
1

The Boolean Solution to the Congested IP Link
Location Problem: Theory and Practice

Hung X. Nguyen Patrick Thiran
School of Computer and Communication Sciences, EPFL

CH-1015 Lausanne, Switzerland
{hung.nguyen, patrick.thiran}@epfl.ch

Abstract— Like other problems in network tomography or
traffic matrix estimation, the location of congested IP links from
end-to-end measurements requires solving a system of equations
that relate the measurement outcomes with the variables repre-
senting the status of the IP links. In most networks, this system
of equations does not have a unique solution. To overcome this
critical problem, current methods use the unrealistic assumption
that all IP links have the same prior probability of being
congested. We find that this assumption is not needed, because
these probabilities can be uniquely identified from a small set of
measurements by using properties of Boolean algebra. We can
then use the learnt probabilities as priors to find rapidly the
congested links at any time, with an order of magnitude gain in
accuracy over existing algorithms. We validate our results both
by simulation and real implementation in the PlanetLab network.

I. I NTRODUCTION

Many IP network inference problems are ill-posed: the num-
ber of measurements are not sufficient to determine uniquely
their solution. For example, the traffic matrix estimation prob-
lem is finding the Origin-Destination (OD) pairs of traffic
flows from the link counts. As the number of OD pairs far
exceeds the number of links, the resulting system of equations
is under-determined. Various heuristics, such as the gravity
model, can then be used to reduce the set of possible solutions.

Another tomography problem, which we address in this
paper, is the identification of poorly performing (congested)
IP links from end-to-end path measurements. Diagnosing
wide area IP networks is also difficult because the end-
to-end measurements do not provide enough information to
determine the link characteristics. To find the exact link loss
rates, sophisticated infrastructures such as those in [1],[2] are
needed. Even in these cases, the inverse problem of finding
the link loss rates, given the end-to-end measurements, is not
trivial.

In many settings of today’s IP networks, there is one link
along the path that is responsible for the majority of lossesin
the path. This link is called thedominantcongested link [3],
[4]. For most practical applications it is already sufficient to
know the locations of these links. For example, VoIP calls that
try to achieve the Public Switch Telephone Network (PSTN)
quality only consider rerouting through alternative pathswhen
the call rating factorR is below 70 [5]. If these calls use the
G.729 codec, this requirement can be mapped to an end-to-
end loss rate of less than 1%. It is therefore more important
for these applications to identify the links that drop more than

1% of packets than to attempt to compute the exact link loss
rates. The Boolean framework described in Section III, where
variables representing links and paths quality take only two
values, is therefore well suited to this setting.

In this work, we are interested in locating the dominant
congested IP links, which we define as the links that drop more
than a certain percentage of packets. Similarly to the linear
relation between link and path loss rates, congested links and
congested paths are linearly related in Boolean algebra [6]: a
path is congested if and only if one of its constituent links is
congested. Identifying the congested links therefore requires
solving this system of Boolean linear equations. Although
previous works, reviewed in Section II, have succeeded in
doing so in a tree topology [4], [7], they need to rely on the
assumption that all links have the same prior probability of
being congested, because they infer network properties from
only one full measurement (which we callsnapshot) of the
network, and hence face the fundamental problem that there is
no unique solution for the inverse problem in Boolean algebra.

We take a different approach in this paper. We use multiple
measurements (snapshots) over a period of time to learn about
the congestion probabilities of the links, which we then use
in a second stage to locate congested links in subsequent
snapshots.

We first prove in Section IV that these link state probabilities
are statistically identifiable from binary end-to-end measure-
ments by using simple properties of Boolean vectors. This
result shows that these probabilities can be correctly learnt
from a sufficiently large set of end-to-end measurements if
we have the proper learning method, but it does not tell
us how to proceed. The solution is given in Section V. It
combines information collected from measurements using very
simple but powerful properties of Boolean algebra, which
provide us with a sufficient number of additional constraints
to make the congestion probabilities uniquely identifiable.
These equations are not only independent from those obtained
without combining measurements, but they are also linear. This
nice feature makes it easy to find the solution using only a
small number of snapshots.

At the end of this learning phase, we can use the estimated
link congestion probabilities asprior information, together
with the most recent measurements, to find the links that are
actually congested using aMaximum A-Posteriori (MAP)esti-
mator. We formulate this inference problem as a simple convex
optimization problem and use a primal heuristic solution to

2

solve it in Section VI.
Finally, the simulations and Internet experiments of Sec-

tion VII show that the algorithm is fast and significantly more
accurate than existing algorithms.

II. RELATED WORK

The inference of internal link properties from end-to-end
measurements is called network tomography. It requires solv-
ing a system of equations relating the end-to-end measure-
ments with the link properties either in linear or in Boolean
algebra (theinversionproblem). Most end-to-end tomography
methods fall into one of two classes: methods that require
strong temporal correlation between probing packets in a
multicast-like environment [1], [2], [8] and perform the inver-
sion in linear algebra, and methods that use the distribution
of congested links in the Internet [4], [7], [9] to solve the
inversion problem in Boolean algebra.

The initial methods in the first class [1], [8] infer the loss
rate of network links using multicast probing packets. As
multicast is not widely deployed in the Internet, subsequent
methods [2] emulate this approach using clusters of unicast
packets. These methods are less accurate than their multicast
counterparts and also require substantial development and
administrative costs. Furthermore, the iterative algorithms used
to compute link loss rates in these approaches are expensive
for real-time applications in large networks.

Methods in the second class [4], [7], [9] use only un-
correlated end-to-end measurements for a simpler goal of
identifying the congested links. These methods do so by
finding the smallest set of links whose congestions can explain
the observed measurements. They use two assumptions:

• All links have the same prior probability of being con-
gested. Let us denote this probability byp0.

• p0 is small: In [4], [7] p0 is less than 0.2.
The first assumption is unrealistic in real networks. The Inter-
net is a heterogenous environment where links have different
probabilities of being congested. For example, this probability
is smaller for backbone links than for access links. Making the
assumption that they are all the same can lead to an inaccurate
diagnosis. It was reported in [7] that whenp0 is large, their
algorithms perform poorly. For example, whenp0 = 0.2 the
detection rate (percentage of congested links that are correctly
identified) of their algorithms is only30%.

The method in [10] also considers uncorrelated end-to-end
monitoring traffic but performs the inversion in linear algebra.
Because the inversion problem has multiple possible solutions,
[10] tries to find the smallest sets of consecutive links whose
combined loss rates can be determined. This method therefore
cannot be used to identify the congested links at the granularity
of each individual link.

There are also non-tomography techniques for calculating
link loss rates such as [11]. Instead of using end-to-end
measurements, these approaches use Internet Control Message
Protocol (ICMP) echo requests to infer the loss rates. Unfor-
tunately for security and performance issues, many routers
do not respond or limit the responses to ICMP requests.
Consequently, the Tulip tool of [11] needs more than ten
minutes to diagnose a path.

III. T HE NETWORK AND PERFORMANCEMODEL

We consider an overlay monitoring system that consists of
end hosts that can send and receive UDP or TCP packets
and perform traceroute [12]. We call these end hosts the
vantage points. Each vantage point sends probing packets
(either UDP or TCP) to a set of destinations. Loss rates are
calculated at the receivers, based on packet sequence numbers.
All measurement results are reported to a central server.

A. Network Topology

We model the network as a directed graphG = (V, E),
where the setV of nodes denotes the network routers/hosts
and the setE of edges represents the communication links
connecting them. The number of nodes and edges is denoted
by nv = |V|, andne = |E|, respectively. The set of all vantage
points is denoted byVB . Furthermore, we usePs,t to denote
the path traversed by an IP packet from a source nodes to a
destination nodet. Let P be the set of all paths between the
vantage points and letnp = nB(nB − 1) = |P|.

For a known topologyG = (V, E) and a set of pathsP,
we compute the routing matrixD of dimensionnp × ne as
follows. The entryDij = 1 if the path Ps,t ≡ Pi, with
i = (s, t), contains the linkej and Dij = 0 otherwise. A
row of D therefore corresponds to a path, whereas a column
corresponds to a link. Clearly, if a column contains only
zero entries, the quality of the corresponding link cannot be
inferred from measurements of the paths inP. Hence, we drop
these columns from the routing matrix to obtain a matrix of
dimensionsnp × nc, wherenc ≤ ne is the number of links
that are covered by at least one path inP. We denote this set
of covered links byEc, |Ec| = nc.

B. Performance Model

Given the network topology and end-to-end path loss rates,
we can easily establish linear relationships between the link
loss rates and the path loss rates as follows [13], for1 ≤ i ≤
np

log(φi) =

nc
∑

k=1

log(φek
)Dik (1)

where φi is the transmission rate (i.e., one minus the loss
rate) of pathPi and φek

is the transmission rate of linkek.
To determine the link transmission rates, we need to solve
the system of linear equations (1). Unfortunately, (1) doesnot
have a unique solution because in most networks the matrix
D is rank deficient, that is, rank(D) < min(np, nc).

Our objective, however, is not to compute the link loss rates
but rather to identify the links whose loss rates exceed the
maximal threshold tolerated by the application. We call these
links congested linksand the other linksgood links. Let tl be
the threshold specified by the application. Linkek is good if
φek

≥ tl, and it is congested ifφek
< tl. Note here that the

thresholdtl can be changed by the applications depending on
their performance requirements.

We define a path to becongestedif it contains at least one
congested link and we define a path to begood if it consists of
only good links. We use the variableyi to represent the state

3

of the pathPi: yi = 0 if Pi is good andyi = 1 otherwise;
and the variablexk to represent the state of linkek: xk = 0
if ek is good andxk = 1 otherwise. We can then establish a
system of linear equations in Boolean algebra relatingyi and
xk as:

yi =

nc
∨

k=1

xk · Dik (2)

where “∨” denotes the binary max operation, and “·” denotes
the usual multiplication operation. We can recast (2) in vector
form as:

y =

nc
∨

k=1

xkdk (3)

wheredk is thekth column ofD. In this paper, we use a bold
letter to represent a vector.

Each inputyi to the equations in (2) is obtained from end-
to-end measurements by comparing the path transmission rate
φi against a thresholdtp. In [7], tp is chosen to betdl , whered
is the length of the path. Ifφi ≥ tp, we assume that the path is
good, that is, all of its constituent links are good. Conversely,
if φi < tp, we assume that the path is congested, that is,
at least one of its constituent links is congested. Obviously,
using the path thresholdtp to determine good and congested
paths may lead to errors because in many cases the path
transmission rate can be smaller thantp even though there is no
congested link in the path [7]. However, for many performance
metrics such as connectivity (links are either up or down),
dominant congested links, and delay spikes (sudden increase
in the delay) the probability of making errors by using the
path threshold is negligible [7].

The transformation from linear algebra to Boolean algebra
is illustrated in the example of Figure 1. In the figure, Link
e1 = SA is a good link with a transmission rate of 1. The two
links e2 = AB ande3 = AC are congested with transmission
rates of 0.8. The two end-to-end paths (P1 from S to B and
P2 from S to C) are also congested. Similarly to the linear
relationship between link and path transmission rates, link
and path states are also linearly related in Boolean algebra.
Moving from linear algebra to Boolean algebra offers several
benefits. First, it is easier to obtain the quality of a pathPi

(i.e., estimating the Boolean variableyi) than to obtain the
transmission rate of the path (i.e., estimating the continuous
variable φi). Second, as we will see later, even though the
equations (2) still have multiple solutions, there is a simple
and accurate method to find the most probable solution for (2).

Our main goal in this paper is to solve (2). These equations
have a unique solution is and only if all columns ofD are
linearly independent in Boolean algebra [6], which is rarely
the case in practice. We need therefore additional information
about the network links to find the most likely solution of
(2). This information will be the probabilitypk that a linkek

is congested. We denote byp = [p1 p2 . . . pnc
]T the vector

of the link state probabilities, whereT denotes transposition.
Instead of making assumptions about these probabilities as
in [7] and [4], we first show theoretically that it is possibleto
learn p from end-to-end measurements. Indeed, although the
conditions on the routing matrixD needed to identifyx are

Boolean algebra

S

A

S

A

B C CB

Linear algebra

x1 = 0

x2 = 1

x3 = 1

y1 = 1 y2 = 1
φ1 = 0.8 φ2 = 0.8

φe1
= 1

φe2
= 0.8

φe3
= 0.8

Fig. 1. The nodes are the network routers/hosts and the directed edges are
the links connecting them. If we define that links with transmission rate below
0.9 and paths with transmission rate below 0.81 (= 0.92) as congested, then
we can obtain an equivalent system of linear equations relating link qualities
with path qualities in Boolean algebra.

in general not satisfied, we will see in the next section that the
conditions onD needed to identifyp are much weaker. They
are actually verified in practice, and we develop an algorithm
that can estimatep from a small number of snapshots. Finally,
using the resulting vectorp as prior link state probabilities,
we are equipped with sufficient information to propose an
algorithm that can find the actual congested links accurately.

IV. I DENTIFIABILITY OF THE LINK STATE PROBABILITIES

In this section, we show that the prior probabilities can
be uniquely identified from end-to-end measurements in most
networks. We call this property of the prior theidentifiability
property. Identifiability is critical, because it guarantees that a
correct learning algorithm can give us the true link probability
vectorp.

Let us first formulate mathematically this property. Let us
denote byPp the probability measure on the set of network
links when the link probability vector isp. Let X denote the
random binary vector of dimensionnc representing the states
of the links. We have thusPp(Xk = 1) = pk, 1 ≤ k ≤
nc. Similarly, let Y denote the random vector of dimension
np representing the resulting states of the paths. A statistical
model is said to be identifiable, if the cumulative distribution
function of the observable data is an injective function of the
parameter(s). In other words, the link state probabilitiesare
statistically identifiable if the property

Pp(Y = y) = Pp̃(Y = y) for any snapshoty (4)

always implies thatp = p̃.
We make the following assumptions about the network:

• the prior probabilitiespk and the routing matrixD remain
unchanged during the measurement period when them
snapshotsY = {y1,y2, ...,ym} are obtained;

• 0 ≤ pk < 1 for all 1 ≤ k ≤ nc;
• the link statesXk are independent from each other (but

not identically distributed).

The first assumption can be violated in the Internet where
routing changes can happen on any timescale. As a conse-
quence, we will have some noise in our estimation of the

4

prior information. We show in our experiments in Section VII-
B that the changes in network topologies do not significantly
affect the accuracy of our algorithms. The stability ofpk has
been observed in [14] where IP links can remain congested
for hours.

When pk = 1 for somek (i.e., link ek is disconnected),
we cannot uniquely identify thepk from end-to-end measure-
ments. Take the simple network of Figure 1. In this network,
if link SA is disconnected (pSA = 1), then the two end-to-end
paths (fromS to B and fromS to C) are both disconnected.
In this case, all measurement vectors have the same value
y1 = y2 = ... = ym = 1. Furthermore, if bothAB and
AC are disconnected, we will also observe the same the end-
to-end results. Therefore, even with multiple snapshots, we
cannot ascertain ifpSA = 1 or pAB = pAC = 1. We show
in [6] that in the “deterministic link failure scenario” where
pk ∈ {0, 1}, p is identifiable if and only if all columns of
D are linearly independent in Boolean algebra. We will see
below that the condition onD is weaker when0 ≤ pk < 1.
Fortunately, IP routing algorithms can by-pass disconnected
links very quickly. It is therefore reasonable to discard the
valuepk = 1 for all k.

The third assumption can also be violated in the Internet.
But previous works [7] and [4] have shown that the correlation
of link loss rates is small and does not significantly effect the
accuracy of the diagnosis.

Under the above assumptions, we can state and prove the
following theorem.

Theorem 1:The link state probability vectorp is identifi-
able if and only if the columns of the routing matrixD are
all distinct.

The theorem says that if we have enough snapshots to esti-
mate the probabilities of all possible measurement outcomes,
then there is only one vector of link probabilities that can
generate this sequence of snapshots. The proof of the theorem
is given in the appendix, together with a short lemma.

We can make two important observations about Theorem 1.
First, it holds for any topology, and therefore applies to all
networks. Second, the idea of using multiple snapshots to
learn about the link properties can be extended to many other
link characteristics. Indeed, Vardi et al. [15] proved similar
identifiability results for the rates of traffic counts with Poisson
distributions. We keep this extension for future work.

V. A N EFFICIENT ALGORITHM TO ESTIMATE THE PRIOR

In the previous section, we have shown that the prior
probabilities can be learnt from a sufficiently large number
of snapshots. However, the theorem does not tell us anything
about the way to compute these probabilities.

In practice, even though it is easy to obtain many snapshots
if we wait long enough, it is unlikely that the probabilitiesp
or that the routing matrixD remain the same in all of these
snapshots. It is therefore important to have an algorithm that
can quickly estimate the prior from only a small number of
snapshots. Here we provide an algorithm that does so.

Let us first begin with a precise description of the prior
estimation problem. We use the same network topology and

performance definitions as in Section III. We are given the
following information:

• the routing matrixD as defined in Section III-A;
• m measured snapshotsY = {y1,y2, ...,ym}.

Our objective is to find an algorithm that can quickly calculate
prior probabilitiesp from theD andY.

A first possible approach is to use an iterative EM
(Expectation-Maximization) algorithm such as the one in [8].
However, as demonstrated in [8], this method requires signif-
icant computational time and is only guaranteed to converge
to a local optimum point.

A second, more direct approach is to take the expectations
in (2), which gives for all1 ≤ i ≤ np

Ep[Yi] = Ep [∨nc

k=1XkDik] = Pp (∨nc

k=1XkDik = 1)

= 1 − Pp (XkDik = 0, 1 ≤ k ≤ nc)

= 1 −

nc
∏

k=1

(1 − pk)Dik .

Now, the expectationEp[Yi] is computed by averaging all
measured values ofYi in Y, which we denote byyi. Therefore,
taking logarithms, we get a set ofnp linear equations

− log(1 − yi) =

nc
∑

k=1

(− log(1 − pk))Dik, (5)

with 1 ≤ i ≤ np.
Unfortunately, equations (5) define in general a rank

deficient system of linear equations because rank(D) <
min(np, nc), as mentioned earlier. We need to have more
relations linking the measurements to the unknownp. A first
idea is to use spatial correlations via higher order moments.
But this would result in strongly nonlinear equations, thatare
not easy to invert. For the example in Figure 1, the second
moment betweenY1 andY2 is

Ep[Y1Y2] = Pp(Y1 = 1, Y2 = 1)

= p1(1 − p2)(1 − p3) + p1p2(1 − p3)

+p1(1 − p2)p3 + (1 − p1)p2p3.

Boolean algebra will be of invaluable help to overcome this
difficulty because it allows us to complete (5) withindependent
linear equations. Indeed, we cannot create new independent
equations by linearly combining equations (5) in the conven-
tional (+,×) algebra, but we can obtain new independent
equations by linearly combining them in the Boolean(max,×)
algebra. The combination amounts to computing the maximum
of the state of different paths, which is a linear operation in
the Boolean(max,×) but a nonlinear operation in the(+,×)
algebra.

Let us consider the combination of two paths. LetYil be the
binary random variable representing the event that both paths
i and l are good:Yil = 0 if both pathsi and l are good and
Yil = 1 otherwise. Then

Ep[Yil] = Pp ({∨nc

k=1XkDik = 1} ∪ {∨nc

k=1XkDlk = 1})

= 1 −

nc
∏

k=1

(1 − pk)Dik∨Dil ,

5

which becomes, withyil being the average ofYil computed
overY, and taking logarithms,

− log(1 − yil) =

nc
∑

k=1

(− log(1 − pk)){Dik ∨ Dlk}, (6)

for all 1 ≤ i < l ≤ np pairs (we can takei < l because
Yil = Yli). There arenp(np − 1)/2 equations of this form.

Let

y[1] = [− log(1 − y1) . . . − log(1 − ynp
)]T

y[2] = [− log(1 − y12) . . . − log(1 − y(np−1)np/2)]
T

− log(1 − p) = [− log(1 − p1) . . . − log(1 − pnc
)]T .

Combining the equations in (5) and (6) we have a system of
np(np + 1)/2 linear equations, which reads

[

y[1]

y[2]

]

=

[

D
D[2]

]

(− log(1 − p))
T

, (7)

whereD[2] is thenp(np − 1)/2 × nc matrix whose rows are
indexed by(i, l), 1 ≤ i < l ≤ np, with the (i, l) row of D[2]

being the element-wise max operation between the two rows
i and l of D. For the network in Figure 1, we have

D =

[

1 1 0
1 0 1

]

,

and thus
D[2] =

[

1 1 1
]

,

andy[2] is a vector with a single entry:y[2] = − log(1−y12).
The number of unknownspk in (7) is nc. With the com-

binations of two paths, we can obtain up tonp(np + 1)/2
linear constraints. It was shown in [16] that if the underlying
IP network has a power-law degree topology, then the number
of links nc betweennp vantage points scales asO(np log np),
whencenp(np + 1)/2 ≫ nc. Consequently, although some
of the equations (6) are linearly dependent, we found in all
our simulations and experiments of Section VII that with
real IP topologies, the combinations of two paths provided
enough additional linearly independent equations (6) to make
the augmented system (7) of full rank. If this had not been the
case, we would have had to keep getting additional constraints
by considering combinations of three or more paths.

After obtaining a full rank system of linear equations, we

can then inverse

[

D
D[2]

]

to find vectorp. If the resulting

system is not of full rank, we then need to use the LININPOS
algorithm of [17] to perform the inversion. We refer to [17]
for details of the LININPOS solution.

VI. U SING THE PRIOR TO IDENTIFY CONGESTEDL INKS

The prior probabilities themselves provide useful informa-
tion about the network and can be used in many applications.
One such application is to combine the prior probabilities with
the most recent measurement to in order to locate the links that
are currently congested (and not just simply their probabilities
of congestion). We focus on this problem in this section.

A. Problem Definition

Let us first begin with the detailed description of the
congested link identification (CLINK) problem. We use the
same network topology and performance definitions as in Sec-
tion III. For the CLINK problem, we are given the following
information:

• the routing matrixD as defined in Section III-A;
• a measured snapshoty = [y1 y2 . . . ynp

]T ;
• the prior link state probabilitiesp;

We then need to solve (2) to findx = [x1 x2 . . . xnc
]T .

As (2) has multiple solutions, we look for the most likely one.
In other words, we want to find the vectorx that maximizes
the conditional probability that all linksek such thatxk = 1
are indeed congested given the measurementsy, i.e.,

argmax
x

Pp(X = x | Y = y). (8)

Recall here thatPp(·) is the conditional probability, given
the prior vectorp. The solution of (8) therefore gives a
Maximum A-Posteriori (MAP) estimate of the set of congested
links.

From Bayes’ rule,

Pp(X = x |Y = y) =
Pp(Y = y |X = x)Pp(X = x)

Pp(Y = y)

and asPp(Y = y) only depends on the network conditions
and measurements, and not on the choice ofx, we are left
with the equivalent maximization problem

argmax
x

Pp(Y = y | X = x)Pp(X = x). (9)

As the link statesXk are independent random variables,

Pp(X = x) =

nc
∏

k=1

pxk

k (1 − pk)(1−xk).

For any pathPi, we compute from equations (2) that given
X = x, Yi = 0 if and only if, for all 1 ≤ k ≤ nc, Dikxk = 0
or equivalently(1−Dik)xk = 1. Consequently, the conditional
probabilities

Pp(Yi = 0 | X = x) =

nc
∏

k=1

(1 − Dik)xk

and

Pp(Yi = 1 | X = x) = 1 − Pp(Yi = 0| X = x)

are either 1 or 0.
Let us definePG as the set of paths measured as being good

(i.e., Pi ∈ PG when yi = 0) andPC the set of paths found
congested (i.e.,Pi ∈ PC whenyi = 1). We can write

Pp(Y = y | X = x)

=
∏

Pi∈PG

Pp(Yi = 0 |X = x)
∏

Pi∈PC

Pp(Yi = 1 |X = x).

We see that this probability is again 1 or 0.
Consequently, for the argument of (9) to be non-zero, its

solution x must be such that (i) for each congested path
Pi ∈ PC , it contains at least one linkek (i.e., xk = 1) that

6

satisfiesDik = 1, and (ii) for each good pathPi ∈ PG,
it does not contain any linkek (i.e., xk = 0) that satisfies
Dik = 1. In summary, all links in good paths must be good,
and a congested path must go through at least one congested
link.

Using the above observations, we can significantly simplify
the CLINK problem as follows. LetR be the matrix obtained
from D by removing all rows that correspond to good paths
and all columns that correspond to links in the good paths.
Each row ofR now represents a congested path and each
column of R represents a link that belongs to at least one
congested path. Let us denote byER the set of links repre-
sented by columns ofR. With known good links and paths
excluded,R has dimension|PC |× |ER|. The CLINK problem
then amounts to finding a set of linksX ⊆ ER such that all
congested paths are covered by at least one link inX , and
such that

argmax
X⊆ER

Pp(X) = argmax
X⊆ER

|ER|
∏

k=1

pxk

k (1 − pk)(1−xk). (10)

Taking the logarithm of (10) and eliminating the terms that do
not depend onx, we obtain the optimization problem

argmax
X⊆ER

Pp(X) = argmax
X⊆ER

|ER|
∑

k=1

xk log
pk

1 − pk

= argmin
X⊆ER

|ER|
∑

k=1

xk log
1 − pk

pk
(11)

subject to
∑|ER|

k=1 Rikxk ≥ 1 for all 1 ≥ i ≥ |PC |.

B. The Inference Algorithm

The optimization problem in (11) is indeed the weighted set
cover problem (WSCP), a known NP-complete problem [18].
A number of optimal algorithms, typically based on tree-search
procedures, are proposed in the literature to solve the WSCP.
Most of these algorithms require extensive computational time
(in the order of hours for a network with one thousand
nodes) [19]. Given the current situation with respect to the
optimal algorithms, we choose a computationally effective
heuristic algorithm capable of producing good quality solu-
tions. We define thedomainof a link ek ∈ Ec, Domain(ek),
as the set of paths that contain the linkek. The algorithm
uses a greedy heuristic that constructs a feasible solutionset
by a sequence of steps, each of which consists in selecting
a link ek (i.e., setting the variablexk to 1) that minimizes
log((1 − pk)/pk)/ |Domain(ek)|).

This algorithm is fast and yet is the best polynomial-
time approximation algorithm for the WSCP (and hence the
CLINK problem) in terms of worst-case performance [18].
The algorithm uses an auxiliary set variableQB .

The CLINK algorithm is a log(nc + 1)-approximation
algorithm with a computational complexity ofO(ncnp) [18].

VII. E VALUATION

We evaluate the performance of the congested link location
algorithms using two metrics: the detection rate (DR), which

The CLINK Algorithm
Input : The reduced routing matrixR, the sets of congestedPC paths.
Step 1:

1. Initialize X to an empty set, andQB := PC .
Step 2: While QB 6= ∅

1. Find a linkek ∈ EA that minimizeslog 1−pk

pk
/|Domain(ek)|.

2. Add ek to the solutionX : X := X ∪ {ek}, setxk := 1.
3. Update the sets:QB := QB \ Domain(ek) and

Domain(ej) := Domain(ej) \ Domain(ek) for all ej ∈ EA.
Step 3: OutputX .

is the percentage of links that are correctly diagnosed as
congested, and the false positive rate (FPR), which is the per-
centage of links that are good but are diagnosed as congested.
With F denoting the set of the actual congested links, andX
the set of links identified as congested by a location algorithm,
these two rates are given by:

DR =
|F ∩ X |

|F|
; FPR=

|X\F|

|X |
.

A. Simulation Evaluation

We first evaluate the CLINK algorithm by simulations in
different network topologies. Each linkek in the network is
congested with a probabilitypk uniformly distributed between
0 and 1. The actual values ofpk are chosen such that the
percentage of congested links equals a parameterf . f is
varied in our simulations to evaluate the algorithm under
different congestion levels of the network. We use the loss
rates model LM1 of [4] where congested links have loss rates
uniformly distributed in [0.05, 1] and good links have loss
rates in [0, 0.01]. Once each link has been assigned a loss
rate, the actual losses on each link follow a Gilbert process,
where the link fluctuates between good and congested states.
When in a good state, the link does not drop any packet,
when in a congested state the link drops all packets. The
transition between good and congested states is chosen so that
the average loss rate matches the loss rate assigned to the link.
We also run simulations with Bernoulli losses, where packets
are dropped on a linkek with a fixed probability, but the
differences are insignificant. Therefore, we only report results
with Gilbert losses in this section.

For each network, we first take 30 snapshots to learn
the prior probabilitiesp. After learningp, we can infer the
congested links in subsequent measurements using the CLINK
algorithm. Note here that we only learn the prior vectorp once
and use it for all subsequent snapshots. The path loss rate is
calculated based on the transmissions of 1000 packets. The
link thresholdtl is 0.99 whereas the path thresholdtp is tdl
whered is the length of the path.

1) Results on tree topologies:We first compare the perfor-
mance of our inference technique with the Smallest Consistent
Failure Set (SCFS) algorithm of [7] on tree topologies of
1000 nodes with the maximum branching ratio of 10. We
do not apply the scaling behavior for large networks as
discussed in [7] in our simulations. We repeat each simulation
configuration 10 times. The results are shown in Figure 2.

We observe that CLINK is significantly more accurate than
SCFS with higher DRs and lower FPRs. The reasons for the

7

5 10 15 20 25 30 35 40 45
0

0.5

1
Detection Rate (DR)

5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

Percentage of Congested Links (f)

False Positive Rate (FPR)

CLINK
SCFS

CLINK
SCFS

Fig. 2. DR and FPR for the two algorithms CLINK and SCFS in
tree topologies of 1000 nodes. Links have different probabilities of being
congested. The two figures have different scales on the y-axis.

better performance of the CLINK algorithm boil down to the
one fact that it uses previous measurement snapshots to learn
about the prior probabilities and therefore does not have the
bias against links that belong to many congested paths that
SCFS has.

2) Results for mesh topologies:We further compare the
CLINK algorithm with the SCFS and the Bayesian approach
using Monte Carlo Markov Chain (MCMC) simulation algo-
rithm of [4]. We use differentmeshtopologies generated by
BRITE [20] with 1000 nodes and one topology taken from
the PlanetLab test-bed [21] with 250 vantage points. In each
topology, we choose nodes with the least out-degree as the
vantage points. The link loss model is LM1 withf = 10%
congested links.

The SCFS algorithm works only with tree topologies. To
evaluate this algorithm on a mesh topology, we first run it
separately on each vantage point. The results obtained from
each vantage point are the sets of identified congested and
good links in the routing tree of that vantage point. We merge
the results from all the vantage points as follows. For links
that are diagnosed by only one vantage point we keep this
diagnosis as the final result. For links that are diagnosed by
multiple vantage points, we take the diagnoses given by more
than 50% of these vantage points as the final results.

We apply the MCMC algorithm in the same way that it
was used for tree topologies in [4]. The accuracy and running
time of the MCMC algorithm depend on two parameters: the
number of iterations and the number of bins for link loss rates.
In this paper, we use 500 iterations and 100 bins (i.e., we
divide the[0, 1] interval into 100 intervals of equal length).

We repeat each simulation setting 10 times and report the
average DR and FPR in Table I. All the DRs and FPRs have
small confidence intervals. For clarity reasons, we omit them
from Table I.

We observe again here that CLINK performs better than
both SCFS and MCMC. MCMC is less accurate than CLINK

TABLE I

ACCURACY OF THECLINK, SCFSAND MCMC ALGORITHMS.

CLINK SCFS MCMC
Topology DR FPR DR FPR DR FPR

Babarasi-Albert 92.0% 0.8% 60.0% 0.9% 70.0% 5.0%
Waxman 91.2% 0.7% 62.0% 0.6% 73.4% 1.3%

Hierarchical 87.3% 0.9% 57.0% 1.1% 76.7% 1.9%
PlanetLab 90.3% 1.1% 61.0% 0.7% 69.4% 2.4%

because it uses an uninformative (pk is the same for all links
ek) prior in its Bayesian updates. CLINK has the same running
time as SCFS, which is an order of magnitude less than that
of MCMC.

B. Internet Experiments

We implement our prior learning and CLINK algorithms
on 250 nodes of PlanetLab. These nodes are located mainly
at universities around the world. 50% of them (124 nodes) are
in the US, 40% (100 nodes) are in Europe and the other 10%
are in South America, Asia and Australia.

1) Methodology: We first use traceroute to measure the
network topology. Traceroute is performed sequentially from
each vantage point to all other vantage points. The collected
routes will then be combined to form a complete network
topology. Using traceroute to build the network topology can
lead to errors because of several factors. First, for security and
performance reasons, many routers in the Internet do not re-
spond or limit the rate of responses to ICMP queries. The paths
to nodes behind these routers cannot be ascertained. According
to our own traceroute measurements between PlanetLab hosts,
5 to 10% of routers do not respond to ICMP requests. Second,
many routers have multiple interfaces and return differentIP
addresses to different traceroute requests. We use the sr-ally
tool [22] to disambiguate multiple interfaces at a single node.
We find that about 16% of routers between PlanetLab nodes
have multiple interfaces.

We then measure the loss rate between each pair of vantage
points. There are 26250 end-to-end paths among the 250
vantage points. A trivial measurement system will poll all
these paths. However, using the technique in [6] to reduce the
number of end-to-end measurements, each host only needs to
measure approximately 100 end-to-end paths. We use simple
UDP packets as probes. Each host sends 100 UDP packets of
size 60 bytes to every other host. Time between probes follows
an exponential distribution with a mean value of 0.2 seconds.
To prevent overloading the nodes, each host sends probes to
the other hosts in a random order. Each snapshot measurement
therefore takes approximately 4 minutes.

Similarly to the simulations, in the Internet experiments,
we also take 30 snapshots to estimate the prior probabilities
p. That is, we use the snapshots obtained in the previous two
hours to learn the prior. We then use these probabilities to infer
the congested links for the next measurement snapshot of the
network. The following results are the average results of 10
experiments, each is separated by 4 hours from the previous
one, starting at 10 a.m. on the 3rd of October, 2005.

8

TABLE II

PLANETLAB EXPERIMENTS.

CLINK SCFS MCMC
tl DR FPR DR FPR DR FPR

0.96 91.8% 2.5% 52.7% 1.6% 73.1% 4.7%
0.98 95.3% 3.1% 58.4% 2.8% 79.6% 5.3%
0.99 97.4% 4.9% 62.9% 3.6% 85.4% 7.5%

TABLE III

RUNNING TIME (IN MINUTES).

CLINK SCFS MCMC
Topology and Loss Rate Measurements 4 4 4

Location Algorithm 1 1 10

2) Results: In the Internet, we do not know the real loss
rates of the network links as in the simulations of Section VII-
A. Therefore we cannot validate our inference results by
comparing them against the true values. We adopt the indirect
validation method of [4], where the set of measurements is
divided into two sets of equal size: the inference set and the
validation set. The partition is done randomly. We run first
the prior learning algoritm and then the CLINK algorithm
on the inference set to identify the congested links. For each
congested link that is identified, we check whether the end-
to-end paths in the validation set that contain this link are
congested or not. If all of these paths are congested, then the
inference is correct. We also run our implementation of the
SCFS and MCMC algorithms on the above traffic traces. To
calculate the DRs and FPRs for the three algorithms, we first
need to determine the setF of the actual congested links. As
we do not know the true link loss rates, we take the heuristic
that a link ek is congested (ek ∈ F) if and only if it is
identified by at least one of the three algorithms (CLINK,
SCFS, and MCMC) on the validation set. We compare the
three algorithms under different values oftl (recall thattl is the
threshold we use to determine the congested links). The results
are presented in Table II. Compared to the CLINK algorithm,
the MCMC and the SCFS algorithms are again less accurate.
The better performance of CLINK is due to the information
provided by the priors.

The CLINK algorithm is very fast. Its average running
time for 26250 end-to-end paths is 60 seconds on a computer
with a 2Ghz processor running Perl scripts. The running time
comparisons of the three algorithms are given in Table III.
SCFS and CLINK have almost the same running time whereas
MCMC takes 10 times longer. Note here that the CLINK
algorithm also requires the priorp, which can be learnt from
snapshots obtained in the past 2 hours. The actual running
time of the prior learning algorithm is short: approximately 1
minute in our experiments. The whole implementation of our
algorithms on PlanetLab has approximately 1500 lines of Perl
code. All data and code are available at [23].

VIII. C ONCLUSIONS ANDDISCUSSIONS

We have shown in this paper that a small number of snap-
shots of the network can significantly improve the accuracy
of the congested link location problem. Our approach is fast

and accurate. Our results are possible thanks to the properties
of the Boolean algebra: (i) the prior probabilities can be
uniquely identified from end-to-end measurements, (ii) linear
combinations of measurements in Boolean algebra increase
efficiently the rank of the system in conventional algebra, and
(iii) computations in Boolean algebra are simple and fast. In
addition to the future extensions discussed in Section IV, we
also plan to investigate the relationships between the number
snapshots and the learning errors.

ACKNOWLEDGEMENTS

This work is financially supported by grant ManCom 2110
of the Hasler Foundation, Bern, Switzerland. We would like
to thank the anonymous reviewers for their stimulating discus-
sions and useful suggestions.

APPENDIX: PROOF OFTHEOREM 1

Let us introduce some notations first.ek is the unit vector
whosekth coordinate is 1 and all others 0.|v| is the Hamming
weight of the vectorv = [v1 v2 . . . vnp

]T , with T denoting
transposition, and which is defined as|v| =

∑np

i=1 vi. Without
loss of generality, assume that the columnsdi, 1 ≤ i ≤ nc,
of D = [d1 . . . dnc

] are sorted in increasing values of their
Hamming weights, that is,

1 ≤ |d1| ≤ |d2| ≤ . . . ≤ |dnc
| . (12)

Remember that all columns ofD are distinct and nonzero. We
denote byu � v the property thatui ≤ vi for all 1 ≤ i ≤ np.
Clearly, if u � v, then |u| ≤ |v|.

The following result of Boolean algebra will be useful to
prove the theorem.

Lemma 1:With dj denoting thejth column vector of
matrix D, 1 ≤ j ≤ nc, any solutionx = [x1 x2 . . . xnc

]T of

dj =

nc
∨

k=1

xkdk, (13)

is such thatxk = 0 for all j + 1 ≤ k ≤ nc.
Proof: Clearly, (13) admitsx = ej as a solution. Let

x′ 6= x be another solution, and suppose thatx′
l = 1 for some

j + 1 ≤ l ≤ nc. Then, as
nc
∨

k=1

x′
kdk � x′

ldl = dl,

we get from (13) thatdj � dl and thus that|dj | ≥ |dl|.
Combining this last result with (12), we have the equality
|dj | = |dl|. All columns of D are distinct, hencedj and dl

have the same number of entries equal to1 but are different.
Since (13) is linear in Boolean algebra,x ∨ x′ is also a

solution. Hence

dj =

nc
∨

k=1

(xk ∨ x′
k)dk � xjdj ∨ x′

ldl = dj ∨ dl,

from which we get that|dj | ≥ |dj ∨ dl|. Now, we have just
shown before that|dj | = |dl|, but thatdj and dl differ by
at least one entry. Therefore,|dj ∨ dl| ≥ |dj | + 1. But this

9

would yield in turn that|dj | ≥ |dj |+ 1, a contradiction. This
proves thatx′

l = 0 for all j + 1 ≤ l ≤ nc.
We can now prove Theorem 1. The necessary condition

is trivial, because if two columns of the routing matrix are
the same then the two corresponding links are traversed by
the same set of paths. Therefore, end-to-end measurements
cannot distinguish the states of these two links from each
other, and their congestion probabilities are not identifiable. To
prove the sufficient condition, we follow the same induction
strategy as in Vardi’s proof of the identifiability of Poisson
traffic flows [17], but contrary to his proof, we need to work
in Boolean algebra instead of conventional algebra. The proof
has three steps. In Step 1, we show that

∏

(1−pi) =
∏

(1−p̃i).
In Step 2, we show that Equation (4) implies thatp1 = p̃1.
Finally, in Step 3 we use induction to complete the proof. In
all three steps we calculate the probabilities of the possible
solution of equations (3).

Step 1: Takey = 0 (the all zeros vector) in (4), which then
readsPp(Y = 0) = Pp̃(Y = 0). Now, Y = 0 if and only if
X = 0. It follows from the independence of the link states

nc
∏

k=1

(1 − pk) =

nc
∏

k=1

(1 − p̃k). (14)

Step 2: Now, takey = d1 in (4). Then Lemma 1 yields
that e1 = [1 0 . . . 0]T is the unique solution of (3). Hence

Pp(Y = d1) = Pp(X = e1) = p1

nc
∏

k=2

(1 − pk).

As the same equation is valid withp replaced byp̃, we get
that

p1

nc
∏

k=2

(1 − pk) = p̃1

nc
∏

k=2

(1 − p̃k).

Combining this relation with (14) yields thatp1 = p̃1, because
we assumedpk < 1 for all 1 ≤ k ≤ nc.

Step 3 (induction): Pick 2 ≤ j ≤ nc, and suppose that
pk = p̃k for all 1 ≤ k ≤ j−1. We want to show thatpj = p̃j .

Pick y = dj in (4). Then (3) becomes (13), and Lemma 1
requires thatXk = 0 for j +1 ≤ k ≤ nc. Denote the eventsA
andA′ by A = {∨j−1

k=1Xkdk = dj} andA′ = {∨j−1
k=1Xkdk �

dj}. As Xk are independent random variables, we can write
that

Pp(Y = dj)

= Pp

({

∨j
k=1Xkdk = dj

}

∩ {Xj+1 = . . . = Xnc
= 0}

)

= Pp

(

∨j
k=1Xkdk = dj

)

nc
∏

k=j+1

(1 − pk)

= Pp ({A ∩ {Xj = 0}} ∪ {A′ ∩ {Xj = 1}})

nc
∏

k=j+1

(1 − pk)

= [Pp(A)(1 − pj) + Pp(A′)pj]

nc
∏

k=j+1

(1 − pk)

=

[

Pp(A) +
pj

1 − pj
Pp(A′)

] nc
∏

k=j

(1 − pk). (15)

Both eventsA andA′ depend only onXk for 1 ≤ k ≤ j − 1.
Hence it follows from the induction assumption thatPp (A) =
Pp̃ (A) and Pp (A′) = Pp̃ (A′). Combining the induction
assumption with (14), we also get that

∏nc

k=j(1 − pk) =
∏nc

k=j(1 − p̃k). Repeating the same reasoning for (15) with
p replaced byp′, we obtain therefore that

pj

1 − pj
Pp (A′) =

p̃j

1 − p̃j
Pp (A′) .

As Pp (A′) ≥ Pp(X1 = . . . = Xj−1 = 0) =
∏j−1

k=1(1−pk) >
0, it follows that pj = p̃j . This concludes the proof of the
induction step and the theorem.

REFERENCES

[1] A. Adams et al., “The use of end-to-end multicast measurements
for characterizing internal network behavior,”IEEE Communications
Magazine, May 2000.

[2] M. Coates, A. Hero, R.Nowak, and B. Yu, “Internet tomography,” IEEE
Signal Processing Magazine, vol. 19, May 2002.

[3] W. Wei, B. Wang, D. Towsley, and J. Kurose, “Model-based identifica-
tion of dominant congested links,” inProceedings of the ACM Internet
Measurement Conference, 2003.

[4] V. N. Padmanabhan, L. Qiu, and H. J. Wang, “Server-based inference of
internet performance,” inProceedings of the IEEE INFOCOM’03, San
Francisco, CA, April 2003.

[5] I.-T. R. G.107, “The e-mode, a computational model for use intrans-
mission planning,” March 2003.

[6] H. X. Nguyen and P. Thiran, “Active measurement for failurediagnosis
in IP networks,” inProc. of PAM 2004, Juan-les-Pins, France, 2004.

[7] N. G. Duffield, “Network tomography of binary network performance
characteristics,”IEEE Transactions on Information Theory, vol. 52,
no. 12, pp. 5373–5388, Dec. 2006.

[8] T. Bu, N. Duffield, F. L. Presti, and D. Towsley, “Network tomography
on general topologies,” inProceedings of ACM Sigmetrics 2002, Marina
Del Rey, CA, 2002.

[9] A. Batsakis, T. Malik, and A. Terzis, “Practical passivelossy link
inference,” inProc. of PAM 2005, 2005.

[10] Y. Zhao, Y. Chen, and D. Bindel, “Scalable deterministicoverlay
network diagnosis,” inProceedings of ACM SIGCOMM, Pisa, Italy,
2006.

[11] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “User-level
internet path diagnosis,” inProceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP’03), 2003, pp. 106–119.

[12] V. Jacobson, “traceroute, ftp://ftp.ee.lbl.gov/traceroute.tar.z,” 1989.
[13] Y. Shavitt, X. Sun, A. Wool, and B. Yener, “Computing the unmeasured:

An algebraic approach to internet mapping,”IEEE J. on Selected Areas
in Communications, vol. 22, January 2004.

[14] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, “On the constancy
of internet path properties,” inProceedings of ACM SIGCOMM Internet
Measurement Workshop, San Francisco, 2001.

[15] Y. Vardi, “Network tomography: Estimating source-destination traffic
intensities,”Journal of the American Statistical Association, vol. 91, pp.
365–377, 1996.

[16] Y. Chen, D. Bindel, H. Song, and R. H. Katz, “An algebraicapproach
to practical and scalable overlay network monitoring,” inProceedings
of the ACM SIGCOMM, Portland, August-September 2004.

[17] Y. Vardi and D. Lee, “From image deblurring to optimal investment:
Maximum likelihod solutions for positive linear inverse problem,” Jour-
nal of Royal Statistical Society, Series B (Methodological), vol. 55, pp.
569–612, 1993.

[18] D. Hochbaum,Approximation Algorithms for NP-Hard Problems. PWS
Publishing Company, Boston, MA, 1997.

[19] J. E. Beasley, “An Algorithm for Set Covering Problem,”European
Journal of Operational Research, vol. 31, pp. 85–93, 1987.

[20] A. Medina, I. Matta, and J. Byers, “On the origin of power-laws in
internet topologies,”ACM Computer Communication Review, pp. 160–
163, 2000.

[21] www.planet lab.org.
[22] N. Spring, D. Wetherall, and T. Anderson, “Scriptroute: A public internet

measurement facility,” inUSENIX Symposium on Internet Technologies
and Systems (USITS), 2003.

[23] http://netscope.epfl.ch.

