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Abstract
Moiré effects (‘Glass patterns’) that occur in the superposition of correlated
random layers have long been studied. However, only little is known of
Glass patterns which occur in the 1D random case: namely, when the
superposed layers consist of random line gratings, straight or curved. In this
paper we study the properties and the behaviour of such Glass patterns, and
we compare them with those of the analogous moiré effects between
periodic line gratings. We provide for each case a detailed mathematical
analysis of the fringe shapes and locations, along with illustrative figures
which clearly compare the behaviour of the corresponding random and
periodic (or repetitive) superpositions.

Publisher’s note. We believe the moiré images in this article will print
faithfully from the online pdf file but some spurious fringing will probably
occur on-screen, depending on the screen resolution. To minimize that
effect, we recommend viewing on-screen at 200% or higher magnification in
Acrobat or Acrobat Reader.
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1. Introduction

When two identical random dot screens, or any two
identical 2D random structures, are superposed on each
other with a small angle or scaling difference, a typical
moiré effect having the shape of a top-viewed funnel
appears in the superposition (see figure 1(b)). This
moiré effect is known in the literature as a Glass pattern,
named after Leon Glass who described it in the late
1960s [1, 2], Unlike a moiré effect between periodic layers
(figure 1(d)), which is periodic and extends throughout the
entire superposition [3], a Glass pattern is concentrated around
a certain point in the superposition, and it gradually fades
away and disappears as we move further away from this
point.

A similar phenomenon also occurs in the 1D case: namely,
where the original layers consist of line gratings. However,
although Glass patterns which occur in the 1D case differ from
their 2D counterparts in several respects, their properties have
not previously been elucidated.

In this paper we investigate Glass patterns in the
superposition of random line gratings,either straight or curved.

We compare them with their 2D counterparts, and explain the
significant differences between them. We also compare their
behaviour with that of the moiré patterns which are obtained
in superpositions of periodic or repetitive line gratings, and
we explain the similarities as well as the differences between
them. We provide the mathematical derivation of their curve
shapes and locations, along with illustrative figures that clearly
compare their behaviour with that of their corresponding
periodic counterparts.

In section 2 we explain the basic phenomena which are
related to the superposition of aperiodic layers. In section 3
we discuss the Glass patterns which are generated in the
superposition of straight line gratings, and we explain how
such cases can be analysed mathematically. Then, in section 4
we extend our discussion to Glass patterns in the superposition
of curved line gratings. Finally, in section 5 we present the
main conclusions.

Remark. The PostScript files that generate the line gratings
used in the figures of this paper are available on the internet1.

1 The PostScript files have been added at the end of the Moiré Demonstration
Kit located at the Internet address http://lspwww.epfl.ch/books/moire/kit.html.
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Figure 1. (a) An aperiodic dot screen. (b) The superposition of two identical copies of the aperiodic dot screen (a) with a small angle
difference gives a moiré effect in the form of a Glass pattern around the centre of rotation. (c) When one of the aperiodic layers is placed
face down on top of the other layer, the Glass pattern completely disappears. (d) When the superposed layers are periodic, a Glass pattern is
still generated around the centre of rotation, but due to the periodicity of the layers, this pattern is periodically repeated throughout the
superposition, thus generating a periodic moiré pattern.

They can be downloaded and printed on transparencies
using any standard PostScript printer. Superposing these
transparencies manually with varying orientations, shifts, etc
can give a vivid demonstration of the Glass (or moiré) patterns
and their dynamic behaviour in the superposition, beyond the
few static figures that illustrate this paper.

2. Glass patterns in the superposition of 2D
aperiodic layers

While the superposition of two similar periodic layers
generates moiré effects that are themselves periodic, the
superposition of two similar 2D aperiodic layers (such as
random dot screens, etc) generates an aperiodic moiré effect
known as a Glass pattern (see figure 1(b)). This moiré pattern
is concentrated around a certain point in the superposition,
and in contrast to periodic moirés, it gradually disappears as
we move further away from this point. Depending on whether

it was obtained by rotation of one of the superposed layers,
by a scaling transformation, or by a combination of both,
it gives rise to an intriguing ordering of the microstructure
elements in the superposition in ‘trajectories’ having a circular,
radial or spiral shape (figures 1(b), 2(a), 2(b)) [2]. Other layer
transformations may give rise to Glass patterns having elliptic,
hyperbolic or other geometrically shaped trajectories [2].
However, when we place one of the superposed aperiodic
layers face down on top of the other layer (this is easy to do
when experimenting with transparencies; see figure 1(c)), the
Glass pattern disappears as if by magic.

As already explained by Glass, this phenomenon occurs
thanks to the local correlation between the structures of the two
superposed layers. When two identical layers having the same
arbitrary structure are slightly rotated on top of each other
(figure 1(b)), a visible Glass pattern is generated around the
centre of rotation, indicating the high correlation between the
two layers in this area: within the centre of the Glass pattern the
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Figure 2. (a) As figure 1(b), but with a small scaling difference (rather than an angle difference) between the two layers; note that in this
case the microstructure consists of radial trajectories rather than concentric circular trajectories. (b) As in (a), but with both a small angle
and a small scaling difference between the two identical layers; note that in this case the microstructure consists of spiral trajectories.

Figure 3. Glass patterns in the superposition of straight line gratings. (a) The superposition of two identical aperiodic line gratings with a
small angle difference of α = 5◦. (b) The superposition of two identical periodic line gratings with the same angle difference. In both (a)
and (b) a linear Glass pattern is generated precisely at the same location.

corresponding elements from both layers fall almost exactly on
top of each other, but slightly away from the centre they fall
just next to each other, generating circular trajectories of point
pairs. Further away from the centre the correlation between
the two layers becomes smaller and smaller, and the elements
from both layers fall in an arbitrary, non-correlated manner; in
this area the Glass pattern is no longer visible. This explains
why the Glass pattern gradually decays and disappears as we
move away from its centre. Note, however, that when the two
superposed layers are not at all correlated, no Glass pattern
appears in the superposition (this is, indeed, what happens
when we place one of the aperiodic transparencies face down
on top of its identical copy, as shown in figure 1(c)). In
intermediate cases, where the two superposed layers are only
partially correlated (for example, when one layer is a copy of
the other with some per cent of random noise being added), the

Glass pattern becomes weaker and less perceptible, depending
on the degree of the correlation which still remains between
the superposed layers.

The explanation above is based on an observation of the
individual elements of the original layers and their behaviour
in the superposition. We say, therefore, that this explanation
is based on the microstructure. To obtain the point of view
of the macrostructure, we have to look at the layers and their
superposition from a greater distance, where the individual
elements of the layers are no longer discerned by the eye and
what we see is only a grey level average of the microstructure
in each area of the superposition. From the point of view of
the macrostructure, the centre of the Glass pattern consists
of a lighter grey level than areas further away, due to the
partial overlapping of the microstructure elements of both
layers in this area. Slightly away from the centre elements
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from the two layers are more likely to fall side by side, thus
increasing the covering rate and the macroscopic grey level.
But as we move further from the centre the correlation between
the two layers becomes smaller, and the elements from both
layers start falling in an arbitrary, non-correlated manner;
in this area the Glass pattern fades away, and we obtain a
mean grey level which remains constant throughout. This
means that the Glass pattern is not just an optical illusion,
but corresponds to the physical reality. In fact, just as in the
periodic case (see proposition 8.1 in [3]), moiré patterns are
simply the macroscopic interpretation of the variations in the
microstructures throughout the superposition.

As we have seen, the superposition of layers, periodic or
not, gives rise to a moiré pattern iff there exists some degree of
correlation between the superposed structures. Therefore, in
order to study the behaviour of a Glass (or moiré) pattern, we
have to make sure that the layers we superpose are sufficiently
correlated. Clearly, the easiest way of doing so is to assume that
the superposed layers, periodic or not, were identical before
the application of the layer mappings (rotation, scaling, etc).
This also implies, in the case of random layers, the use of the
same seed for the random number generator in both layers. In
the following we make this assumption. This does not cause a
loss of generality, since in cases where the original layers are
only partially correlated (for example: due to the presence of
some random noise), the Glass patterns are simply less visible,
but their behaviour under layer transformations remains the
same.

3. Glass patterns in the superposition of straight line
gratings

Having understood the behaviour of Glass patterns in the 2D
case (superpositions of dot screens, etc), we are ready now
to proceed to the phenomena which occur in the 1D case,
i.e. where the original layers (periodic or not) consist of line
gratings2. The 1D case is conceptually simpler than the 2D
case that we have discussed so far, due to its inherently limited
structural complexity. As we will see in the examples below,
even the dot trajectories, which are among the most striking
features of Glass patterns in 2D cases, are practically absent
in 1D cases. Yet the investigation of the 1D case is no less
interesting than that of the 2D case, and in fact yields some
surprising results.

3.1. Observations

We start with the superposition of two identical straight random
gratings with a small angle difference α. Unlike in the
superposition of two identical random dot screens with a small
angle difference, where a circular Glass pattern is generated
around the origin (figure 1(b)), in the present case a linear Glass
pattern is generated in the layer superposition along a given
straight line passing through the origin (figure 3(a)). This line
is, in fact, the locus of the points of coincidence between the
two superposed layers. Along this line the correlation between

2 Use of the term ‘1D grating’ is, strictly, an abuse of language, since in fact
this is still a 2D layer. The more appropriate term that should be understood
here is ‘a 1D structure which has been constantly extended perpendicularly to
its main direction within the 2D plane’.

the superposed layers is maximal, since the black and white
microstructure elements of both layers fall exactly on top of one
another. But as we move further from this line the correlation
between the layers gradually decreases: the elements of both
layers gradually start falling arbitrarily between each other,
and the Glass pattern fades away. Note that just as in the
circular Glass pattern between two dot screens, the centre of
the linear Glass pattern is brighter than its surrounding area.
This is, indeed, the macroscopic consequence of the fact that in
the centre of the linear Glass pattern microstructure elements
fall exactly on top of each other, while farther away they start
falling between each other, so that less white area is left and
the superposition looks darker. Far away from the linear Glass
pattern there is no longer any correlation between the two
layers, and we obtain a mean grey level which remains constant
throughout. This macroscopic view is best appreciated by
observing the layer superpositions from a sufficient distance
(say, 3–4 m), where the individual elements of the layers are no
longer discerned by the eye and what we see is only a grey level
average of the microstructure in each area of the superposition.

Let us see now what happens in the superposition when
we slightly modify the angle difference α between the two
identical line gratings. As shown in figure 4(a), when α

increases, the linear Glass pattern becomes thinner, and its
angle is slightly increased (in fact, as we will see in the
mathematical derivation below, its orientation is perpendicular
to the bisector between the main directions of the two
superposed line gratings). When α tends to zero, the linear
Glass pattern becomes wider and wider, and approaches the
angle of zero. And when α = 0, i.e. when the two superposed
gratings precisely coincide, the width of the linear Glass pattern
becomes infinite, and it completely disappears.

Next, let us see what happens in the superposition when
we also scale one of the superposed line gratings. As we can
see by comparing figures 3(a) and 5(a), when the scaling ratio
s departs from 1 the linear Glass pattern becomes thinner and
its orientation is modified.

Finally, let us see what happens when we slightly shift one
of the superposed line gratings on top of the other along its main
direction. As we can see by comparing figures 3(a) and 6(a),
the linear Glass pattern in the superposition will undergo a
much larger shift, while its angle remains unchanged. A layer
shift along the secondary direction, namely, along the lines of
the grating, will obviously have no effect on the superposition.

3.2. Superposition of 1D versus 2D random layers

As we can see, there exists a significant difference between
the Glass patterns which are generated between random
line gratings and the Glass patterns between random dot
screens: while the classical Glass patterns between random dot
screens are generated around a point of coincidence between
the superposed layers, the linear Glass patterns between
random line gratings are generated along a full 1D line of
coincidence between the superposed layers (compare, for
example, figure 1(b) with 3(a) or 2(b) with 5(a)). The reason
for this difference is explained as follows.

In a superposition of two identical dot screens one of
which has been slightly rotated or scaled, the Glass pattern
is generated around the fixed point of the transformation
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Figure 4. As figure 3, but with α = 10◦.

Figure 5. As figure 3, but here the unrotated layer has been slightly scaled by s = 1.1.

g(x, y) in question, namely: the point (xF , yF ) for which
g(xF , yF) = (xF , yF ). Any rotation or scaling transformation
g(x, y) has exactly one such fixed point.

Suppose now that we superpose, instead of random dot
screens, two identical random line gratings, and that we
apply on one of them exactly the same transformation g(x, y)

as in the case of the dot screens above: namely, a slight
rotation or scaling. Obviously, in both cases the underlying
transformation g(x, y) has exactly one and the same fixed
point. But when the two superposed layers are line gratings,
there also exist between the two superposed layers infinitely
many points of coincidence, which together form a full straight
line passing through the real fixed point. The two superposed
gratings coincide along this line because of the 1D nature
of their internal structure. Indeed, a random line grating
is more constrained (i.e. it has fewer degrees of freedom)
than a random dot screen, since it only has full freedom in

one dimension, while its other dimension is fully determined
(constant). Therefore, due to the additional restriction on
the structure of the layers (namely, the fact that their second
dimension is fully determined by the first one), the layer
superposition has a full line of points of coincidence (which
obviously includes the fixed point of the underlying mapping).

We can therefore formulate our result as follows: Glass
patterns in the superposition of random gratings are not only
generated around the fixed points of the underlying layer
transformations, as in the 2D case, but they extend into full
lines. In fact, as we will see in section 4, these lines may even
be curved, when the superposed layers consist of curved line
gratings.

3.3. Superposition of random versus periodic line gratings

Figures 3–6 show side by side the behaviour of the linear Glass
pattern in the superposition of two random line gratings (panel
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Figure 6. As figure 3, but here the unrotated grating has been slightly shifted horizontally by x0 = T , where T equals one period of the
periodic grating of (b).

Figure 7. Glass patterns in the superposition of parabolic line gratings. (a) The superposition of two identical aperiodic parabolic line
gratings with a small angle difference of 5◦. (b) The superposition of two identical periodic parabolic line gratings with the same angle
difference. In both (a) and (b) two perpendicular linear Glass patterns are generated precisely at the same location.

(a) of each figure), and the behaviour of the moiré patterns
in the superposition of a corresponding pair of periodic line
gratings having undergone exactly the same rotations, scalings
and layer shifts (panel (b) of each figure). As we can clearly see
from these figures, in both aperiodic and periodic cases a linear
Glass pattern is generated exactly in the same location, along
the line of coincidence between the superposed gratings. Note
that this line passes through the fixed point of the underlying
layer transformation g(x, y). However, while the aperiodic
moiré consists of only one linear Glass pattern, the moiré
effect in the corresponding superposition of periodic gratings
consists of infinitely many repetitions of this Glass pattern.
In other words, the Glass pattern which is generated along
the line of coincidence is periodically repeated throughout
the superposition, forming the bright bands of the periodic
moiré pattern. From this point of view, the periods of the

periodic moiré pattern are simply duplicates of the main linear
Glass pattern which is generated through the fixed point, and
the period length of the moiré corresponds to the distance
between these duplicates3. This does not mean, of course,
that our rotation or scaling transformation g(x, y) has more
fixed points when the two superposed layers are periodic than
when the layers are aperiodic: obviously, in both cases g(x, y)

has exactly one fixed point. But unlike in the case of 2D
aperiodic layers, such as random screens, in the superposition

3 It is important to note, however, that these duplicates are not necessarily
identical in their microstructure, and the periodicity of the moiré concerns
only its macrostructure: namely, the moiré intensity profile (the variation in
the mean grey level that is observed from such a distance that the microstructure
detail of the original layers is no longer discerned by the eye). In other words,
although the microstructure in the superposition of two periodic layers is not
always periodic, the intensity profile of the isolated moiré is, indeed, periodic
(see section 6.3 in [3]).
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of line gratings this fixed point is no longer the only point
of coincidence between the superposed layers. As we saw
in section 3.2, the superposition of identical gratings with a
small angle difference already gives a full line of coincidence
between the two superposed layers, which includes the fixed
point of g(x, y). But when the two superposed layers are
also periodic, we have, in addition, infinitely many new lines
of coincidence between the two superposed layers, where the
two layers happen to coincide because of the periodicity in their
internal structure. These new lines of coincidence are not fixed
points of the underlying mapping g(x, y), nor coincidence
lines in the case of random gratings. We can say, therefore,
that the fixed point of g(x, y) determines the main periodic
band (or Glass pattern) of the moiré, while all the other moiré
bands that are generated in the periodic case are only duplicates
which exist due to the periodicity of the superposed layers.

Hence, as we have already seen for 1D versus 2D cases
in section 3.2, the fact of having additional constraints on the
internal structure of the superposed layers (here: due to their
periodicity) causes the addition of new loci of coincidence
in the superposition, which are not loci of coincidence in the
corresponding superposition of unconstrained layers. Having
constrained (fixed) the second dimension of the superposed
layers results in the extension of their locus of coincidence
from the fixed point of the underlying transformation g(x, y)

into a full line; and adding the constraint of periodicity on the
superposed layers causes the extension of this line into a family
of infinitely many periodic lines of coincidence.

Looking at this phenomenon the other way around, we can
say that by applying the same layer transformation g(x, y) on
aperiodic gratings instead of on periodic gratings,we can select
one of the infinitely many repetitions of the Glass patterns
which from together the repetitive macroscopic moiré effect.
Which one exactly is selected depends on the precise shifts
of the original layers, i.e. on their relative positioning. Note,
however, that this property concerns only the macrostructures,
since the microstructure within these elements may vary
depending on the case. This interesting result is clearly
illustrated by figures 3–6.

Let us now proceed to the mathematical derivation of the
points of coincidence in the superposition of two straight line
gratings. We will illustrate this derivation for the case with a
small angle difference α. Our first line grating is a family of
vertical lines that is defined by

x = ci i ∈ Z, ci ∈ R. (1)

Our second line grating is a copy of the first line family
which has been rotated by angle α:

x cos α + y sin α = ci i ∈ Z, ci ∈ R. (2)

This gives us a system of two equations in x and y, whose
solutions (x, y) define the locus of the points of coincidence
between the two layers. Note that ci are arbitrary numbers
which are identical in both line families; this is, indeed, the
key point which guarantees the correlation between the two
layers. Since ci are identical in both line families, we can
eliminate them from our two equations. We obtain, therefore,

x cos α + y sin α = x

which gives

y = x
1 − cos α

sin α

or, using the identity 1−cos α
sin α

= tan α
2 ,

y = x tan
α

2
.

The solution of our system of equations is, therefore, a
straight line through the origin having the angle of α

2 . This
is, indeed, the locus of the points of coincidence between
the two layers, i.e. the centre of the linear Glass pattern (see
figure 3(a)). Note that in the periodic case (figure 3(b)) the
arbitrary numbers ci are simply replaced in equations (1)
and (2) by integer multiples of the grating periods, mT 1 and
nT 2, respectively. As explained in [3] (pp 354–355), this
gives us the family of moiré bands which are generated in
the superposition of the two periodic gratings. Note that the
Glass pattern we have derived above is simply the 0th moiré
band of this family, which is obtained when m = n (namely,
the moiré band whose index is p = m − n = 0).

A similar derivation can be also done for cases which
include layer shifts and layer scalings.

4. Glass patterns in the superposition of curved line
gratings

When we apply a non-linear geometric transformation on
an initially periodic straight line grating we obtain a curved
repetitive grating. Moiré effects that occur between curved
repetitive gratings have been intensively investigated in the
past, and their mathematical theory is today fully understood
(see, for example, chapters 10 and 11 in [3]).

Our aim in this section is to study the behaviour of
Glass patterns between curved random line gratings: namely,
straight random line gratings which have undergone a non-
linear mapping g(x, y). As an illustration to such curved line
gratings we use here parabolic gratings. These curved gratings
offer us three main advantages: they clearly illustrate the main
configurations which occur in the case of curved gratings; their
mathematical handling is still tractable; and finally, the results
for the repetitive case (i.e. where the original uncurved gratings
were periodic) are already known (see [3], sections 10.7.3–
10.7.4), which enables us to compare the results obtained for
periodic and aperiodic layers4.

We start by superposing two identical copies of our
parabolic grating, origin on origin, and we apply to one of
them a slight rotation of angle α. As we can see in figure 7(a),
the locus of the points of coincidence in this case consists of
two perpendicular straight lines and, indeed, a Glass pattern is
generated in the superposition along these lines.

But as we might expect, based on our experience with
straight gratings, the superposition in the repetitive case
contains, in addition to this Glass pattern, infinitely many other
hyperbolic lines of coincidence between the two layers, which
are not lines of coincidence in the aperiodic case (compare
figures 7(a) and (b)). This happens due to the additional

4 Note that we have chosen horizontally oriented parabolas in order to remain
compatible with the figures and the examples given in sections 10.7.3–10.7.4
of [3], some of which are used here, too.
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Figure 8. As figure 7, but the unrotated grating has been slightly shifted vertically by y0 = 1.5T , where T equals one period of the original
(untransformed) line gratings of (b). In both (a) and (b) two perpendicular linear Glass patterns are generated precisely at the same location.

Figure 9. As figure 7, but with a slight layer shift of (x0, y0) = (T, 1.5T ), where T equals one period of the original (untransformed) line
gratings of (b). In both (a) and (b) a hyperbolic Glass pattern is generated precisely at the same location.

ordering which exists in the internal structure of repetitive
layers: thanks to the new constraints imposed by their
repetitivity, the superposed layers also have infinitely many
new lines of coincidence which are not lines of coincidence in
the corresponding aperiodic case.

Let us now derive mathematically the points of
coincidence in this superposition of two parabolic gratings.
Our first grating is a family of parabolic lines that is defined
by

x − ay2 = ci i ∈ Z, ci ∈ R. (3)

Our second grating is a copy of the first line family which
has been rotated by angle α:

x cos α+y sin α−(y cos α−x sin α)2 = ci i ∈ Z, ci ∈ R.

(4)
This gives us a system of two equations in x and y, whose

solutions (x, y) define the locus of the points of coincidence

between the two layers. As we have seen above,ci are arbitrary
numbers which are identical in both line families; this is the key
point which guarantees the correlation between the two layers.
Since ci are identical in both line families, we can eliminate
them from our two equations. We obtain, therefore,

x cos α + y sin α − (y cos α − x sin α)2 = x − ay2

which gives after some simplifications

a sin2 αy2 + (sin α + 2ax sin α cos α)y

− ax2 sin2 α + x(cos α − 1) = 0.

This second-order equation in y has two solutions:

y = x tan
α

2
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Figure 10. As figure 7, but with a slight layer shift of (x0, y0) = (2T, 1.5T ).

Figure 11. As figure 7, but with a slight layer shift of (x0, y0) = (−T, 1.5T ).

and

y = −x cot
α

2
− 1

a sin α

= x tan

(
90◦ +

α

2

)
− 1

a sin α
.

The solution of our system of equations consists,
therefore, of two orthogonal straight lines: one with the angle
of α

2 , passing through the origin, and the other with the angle
of 90◦ + α

2 , which crosses the y axis far below the origin, at
y = − 1

a sin α
. These two orthogonal lines are, therefore, the

locus of the points of coincidence between the two layers. And
indeed, as we can see in figure 7, a Glass pattern is generated in
the superposition along these two orthogonal lines. Note that
in the repetitive case (figure 7(b)) the arbitrary numbers ci are
simply replaced in equations (3) and (4) by integer multiples
of the grating periods, mT and nT, respectively. As explained
in chapter 11 of [3], this gives us the family of hyperbolic
moiré bands which are generated in the superposition of the

two repetitive gratings. Note that the Glass pattern we have
derived above is simply the 0th moiré band of this family, which
is obtained when m = n (namely, the moiré band whose index
is p = m − n = 0).

What happens now in the superposition when we slightly
shift one of the parabolic gratings, say, the unrotated one? A
vertical shift of y0 will only cause the moiré effects to move
horizontally to the right or to the left, depending on the sign
of y0 (see figures 7, 8). However, a horizontal shift of x0

has a more interesting influence: as we can see in figures 9–
11, it causes the locus of coincidence between the two layers
to become a hyperbolic curve; and indeed, a Glass pattern is
generated in the layer superposition along this curve. But once
again, due to the additional ordering which exists in the internal
structure of repetitive layers, the superposition in the repetitive
case contains, in addition to this Glass pattern, other lines of
coincidence between the two layers which are not lines of
coincidence in the aperiodic case. This explains the repetitive
nature of the moiré effect in panels (b) of figures 9–11.
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Figure 12. When the two superposed layers are generated with different seeds for the random number generator, there is no correlation
between the two layers and no Glass patterns appear in their superposition. (a) Same as figure 3(a), but with a different seed for each layer.
(b) Same as figure 9(a), but with a different seed for each layer.

Looking at this phenomenon the other way around, we
recognize here, once again, the ‘selectivity’ property of
the aperiodic superposition (see section 3.3). This means
that, depending on the precise layer shifts we choose, the
Glass pattern in the aperiodic superposition can extract any
desired ‘period’ from the corresponding repetitive moiré (see
figures 8–11).

Finally, it should be stressed that the Glass patterns in
aperiodic cases are only generated thanks to the correlation
which exists between the superposed layers. As shown in
figure 12, if we regenerate the same layer superpositions with
a different seed for the random number generator in each layer,
there is no correlation between the layers and no Glass patterns
appear in the superposition.

5. Conclusions

In spite of their different appearance, moiré effects that occur
between periodic, repetitive or aperiodic gratings are, in fact,
particular cases of the same basic phenomenon, and all of them
satisfy the same fundamental rules. The most rudimentary case
consists of the superposition of aperiodic (such as random)
line gratings. If one of the superposed layers is a rotated,
scaled and shifted copy of the other, a Glass pattern appears
in their superposition. But unlike in the corresponding case
involving random dot screens, the Glass pattern in the case of
line gratings is not only generated around an isolated point (the
fixed point of the transformation), but it extends into a full line,
the line of coincidence between the superposed gratings. This
happens because a random line grating is more constrained
(i.e. it has fewer degrees of freedom) than a random dot screen,
since it only has full freedom in one dimension, while its other
dimension is fully determined (constant). Therefore, due to
the additional restriction on the structure of the layers (namely,
the fact that their second dimension is fully determined by the
first one), the layer superposition has a full line of points of
coincidence (which obviously includes the fixed point of the
underlying mapping).

The corresponding superpositions of periodic or repetitive
line gratings, in which the superposed layers undergo the
same transformations (rotations, scalings, shifts, etc) as in
the aperiodic case, are, in fact, a particular case in which the
line distances inside each of the gratings are identical. In this
case, in addition to the linear Glass pattern described above, an
infinite number of new lines of coincidence (and hence, Glass
patterns) is generated throughout the superposition, where the
two layers happen to coincide because of the repetitivity in
their internal structure. Thus, due to the additional restriction
on the structure of the layers (namely, the fact that they are
periodic), the layer superposition has a full family of lines of
coincidence (which obviously includes the fundamental line
of coincidence of the corresponding aperiodic case).

As we can see, in both cases the fact of having additional
constraints on the internal structure of the superposed layers
causes the addition of new loci of coincidence in the
superposition, which are not loci of coincidence in the
corresponding superposition of unconstrained layers:

(1) having constrained (fixed) the second dimension of the
superposed layers results in the extension of their locus
of coincidence from the fixed point of the underlying
transformation g(x, y) into a full line; and

(2) adding the constraint of periodicity on the superposed
layers causes the extension of this single line of
coincidence into a family of infinitely many periodic lines
of coincidence.

Looking at property (2) the other way around, we can
say that by applying the same layer transformation g(x, y) on
aperiodic gratings instead of on periodic gratings,we can select
one of the infinitely many repetitions of the Glass patterns
which together form the repetitive macroscopic moiré effect.
Which one exactly is selected depends on the precise shifts
of the original layers, i.e. on their relative positioning. Note,
however, that this property concerns only the macrostructures,
since the microstructure within these elements may vary
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depending on the case. This interesting result is clearly
illustrated by figures 3–6 and 9–11.

Hence, an outstanding property of Glass patterns between
aperiodic layers is their macroscopic ‘selectivity’, i.e. their
ability to extract one single macroscopic ‘period’ from
the corresponding repetitive superposition. Moreover, this
selectivity can be tuned by means of the relative positioning of
the superposed layers: by choosing appropriate layer shifts one
can extract in the aperiodic superposition any desired ‘period’
from the moiré effect in the repetitive superposition.

It should be mentioned that the generalization of our
results to cases in which both superposed gratings undergo

transformations g1(x, y) and g2(x, y) is straightforward. Also,
although we have only mentioned here superpositions of two
layers, the results presented in this paper can be easily extended
to superpositions of three or more layers.
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