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Abstract—Like other problems in network tomography or 1% of packets than to attempt to compute the exact link loss
traffic matrix estimation, the location of congested IP links from  rates. The Boolean framework described in Section Ill, wher

end-to-end measurements requires solving a system of equations,rjaples representing links and paths quality take onlg tw
that relate the measurement outcomes with the variables repre- . . . .
values, is therefore well suited to this setting.

senting the status of the IP links. In most networks, this system . ; . . .
of equations does not have a unique solution. To overcome this In this work, we are interested in locating the dominant
critical problem, current methods use the unrealistic assumption congested IP links, which we define as the links that drop more

that all IP links have the same prior probability of being than a certain percentage of packets. Similarly to the finea
congested. We find that this assumption is not needed, becausgg|ation between link and path loss rates, congested linkis a

these probabilities can be uniquely identified from a small set of . .
measurements by using properties of Boolean algebra. We can congested paths are linearly related in Boolean algebraa[6]

then use the learnt probabilities as priors to find rapidly the Path is congested if and only if one of its constituent links i
congested links at any time, with an order of magnitude gain in congested. Identifying the congested links therefore irequ

accuracy over existing algorithms. We validate our results both solving this system of Boolean linear equations. Although
by simulation and real implementation in the PlanetLab network. previous works, reviewed in Section I, have succeeded in
doing so in a tree topology [4], [7], they need to rely on the
assumption that all links have the same prior probability of
|. INTRODUCTION being congested, because they infer network propertiea fro
Many IP network inference problems are ill-posed: the nunonly one full measurement (which we cahapshot of the
ber of measurements are not sufficient to determine uniquelgtwork, and hence face the fundamental problem that tsere i
their solution. For example, the traffic matrix estimationlp  no unique solution for the inverse problem in Boolean algebr
lem is finding the Origin-Destination (OD) pairs of traffic We take a different approach in this paper. We use multiple
flows from the link counts. As the number of OD pairs fameasurements (snapshots) over a period of time to learrt abou
exceeds the number of links, the resulting system of egustidhe congestion probabilities of the links, which we then use
is under-determined. Various heuristics, such as the fyravin a second stage to locate congested links in subsequent
model, can then be used to reduce the set of possible sduti@napshots.
Another tomography problem, which we address in this We first prove in Section IV that these link state probalgiiti
paper, is the identification of poorly performing (congéste are statistically identifiable from binary end-to-end mees
IP links from end-to-end path measurements. Diagnosingents by using simple properties of Boolean vectors. This
wide area IP networks is also difficult because the entkesult shows that these probabilities can be correctlyntear
to-end measurements do not provide enough information ftom a sufficiently large set of end-to-end measurements if
determine the link characteristics. To find the exact linkslo we have the proper learning method, but it does not tell
rates, sophisticated infrastructures such as those ifiJflare us how to proceed. The solution is given in Section V. It
needed. Even in these cases, the inverse problem of findewmbines information collected from measurements using ve
the link loss rates, given the end-to-end measurementstis simple but powerful properties of Boolean algebra, which
trivial. provide us with a sufficient number of additional constraint
In many settings of today's IP networks, there is one linto make the congestion probabilities uniquely identifiable
along the path that is responsible for the majority of logees These equations are not only independent from those obtaine
the path. This link is called thdominantcongested link [3], without combining measurements, but they are also linddas T
[4]. For most practical applications it is already sufficiéo nice feature makes it easy to find the solution using only a
know the locations of these links. For example, VoIP calé& thsmall number of snapshots.
try to achieve the Public Switch Telephone Network (PSTN) At the end of this learning phase, we can use the estimated
quality only consider rerouting through alternative pathen link congestion probabilities aprior information, together
the call rating factorR is below 70 [5]. If these calls use thewith the most recent measurements, to find the links that are
G.729 codec, this requirement can be mapped to an enddotually congested usingMaximum A-Posteriori (MAPgsti-
end loss rate of less than 1%. It is therefore more importamator. We formulate this inference problem as a simple conve
for these applications to identify the links that drop mdrart optimization problem and use a primal heuristic solution to



solve it in Section VI. IIl. THE NETWORK AND PERFORMANCEMODEL

_ Finally, the simulations and Internet experiments of Sec-\e consider an overlay monitoring system that consists of
tion VII show that the algorithm is fast and significantly reor ¢nq hosts that can send and receive UDP or TCP packets
accurate than existing algorithms. and perform traceroute [12]. We call these end hosts the
vantage points Each vantage point sends probing packets
(either UDP or TCP) to a set of destinations. Loss rates are

The inference of internal link properties from end-to-enfy|cyjated at the receivers, based on packet sequence raumbe
measurements is called network tomography. It requirés Soh|| measurement results are reported to a central server.
ing a system of equations relating the end-to-end measure-

ments with the link properties either in linear or in Booleat& Network Topol
algebra (the@nversionproblem). Most end-to-end tomography etwork fopology
methods fall into one of two classes: methods that requireWe model the network as a directed gragh= (V,¢),
Strong tempora] correlation between probing packets in V@ere the sel’ of nodes denotes the network routers/hosts
multicast-like environment [1]’ [2], [8] and perform thever- and the setf of Edges represents the communication links
sion in linear algebra, and methods that use the distributisonnecting them. The number of nodes and edges is denoted
of congested links in the Internet [4], [7], [9] to solve thdY v = [V|, andn, = ||, respectively. The set of all vantage
inversion problem in Boolean algebra. points is denoted byz. Furthermore, we usé; ; to denote

The initial methods in the first class [1], [8] infer the losghe path traversed by an IP packet from a source nottea
rate of network links using multicast probing packets_ Agestination node. Let P be the set of all paths between the
multicast is not widely deployed in the Internet, subseque¥@ntage points and let, = ng(np — 1) = |P|.
methods [2] emulate this approach using clusters of unicast~0r @ known topologyg = (V,¢) and a set of path®,
packets. These methods are less accurate than their rsulti¥¢¢ compute the routing matri of dimensionn, x n. as
counterparts and also require substantial development 4Adows. The entryD;; = 1 if the path P;;, = P;, with
administrative costs. Furthermore, the iterative along used ¢ = (s,?), contains the linke; and D;; = 0 otherwise. A
to compute link loss rates in these approaches are expenéf of D therefore corresponds to a path, whereas a column
for real-time applications in large networks. corresponds to a link. Clearly, if a column contains only

Methods in the second class [4], [7], [9] use only unzero entries, the quality of the corresponding link cann®t b
correlated end-to-end measurements for a simpler goal igferred from measurements of the pathg’inHence, we drop
identifying the congested links. These methods do so Byese columns from the routing matrix to obtain a matrix of
finding the smallest set of links whose congestions can axpldlimensionsn,, x n., wheren. < n. is the number of links
the observed measurements. They use two assumptions: that are covered by at least one pattinWe denote this set

« All links have the same prior probability of being conOf covered links by, [Ec| = n..

gested. Let us denote this probability py.
e po is small: In [4], [7] po is less than 0.2. B. Performance Model

The first assumption is unrealistic in real networks. Themnt  Given the network topology and end-to-end path loss rates,
net is a heterogenous environment where links have differefie can easily establish linear relationships between tile i

probabilities of being congested. For example, this préityab |oss rates and the path loss rates as follows [13]1feri <
is smaller for backbone links than for access links. Makiey t n,

Il. RELATED WORK

assumption that they are all the same can lead to an inaecurat e
diagnosis. It was reported in [7] that whep is large, their log(¢:) = > _1og(¢e, ) Dix (1)
algorithms perform poorly. For example, whep = 0.2 the k=1

detection rate (percentage of congested links that areaityr where ¢; is the transmission rate (i.e., one minus the loss
identified) of their algorithms is onlg0%. rate) of pathP; and ¢, is the transmission rate of link.

The method in [10] also considers uncorrelated end-to-efid determine the link transmission rates, we need to solve
monitoring traffic but performs the inversion in linear dige. the system of linear equations (1). Unfortunately, (1) doais
Because the inversion problem has multiple possible smigti have a unigue solution because in most networks the matrix
[10] tries to find the smallest sets of consecutive links vehodD is rank deficient, that is, raf®) < min(n,,n.).
combined loss rates can be determined. This method thereforOur objective, however, is not to compute the link loss rates
cannot be used to identify the congested links at the grahula but rather to identify the links whose loss rates exceed the
of each individual link. maximal threshold tolerated by the application. We calkthe

There are also non-tomography techniques for calculatifigks congested linksind the other linkgiood links Let ¢; be
link loss rates such as [11]. Instead of using end-to-etide threshold specified by the application. Liak is good if
measurements, these approaches use Internet Controldéessa, > ¢;, and it is congested ip., < t;. Note here that the
Protocol (ICMP) echo requests to infer the loss rates. Unfdhreshold:; can be changed by the applications depending on
tunately for security and performance issues, many routeheir performance requirements.
do not respond or limit the responses to ICMP requests.We define a path to beongestedf it contains at least one
Consequently, the Tulip tool of [11] needs more than terongested link and we define a path togmedif it consists of
minutes to diagnose a path. only good links. We use the variablg to represent the state



of the pathP;: y; = 0 if P; is good andy; = 1 otherwise;
and the variabler; to represent the state of link: x; = 0

if e, is good andr, = 1 otherwise. We can then establish a
system of linear equations in Boolean algebra relagingnd
T as:

e
yi = \/ k- Dix @
k=1

where *v” denotes the binary max operation, andl denotes
the usual multiplication operation. We can recast (2) intemec Linear algegbra ——  Boolean algebra
form as:

the links connecting them. If we define that links with transius rate below
0.9 and paths with transmission rate below 0.810(92) as congested, then

gWwe can obtain an equivalent system of linear equationsimgldink qualities
with path qualities in Boolean algebra.

ne
y= \/ zrdy, (3) Fig. 1. The nodes are the network routers/hosts and thetelitextiges are
k=1

wheredy, is the kth column of D. In this paper, we use a bol
letter to represent a vector.
Each inputy; to the equations in (2) is obtained from end-

to-end measurements by comparing the path transmissien fgtgeneral not satisfied, we will see in the next section that t
¢; against a thresholt},. In [7], ¢, is chosen to be{’, whered  conditions onD needed to identify» are much weaker. They
is the length of the path. if; > #,,, we assume that the path isyre actually verified in practice, and we develop an algorith
good, that is, all of its constituent links are good. ConeBLs hat can estimatp from a small number of snapshots. Finally,
if ¢; < t,, we assume that the path is congested, that ging the resulting vectop as prior link state probabilities,
at least one of its constituent links is congested. Obvious|ye are equipped with sufficient information to propose an

using the path threshold, to determine good and Conges'fe‘%il%orithm that can find the actual congested links accuyatel
paths may lead to errors because in many cases the pat

transmission rate can be smaller thigreven though there is no
congested link in the path [7]. However, for many perfornenc
metrics such as connectivity (links are either up or down), In this section, we show that the prior probabilities can
dominant congested links, and delay spikes (sudden ireredg uniquely identified from end-to-end measurements in most
in the delay) the probability of making errors by using th@etworks. We call this property of the prior tigentifiability
path threshold is negligible [7]. property. Identifiability is critical, because it guaraggethat a

The transformation from linear algebra to Boolean algebtmrrect learning algorithm can give us the true link probgbi
is illustrated in the example of Figure 1. In the figure, Linkector p.

e; = SAis a good link with a transmission rate of 1. The two Let us first formulate mathematically this property. Let us
links e; = AB ande; = AC are congested with transmissiordenote byP,, the probability measure on the set of network
rates of 0.8. The two end-to-end path#3 (from S to B and  links when the link probability vector ig. Let X denote the
P, from S to C) are also congested. Similarly to the linearandom binary vector of dimension. representing the states
relationship between link and path transmission rate linf the links. We have thu®,(X;, = 1) = p, 1 < k <
and path states are also linearly related in Boolean algebysa. Similarly, let Y denote the random vector of dimension
Moving from linear algebra to Boolean algebra offers severa, representing the resulting states of the paths. A stalstic
benefits. First, it is easier to obtain the quality of a p&h model is said to be identifiable, if the cumulative distribat
(i.e., estimating the Boolean variablg) than to obtain the function of the observable data is an injective functionhu t
transmission rate of the path (i.e., estimating the cootisu parameter(s). In other words, the link state probabilities
variable ¢;). Second, as we will see later, even though th&atistically identifiable if the property

equations (2) still have multiple solutions, there is a demp

and accurate method to find the most probable solution for (2) Pp(Y =y) =P3(Y = y) for any snapshoy  (4)

Our main goal in this paper is to solve (2). These equation S .
have a unique solution is and only if all columns bf are always implies thap =P . )
linearly independent in Boolean algebra [6], which is rarel We make the following assumptions about the network:

Yy p g A
the case in practice. We need therefore additional infdomat ¢ the prior probabilitieg;. and the routing matrixO remain
about the network links to find the most likely solution of ~ unchanged during the measurement period whenthe
(2). This information will be the probability;, that a linkey, snapshoty) = {y',y*,...,y™} are obtained;
is congested. We denote by = [p; py... pn,]7 the vector * 0<pp <lforalll<k<nc;
of the link state probabilities, whel® denotes transposition. * the link statesX; are independent from each other (but
Instead of making assumptions about these probabilities as Not identically distributed).
in [7] and [4], we first show theoretically that it is possilite The first assumption can be violated in the Internet where
learn p from end-to-end measurements. Indeed, although tteuting changes can happen on any timescale. As a conse-
conditions on the routing matri® needed to identifyr are quence, we will have some noise in our estimation of the

IV. I DENTIFIABILITY OF THE LINK STATE PROBABILITIES



prior information. We show in our experiments in Section-VlIperformance definitions as in Section Ill. We are given the
B that the changes in network topologies do not significantfgllowing information:

affect the accuracy of our algorithms. The stabilityzaf has . the routing matrixD as defined in Section IlI-A;
been observed in [14] where IP links can remain congested, ;;, measured snapshals= {y', 42, ...,y }.

for hours. _ ) . Our objective is to find an algorithm that can quickly caltela
When py, = 1 for ;omgk (i.e., link e is disconnected), prior probabilitiesp from the D and ).

we cannot uniquely identify the, from end-to-end measure- " » st possible approach is to use an iterative EM

ments. Take the simple network of Figure 1. In this networkg, e ctation-Maximization) algorithm such as the one ih [8

iflink SA is disconnectedys.4 = 1), then the two end-to-end . ever as demonstrated in [8], this method requires Kigni

paths (fromS to 5 and fromS to C) are both disconnected. jo5n+ computational time and is only guaranteed to converge
In this case, all measurement vectors have the same valye |ocq optimum point

y! = y? = ... = y™ = 1. Furthermore, if bothAB and
AC are disconnected, we will also observe the same the erﬂq
to-end results. Therefore, even with multiple snapshots, w

A second, more direct approach is to take the expectations
(2), which gives for alll <i <n,

cannot ascertain ips4 = 1 or pagp = pac = 1. We show EplYi] = Ep[Vie, XipDir] =Pp (Vi XD =1)
in [6] that in the “deterministic link failure scenario” whe = 1-P,(XxDix =0,1<k <n.)

pr € {0,1}, p is identifiable if and only if all columns of ne

D are linearly independent in Boolean algebra. We will see = 1— H(1 — pi) Pk,

below that the condition oD is weaker wherd < p; < 1. k—1

Fortunately, IP routing algorithms can by-pass discoretkct
links very quickly. It is therefore reasonable to discareé th
valuep, = 1 for all k. . . . .
The third assumption can also be violated in the Interné%kmg logarithms, we get a set af, linear equations
But previous works [7] and [4] have shown that the correfatio B
of link loss rates is small and does not significantly efféet t —log(1 —7,) = Z(_ log(1 — pk)) Dik, ®)
accuracy of the diagnosis. k=1
Under the above assumptions, we can state and prove With 1 <i < n,,.
following theorem. Unfortunately, equations (5) define in general a rank
Theorem 1:The link state probability vectop is identifi- deficient system of linear equations because BNk <
able if and only if the columns of the routing matrix are min(n,,n.), as mentioned earlier. We need to have more
all distinct. relations linking the measurements to the unkngwrA first
The theorem says that if we have enough snapshots to eiétga is to use spatial correlations via higher order moments
mate the probabilities of all possible measurement outspm8ut this would result in strongly nonlinear equations, theg
then there is only one vector of link probabilities that caRot easy to invert. For the example in Figure 1, the second
generate this sequence of snapshots. The proof of the theoraoment betweery; andY; is
is given in the appendix, together with a short lemma.

Now, the expectatiorE,[Y;] is computed by averaging all
measured values &f; in ), which we denote by,. Therefore,

Ne

. ) E,[YiYs] = P,(Y1=1,Y,=1
We can make two important observations about Theorem 1. p[V1Y2] p(1 P2 )
First, it holds for any topology, and therefore applies tb al = p1(1=p2)(L = p3) +prp2(1 = p3)
networks. Second, the idea of using multiple snapshots to +p1(1 — p2)ps + (1 — p1)paps.

learn about the link properties can be extended to many othe
link characteristics. Indeed, Vardi et al. [15] proved dani
identifiability results for the rates of traffic counts witbiBson
distributions. We keep this extension for future work.

IiB)ooIean algebra will be of invaluable help to overcome this

difficulty because it allows us to complete (5) wittdependent
linear equations. Indeed, we cannot create new independent

equations by linearly combining equations (5) in the conven

tional (+, x) algebra, but we can obtain new independent
V. AN EFFICIENT ALGORITHM TO ESTIMATE THE PRIOR equations by linearly combining them in the Boolgamx, x)

In the previous section, we have shown that the priggebra. The combination amounts to computing the maximum
probabilities can be learnt from a sufficiently large numbélf the state of different paths, which is a linear operation i
of snapshots. However, the theorem does not tell us anythifi§ Boolean(max, x) but a nonlinear operation in ther, x)
about the way to compute these probabilities. algebra.

In practice, even though it is easy to obtain many snapshotd-€t us consider the combination of two paths. kgtbe the
if we wait long enough, it is unlikely that the probabilitigs binary random variable representing the event that bothspat
or that the routing matrixD remain the same in all of these? and/ are good:Yj; = 0 if both paths: and! are good and
snapshots. It is therefore important to have an algorithan th'a = 1 otherwise. Then

can quickly estimate the prior from only a small number o Yl = P.({v™ X.Dir — 13UV XD — 1
shapshots. Here we provide an algorithm that does so. plYil p({nc’“zl eDin = 1 UAVEZ XD = 1)
Let us first begin with a precise description of the prior - 1_ H(1 — pp) PirV Pt

estimation problem. We use the same network topology and Pt}



which becomes, witly;, being the average df;; computed A. Problem Definition

over), and taking logarithms, Let us first begin with the detailed description of the
ne congested link identification (CLINK) problem. We use the
—log(1—-79;) = Z(— log(1 — px)){Dir V D1}, (6) same network topology and performance definitions as in Sec-
k=1 tion 1ll. For the CLINK problem, we are given the following
forall 1 < i < I < n, pairs (we can také < [ because Information:
Yy = Y};). There aren,(n, — 1)/2 equations of this form. « the routing matrixD as defined in Section IlI-A;
Let « a measured snapshgt= [y; y2 . .. ynp]T;
] B - « the prior link state probabilitiep;
y = [Flog(l-7) ... —log(l1-7,)] We then need to solve (2) to find = [z; ... x,,]7.
y2 = [—log(1 —7y) ... —log(l— y(np,l)np/z)]T As (2) has multiple solutions, we look for the most likely one
In other words, we want to find the vectarthat maximizes
—log(1 —p) = [~log(l —p1) ... —log(l —p,.)]". the conditional probability that all links;, such thatz;, = 1
Combining the equations in (5) and (6) we have a system 9 indeed congested given the measuremgnts.,
ny(np + 1)/2 linear equations, which reads argmaxP,(X =z | Y =y). (8)
1
{ yu } — { Dl[)z] ] (—log(1 7p))T, (7) Recgll here thai,(-) is the _conditional probability, _given
4 the prior vectorp. The solution of (8) therefore gives a

where D2 is then, (n, — 1)/2 x n. matrix whose rows are Maximum A-Posteriori (MAP) estimate of the set of congested
p\""p c .

indexed by(i,1),1 < i < | < n,, with the (i,1) row of D2l INkS. '

being the element-wise max operation between the two rowd oM Bayes rule,

¢ andl of D. For the network in Figure 1, we have P,(Y =y| X =2)P,(X =z

D 110 Pp(Y =y)
1 0 1] and asP,(Y = y) only depends on the network conditions
and measurements, and not on the choicecpfve are left
and thus with the equivalent maximization problem
PRI =11 1], q P
argmaxP, (Y = X =a)P,(X =x). 9
andy!? is a vector with a single entrg?l = —log(1 —7,5). ’ ol vl JExl ) ®)
The number of unknowng;, in (7) is n.. With the com-  Ag the link statesX,, are independent random variables,

binations of two paths, we can obtain up itQ(n, + 1)/2
linear constraints. It was shown in [16] that if the undeantyi

IP network has a power-law degree topology, then the number
of links n. betweenn,, vantage points scales é§n,, logn,), _ ,
whencen,(n, + 1)/2 > n.. Consequently, although somégor any patth-., we compute from equations (2) that given
of the equations (6) are linearly dependent, we found in & = 2 Yi = O ifand only if, for all 1 < k < n., Diay =0
our simulations and experiments of Section VIl that witlr €auivalently(1—D;; )" = 1. Consequently, the conditional

Ne

k=1

real IP topologies, the combinations of two paths providdyopPabilities

enough additional linearly independent equations (6) tkema ne

the augmented system (7) of full rank. If this had not been the Pp(Yi=0|X =)= [[(1- Di)™
case, we would have had to keep getting additional congsrain k=1

by considering combinations of three or more paths. and

After obtaining a full rank system of linear equations, we
. D ' : Pp(Vi=1[X =) =1-Pp(Y; =0| X = =)
can then invers D2l to find vectorp. If the resulting
. %re either 1 or 0.
s?/ste_n;] IS nfot cl)f7 ull ranl;, we t:]wer) neeq to uvsve th? LlNINi? Let us definePs as the set of paths measured as being good
?g%mt n|1 0 f 'Eh ]E?NFI)SLCC))@ t |et|pver5|on. ereferto [17]; o - P, € P; wheny; = 0) and P the set of paths found
or detai’s ot the solution. congested (i.e.P; € Pc wheny; = 1). We can write

VI. USING THEPRIOR TOIDENTIFY CONGESTEDLINKS IP’,,(Y =y|X=2x)

The prior probabilities themselves provide useful informa = H Pp(Yi =0|X = 2) H Pp(Yi =1[X = 2).
tion about the network and can be used in many applications.  F:€%s PiePc
One such application is to combine the prior probabilitiéghw We see that this probability is again 1 or 0.
the most recent measurement to in order to locate the lirdkts th Consequently, for the argument of (9) to be non-zero, its
are currently congested (and not just simply their prolitassl solution « must be such that (i) for each congested path
of congestion). We focus on this problem in this section. P; € P¢, it contains at least one link;, (i.e., x; = 1) that



satisfiesD;, = 1, and (i) for each good patt?, € P, _The CLINK Algorithm _ _
it does not contain any link;, (i.e., z;, = 0) that satisfies Input:lThe reduced routing matrik, the sets of congesteBc paths.
. . ep Ik

Dy = 1. In summary, all links in good paths must be good, 1.plnitializeX to an empty set, an@p = Pc.

and a congested path must go through at least one congestg&p 2 While Qp # 0

link. 1. Find a linkey, € £4 that minimizeslog %/\Domain(ek)\.
Using the above observations, we can significantly simplify g Gd(c‘j;tl; t&éhsef%mi?ffé" \7) fmij;(ke}’)sgrt]fik = 1.

the CLINK problem as follows. LeR be the matrix obtained .D[t))main(ej) — Domain(e;) \ Domain(ey) for all ¢; € ..

from D by removing all rows that correspond to good pathsStep 3 Output X.

and all columns that correspond to links in the good paths.

Each row of R now represents a congested path and each

column of R represents a link that belongs to at least ong the percentage of links that are correctly diagnosed as
congested path. Let us denote By the set of links repre- congested, and the false positive rate (FPR), which is the pe
sented by columns oR. With known good links and paths centage of links that are good but are diagnosed as congested
excluded,R has dimensiofPc| x |€x|. The CLINK problem \wjth 7 denoting the set of the actual congested links, ahd

then amounts to finding a set of links C £x such that all the set of links identified as congested by a location algorit
congested paths are covered by at least one link'jrand  these two rates are given by:

such that
il pr— F 0 ; FPR= A
argmaxPp,(X) = argmax] [ pi* (1 — pe)' =", (10) |7 | X
XCen XCen joy

Taking the logarithm of (10) and eliminating the terms that dA Simulation Evaluation

not depend ore, we obtain the optimization problem We first evaluate the CLINK algorithm by simulations in
different network topologies. Each link, in the network is

2] Dh congested with a probability,, uniformly distributed between
a;gcr?a@p()() = aL%TaXZ i log 7 — o 0 and 1. The actual values @f are chosen such that the
= = k=1 ’ percentage of congested links equals a paramgtef is
&n] 1 —pp varied in our simulations to evaluate the algorithm under
- a;%rgln; i log A1) gifferent congestion levels of the network. We use the loss

rates model LM1 of [4] where congested links have loss rates
subject tOZ‘,f:Rll Ry, > 1forall 1> > |Pol. uniformly distributed in[0.05,1] and good links have loss

rates in[0,0.01]. Once each link has been assigned a loss
rate, the actual losses on each link follow a Gilbert process

o , . , where the link fluctuates between good and congested states.
The optimization problem in (11) is indeed the weighted sepan in a good state, the link does not drop any packet,

cover problem (_WSCP)’ a known NP-compIete problem [18\]\7hen in a congested state the link drops all packets. The
A number of optimal algorlthms, tyP'Ca”y based on reerska yansition between good and congested states is choseatso th
procedures, are proposed in the literature to solve the WSGfa, o erage loss rate matches the loss rate assigned takhe i
Most of these algorithms require extensive computatidn@® t \ye aiso run simulations with Bernoulli losses, where packet
(in the order of hours for a network with one thousanc‘j{re dropped on a link;, with a fixed probability, but the

nodes) [19]. Given the current situation with respect to tl}ﬁfferences are insignificant. Therefore, we only reposttes
optimal algorithms, we choose a computationally effectiv\ﬁ,ith Gilbert losses in this section

heuristic algorithm capable of producing good quality solu 5 each network, we first take 30 snapshots to learn

tions. We define thelomainof a link e, € &, Domain(ek),  the prior probabilitiesp. After learningp, we can infer the
as the set of paths that contain the link. The algorithm nqested links in subsequent measurements using the CLINK
uses a greedy heuristic that construc_ts a feas_|ble _sols&«bn algorithm. Note here that we only learn the prior vegiance
by a sequence of steps, each of which consists in selectifjty e it for all subsequent snapshots. The path loss rate is
a link ey, (i.e., setting the variable;; to 1) that minimizes 50 jated based on the transmissions of 1000 packets. The

log((1 = px)/px)/ |Domain(ex)|). __link threshold¢; is 0.99 whereas the path threshalgis ¢
This algorithm is fast and yet is the best polynomialyared is the length of the path.

time approximatiqn algorithm for the WSCP (and hence the 1) Results on tree topologiesVe first compare the perfor-
CLINK problem) in terms of worst-case performance [18}yance of our inference technique with the Smallest Congtiste
The algorithm uses an auxiliary set varialds;. __ Failure Set (SCFS) algorithm of [7] on tree topologies of
The CLINK algorithm is alog(n. + 1)-approximation 1009 nodes with the maximum branching ratio of 10. We
algorithm with a computational complexity 6¥(ncn,) [18]. 4o not apply the scaling behavior for large networks as

discussed in [7] in our simulations. We repeat each sinanati

VII. EVALUATION configuration 10 times. The results are shown in Figure 2.
We evaluate the performance of the congested link locationWe observe that CLINK is significantly more accurate than

algorithms using two metrics: the detection rate (DR), WhicSCFS with higher DRs and lower FPRs. The reasons for the

B. The Inference Algorithm



TABLE |

Detection Rate (DR) ACCURACY OF THECLINK, SCFSAND MCMC ALGORITHMS.

CLINK SCFS MCMC
B Topology DR FPR || DR FPR || DR FPR
05l LN - o— cLINK | 1 Babarasi-Albert|| 92.0% | 0.8% || 60.0% | 0.9% || 70.0% | 5.0%
& - SCFS Waxman 91.2% | 0.7% || 62.0% | 0.6% || 73.4% | 1.3%
B~ Hierarchical || 87.3% | 0.9% || 57.0% | 1.1% || 76.7% | 1.9%
B--F_
ol ‘ ‘ ‘ ‘ ‘ FT A PlanetLab 90.3% | 1.1% || 61.0% | 0.7% || 69.4% | 2.4%
5 10 15 20 25 30 35 40 45
False Positive Rate (FPR)
0.2 T T T T T .
— e CLINK because it uses an uninformativg, (is the same for all links
015 - = -SCFS ex) prior in its Bayesian updates. CLINK has the same running
0.1 1 time as SCFS, which is an order of magnitude less than that
0.05¢ * T of MCMC.

5 10 15 20 25 30 35 40 45
Percentage of Congested Links (f) B. Internet Experiments

Fig. 2. DR and FPR for the two algorithms CLINK and SCFS in We implement our prior learning and CLINK aIgonthm;
tree topologies of 1000 nodes. Links have different probiiesi of being ON 250 nodes of PlanetLab. These nodes are located mainly
congested. The two figures have different scales on thegs-axi at universities around the world. 50% of them (124 nodes) are
in the US, 40% (100 nodes) are in Europe and the other 10%
are in South America, Asia and Australia.

better performance of the CLINK algorithm boil down to the 1) Methodology: We first use traceroute to measure the
one fact that it uses previous measurement snapshots to le@twork topology. Traceroute is performed sequentialyrfr
about the prior probabilities and therefore does not haee thach vantage point to all other vantage points. The collecte
bias against links that belong to many congested paths th@ites will then be combined to form a complete network
SCFS has. topology. Using traceroute to build the network topology ca

2) Results for mesh topologiesdNe further compare the lead to errors because of several factors. First, for sgycamid
CLINK algorithm with the SCFS and the Bayesian approagherformance reasons, many routers in the Internet do not re-
using Monte Carlo Markov Chain (MCMC) simulation algo-spond or limit the rate of responses to ICMP queries. Thespath
rithm of [4]. We use differenimeshtopologies generated byto nodes behind these routers cannot be ascertained. Aogord
BRITE [20] with 1000 nodes and one topology taken fronto our own traceroute measurements between PlanetLal hosts
the PlanetLab test-bed [21] with 250 vantage points. In eaglto 10% of routers do not respond to ICMP requests. Second,
topology, we choose nodes with the least out-degree as thany routers have multiple interfaces and return diffetent
vantage points. The link loss model is LM1 with= 10% addresses to different traceroute requests. We use thby sr-a
congested links. tool [22] to disambiguate multiple interfaces at a singlel@o

The SCFS algorithm works only with tree topologies. ToVe find that about 16% of routers between PlanetLab nodes
evaluate this algorithm on a mesh topology, we first run ftave multiple interfaces.
separately on each vantage point. The results obtained fronwe then measure the loss rate between each pair of vantage
each vantage point are the sets of identified congested gathts. There are 26250 end-to-end paths among the 250
good links in the routing tree of that vantage point. We mergaintage points. A trivial measurement system will poll all
the results from all the vantage points as follows. For link§iese paths. However, using the technique in [6] to reduee th
that are diagnosed by only one vantage point we keep thismber of end-to-end measurements, each host only needs to
diagnosis as the final result. For links that are diagnosed measure approximately 100 end-to-end paths. We use simple
multiple vantage points, we take the diagnoses given by may®P packets as probes. Each host sends 100 UDP packets of
than 50% of these vantage points as the final results. size 60 bytes to every other host. Time between probes fsllow

We apply the MCMC algorithm in the same way that itn exponential distribution with a mean value of 0.2 seconds
was used for tree topologies in [4]. The accuracy and runnifig prevent overloading the nodes, each host sends probes to
time of the MCMC algorithm depend on two parameters: thtae other hosts in a random order. Each snapshot measurement
number of iterations and the number of bins for link losssatetherefore takes approximately 4 minutes.
In this paper, we use 500 iterations and 100 bins (i.e., weSimilarly to the simulations, in the Internet experiments,
divide the [0, 1] interval into 100 intervals of equal length). we also take 30 snapshots to estimate the prior probabilitie

We repeat each simulation setting 10 times and report tpeThat is, we use the snapshots obtained in the previous two
average DR and FPR in Table I. All the DRs and FPRs hateurs to learn the prior. We then use these probabilitiesfas i
small confidence intervals. For clarity reasons, we omitrthethe congested links for the next measurement snapshot of the
from Table I. network. The following results are the average results of 10

We observe again here that CLINK performs better thaxperiments, each is separated by 4 hours from the previous
both SCFS and MCMC. MCMC is less accurate than CLINKne, starting at 10 a.m. on the 3rd of October, 2005.



TABLE I

PLANETLAB EXPERIMENTS and accurate. Our results are possible thanks to the prepert

of the Boolean algebra: (i) the prior probabilities can be

CLINK SCFS MCMC . ) o o
" DR EPR DR EPR DR  FPR unlqugly _|dent|f|ed from end-to-er_nd measurements, (||§aa|n
0.96 || 91.8% | 2.5% 52.7% | 1.6% 731% | 4.7% combinations of measurements in Boolean algebra increase
0.98 || 95.3% | 3.1% 58.4% | 2.8% 79.6% | 5.3% efficiently the rank of the system in conventional algebral a
0.99 | 97.4% | 4.9% 62.9% | 3.6% 85.4% | 7.5% (iif) computations in Boolean algebra are simple and fast. |

addition to the future extensions discussed in Section ¥, w

TABLE Il also plan to investigate the relationships between the eumb
RUNNING TIME (IN MINUTES). snapshots and the learning errors.
CLINK ][ SCFS] MCMC
Topology and Loss Rate Measurements 4 4 4
Location Algorithm 1 1 10 ACKNOWLEDGEMENTS
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2) Results:In the Internet, we do not know the real IossSions and useful Zuggestions 9

rates of the network links as in the simulations of Sectioh VI

A. Therefore we cannot validate our inference results by

comparing them against the true values. We adopt the irtdirec

validation method of [4], where the set of measurements isLet us introduce some notations first, is the unit vector

divided into two sets of equal size: the inference set and thhosekth coordinate is 1 and all others |@| is the Hamming

validation set. The partition is done randomly. We run firsieight of the vectow = [v; vs ... vnp]T, with 7' denoting

the prior learning algoritm and then the CLINK algorithmransposition, and which is defined fag = >, v;. Without

on the inference set to identify the congested links. Fohealpss of generality, assume that the colunhs1 < i < n,,

congested link that is identified, we check whether the endf D = [d; ... d,,.] are sorted in increasing values of their

to-end paths in the validation set that contain this link atdgamming weights, that is,

congested or not. If all of these paths are congested, then th

inference is correct. We also run our implementation of the 1< |di] < dy| < ... <dn,]. (12)

SCFS and MCMC algorithms on the above traffic traces. Wemember that all columns @ are distinct and nonzero. We

calculate the DRs and FPRs for the three algonthms, we figglnote byu < v the property that; < v; for all 1 < i < n,,.

need to determine the s&t of the actual congested links. AsCIearIy, if u < v, then|u| < |v.

we do not know the true link loss rates, we take the heuristic g fglowing result of Boolean algebra will be useful to

that a link e, is congestede, € F) if and only if it is . 0ua the theorem.

identified by at least one of th.e three algorithms (CLINK, Lemma 1:With d; denoting thejth column vector of

SCFS, anq MCMC) on.the validation set. We compare tr?ﬁatrix D, 1< j <n,, any solutionz = [z x5 ... @, ]T of

three algorithms under different valuestp{recall thatt; is the ¢

threshold we use to determine the congested links). Thétsesu ¢

are presented in Table 1l. Compared to the CLINK algorithm, dj = \/ Trdi, (13)

the MCMC and the SCFS algorithms are again less accurate. k=1

The better performance of CLINK is due to the informatiofs such that, =0 for all j +1 <k < n..

provided by the priors. Proof: Clearly, (13) admitst = e; as a solution. Let
The CLINK algorithm is very fast. Its average runningt’ # « be another solution, and suppose that= 1 for some

time for 26250 end-to-end paths is 60 seconds on a computer 1 <! < n.. Then, as

with a 2Ghz processor running Perl scripts. The running time ne

comparisons of the three algorithms are given in Table IIl. \/ ridy = z;d; = dj,

SCFS and CLINK have almost the same running time whereas k=1

MCM_C takes 10 times Ionggr. Not_e here that the CLINI§\,e get from (13) thaid, > d; and thus thatd;| > |di].
algorithm also requires the prigr, which can be learnt from Combining this last result with (12), we have the equality

APPENDIX PROOF OFTHEOREM 1

shapshots obtained in the past 2 hours. The actual runn‘%j| — |d|. All columns of D are distinct, hencel; and d;

t'me tOf _the prior Iea_rnlngt algrohrlthn;] ISI s_hortl: apprtc»f{!myte: have the same number of entries equal tout are different.
minute In our experiments. The whole Implementation of our g, ¢ (13) is linear in Boolean algebra,V x’ is also a

algorithms on PlanetLab has approximately 1500 lines off P%r .
: olution. Hence
code. All data and code are available at [23]. N

dj = \/ (z vV ay)dy = 2;d; V aydy = d; v dy,
VIIl. CONCLUSIONS ANDDISCUSSIONS k=1
We have shown in this paper that a small number of snafpem which we get thatd;| > |d; V d;|. Now, we have just

shots of the network can significantly improve the accurashown before thatd;| = |d;|, but thatd; and d; differ by
of the congested link location problem. Our approach is faat least one entry. Thereforgd; V d;| > |d;| + 1. But this



would yield in turn thatd,| > |d;| + 1, a contradiction. This Both events4A and A’ depend only onX,, for 1 <k < j—1.

proves thatz; =0 for all j +1 <[ < n,.

We can now prove Theorem 1. The necessary conditifi (A) and P, (A4')
is trivial, because if two columns of the routing matrix ar@ssumption with (14), we also get thﬂZ;j(l — Dk)

B Hence it follows from the induction assumption tfgf (A) =

P3 (A"). Combining the induction

the same then the two corresponding links are traversed ﬁz;j(l — pr). Repeating the same reasoning for (15) with
the same set of paths. Therefore, end-to-end measurementsplaced byp’, we obtain therefore that

cannot distinguish the states of these two links from each

Dj Dj
other, and their congestion probabilities are not idetiéiaTo T Pp (A) = 77=Pp (4)).
.. .. . . Dy pj
prove the sufficient condition, we follow the same induction .
strategy as in Vardi's proof of the identifiability of Poisso ASPp (A") > Pp(X1=...=X; 1 =0)=[[;_;(1—px) >

traffic flows [17], but contrary to his proof, we need to work), it follows thatp; = p;. This concludes the proof of the
in Boolean algebra instead of conventional algebra. Thefprdnduction step and the theorem.

has three steps. In Step 1, we show fidt —p;) = [[(1—75;).
In Step 2, we show that Equation (4) implies that= p;.
Finally, in Step 3 we use induction to complete the proof. Ir1]
all three steps we calculate the probabilities of the pdessib
solution of equations (3). 2
Step 1 Takey = 0 (the all zeros vector) in (4), which then
readsP,(Y = 0) = P;(Y = 0). Now, Y =0 if and only if [
X = 0. It follows from the independence of the link states

Nec Ne [4]
1 =pe) =TT = 50)- (14)
k=1 k=1 [5]
Step 2 Now, takey = d; in (4). Then Lemma 1 yields (6]
thate; = [10 ... 0]7 is the unique solution of (3). Hence ]
PP(Y:dl) :PP(X :el) =D H(l_pk)' [8]
k=2
As the same equation is valid with replaced byp, we get [9]
that
Ne ~ Ne R [10]
pr[J(=pe) =50 [T —5).
k=2 k=2
[11]

Combining this relation with (14) yields that = p,, because
we assumegh, < 1 for all 1 <k <n,. 12

Step 3 (induction) Pick 2 < j < n., and suppose that 13
pr =Py forall 1 <k < j—1. We want to show that; = p;.

Pick y = d; in (4). Then (3) becomes (13), and Lemma ﬁ4]
requires thatX;, = 0 for j+1 < k < n.. Denote the eventd
and A’ by A = {Vi_1 Xydy, = d;} and A’ = {V]_} X}.dy, <
d;}. As X, are independent random variables, we can write?!
that

[16]
Po(Y = d,)

Py ({Vici Xedi = d; } 0 {X;01 = ... = X,,

P, (vizlxkdk = dj) IT @—po)

0}) [17]

k=j+1 (18]

— Py (AN X =0 U A (X =13 [ (-
k=j+1 [20]

= BpA)(1—p) +Bp(hp] T] (1-m0) o
k=j+1 [22]

= |P,(A)+ : fjpj IP’,,(A’)] H(1 — i) (15)[23]

k=j

REFERENCES

A. Adams et al., “The use of end-to-end multicast measuresnent
for characterizing internal network behaviofEEE Communications
Magazine May 2000.

] M. Coates, A. Hero, R.Nowak, and B. Yu, “Internet tomodmp) IEEE

Signal Processing Magazingol. 19, May 2002.

] W. Wei, B. Wang, D. Towsley, and J. Kurose, “Model-basddritifica-

tion of dominant congested links,” iRroceedings of the ACM Internet
Measurement Conferenc2003.

V. N. Padmanabhan, L. Qiu, and H. J. Wang, “Server-baskstiénce of
internet performance,” ifProceedings of the IEEE INFOCOM’'0&an
Francisco, CA, April 2003.

I.-T. R. G.107, “The e-mode, a computational model for usérams-
mission planning,” March 2003.

H. X. Nguyen and P. Thiran, “Active measurement for failgiagnosis
in IP networks,” inProc. of PAM 2004 Juan-les-Pins, France, 2004.
N. G. Duffield, “Network tomography of binary network permance
characteristics,”IEEE Transactions on Information Theoryol. 52,
no. 12, pp. 5373-5388, Dec. 2006.

T. Bu, N. Duffield, F. L. Presti, and D. Towsley, “Networkrhography
on general topologies,” iRroceedings of ACM Sigmetrics 2Q@2arina
Del Rey, CA, 2002.

A. Batsakis, T. Malik, and A. Terzis, “Practical passil@ssy link
inference,” inProc. of PAM 20052005.

Y. Zhao, Y. Chen, and D. Bindel, “Scalable deterministigerlay
network diagnosis,” inProceedings of ACM SIGCOMMPisa, ltaly,
2006.

R. Mahajan, N. Spring, D. Wetherall, and T. Anderson,sédlevel
internet path diagnosis,” iffroceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP;@)03, pp. 106-119.

V. Jacobson, “traceroute, ftp:/ftp.ee.lbl.govéteaoute.tar.z,” 1989.

Y. Shavitt, X. Sun, A. Wool, and B. Yener, “Computing thermeasured:
An algebraic approach to internet mappinlfEE J. on Selected Areas
in Communicationsvol. 22, January 2004.

Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, “On toastancy
of internet path properties,” iRroceedings of ACM SIGCOMM Internet
Measurement Workshp@an Francisco, 2001.

Y. Vardi, “Network tomography: Estimating source-destion traffic
intensities,”Journal of the American Statistical Associatjaol. 91, pp.
365-377, 1996.

Y. Chen, D. Bindel, H. Song, and R. H. Katz, “An algebraijsproach
to practical and scalable overlay network monitoring,”"Rroceedings
of the ACM SIGCOMMPortland, August-September 2004.

Y. Vardi and D. Lee, “From image deblurring to optimal istment:
Maximum likelihod solutions for positive linear inverse ptem,” Jour-
nal of Royal Statistical Society, Series B (Methodologjcabl. 55, pp.
569-612, 1993.

D. HochbaumApproximation Algorithms for NP-Hard Problem$PWS
Publishing Company, Boston, MA, 1997.

J. E. Beasley, “An Algorithm for Set Covering ProblenEuropean
Journal of Operational Researchol. 31, pp. 85-93, 1987.

A. Medina, |. Matta, and J. Byers, “On the origin of powaws in
internet topologies,ACM Computer Communication Reviepp. 160—
163, 2000.

www.planet lab.org.

N. Spring, D. Wetherall, and T. Anderson, “Scriptrautepublic internet
measurement facility,” iVSENIX Symposium on Internet Technologies
and Systems (USITS)003.

http://netscope.epfl.ch.



