range equivalent 
encoders (i.e. equivalent in Forney's sense). So it was 
sufficient to restrict attention within a set of canonical 
encoders. 

For turbo codes the mapping from input to  output se- 
quences plays an important role. The only encoders that 
may be disregarded are those that are strictly equivalent 
[8] to codes that have been examined. The natural ques- 
tion is what can we say about canonical encoders now. 

The answer is provided by the Rational Form Theorem 
[9] which states that for any m-memory element convolu- 
tional encoder, a strictly equivalent encoder exists of the 
ordinary memory structure with R rows. The following 
theorem helps to decide what values of R should be con- 
sidered. 

T h e o r e m  3 For all [ k, m, T )  values such that 

t < min (Zm-l - 2,~(2*-' - 1)) (3) 

the bound of Theorem 1 can only be achieved af the m 
memory elements are connected in a single row. 

Proof 
It suffices to  show that the use of multiple rows of memo- 
ries enforces an upper bound on the effective free distance 
lower than the bound in Theorem 1. 

INPUT1 - 
I - OUTPUT1 

I I v OUTPUT 2 

INPUT 3- OUTPUT 3 T 

Fig. 2. Encoder structure with two memory chains 

Assume that the m memories are connected in R 
rows with m j  memories in row j, j = l . . . R ,  and 
E,"=, mi = m. Let kj be the number of inputs in row j ,  

k .  3 -  < k, E,"=, kj 2 k, and T~ be the number of outputs 
from row j ,  T~ 5 T .  In the example of Fig. 2, R = 2, 
m = 4, m l  = m2 = 2, k = 3, kl = 2, ka = 1, T = 3 and 
T i  = T2 = 2. 

Think of an input-weight-two sequence, as the super- 
position of two (infinite in this case) impulse responses. 
Restricting attention to  impulse responses that are both 
from the same memory chain j ,  d; is bounded by: 

So for the total encoder it holds that: 

The min function in Theorem 1 is equal to the first term 
for m < ma, and to the second term for m 2 m*, where 
m* is determined by T and k. Thus: 
1. Form 2 m*: 
If the m memories are connected in one row: 

If the m memories are connected in R rows: 

Note that perhaps m j  5 m*, but ( 7 )  is still an upper 
bound. 
2. Similarly, for m < m': 
If the m memories are connected in one row: 

If the m memories are connected in R rows: 

(9) 

If it holds that k < 2m - E,"=, 2mj for all possible R 
and m3 partitions, then equations (8) and (9), are related 
by a strict inequality. But: 

R 2 

C 2 " 1 5 C 2 m 1 < 2 7 7 - 1 + 2  (10) 
3=1 3=1 

for 0 < m3 < m and m3 integer, so it suffices that 
k < Zm-' - 2. Similarly, for strict inequality between 
equations (6) and (7 ) ,  it suffices that k < ~ ( 2 ~ - ~  - 1). 

U 
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Thus in an exhaustive search, if the memory elements 
connected in a single row give a code with d g  higher than 
the maximum achievable d$ with multiple memory rows, 
there is no need to expand the search to multiple rows. 
This is very often the caSe in practice. 

Table I provides codes with k inputs, T parity outputs 
and m memory elements, optimized for d g ,  and identi- 
fied through exhaustive search. The generator polynomi- 
als in octal notation describe in turn the feedback, the k 
input connections, and the T parity output connections. 
For example, the upper constituent encoder in Fig. 1 has 
generator polynomials: {23,1,31,33,37,25,35}.  Also, d& 
denotes the upper d$ limit for a single memory row, and 
d z  denotes the maximum achievable d$ for multiple rows. 
The codes in Table I can be made systematic by adding 
n - T systematic outputs. So although their free distance, 
denoted by d', might be zero, the free distance of the 
complete code will be positive because of the systematic 
outputs. Codes listed in italics have repeated outputs and 
do not perform well in simulations [7]. 

TABLE I 
CODES OPTIMIZED FOR d a .  

VI. SIMULATION RESULTS 
This section provides examples of the proposed method, 

for 2 bits/sec/Hz employing 16 &AM and 8 PSK. The in- 
terleaver in the simulations is the best uniform interleaver 
we found after a few trials. 

Number of Dewder Iterations 

Fig. 3. 2 bits/sec/Hz/ turbo code, at Ea/N, = 2.6 dB, interleaver 
length 30,000 symbols and 16 QAM. 

2 bits/sec/Hz PCTCM with 16 $AM 
The Constituents encoders implement 4/4 codes with 
2 parity and 2 systematic outputs, and have 4 mem- 
ory elements. Table I1 contains in octal nota- 

tion such codes identified through exhaustive search, 
and optimized in d z  for the 16 QAM constella- 
tion labeling (labels in hex and in raster order): 
{ 3, 1, 5, 7, 2, 0, 4, 6, A, 8, C, E, B, 9, D, F}. The sim- 
ulated code is in the first row (nn denotes the number of 
nearest neighbors). The whole turbo encoder is depicted 
in Fig. 1. The exhaustive search identified a much larger 
number of good codes, which can be provided by the au- 
thors to the interested reader. 

TABLE I1 
CODES OPTIMIZED FOR d f 2  FOR 16 QAM. 

10-1 

10-1 

w 

3 10-J 

E 
ii 
5 

10-4 

lo-' 

2.8 2.7 2.8 
EbjNo (dB) 

Fig. 4. 2 bits/sec/Hz/ turbo code, with interleaver length 16,000 
symbols and 16 QAM. Constrained capacity=2.1 dB.  

For interleaver length 30,000 symbols, the performance 
(Fig. 3) is within 0.85 dB from unconstrained AWGN ca- 
pacity, and within 0.5 dB from the constrained capacity 
of 16 QAM over AWGN channel. 

For interleaver length 16,000 symbols (Fig. 4), the per- 
formance is within 0.6 dB from the constrained capacity. 

2 bits/sec/Hz PCTCM with  8 PSK 
The constituents encoders implement a 4/3 code with 
1 parity and 2 systematic outputs and have 4 mem- 
ory elements. Table I11 presents in octal notation codes 
optimized for d z  for the 8 PSK labeling (clock-wise): 
{7,6,5,4,3,2,1,0}. The simulated code is in the first row. 
For interleaver length 5,000 symbols (Fig. 5), the perfor- 
mance is within 0.6 dB from the constrained capacity. 

VII. COMPARISON OF SYMBOL AND BIT 
INTERLEAVING 

According to our simulation results, symbol interleaving 
converges at a lower SNR, but appears to have a higher 
error floor than bit interleaving. 
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coder, since k - 1 bit reliabilities have to be kept instead 
of 2k - 1 symbol reliabilities. 

2 
d 
6 

10-4 

VIII. CONCLUSIONS 
1 0 ~ '  

This paper presented a method to achieve high spectral 
efficiency using symbol interleaved parallel concatenated 

3.2 3.3 3.4 3.5 3.1 trellis coded modulation. EbjNa (dB) 
The constituent encoder design determined the op- 

timization criteria and extended the effective distance 
bound to symbol-wise inputs. 

Rational form theorem shows that in order to examine 

Fig, 5, bits,sec/Hz/ turbo code, with interleaver length 5,000 
symbols and 8 PSK. Constrained capacity=2.8 dB. 

I l a  1 hi I hz I ha I hd I hs I df9 I df- I all strictly equivalent encoders, it is sufficient to consider 
27 1 1 I 6 I 10 I 14 I 23 I 1.17157Wnn) I 0.58578fX5nn) only the canonical memory structures with R rows. In 
27 1 13 ~ 24 I 26 I 31 I 30 many cases, only encoders with the memory elements con- 

nected in a single row ( R  = l), can achieve the maximum 

35 5 7 10 13 22 1. 71573 3nn 0.585786 5nn 
1.:71573[3~~{ 0.58578615nnj 

TABLE I11 
CODES OPTIMIZED FOR df2 FOR 8 PSK 

Convergence at lower SNR may be attributed to the 
fact that symbol interleaving imposes less assumptions on 
the iterative decoding (Section 111). 

The higher error floor indicates that a symbol inter- 
leaved turbo encoder has lower free distance than a bit 
interleaved one. Indeed, interleaving k bits instead of ev- 
ery one symbol allows spreading of the components of one 
error event t o  k-times more error events, typically accu- 
mulating more distance. 

Another way to describe the effect of a symbol inter- 
leaver is that using a symbol interleaver is equivalent to 
using k bit interleavers that implement the same inter- 
leaving pattern. This additional structure reduces the in- 
terleaver gain. 

Moreover, there is less symbol-wise effective free dis- 
tance available than bit-wise (Theorem 2). Fig. 6 shows 
bounds on b; and d z  for k = 4 and T = 2 .  

k = 4 inputs, r = 2 parity outputs 

number of memory elements 

Fig. 6. Comparison of upper bounds on effective distance dy, for 
b=bit-interleaving, and s=symbol-interleaving. 
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output effective distance. 
Comparing symbol against bit interleaving, we noted 

that symbol interleaving imposes less restrictions on the 
iterative decoding, but on the other hand bit interleav- 
ing has a turbo encoder with more effective distance and 
interleaving gain available. Also bit interleaving requires 
less decoder iterations and less memory at the decoder. 

Simulations results for 2 bits/sec/Hz with 16 QAM and 
8 PSK, show that symbol interleaving converges at lower 
SNR but with a higher error floor as compared to bit 
interleaving. 

REFERENCES 
[I] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara. Parallel 

Concatenated Trellis Coded Modulation. IEEE International 
Conference on Communications, June 1996. 

[Z] P. Robertson and T. Warz. A Navel Bandwidth Efficient Coding 
Scheme Employing Turbo Codes. IEEE International Confer- 
ence on Communicotions, 1995. 

[3] P. Robertson and T. Worz. Bandwidth-Efficient Turbo Trellis- 
Coded Modulation Using Punctured Component Codes. IEEE 
Journal in Selected Areas in Communications, 16(2):206-218, 
February 1998. 

[4] S .  Benedetto, D. Divsalar, G. Montorsi, and F. Pollara. A Soft- 
Input Soft-Output APP Module for the Iterative Decoding of 
Concatenated Codes. IEEE Communications Letters, 1(1), Jan- 
iimv 1997. ._" ~~~ 

[5] S.Benedetto and G. Montorsi. Unveiling turbo codes:some 
results on parallel concatenated coding schemes. IEEE Dons- 
oclions on Info. Theory, 42:409-429, March 1996. 

[GI D. Divsalar and F. Pollara. On the Design of Turbo Codes . 
TDA Progrrss Report, 42:99-121, November 1995. 

[7] D. Divsalar and R.J. McEliece. Effective free distance of turbo 
codes . Electmnies Letters, 32(5):445-446, February 1996. 

[8] R. Wesel. Trellis Code Design For Correlated Fading And 
Achievable Rates For Tomlinson-Harashima Precoding. PID 
Dissertation, August 1996. 

[9] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge 
University P x s s ,  1985. 


