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Abstract. It has been previously shown that a radially periodic image having a symmetric
radial period can be decomposed into a circular Fourier series of circular cosine functions
with radial frequencies off = 1/T , 2/T , . . . , and that its Fourier spectrum consists of a
series of half-order derivative impulse rings with radiif = n/T (which are the Fourier
transforms of the circular cosines in the sum). In the present paper these results are extended
to the general case of radially periodic images, where the radial period does not necessarily
have a symmetric profile. Such a general radially periodic function can be decomposed into a
circular Fourier series which is a weighted sum of circular cosine and sine functions with
radial frequencies off = 1/T , 2/T , . . . . In terms of the spectral domain, the Fourier
spectrum of a general radially periodic function consists of half-order derivative impulse
rings with radiif = n/T (which are the Fourier transforms of the weighted circular cosines
and sines in the sum).
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1. Introduction

Radially periodic images and their Fourier spectra occur
quite frequently in optics (for example, in connection with
the Fraunhofer diffraction pattern generated by circular
structures). In a previous paper on the Fourier spectra of
radially periodic images [1] we concentrated on circular
functions whose radial periods have a symmetric profile, such
as the functions shown in figures 1(a) and (b). We showed,
using Bracewell’s approach [2], that any such radially
periodic image can be decomposed into a circular Fourier
series of circular cosine functions with radial frequencies of
f = 1/T , 2/T , . . . , just as any symmetric periodic function,
p(x), in the one-dimensional (1D) case can be decomposed
into a sum of cosines with frequencies off = 1/T , 2/T , . . . ,
(the Fourier series decomposition ofp(x)). We showed that
this means that in the spectral domain the Fourier spectrum
of such a radially periodic image consists of half-order
derivative impulse rings with radiif = n/T (which are the
Fourier transforms of the circular cosines in the sum).

In the present paper we extend these results to the
general case of radially periodic images whose radial periods
do not necessarily have a symmetric profile. We show
in section 2 that such a general radially periodic function
can be decomposed into a circular Fourier series of circular
cosine and sine functions having radial frequencies off =
1/T , 2/T , . . . . Then, we show in section 3 that, in terms of
the spectral domain, the Fourier spectrum of a general radially

periodic function consists of half-order derivative impulse
rings with radiif = n/T , which are the Fourier transforms of
the circular cosines and sines in the sum. The decomposition
of a radially periodic image into circular cosine and sine
components, rather than into a conventional series of Bessel
functions, has the advantage of explicitly revealing the exact
impulsive structure of the spectrum, since thenth term in this
decomposition explicitly represents thenth impulse ring in
the spectrum of any given radially periodic image.

2. Image domain analysis

A radially periodicimage is a circularly symmetric image on
the two-dimensional (2D) plane whose intensity profile along
its radius is periodic. Its intensity profile can be visually
described as the 2D surface which is obtained by revolving
the positivex direction of a 1D periodic functionp(x) about
the vertical axis. A radially periodic image can therefore be
expressed in terms of the polar coordinates(r, θ)as a function
g(r), which is periodic inr (r > 0). Four such functions
are shown in figures 1(a)–(d). Note that although all of
these functions are radially periodic (and hence symmetric
about the origin), the two functions shown in figures 1(a)
and (b) have a radial periodT whose profile is symmetric
with respect to the mid-period pointsT/2, 3T/2, etc, while
the functions shown in figures 1(c) and (d) do not share this
property: in the functionf3(x, y) of figure 1(c) the radial
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Figure 1. Four radially periodic images (gratings) on the 2D plane, all having values ranging between 0 (for black) and 1 (for white), and an
identical radial periodT . The drawings have been cut along thex-axis in order to clearly show their cross sections along this line (the
hatched profiles). In (a) and (b) the profile of the radial periodT is symmetric with respect to its mid-period pointT/2; in (c) the profile of
the radial periodT is antisymmetric with respect to its mid-period pointT/2 (up to a vertical shift of 0.5); and in (d) the profile of the radial
period is asymmetric.

period is antisymmetric with respect to the mid-period points,
and in the functionf4(x, y) of figure 1(d) the radial period
is asymmetric.

It was shown in [1] that just as any symmetric periodic
functionp(x) in the 1D case can be represented by a sum
of cosines with frequencies off = 1/T , 2/T , . . . , in the
2D case any radially periodic image having a symmetric
radial period can be decomposed into a circular Fourier
series of circular cosine functions with radial frequencies of
f = 1/T , 2/T , . . . with the same Fourier coefficientsan as
in the 1D case having the same waveform:

g(r) = a0 + 2
∞∑
n=1

an cos
(
2π

n

T
r
)

(r > 0). (1)

By a similar development it can be shown that a radially
periodic image whose radial period has an antisymmetric
profile with respect to the mid-period points can be
decomposed into a circular Fourier series of circularsine
functions, with the same coefficientsbn as in the 1D analogue
having the same waveform:

g(r) = 2
∞∑
n=1

bn sin
(
2π

n

T
r
)

(r > 0). (2)

Even more generally, any arbitrary radially periodic image
with a radial periodT can be decomposed into a circular
Fourier series of circular sine and cosine functions with radial
frequencies off = 1/T , 2/T , . . . with the same Fourier

coefficientsan andbn as in the Fourier series of the 1D case
having the same waveform:

g(r) = a0 + 2
∞∑
n=1

an cos
(
2π

n

T
r
)

+ 2
∞∑
n=1

bn sin
(
2π

n

T
r
)

(r > 0) (3)

—just as any periodic functionp(x) in the 1D case can be
represented by a sum of cosines and sines with frequencies
of f = 1/T , 2/T , . . . .

Note, however, that in the last two cases the 1D analogue
of the radially periodic gratingg(r) is not the periodic grating
g(x), but the bigratingg(|x|), which is symmetric with
respect to the origin. For example, the 1D analogue of
sin(2πf r) is sin(2πf |x|); the 1D analogues of the radially
periodic functions in figure 1 are illustrated by the hatched
vertical sections.

3. Spectral domain analysis

It was shown in [1] that the Fourier spectrum of expression
(1) consists of a series of half-order derivative impulse rings
with radii f = n/T , which are the Fourier transforms of the
circular cosines in (1).

In a similar way, the Fourier spectrum of (2) consists
of a series of half-order derivative impulse rings with radii
f = n/T , which are the Fourier transforms of the circular
sines in (2). As shown in [3], the Fourier transform of a
circular sine sin(2πf r) is an impulse ring with radiusr = f
which has a positive impulsive behaviour in its inner side,
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(a)

(b)

Figure 2. (a) The circular binary grating of figure 1(c), with
a radial period ofT = 1 and opening ofτ = 1

2 . (b) Its Fourier
spectrum as obtained by a 2D DFT (notice the folding-over artifacts
which are due to the DFT [5]). (c) The average cross section
through the origin of this DFT (averaged through all directions,
θ = 0◦ . . .360◦, in order to compensate for local DFT artifacts).

(a)

(b)

Figure 3. (a) The circular grating of figure 1(d), with an
asymmetric radial period ofT = 1. (b) Its Fourier spectrum as
obtained by a 2D DFT (notice the folding-over artifacts which are
due to the DFT [5]). (c) The average cross section through the
origin of this DFT (averaged through all directions,
θ = 0◦ . . .360◦, in order to compensate for local DFT artifacts).
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and a negative impulsive behaviour in its outer side, which
trails off outwards as a negative, continuous wake. This is,
in fact, the inside-out inversion of the impulse ring in the
Fourier transform of the circular cosine, cos(2πf r). This
can be clearly seen from the explicit expressions of these
Fourier (or rather Hankel†) transforms:

cos(2πf r)
H←→ f√

π

1

(f + q)3/2
δ(1/2)(f − q) (4)

sin(2πf r)
H←→ f√

π

1

(f + q)3/2
δ(1/2)(q − f ). (5)

It follows, therefore, that the Fourier spectrum of expression
(3) consists of a series of half-order derivative impulse rings
with radiif = n/T , which are weighted sums of the Fourier
transforms of the circular cosines and sinesan cos(2π n

T
r) +

bn sin(2π n
T
r) in (3). These impulse rings therefore have

continuous wakes trailing both inwards (the contribution of
the circular cosine) and outwards (the contribution of the
circular sine).

These results are indeed confirmed by 2D discrete
Fourier transform (DFT), as shown in the examples in
figures 2 and 3. Figure 2 shows the radially periodic function
of figure 1(c), whose radial period has an antisymmetric
profile, and its spectrum as obtained by 2D DFT. As we
can see, the spectrum consists of a series of impulse rings
having negative continuous wakes which trail off outwards;
these are the Fourier transforms of the circular sines in the
series development (2), whose amplitudes are weighted by
the Fourier series coefficientsbn. Note that all the even rings
(the rings whose radii arer = n/T with evenn) have a zero
amplitude and do not appear in the spectrum; this is due to the
opening ratioτ/T = 1

2 of the square wave, since the Fourier
coefficients in the series development of a square wave are
given bybn = (1/nπ) sin(nπτ/T ).

Figure 3 shows the radially periodic function of
figure 1(d), whose radial period has an asymmetric profile,
and its spectrum as obtained by 2D DFT. As we can see,
the spectrum consists of a series of impulse rings having
continuous wakes which trail off both inwards and outwards;
these are the Fourier transforms of the circular cosines
and sines in the series development (3),an cos(2π n

T
r) +

bn sin(2π n
T
r), whose amplitudes are weighted by the Fourier

series coefficientsan andbn.
The decomposition of a radially periodic image into

circular cosine and sine components offers a significant
advantage over other possible decompositions (such as the
development into a series of Bessel functions) in that it
explicitly reveals the exact impulse ring structure of the
spectrum and the special properties of each of these rings:
in the proposed circular Fourier decomposition, thenth term
explicitly represents thenth impulse ring in the spectrum of
the radially periodic image.

† The Hankel transform is an equivalent way to express the 2D Fourier
transform of a circularly symmetric function, based on its radius; see, for
example, [4]. Both terms can be used interchangeably, depending on the
coordinate system implied, polar or Cartesian.

4. The case of circular images with a finite number
of periods

Just as in the 1D case, an image which only contains a
finite number of periods is not a periodic image; it is, in
fact, the product of an initial radially periodic image, having
infinitely many periods, with a low-pass filter, rect(r/d),
having the appropriate cut-off frequency. This means that
the spectrum of such an image is no longer impulsive, since
the multiplication of the initial radially periodic image with
rect(r/d) in the image domain implies that in the spectral
domain the initial impulsive spectrum is convolved with the
continuous spectrum of rect(r/d).

For example, in the case of a circular imageg9(r) that
consists of nine concentric slits, it was shown in [2, pp 81–
7] that the spectrum is composed of concentric ringlobes,
where the profile of each ringlobe can be approximated
in terms of a half-order derivative of the sinc function [2,
equation (12)]. This spectrum is clearly continuous and
not impulsive. However, when the number of periods in
the image-domain function tends to infinity, each of the
continuous ringlobes in the spectrum again becomes a half-
order derivative impulse ring [2, pp 89–90]. This result is not
specific to the present example, and it holds for any circular
image with a finite number of periods: since when the number
of periods tends to infinity, the image-domain multiplication
with the filter rect(r/d) turns into a multiplication with the
identical 1-function, so that in the spectral domain the initial,
impulsive spectrum is now convolved with a simple impulse
(the Fourier transform of the identical 1-function), meaning
that it remains unchanged.

It is interesting to note, however, that when we consider
thepower spectrum(i.e. the squared spectrum) of an image
with a finite number of periods (for example, the Fraunhofer
diffraction pattern of the image), then the centres of the
observed ringlobes may seem to be located slightly away
from their expected radii off = n/T . This was observed
in [6] in the diffraction pattern of the finite circular image
g9(r). This phenomenon is due to the fact that the function
that describes the profile of the ringlobe in theunsquared
spectrum (in our case, the half-order derivative of the sinc
function) is not centred about the zero-crossing between its
positive and negative peaks (see figure 4, top). When the
power spectrumof our finite circular image is considered, one
often takes as the ‘centre’ of each ringlobe the central zero-
valued ring which corresponds to the zero crossing between
the positive and negative peaks in the unsquared spectrum.
However, as we have just seen, this zero-valued ring is
not the real centre of the ringlobe, and is therefore located
slightly away from the radiusf = n/T , as clearly shown
in figure 4. This gives the impression that the ringlobe radii
that are measured in the power spectrum (or the diffraction
pattern) are not exactlyf = n/T , as mentioned in [6].
However, as can be seen in the unsquared spectrum (and
in equation (12) of [2]), each of the ringlobes (the sinc(1/2)

functions) is indeed centred exactly atf = n/T , although its
mathematical centre does not coincide with the zero-crossing
point.

It should be stressed that this seeming discrepancy only
happens because the image in question consists of a finite
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Figure 4. Top: the function sinc(1/2)(−x), clearly showing the off-centre location of the central zero-crossing point (the reasons for the sign
inversion are explained in [1] pages 822 and 825). Centre: a cross section through the first two ringlobes in the spectrum of a circular image
with a finite number of radial periods having a symmetric profile. Bottom: a cross section through the first two ringlobes in the power
spectrum of the same image. Dotted lines indicate the mathematical centre of the function sinc(1/2)(−x) and of each of the ringlobes, while
the arrows indicate the central zero-crossing point in each case. As clearly shown, although the mathematical centres of the ringlobes are
indeed equally spaced, if one considers the central zero-crossing point as the centre of each ringlobe in the power spectrum (as this is the
most easily detected reference point in the middle of the ringlobe), the radius of the second-order ringlobe does not seem to be exactly twice
the radius of the first-order ringlobe.

number of periods, and is therefore not a radially periodic
image. Had it been a radially periodic image, with infinitely
many periods, each of the ringlobes in its spectrum would
have reduced into a half-order derivative impulse ring, as
explained earlier, whose positive and negative peaks as well
as the zero crossing between them coincide precisely at the
radiusf = n/T .

5. Summary

It has been shown that a general radially periodic imageg(r),
whose radial period does not necessarily have a symmetric
profile, can be decomposed into a Fourier series of circular
cosine and sine functions with radial frequencies off =
1/T , 2/T , . . . . In terms of the spectral domain, the spectrum
of the radially periodic functiong(r) consists of a DC impulse
plus a series of half-order derivative impulse rings with
radii of f = 1/T , 2/T , . . . , each of which is the spectral
representation of the terman cos(2π n

T
r) + bn sin(2π n

T
r) in

the image-domain decomposition. The particular wakes of
these impulse rings, which may trail off both inwards and
outwards, are simply a weighted sum of the wakes in the
Fourier spectra of the corresponding circular cosine and sine
functions. Finally, these results are also extended to the case

of circular images with a finite number of periods, and a
particular artifact which may occur in such cases is explained
and illustrated.

It should be noted that although in this paper we have
only discussed real-valued imagesg(r), our results may
be also extended, by using elementary Fourier properties
[7], to pure imaginary-valued radially periodic images
ig(r) and hence also to any complex-valued radially
periodic imagesg1(r) + ig2(r) (g1(r) and g2(r) being
real-valued radially periodic images with the same radial
period).
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