
 

DPS – Dynamic Parallel Schedules 
 

Sebastian Gerlach, Roger D. Hersch 
Ecole Polytechnique Fédérale de Lausanne, Switzerland 

Sebastian.Gerlach@epfl.ch, RD.Hersch@epfl.ch 
http://dps.epfl.ch 

 
 

Abstract 
 
Dynamic Parallel Schedules (DPS) is a high-level framework 

for developing parallel applications on distributed memory 
computers (e.g. clusters of PCs). Its model relies on 
compositional customizable split-compute-merge graphs of 
operations (directed acyclic flow graphs). The graphs and the 
mapping of operations to processing nodes are specified 
dynamically at runtime. DPS applications are pipelined and 
multithreaded by construction, ensuring a maximal overlap of 
computations and communications. DPS applications can call 
parallel services exposed by other DPS applications, enabling the 
creation of reusable parallel components.  The DPS framework 
relies on a C++ class library. Thanks to its dynamic nature, DPS 
offers new perspectives for the creation and deployment of 
parallel applications running on server clusters. 

Keywords: Parallel computation, parallel schedules, flow 
graphs, split-merge constructs, overlapping of computations and 
communications 

1. Introduction 

The development of high-level tools and languages for 
simplifying the task of creating parallel applications is one of 
today’s challenges. High-level abstractions should support 
desirable parallelization patterns. The fundamental "farming" 
concept of splitting tasks from a master node to worker nodes and 
gathering the results should be generalized so as to express 
explicitly the splitting and the merging functions and to be able to 
map them onto separate computing nodes. Furthermore, since 
computing clusters built with commodity networks (Fast or 
Gigabit Ethernet) incur high communication latencies  [1] and 
since an increasing fraction of parallel applications make use of 
large datasets  [2], support should be provided for the overlapping 
of communications and computations. 

A further challenge resides in providing “dynamicity”, i.e. 
allowing parallel programs to modify their behavior and release 
or acquire resources at run time. Dynamic reshaping of parallel 
applications at run time is important for parallel server systems 
whose resources must be reassigned according to the needs of 
dynamically scheduled applications. And, in order to facilitate the 
deployment of parallel server systems, parallel programs should 
be able, at run time, to make use of the services offered by other 
parallel programs.  

High-level parallel programming frameworks for shared 
memory computers are available mainly for facilitating the 
development of computational applications and for ensuring the 
portability of programs  [3] [4]. In addition, software distributed 
shared memory systems exist which provide a global shared 
address space on top of physically distributed memory computers 
 [5]. 

In the present contribution, we focus on distributed memory 
systems and try to create abstractions which rely purely on the 
circulation and distributed processing of data objects. Currently, 
the majority of parallel application developments running on 
distributed memory computers are carried out with libraries such 
as MPI  [6] and PVM  [7]. These libraries provide low-level 
message-passing functions, but leave most of the other parallel 
programming issues to the programmer.  

Writing complex programs that execute without deadlocks and 
make a maximal usage of the underlying hardware such as bi-
processor nodes, shared memory for communicating between 
local threads and overlapping communications and computations 
requires substantial programming efforts  [8]. Low-level message 
passing libraries also make it difficult to modify parallel programs 
in order to experiment with different parallel program structures.  

Higher-level approaches to parallel application development 
may provide different levels of abstraction  [9]. High abstraction 
levels such as functional languages leave many decisions related 
to the program behavior to the parallelization framework and 
therefore attain only moderate performance. Intermediate 
abstraction levels, such as CC++  [10], skeletons  [11] [12] [13], and 
Mentat  [14], leave the specification of the parallel program 
behavior to the programmer but free him from managing 
communications, threads, synchronization, flow control, and 
pipelining. They have the potential of facilitating parallel 
programming and at the same time of achieving a high utilization 
of the underlying parallel system resources. 

Skeleton languages, such as P3L  [15] [16] or Skil  [17] provide 
pre-implemented parallel constructs. The programmer can 
combine and customize these constructs by providing his own 
code. Skeletons exist for task-parallel and data-parallel constructs 
 [18]. Task-parallel constructs are based on the transfer of data 
items between tasks. Worker tasks process data items as they 
arrive and send off processed data items as soon as they are ready. 
Data-parallel constructs work on a distributed data structure that 
is stored within the worker tasks. Internally, skeletons are usually 
represented as a tree with nested parallel constructs. Skeleton 
languages also allow creating sequences of constructs. 

Proc. of 8th Int’l Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS 2003), 17th International Parallel and 
Distributed Processing Symposium (IPDPS), April 22-26, Nice, France, 2003, IEEE Press, pp. 15-24 



 

We present a new approach to parallel application 
development, called Dynamic Parallel Schedules (DPS). Dynamic 
Parallel Schedules have some resemblance with task parallel 
skeletons, since simple constructs are provided that can be 
combined and extended by the programmer. Instead of combining 
the constructs in a tree by nesting them within one another, DPS 
applications are defined as directed acyclic graphs of constructs1. 
This approach allows separating data distribution and collection 
of results by providing distinct split and merge constructs. Figure 
1 illustrates the flow graph of a simple parallel application, 
describing the asynchronous flow of data between operations. 

 

Split Merge 

ComputeData 
 

Init Final 

ComputeData 

ComputeData 
  

Figure 1. Flow graph describing data distribution (split), parallel 
processing, and collection of results (merge) 

In contrast to previous approaches  [15] [17], split and merge 
operations are extensible constructs, i.e. the developer can 
provide his own code to control how data is distributed, and how 
processed sub-results are merged into one result. The data 
elements in a flow graph are complex data objects. Data objects 
may contain any combination of simple types or complex types 
such as arrays or lists. The expressivity of DPS flow graphs is 
detailed in section  2. 

Operations within a flow graph are carried out within threads 
grouped in thread collections. DPS threads are mapped to 
operating system threads. Routing of data objects from one 
operation to the next is accomplished according to user defined 
routing functions. DPS supports full pipelining of operations. 
Data objects are transferred as soon as they are computed. 
Arriving data objects are stored in queues associated with the 
thread that contains the operations that will process them. This 
macro data flow behavior enables automatic overlapping of 
communications and computations. The execution of a flow graph 
within its collection of threads and according to its routing 
functions is referred to as a parallel schedule. 

For solving data-parallel problems, operations can store data 
within their local threads, e.g. a matrix distributed across different 
nodes. Libraries of flow graphs can be created to perform 
operations on distributed data structures. These flow graphs can 
then be used by applications for performing higher level 
computations. 

The present approach to parallel application development was 
first introduced in the context of data-intensive computing 
applications. The first generation parallel schedule system 
successfully performed out-of-core parallel access to 3D volume 
images  [20], computation of radio-listening rates  [21], and 
streaming real-time slice extraction from a time-varying 3D 
volume image  [22]. These applications allowed to validate the 
approach and to identify the desirable new features of the second 
generation DPS framework. These new features include facilities 

                                                             
1 Task graphs  [19] also describe parallel applications as directed acyclic 

graphs of sequential operations. They however do not offer a split-merge 
construct, a fundamental element facilitating the creation of parallel programs. 

for simplifying the creation of parallel schedules, for providing 
interoperable parallel services and for allowing the dynamic 
deployment of applications. 

Therefore all DPS structures that describe the application such 
as its flow graph and thread mapping are created dynamically at 
runtime. This dynamic behavior allows applications to 
reconfigure themselves in order to adapt to changes in the 
problem definition or in the computing environment without 
requiring recompilation or restarting. A DPS application can 
expose its graphs to other DPS applications, thus enabling a 
parallel application to call parallel services exposed by another 
parallel application. Finally, the second generation framework 
adds the stream construct to the model. The stream construct 
enables partial merging and forwarding of data elements in order 
to ensure the pipelining of subsequent sets of parallel operations 
(section  3). 

High-level approaches for parallel programming often rely on 
a new programming language, or add extensions to existing 
languages. In order to avoid requiring program developers to 
learn a new language or language extension, DPS applications are 
written in pure C++. The parallel constructs are handled in DPS 
by using C++ classes, templates, macros and operator overloading.  

DPS programs may be recompiled and run without 
modification on platforms on which the DPS library has been 
ported (presently Windows and Linux). 

The remainder of this paper is structured as follows. Section  2 
presents the basic concepts for creating DPS schedules. Section  3 
describes the functionality and interfaces of the DPS C++ library. 
Section  4 gives an overview of the runtime system and of some of 
its associated performance issues. Section  5 presents two 
applications illustrating the philosophy and the concepts of DPS. 
Section  6 draws the conclusions and presents future research 
directions. 

2. Expressing Parallel Schedules 

An application using Dynamic Parallel Schedules is expressed 
as a directed acyclic graph of sequential operations. The nodes on 
the graph are user-written functions deriving from the elementary 
DPS operations: leaf operation, split operation, merge operation, 
and stream operation. Pipelining of operations is implicit in the 
construction of the flow graph.  

The basic parallel construct (split, computation, merge) is 
illustrated in  Figure 1. The split operation takes as input one data 
object, and generates as output multiple output data objects 
representing the subtasks to execute. Each ComputeData leaf 
operation processes the data of the incoming data object and 
generates one output data object. The merge operation collects all 
the output data objects to produce one global result. The 
programmer does not have to know how many data objects arrive 
at the merge operation, since DPS keeps track of the number of 
data objects generated by the corresponding split operation. An 
additional operation, the stream operation, is described in section 
 3.  

The flow graph shown in  Figure 1 is an unfolded view of a 
DPS graph showing its inherent parallelism. However, DPS 
graphs are generally represented by only single instances of 



 

parallel constructs, e.g.   for a split- 
computation-merge construct. 

As it stands, a flow graph only indicates the processing 
operations and their order of execution. To enable parallelism, the 
operations need to be mapped to different threads, possibly 
located in different processing nodes. Threads may incorporate 
user defined data structures. They are associated to operating 
system threads and are mapped onto the nodes where their 
operations will execute. Developers instantiate collections of 
threads. A user-defined routing function specifies at runtime to 
which instance of the thread in the thread collection a data object 
is directed in order to execute its next operation. 

The execution of a sequence of leaf operations within a flow 
graph is automatically pipelined. This enables overlapping of 
computations, communications and possibly I/O operations.  

The graph elements are compositional: a split-merge construct 
may contain another split-merge construct. A split-merge 
construct may incorporate different paths, enabling a data-
dependant conditional execution of parts of the flow graph at 
runtime.  

DPS flow graphs and the mapping of thread collections to 
operating system threads are specified dynamically at run time by 
the application. Dynamic flow graphs enable to adjust the graph 
to the size of the problem to be solved. In section  5, we show how 
a dynamic graph is used to parallelize the LU factorization. 
Dynamically created thread collections and mappings of threads 
to nodes also offer the potential for dynamically allocating 
computing and I/O resources according to the requirements of 
multiple concurrently running parallel applications. 

3. DPS library constructs 

The DPS C++ library provides a class framework for 
developing parallel applications. For maximum ease of use and 
maintainability, it does not extend the C++ language in any way. 
DPS applications can be compiled with a standard C++ compiler 
such as gcc or MS Visual C++. To simplify the development and 
debugging effort, the library takes care of serialization and 
deserialization of the data objects used in the application without 
requiring additional coding. It also detects invalid constructs at 
compile time, such as an attempt to create a sequence of 
operations in a flow graph where the output data object type is 
different from the input data object type of the next operation. 
The library also takes care of releasing memory using smart 
pointers with reference counting. 

The following paragraphs illustrate the syntax of the various 
DPS constructs. The source code originates from a tutorial 
application serving as a first introduction to DPS. It converts in 
parallel a character string from lowercase to uppercase by 
splitting the string into its individual character components. 

Expressing data objects 

Data objects are the fundamental data elements used in DPS. 
A data object is a standard C++ class, with additional information 
enabling serialization and deserialization. The following program 
lines describe a simple data object. 

class CharToken : public SimpleToken { 
public: 

  char chr; // a character 
  int pos;  // its position within a string 
  // Constructor for CharToken 
  CharToken(char c = 0, int p = 0) { chr=c; pos=p; } 
  IDENTIFY (CharToken); 
}; 

The elements added for DPS is the identify macro. This macro 
provides support for serialization, deserialization, and to create an 
abstract class factory to instantiate the data object during 
deserialization  [23]. The CharToken simple data object type is 
serialized and deserialized with simple memory copies. More 
complex data object types can also be created, as illustrated in the 
following example. 

class MyComplexToken : public ComplexToken { 
public: 
  CT<int> id;               // A simple integer 
  CT<std::string> name;     // A character string 
  // A vector of Somethings 
  Vector<Something> children; 
  // A variable-size array of integers 
  Buffer<int> aBuffer; 
  IDENTIFY (MyComplexToken); 
}; 

This data object contains complex data types and containers. 
DPS provides two container templates that can store variable-size 
arrays of simple elements (Buffer) or complex elements (Vector). 
Complex data objects can only contain complex elements; 
therefore a templated class (CT) is provided for inserting simple 
types or types otherwise known to the serializer, such as 
std::string. These templates enable programmers to create 
complicated data structures within their data objects without 
having to care about serialization. Support for derived classes is 
also provided. The serialization is performed with pointer 
arithmetic in order to traverse the elements of the data object. The 
present approach enables serialization without requiring 
redundant data declarations. 

Expressing operations 

Operations are also expressed as C++ classes deriving from 
DPS provided base classes. The following source code shows the 
three operations of a simple split-compute-merge graph.  
SplitString and MergeString operations are executed by an 
instance of MainThread. The ToUpperCase leaf operations are 
performed by instances of ComputeThread.  

class SplitString : 
  public SplitOperation<MainThread,  // Thread 
    TV1(StringToken),   TV1(CharToken)> { 
//  Input token types   Output token types 
//  TV1 indicates one argument type 
public: 
  void execute(StringToken *in) { 
    // Post one token for each character 
    for(int i=0;i<STRLEN;i++) 
      postToken(new CharToken(in->str[i],i)); 
  } 
  IDENTIFYOPERATION(SplitString); 
}; 

class ToUpperCase : 
  public LeafOperation<ComputeThread, 
  TV1(CharToken),TV1(CharToken)> { 
public: 
  void execute(CharToken *in) { 



 

    // Post the uppercase equivalent  
    // of the incoming character 
    postToken( 
      new CharToken(toupper(in->chr),in->pos)); 
  } 
  IDENTIFYOPERATION(ToUpperCase); 
}; 

class MergeString : 
  public MergeOperation<MainThread, 
  TV1(CharToken),TV1(StringToken)> { 
public: 
  void execute(CharToken *in) { 
    StringToken *out=new StringToken(); 
    do { 
      // Store incoming characters at  
      // the appropriate position of string 
      out->str[in->pos]=in->chr; 
    } 
    // Wait for all chars 
    while(in=(CharToken*)(Token*) 
                   waitForNextToken());  
    // Post output string 
    postToken(out); 
  } 
  IDENTIFYOPERATION(MergeString); 
};  

As with data objects, the operations have identify macros. The 
template parameters for the base classes indicate the thread class 
with which the operation is associated, and the acceptable input 
and output data object types. These parameters are used for 
verifying the graph coherence at compile time. 

Expressing threads and routing functions 

Threads are also expressed as classes. They can contain 
members for storing data elements in order to support the 
construction of distributed data structures.  The following source 
code shows a simple thread type containing a single member 
variable. 

class ComputeThread : public Thread { 
  int threadMember; 
  IDENTIFY(ComputeThread); 
}; 

Routing functions are also expressed as classes, as shown in 
the following lines of code: 

class RoundRobinRoute :  
  public Route<ComputeThread,      CharToken> { 
            // Target thread type  Token type 
  int route(CharToken *currentToken) {  
    // Return a thread index 
    return currentToken->pos%threadCount();  
  } 
  IDENTIFY (RoundRobinRoute); 
}; 

The route function contains an expression returning an index 
to one thread in a thread collection. Due to the simplicity of most 
routing functions, a ROUTE macro is provided. The parameters 
are the name of the routing function, the associated thread type, 
the data object type to be routed, and the routing expression 
producing the destination thread index. The following ROUTE 
macro produces the same routing function as the one described 
above: 

ROUTE(RoundRobinRoute, ComputeThread, 
  CharToken, currentToken->pos%threadCount()); 

Expressing thread collections and flow graphs 

With all static elements of an application defined, the dynamic 
construction of thread collections and flow graphs can now be 
described. Thread collections are simply instantiated and named: 

Ptr<ThreadCollection<ComputeThread> > 
 computeThreads =  
     new ThreadCollection<ComputeThread>("proc"); 

The mapping of the threads of a thread collection onto nodes is 
specified by using a string containing the names of the nodes 
separated by spaces, with an optional multiplier to create multiple 
threads on the same node. This string can be loaded from a 
configuration file, be specified as a constant, or be created at 
runtime, according to the application’s requirements. The 
following lines show the simplest form, where a constant is 
specified to create three threads, two on node nodeA, and one on 
node nodeB. 

computeThreads->map("nodeA*2 nodeB"); 
               // The string specifies the mapping 

Flow graphs are defined with overloaded C++ operators. The 
following lines of source code can be used to create a flow graph 
( Figure 2) containing the three previously defined operations 
(split, computation, and merge operations). The flow graphs are 
named in order to possibly reuse them by other applications. 

FlowgraphBuilder theGraphBuilder = 
  FlowgraphNode<SplitString, MainRoute> 
              ( theMainThread )  >> 
  FlowgraphNode<ToUpperCase, RoundRobinRoute> 
              ( computeThreads ) >> 
  FlowgraphNode<MergeString, MainRoute> 
             // Operation    Routing func 
              ( theMainThread ); 
             // Thread collection 

Ptr<Flowgraph> theGraph=new Flowgraph 
    (theGraphBuilder,"graph"); 
  // Builder         name of graph 

 

SplitString MergeString 
ToUpperCase 

 

Figure 2. Simple flow graph 

The flow graph nodes represented by FlowgraphNode objects 
specify the operation, the route to this operation and the thread 
collection on which the operation should execute. The operator 
>> is used to indicate paths in the graph. The operator >> 
generates compile time errors when two incompatible operations 
are linked together (e.g. when their data object types do not 
match). 

More complex graphs are created by declaring 
FlowgraphNode variables and reusing them to create separate 
paths. For instance, in order to create a graph with two possible 
different types of operations between the split and merge 
operations ( Figure 3), we can use the following lines of source 
code. 



 

FlowgraphNode<MySplit,MainRoute> 
                    nodeSplit(theMainThread); 
FlowgraphNode<MyMerge,MainRoute> 
                    nodeMerge(theMainThread); 
FlowgraphNode<MyOpOne,RoundRobinRoute> 
                    nodeOp1(ComputeThreads); 
FlowgraphNode<MyOpTwo,RoundRobinRoute> 
                    nodeOp2(ComputeThreads); 

// create 1st path in graph 
FlowgraphBuilder theGraphBuilder  =  
  nodeSplit >> nodeOp1 >> nodeMerge; 
// add 2nd path to graph 
theGraphBuilder +=  
  nodeSplit >> nodeOp2 >> nodeMerge; 

Ptr<Flowgraph> theGraph = new Flowgraph 
  (theGraphBuilder,"graph"); 

 

MySplit MyMerge 

MyOpOne 

MyOpTwo 

 

Figure 3. Graph with two possible paths; the selected path 
depends on the data object type. 

Note that the += operator allows to insert an additional path to 
the graph. It can also be used to append pieces of graphs together, 
e.g. to create a graph of varying length, as illustrated in the LU 
factorization example (section  5).  When multiple paths are 
available to a given output data object, the input data object types 
of the destinations are used to determine which path to follow. In 
the example of  Figure 3, MyOpOne and MyOpTwo must have 
different input data object types. Programmers may create at 
runtime different types of data objects that will be routed to 
different operations. 

Stream operations 

In the previous paragraphs we presented graphs containing 
split, leaf, and merge operations. DPS offers in addition the 
stream operation. 

In some applications, it may be useful to collect data objects as 
in a merge operation, but to post more than one output data object. 
This may be carried out by using a sequence comprising a merge 
and a split operation, but no output data objects would be posted 
before the merge received all its input data objects.  To enable 
pipelining, DPS offers the stream construct. It works like a merge 
and a split operation combined, enabling the programmer to post 
data objects at any appropriate time during the execution of the 
operation. A graph using the stream operation in a simple video 
processing application is illustrated in  Figure 4. An uncompressed 
video stream is stored on a disk array as partial frames, which 
need to be recomposed before further processing. The use of the 
stream operation enables complete frames to be processed as soon 
as they are ready, without waiting until all partial frames have 
been read. Another application for the stream operation is shown 
in the LU factorization example (Section  5). 

 

(1) 
(2) 

(3) 
(4) (5) 

Stream 
Operation 

 

Figure 4. Graph with stream operation for processing video: (1) 
generate frame part read requests; (2) read frame parts from the 
disk array; (3) combine frame parts into complete frames and 

stream them out; (4) process complete frames; (5) merge 
processed frames onto the final stream. 

Flow control and load balancing 

Since DPS tracks the data objects travelling between 
split/merge pairs, a feedback mechanism ensures that no more 
than a given number of data objects is in circulation between a 
specific pair of split merge constructs. This prevents the split 
operation from sending many data objects in a very short time 
interval, which would possibly induce a very high memory or 
network load. The split operation is simply stalled until data 
objects have arrived and been processed by the corresponding 
merge operation. By incorporating additional information into 
posted data objects, such as the processing nodes to which they 
were sent, DPS achieves a simple form of load balancing. After 
the split operation, the routing function sends data objects to those 
processing nodes which have previously posted data objects to the 
merge operation. Such a scheme allows balancing the load within 
the nodes spanned by a split-merge construct.   

Sequencing of operations 

At the heart of the DPS library is the Controller object, 
instantiated in each node and responsible for sequencing within 
each node the program execution according to the flow graphs 
and thread collections instantiated by the application. The 
controller object establishes all required connections, creates 
threads, and is responsible for the transmission of the flow graph 
and the thread collection information to newly launched 
application node instances.  

4. Runtime Support  

The DPS runtime environment for a typical usage case is 
illustrated in  Figure 5. DPS provides a kernel that is running on 
all computers participating in the parallel program execution. This 
kernel is used for launching parallel applications and for initiating 
communications within a parallel application or between two 
distinct parallel applications. A running application may use the 
services provided by another running application by calling its 
flow graphs.  

The kernels are named independently of the underlying host 
names. This allows multiple kernels to be executed on a single 
host. This feature is mainly useful for debugging purposes. It 
enforces the use of the networking code 
(serialization/deserialization) and of the complete runtime system 
although the application is running within a single computer. 



 

 

    

 

User App 
#2 

User App 
#2 

User App 
#2 

Kernel 2 Kernel 3 Kernel 4 Kernel 1 

User App 
#1 

User App 
#1 

User App 
#1 

Striped File 
System 

Striped File 
System 

Striped File 
System 

Striped File 
System 

 

Figure 5. Two parallel applications calling parallel striped file 
services provided by a third parallel application within the DPS 

runtime environment 

The DPS runtime system was designed to be as dynamic as 
possible. The kernels can be started or stopped at any point in 
time to add or remove nodes from the cluster. Kernels locate each 
other either by using UDP broadcasts or by accessing a simple 
name server. When an application is started on a given node, it 
first contacts the local kernel, and starts constructing its flow 
graphs and thread collections. DPS uses a delayed mechanism for 
starting communications. It neither launches an application on a 
node nor opens a connection (TCP socket) to another application 
unless a data object needs to reach that node. When an application 
thread posts a data object to a thread running on a node where 
there is no active instance of the application, the kernel on that 
node starts a new instance of the application. This strategy 
minimizes resource consumption and enables dynamic mapping 
of threads to processing nodes at runtime. However, this approach 
requires a slightly longer startup time (e.g. one second on an 8 
node system), especially for applications that need full N-to-N 
node connectivity. 

DPS performs communications using TCP sockets. When a 
data object is sent between two threads within the same address 
space, it bypasses the communication layer – the pointer to the 
data object is transferred directly to the destination thread. Thus 
messages are transferred at a negligible cost between threads of a 
shared memory multiprocessor node. 

Communication overhead 

 The communication overhead of DPS was evaluated with 
several simple experiments. These experiments were executed 
and timed on a cluster of bi-processor 733MHz Pentium III PCs 
with 512 MB of RAM, running Windows 2000. The cluster is 
composed of 8 computers (nodes), interconnected with a Gigabit 
Ethernet switch. 

In order to evaluate the maximal data throughput when 
performing simultaneous send and receive operations, the first 
test transfers 100 MB of data along a ring of 4 PCs. The 
individual machines forward the data as soon as they receive it. In 
 Figure 6, we compare the steady state data transfer throughput 
through the four computing nodes by receiving and sending 
blocks (a) directly through a socket interface and (b) by 
embedding data of the same size into DPS data objects. 

Data objects transferred over the network incorporate control 
structures giving information about their state and position within 
the flow graph. These control structures induce an overhead that 
is significant only when sending large amounts of small data 
objects. 

Data transfer throughput

0

5

10

15

20

25

30

35

40

1000 10000 100000 1000000

Single  tranfer data s ize  [bytes]

T
h

ro
u

g
h

p
u

t 
[M

B
/s

]

DPS

Sockets

1

2

3

4

  

Figure 6. Round-trip data transfer throughput: comparing DPS 
with transfers relying on direct socket accesses 

Benefits of overlapping communications and computations 

The second experiment illustrates the benefits of the implicit 
overlapping of communications and computations obtained with 
DPS graphs. To evaluate this overlap, we run a program 
multiplying two square n x n matrices by performing block-based 
matrix multiplications. Assuming that the n x n matrix is split into 
s blocks horizontally and vertically, the amount of 
communication is proportional to n2·(2s+1), whereas computation 
is proportional to n3. By keeping the size of the matrix n constant 
and varying the splitting factor s, the ratio between 
communication time and computation time can be modified. For 
this test, two 1024x1024 element matrices are multiplied on 1 to 4 
compute nodes, with block sizes ranging from 256x256 (s=4) to 
32x32 (s=32). This enables testing situations where either 
communications (s=16 and s=32) or computations (s=4 and s=8) 
are the bottleneck. The reductions in execution time due to 
overlapping of communications and computations and the 
corresponding ratios of communication time over computation 
time are given in  Table 1. 

 

Table 1. Reduction in execution time due to overlapping and 
corresponding ratio of communication over computation time 

The potential reduction g in execution time due to pipelining is 
either  

g = ratio/(ratio+1)   if ratio ≤ 1 , or  
g = 1/(1+ratio)   if ratio ≥ 1. 

 

Block size 256    128   64    32 
Nodes  reduct. ratio          

1 6.7% 0.22 9.1 % 0.45 17.6% 0.94 25.2% 2.09 
2 13.6% 0.33 19.8% 0.66 28.7% 1.28 24.9% 2.76 
3 15.8% 0.44 29.5% 0.97 32.1% 1.92 19.5% 4.19 
4 23.9% 0.63 35.6% 1.36 27.2% 2.54 15.6% 5.54 

 



 

Potential and measured reductions in execution time are the 
closest when the communication over computation time ratio is 
high, i.e. higher than 90%. This is easily explained by the fact that 
when communication dominates, processors tend to be partially 
idle. The highest gains in execution time are obtained at ratios of 
communication over computation times between 0.9 and 2.5. Out 
of a maximum of 50%, Table 1 shows that DPS automatic 
pipelining yields execution time reductions between 25% and 
35% when communication time is similar or up to 2.5 times 
higher than computation time. 

5. Application examples 

In order to evaluate the functionality and measure the 
performances obtained under DPS, several ‘traditional’ parallel 
applications have been developed. Here, we present the 
parallelization of the game of life and of the LU matrix 
factorization. These examples illustrate the use of DPS constructs 
for non-trivial parallelization problems.  The configuration of the 
PC cluster is the same as described in the previous section. 

Game of Life 

The parallel implementation of Conway’s Game of Life is 
especially interesting since it exhibits a parallel program structure 
similar to many iterative finite difference computational problems 
 [24].  

The world data structure is evenly distributed between the 
nodes, each node holding a horizontal band of the world. Each 
computation requires knowledge of the state of lines of cells held 
on neighboring nodes. A simple approach consists in first 
exchanging borders, and after a global synchronization, 
computing the future state of the world. The corresponding DPS 
flow graph is illustrated in  Figure 7. 

 

(1) 
(2) (3) (4) 

(5) (6) 
(7) 

(8) 

master 
worker i worker i-1 

worker i+1 

worker i master master master 
  worker i 

  worker j worker j worker j-1 

worker j+1 

worker j 

 

Figure 7. Simple flow graph for the parallel game of life 
(unfolded view): (1) split to worker nodes; (2) split border 

transfer request to neighboring nodes; (3) neighbors send the 
borders; (4) collect borders; (5) global synchronization to ensure 

that all borders have been exchanged; (6) split computation 
requests; (7) compute next state of world; (8) synchronize end of 

current iteration.  

The computation of the future state of the center of the part of 
the world stored on a node can be carried out without knowledge 
of any cell lines located on the neighboring nodes. We can 
perform this computation in parallel with the border exchange. A 
new flow graph ( Figure 8) can thus be constructed, by keeping 
most of the operations as they were in the previous graph.  

 

(1) 

(2) 
(3) (4) (5) 

(6) 

(7) 

worker i-1 

worker i+1 

worker j-1 

worker j+1 

worker i worker i 

worker j 

worker i 

worker j 
worker j 

worker i 

worker j 

master master 

 

Figure 8. Improved flow graph for the parallel game of life 
(unfolded view): (1) split to worker nodes; (2) split border 

transfer request to neighboring nodes; (3) neighbors send the 
borders; (4) collect borders; (5) compute next state of borders; (6) 

compute next state of center; (7) synchronize end of current 
iteration. 

 Figure 9 shows the relative performances for both 
configurations, as a function of world size. In all cases, the 
improved approach yields a higher performance. With the 
smallest world size, the communications overhead is the largest 
and the difference between the two approaches is the most 
pronounced. Larger world sizes reduce the impact of 
communications and therefore the potential gain of carrying out 
computations and exchange of borders in parallel. 

Speedup of the  gam e of life

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8
Num ber of nodes

S
p

ee
d

u
p

Imp 400x400

Std 400x400

Imp 4000x400

Std 4000x400

Imp 4000x4000

Std 4000x4000

 

 

Figure 9. Speedup for the game of life, improved versus simple 
flow graph, for different world sizes 

Exposing the Game of Life as a parallel service 

To illustrate the parallel service capabilities of DPS, the game 
of life has been extended by providing an additional graph that 
returns the current state of a subset of the world, possibly 
distributed over several compute nodes. A visualization 
application interacts with the game of life by calling this graph to 
display the world as it evolves ( Figure 10).  

The client graph calls the graph exposed by the game of life. It 
is seen by the client application as a simple leaf operation. Thus 
pipelining and data object queuing is preserved when carrying out 
such calls. 



 

 

 

 Client application 

Game of Life (a) (b) (c) 

 

Figure 10. Inter-application graph call. The client calls a graph 
exposed by the game of life. (a) split request to worker nodes; (b) 

read requested parts; (c) merge parts into desired subset of the 
world 

To measure the overhead of graph calls, the client application 
periodically requests randomly located fixed-sized blocks from a 
world of 5620x5620 cells. When running on 4 machines without 
visualization graph calls, calculating one iteration takes 1000 ms. 
 Table 2 shows the impact of the graph calls on the simulation 
speed. The call time is divided into processing time (reading the 
world data from memory) and communication time. The implicit 
overlap of communications and computations enables graph calls 
to be executed very efficiently. 

 

Table 2. Simulation iteration time with and without graph calls 

LU Factorization 

Block LU factorization with partial pivoting  [25] is an 
interesting case for parallelization, since it incorporates many data 
dependencies. The block-based LU factorization was chosen 
since it produces many matrix multiplications, which can be 
easily distributed to all participating nodes. To better understand 
the DPS graph, let us quickly review the process of block LU 
factorization. We split the matrix A of size n x n that we intend to 
factorize into 4 blocks. 

n-rr

rn

r

BA

AA
A

                 
21

1211

−







=  

This matrix is decomposed as 









⋅








=








=

Y

TU

XL

L

BA

AA
A

0

0 1211

21

11

21

1211  

According to this decomposition, the LU factorization can be 
realized in three steps. 

Step 1. Compute the rectangular LU factorization with partial 
pivoting. 

11
21

11

21

11 U
L

L

A

A
⋅








=







   

Step 2. Compute T12 by solving the triangular system. This is 
the operation performed by the trsm routine in BLAS  [26]. Carry 
out row flipping according to the partial pivoting of  step 1. 

121112 TLA ⋅=  

Step 3. To obtain the LU factorization of the matrix A, X must 
be lower triangular and Y upper triangular. We can define A’ = 
X · Y, and recursively apply the block LU factorization until A’ is 
a square matrix of size r. 

1221

1221

' TLBYXA

YXTLB

⋅−=⋅=
⋅+⋅=

 

To carry out the LU factorizations of very large matrices, we 
distribute the matrix to factorize onto the computation nodes as 
columns of vertically adjacent blocks. The corresponding matrix 
operations are shown in  Figure 11, and the graph is illustrated in 
 Figure 12.  

 

 

LU 

trsm trsm trsm 

mult, 
store 

LU 

Compute LU factorization of 
block, stream out trsm requests. 

Compute trsm, perform row 
flipping, return notification. 

Collect notifications, stream 
out multiplication orders. 

Multiply and store result, 
send notification. 

As soon as first column is 
complete, perform LU 

factorization. Stream out trsm 
while other columns complete 
the multiplication. Send row 
flip to previous columns to 

adjust for pivoting 

(a) Step 1 (b) Step 2a 

(c) Step 2b (d) Step 3 

(e) Step 1 

mult, 
store 

mult, 
store 

mult, 
store 

mult, 
store 

mult, 
store 

mult, 
store 

mult, 
store 

mult, 
store 

 

Figure 11. Operations in graph for LU factorization 

Block size 

 width height 

Time per 
call 

(median) 

Simulation 
iteration 

time 

Average 
number of 

calls/sec 
   1000 ms None 

40 40 1.66 ms 1041 ms 66.8 
400 400  22.14 ms 1284 ms 31.8 
400 2400 130.43 ms 1381 ms 6.9 

 

where A11 is a square block 
of size r x r. 

where L11 is a lower triangular 
matrix and U11 is an upper 
triangular matrix. 
 



 

 

 (a)   (b)  
 (c)  

 (b)  

 (e)   (f)   (c)  

 (f)   (g) 
 (e)  

Mul Mul 

 (d)   (d)  

 

Figure 12. Graph for LU factorization. The gray part is repeated 
for every column of blocks in the matrix. (a) LU factorization of 
top left block (step 1) and split to columns; (b) solve triangular 

system for all other columns and perform row flipping (step 2a); 
(c) collect notification of finished triangular system solves and 

stream out multiplications (step 2b); (d) matrix multiply (step 3); 
(e) collect notifications for end of multiplications, perform next 
level LU factorization as soon as first column is complete, and 

stream out triangular system solves as other columns complete; (f) 
perform row exchange on previous columns; (g) collect row 

exchange notifications for termination. 

 Figure 13 illustrates the unfolded graph for a matrix that is 
split into 4 by 4 blocks. The multiply, trsm and row flip 
operations are performed in parallel. Thanks to the stream 
operations, processing can advance further into the graph before 
all trsms or multiplications for a given step are complete, thus 
ensuring pipelining within the execution of the application. 

 
 

Mul  (a)   (g)  
 (c)   (e)  

Mul 

 (f)  

 (f)  

 (f)  

 (c)   (e)  

Mul  (b)  

 (f)  

 (f)  

 (c)   (e)  

Mul  (b)  

 (b)  

 (f)  

 (b)  

 (b)  

 (b)  

9x 

Mul 

4x 

 

Figure 13. Unfolded graph for the LU factorization of a matrix 
subdivided into 4x4 blocks, performed according to  Figure 12 

In the above graphs, the multiplication is represented by a 
simple box. It is itself a split-merge construct, as illustrated in 
 Figure 14. Parallel operations (b) are used to collect the operands 
of each multiplication. The subsequent matrix block 
multiplication is performed within the merge operation (c), which, 
for load balancing purposes, is carried out in a separate thread 
collection. A separate operation (d) transfers the result onto the 
node where it is needed for further processing.  This example 
illustrates the capabilities of DPS split-merge constructs for 
specifying and executing collective data gathering, processing, 
and relocation operations. 

 

(a) 
(b) (c) (d) 

 

Figure 14. Matrix multiplication within the LU factorization: (a) 
split operation; (b) collect both operands; (c) multiply both 

operands; (d) store the result in the target thread local storage 

The LU factorization shows the benefits of dynamically 
created graphs. The graph is created to fit the size of the problem. 
It also illustrates the approach a developer takes when 
parallelizing complex problems – the graph reflects the data flow 
in the application. The developer must ensure that the individual 

DPS blocks behave as expected, and DPS takes care of all 
pipelining, synchronization and scheduling issues.  

 Figure 15 shows the performance of the LU factorization with 
a matrix of 4096x4096 elements. No optimized linear algebra 
library was used for this implementation. The graph shows the 
relative performance of two variants: the first one is fully 
pipelined, and the second one uses a standard merge-split 
construct instead of the stream operations. It clearly illustrates the 
additional performance gain obtained thanks to the pipelining 
offered by the stream operations. 

 

Speedup of LU decom position

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10
Nodes

S
p

ee
d

u
p

Pipelined

Non-
pipelined

 
Figure 15. Performance of LU factorization 

6. Conclusions and Future Work 

DPS is a novel environment for the creation of parallel 
programs. DPS generalizes the “farming” concept by allowing 
split operations (distribution of “tasks” to workers) and merge 
operations (collection of results) to incorporate application-
specific code and by allowing them to be mapped onto distinct 
nodes. Furthermore, the stream operation allows to pipeline two 
successive split-merge constructs. DPS applications are specified 
by a flow graph representing hierarchies and sequences of split, 
computation, merge and stream operations. The flow graph 
(acyclic directed graph) represents the parallel program execution 
pattern. It can be easily visualized and represents therefore a 
valuable tool for thinking and experimenting with different 
parallelization strategies.   

DPS applications are by construction automatically 
multithreaded and pipelined, thus yielding overlapped 
computations and communications. 

 The runtime environment and the library enable the 
specification of flow graphs and the mapping of threads to nodes 
at runtime. This opens up possibilities for dynamic resource 
allocation and for load balancing between different applications 
scheduled within a single cluster. This is of particular interest in 
server environments, where various services need to be provided 
with a limited set of resources and under continuously evolving 
load profiles. The ability to call graphs exposed by other DPS 
applications enables the development of complex programs split 
into smaller reusable components.  



 

In the near future, we intend to make the inter-application 
graph building capacity more flexible by allowing corresponding 
split and merge operations to reside in different applications. 
Inter-application split and merge operations are the key to 
interoperable parallel program components. They allow a server 
application having knowledge about the distribution of data, to 
serve a request to access in parallel many data items by 
performing a split operation. The client application may then 
directly process the data items in parallel and combine them into a 
useful result by performing a merge operation. 

Within our research on multimedia servers, we will also 
explore the possibility of allocating additional resources to a 
running program at runtime by taking advantage of the 
dynamicity of DPS. The dynamicity of DPS combined with 
appropriate checkpointing procedures may also lead to more 
lightweight approaches for graceful degradation in case of node 
failures.   

To allow a wider use of DPS, the software is available on the 
Web under the GPL license at http://dps.epfl.ch. 

7. Acknowledgements 

We would like to thank Benoit Gennart for having introduced 
the concept of parallel schedules and Marc Mazzariol for having 
contributed to the initial specification of dynamic parallel 
schedules. 

References 
[1] M. Lobosco, V. Santos Costa, C. Luis de Amorim, Performance 

Evaluation of Fast Ethernet, Giganet, and Myrinet on a Cluster. 
Int'l Conf on Computational Science (ICCS2002), P.M.A. Sloot 
et al. (Eds.),  LNCS 2329, Springer, pp. 296-305, 2002 

[2] J. Saltz, A. Sussman, S. Graham, J. Demmel, S. Baden, J. 
Dongarra, Programming Tools and Environments, 
Communications of the ACM, Vol. 41, No. 11, pp. 64-73, 1998 

[3] C. Koelbl, D. Loveman, R. Schreiber, G. Steele, M. Zosel, The 
High Performance Fortran Handbook, MIT Press, 1994 

[4] The OpenMP Forum, OpenMP C++ Applications Program 
Interface, http://www.openmp.org, Oct. 2002 

[5] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. 
Rajamony, W. Yu, W. Zwanenepoel, ThreadMarks: Shared 
memory computing on networks of workstations, IEEE 
Computer, Vol 29, No. 2, 18-28, Feb. 1996 

[6] J. Dongarra, S. Otto, M. Snir, D. Walker, A message passing 
standard for MPP and Workstations, Communications of the 
ACM Vol. 39, No. 7, pp. 84-90, 1996 

[7] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. 
Sunderam, PVM: Parallel Virtual Machine A Users' Guide and 
Tutorial for Networked Parallel Computing, MIT Press, 1994 

[8] S. Baden, S.S. Fink, A programming methodology for dual-tier 
multicomputers, IEEE Transactions on Software Engineering, 
Vol. 26, No. 3, pp. 212-226, March 2000 

[9] D. Skillicorn, D. Talia, Models and Languages for Parallel 
Computation, ACM Computing Surveys, Vol. 30, No. 2, pp. 
123-169, June 1998 

[10] K. M. Chandy, C. Kesselman, CC++: A Declarative Concurrent 
Object Oriented Programming Notation, Research Direction in 
Concurrent Object-Oriented Programming, MIT Press, pp. 281-
313, 1993 

[11] H. Kuchen, A Skeleton Library, Proc. Euro-Par 2002, LNCS 
2400, Springer-Verlag, pp. 620-629, 2002 

[12] M. I. Cole, Algorithmic Skeletons: Structured Management of 
Parallel Computation, MIT Press, 1989 

[13] J. Darlington, Y. Guo, H. W. To J. Yang, Parallel Skeletons for 
Structured Composition, Proc. of ACM SIGPLAN Symposium 
on Principles and Practice of Parallel Programming, pp. 19-28, 
1995 

[14] A. S. Grimshaw, Easy-to-Use Object-Oriented Parallel 
Processing with Mentat, IEEE Computer, Vol. 26 No. 5, pp. 39-
51, 1993 

[15] B. Bacci, M. Danuletto, S. Orlando, S. Pelagatti, M. Vanneschi, 
P3L: a Structured High-level Parallel Language, and its 
Structured Support, Concurrency Practice and Experience, 7(3), 
pp. 225-255, May 1995 

[16] S. Ciarpaglini, L. Folchi, S. Pelagatti, Anacleto: User manual, 
Nov. 1998, http://www.di.unipi.it/~susanna/p3longoing.html 

[17] G. H. Botorog, H. Kuchen, Skil: An Imperative Language with 
Algorithmic Skeletons for Efficient Distributed Programming, 
Proc. 5th International Symposium on High Performance 
Distributed Computing, IEEE Computer Society Press, pp. 243-
252, 1996 

[18] H. Kuchen, M. I. Cole, The Integration of Task and Data 
Parallel Skeletons, Proc. of the 3rd International Workshop on 
Constructive Methods for Parallel Programming 2002, TU 
Berlin, Forschungsberichte der Fakultät IV, No. 2002/07, ISSN 
1436-9915, pp. 3-16, 2002 

[19] D. B. Skillicorn, The Network of Tasks Model, Proc. of Parallel 
and Distributed Computing Systems 1999, IASTED, available 
as Report 1999-427, Queen's University School of  Computing, 
http://www.cs.queensu.ca/TechReports/authorsS.html 

[20] V. Messerli, O. Figueiredo, B. Gennart, R. D. Hersch, 
Parallelizing I/O intensive Image Access and Processing 
Applications, IEEE Concurrency, Vol. 7, No. 2, pp. 28-37, 
April-June 1999 

[21] M. Mazzariol, B. Gennart, R.D. Hersch, M. Gomez, P. Balsiger, 
F. Pellandini, M. Leder, D. Wüthrich, J. Feitknecht, Parallel 
Computation of Radio Listening Rates, Proc. Conf. Parallel and 
Distributed Methods for Image Processing IV, SPIE Vol 4118, 
pp. 146-153, July 2000 

[22] J. Tarraga, V. Messerli, O. Figueiredo, B. Gennart, R.D. Hersch, 
Parallelization of Continuous Media Applications: the 4D 
Beating Heart Slice Server, Proc.  ACM Multimedia, pp. 431-
441, 1999 

[23] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: 
Elements of Reusable Object-Oriented Software, Addison 
Wesley, pp. 87-95, 1995 

[24] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to 
Parallel Computing, Benjamin Cummings Publishing Company, 
Chapter 11, Solving sparse systems of linear equations, pp. 407-
489, 1993 

[25] G. H. Golub, C. F. van Loan, Matrix Computations, The Johns 
Hopkins University Press, pp. 94-116, 1996 

[26] C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh, Basic 
Linear Algebra Subprograms for FORTRAN usage, ACM 
Trans. Math. Soft., Vol. 5, pp. 308-323, 1979 


