

A Window-based Method For Automatic Typographic
Parameter Extraction

Jacky Hertz

1

, Changyuan Hu

2

, Jakob Gonczarowski

3

, Roger D. Hersch

4

1

Open University, Jerusalem, Israel

2,4

Ecole Polytechnique Federale de Lausanne, Switzerland

3

Typographics Ltd. Jerusalem, Israel

Abstract.

 The synthesis of existing fonts with characters represented by
parametrized structure elements requires determining a set of font-specific
global and local parameters. Parameters comprise, for example, the widths of
vertical stems, horizontal bars and curved elements, the spacing between vertical
stems, the relative position of the junction between arches and vertical bars and
serif measures. These parameters need to be extracted from existing outline
fonts. This paper presents a window-based method for locating within existing
outline characters the position of character features from which parameters can
be measured. The method is based on the match between outline characters and
their corresponding virtual skeletons.

1 Introduction

Most commercial font systems use outline fonts for the digital presentation of type-
faces. Outline fonts are well suited for character rasterization and printing. They how-
ever only incorporate implicit information about important font features such as the
width of stems, bars and bowls, the distance between vertical stems and bowls and the
parameters determining junctions between character elements and determining the
shape of terminal elements (serifs). Efforts are made to create a more flexible character
representation incorporating explicit information about features of the character, thus
enabling the synthesis of coherent font variations, for example by varying weight and
contrast. The main idea is to describe characters by an assembly of appropriate structure
elements. Several attempts have been made to describe characters by structure ele-
ments. D. Knuth described his Computer Modern fonts by horizontal, vertical, diagonal
strokes and by round parts [9]. These strokes and round parts are given by sequences of
pen positions and directions. More recently, Bauermeister et al. created the Infinifont
system enabling resynthesizing an existing font from universal font generation rules
and from parametric data specific to that font [2][10]. Our own efforts aim at defining
character structure elements suitable for the quick generation of existing and new typo-
graphic fonts. Figure 1 shows a character assembled from structure elements, i.e. verti-
cal stems, a round arch and serif components.

Components are predefined parametrisable shapes. A font engine reads the parame-
ters, generates the components of a character and assembles them into the final printable
character. To resynthesize an existing font by parametrisable structure elements, charac-
ter parameters need to be extracted from the original font, either manually or algorith-

Electronic Publishing, Artistic Imaging and Digital Typography, (Eds. R.D. Hersch,
J. André, H. Brown), 1998, LNCS 1375, Springer-Verlag, 44-54

mically. In this paper, we present a window-based method for the computerized
extraction of parameters from an existing font. First, we describe the geometric mean-
ings of font parameters by giving a detailed example. Then we introduce a window-
based feature tagging algorithm and explain how it can be used to extract parameters
from existing character shapes.

Fig. 1.

A character is assembled by its components

Previous approaches to locate typographic elements within characters required
either matching characters with a font-independent character outline model [12] or were
based on contour tracking, analysis of subsequent contour elements and extraction of
typographic elements such as vertical stems, horizontal bars, diagonal bars, curved
character parts and serifs [8][5][13].

2 Parameters for font parametrization

With our font parametrization method, parameters have clearly defined typographical
meanings. They are used to describe the characters’ geometric features, such as width of
stems and arches, serif metrics, angles of junctions, orientation of tails and peaks, etc.
Some parameters are globally available and are applied to all or to a group of several
characters to ensure the coherence of a font, respectively the coherence of a group of
parameters [1]. Some parameters have only a local meaning for one specific character.
Values of parameters may be the distance between two points, the intermediate position
(proportion) of one point between two other points, and the angle of a junction or of a
top serif. In Figure 2, we give the typographical meaning of the considered parameters
for Times Roman character “h”:

•

p

1

 and

p

2

 are proportion values which control the horizontal position of the external
and internal vertical extreme points of the arch

•

p

3

 and

p

4

 control the departure position of the arch, as a proportion of the x-height

•

θ

1

 is the angle controlling the direction in which the arch joins the vertical stem

•

θ

2

 is the angle controlling the orientation of the top serif

•

p

5

 or

ArmPos

 is a proportional value used by a group of characters controlling the
position of the junction between the arch (arm) and the vertical stem

•

dx

 is the distance between the two main vertical stems; this parameter is used for a
group of similar characters, such as h, m, n, u etc.

Components Assembling Outlined or filled

top serif

foot serif

arch

xheight
stem

ascender
stem

•

w

1

 is the standard vertical stem width (global parameter)

•

w

2

 is the standard mathematical horizontal curve width (not a true visual stroke
width, also a global parameter)

•

w

3

 is the width of the arch at the junction

•

sw

1

,

sh

1

 and

sd

1

 are respectively the foot serif width, height and depth (global
parameters)

•

sw

2

,

sh

2

 and

sd

2

 are respectively the top serif width, height and depth (global
parameters)

•

ovst

 is the overshoot at the tip of the top serif, which aims at making the face of the
serif slightly concave (global parameter)

Fig. 2.

An example of parameters for font parametrization.

The value of a distance parameter is not an absolute value. It depends directly on the
height of the character. For lower-case characters, the height of a character is repre-
sented by the x-height, which is a global font parameter. As an example, parameter val-
ues of character Times Roman “h” (Fig. 2) are listed in Table 1. Here, the value of

x-
height

 is taken from the outline font header description. It can also be extracted from
character “z”.

xheight line

base line

ascender line

p1

p2
p3p4

dxsw1

sh1

sd1

sh2

sw2

sd2

ovst θ2

θ1

w1

w2

w3

A

B

BC
a proportion parameter which means |AC| / |AB|

A
a distance parameter which means |AB|Notes:

ArmPos
= p5

Table 1.

Parameters of Times Roman “h”.

3 Parameter extraction using an automatic tagging system

In the previous sections we presented font parameters which may be used to create the
components of a coherent set of characters. These parameters may then be varied to cre-
ate coherent derived fonts sharing a similar basic structure. In this section, we describe a
method for extracting these parameters by computer programs.

For this purpose, we use a system for tagging character parts. This system enables
the decomposition of letter forms into their primary elements. The reader is referred to
[6] for a detailed description of the system. Here we will review the main elements of
the method that enables the semi-automatic extraction parameters.

Fig. 3.

A single virtual skeleton induces a similar partition in various fonts.

This method uses a universal model for letter shapes - the

virtual skeleton

. This
model is simple and natural: Everyone can draw it, at least in one's native alphabet.
Despite its simplicity this model is powerful. Its power is due to its double role: The vir-
tual skeleton is at the same time a skeletal representation of the character [4] and a pla-
nar graph [11]. Like every skeleton, it has geometric and topological properties. On the
other hand, the graph representation enables a natural and straightforward use of many
computer algorithms. For instance, it is easy to decompose a virtual skeleton into its ele-
mentary elements by considering subgraphs of the virtual skeleton as the graph's ele-
mentary elements. Then, the mapping between a virtual skeleton and a particular letter
shape provides a means of decomposing the letter shape into its structure elements. This

xheight dx w

1

w

2

w

3

p

1

p

2

p

3

p

4

p

5

θ

1

θ

2

sw

1

sh

1

sd

1

sw

2

sh

2

sd

2

445 266 86 56 34 .60 .61 .76 .72 .8450

o

15

o

64 15 64 64 15 64

concept is demonstrated in Figure 3 where the partition of the virtual skeleton into two
distinct subgraphs induces a similar partition in various instances of the same character.

The mapping between a virtual skeleton and a letter shape is achieved by placing
appropriate windows on the character's outlines (Figure 4b). These windows match the
vertices of the virtual skeleton (Figure 4a).

Fig. 4.

Each vertex of the virtual skeleton (a) corresponds to a window placed on the outlines
(b). Note the window numbers and the corresponding vertex numbers. We will refer to these

numbers when mentioning a particular window or vertex.

The window placement procedure is detailed in the section 4. The criteria for a valuable
match between a vertex on the virtual skeleton and a window placed on a letter shape
are the following:

•

A window must be well placed on the outlines: Its four corners must reside on the
white part of the character. A window that is not well placed can't match any vertex.

•

The vertex of the virtual skeleton and the corresponding window share a similar
relative geometric position (i.e. top-left, or bottom-right region of the character).

•

Every vertex or window incorporates one or more entering segments. These skele-
ton segments (or character parts) enter a vertex (or a window) from different direc-
tions. We classify these directions using four categories

north

,

east

,

south

 and

west.

This enables us to mark each vertex or window with a direction string composed of
the letters n, e, s, w. This direction string represents the entering directions. In order
to match a vertex with a window, the vertex and the window must share the same
direction string.

•

Considering the windows on the character outlines as vertices, and their intercon-
necting outlines (black) parts as arcs, an isomorphism between the created graph
and the virtual skeleton graph must obviously exist. This graph isomorphism (see
Figure 4) ensures that the match between vertices and windows is coherent.

a b

4 Looking for matching windows

In this section,we supply an intuitive description of the window placing proce-
dure.There are four parameters that define the size and the location of a rectangular win-
dow:

•

h - the rectangle height. We assume that this size may vary between H

0

 and H

n

.

•

w - the rectangle width. We assume that this size may vary between W

0

 and W

n

.

•

(x,y) - the 2 coordinates of the rectangle center. We assume that the coordinates val-
ues vary between X

0

 and X

n

, as well as between Y

0

 and Y

n

.

Given these parameters, a straight forward algorithm for finding a matching window
would perform an exhaustive search but the complexity of an exhaustive search is high.
Such a search must be composed of 4 nested loops, each varying a distinct parameter.
Inside these loops there will be a test to decide whether an appropriate window has been
reached. Unfortunately, most of the trials will probably not lead to matching windows.
This probable failure is due to the resolution and the phase problems (see Figure 5).
Furthermore, in an exhaustive search, any wrong value for a parameter in the most
external loop leads to a long sequence of failures to find a matching window.

In order to avoid the complexity of an exhaustive search, we suggested in [6] (and
demonstrated the feasibility) of a probabilistic algorithm to find a matching window. In
this algorithm the exhaustive search is replaced by a random search. Note that this
approach is significantly simpler:

A probabilistic algorithm to find a matching window

DO K times:
{

Randomly create a value h, H

0

 < h < H

n

)
Randomly create a value w, W

0

 < w < Wn)
Randomly create a value x, X0 < x < Xn)
Randomly create a value y, Y0 < y < Yn)
{

Create a window WM using the parameters h, w, and l(x,y).
IF the window WM matches the vertex V,
THEN EXIT with a positive answer:

A matching window (WM) has been found.
}

}
EXIT with a failure message: No matching window could be found.

In this Algorithm, the number of trials is limited by K. As shown in [6], a value of
K=1000 largely suffices in most cases in order to obtain an answer which has a very
high probability of correctness (at least in Latin fonts). Furthermore, the error probabil-
ity of this algorithm may be reduced ad infinitum, simply by increasing the value of K.

This algorithm elegantly avoids the phase and the resolution problem encountered by
any exhaustive search (Fig. 5).

Fig. 5. The phase and the resolution problems. Assume that windows of the size and position
of cells in the above grid are used to perform an exhaustive search for matching windows.

This search will fail. No cell in this grid can ever represent any matching window because of
the cells’ positions (this is the phase problem). Note also that the matching windows numbers

1, 3 and 5 are too big to fit in any cell - this is the resolution problem.

While each parameter in the algorithm above varies randomly within its range:
[H0..Hn], [W0..Wn], [X0..Xn] or [Y0..Yn], the parameter range itself is (approximately)
determined by the location of the window we are looking for. For instance, when look-
ing for a matching window for vertex number 3 in Figure 4a (the upper end of the verti-
cal stroke of the letter h), we can limit our search to the upper left side of the bounding
rectangle of the character outlines. This information is supplied by the virtual skeleton
that suggests a zone where we will be looking for a matching window. The searching
zone boundaries limit the range of each window parameter thus reducing the search
space and enhancing the efficiency of the search algorithm.

5 Parameter extraction - a simple example

In order to extract parameters, we take now a closer look at the windows of Figure 6b.
For the sake of simplicity, we describe the extraction of a few parameters only. We list
these parameters and explain briefly how they are extracted from the information pro-
vided by the matching windows. Again, the parameters are extracted from the outline
representation of Times-Roman character “h”. The parameter we are looking for belong
to the following three classes:

A. Junction orientation
B. Stem, bar and curve width
C. Stem position
D. Serif metrics

A. Junction orientation

The slope we are looking for (θ1 in Figure 6) is indicated by a small arrow emerging
from the arm junction inside Window 2. This slope is the average slope of the slopes of
the two contour tangents at the junction between stem and arch. Computing the precise
value of this angle is particularly simple when the contour is given as a sequence of
Bézier curves (e.g. [3]).

B. Stem, bar and curve width

1) Vertical stem width (w1 in Figure 6).

The stem width is the horizontal distance between the pair of (vertical) contour
segments captured inside Window 2 and Window 5.

2) Horizontal arch width (w2 in Figure 6).

This is the distance between the two vertical extremes of the pair of contour
segments captured within Window 4.

3) Horizontal arch width at the junction (w3 in Figure 6).

This distance is measured within Window 2 between the two points that mark
the transition between the vertical segments (which are part of the vertical stem)
and the curves that start the round part of character “h”.

Fig. 6. Parameters that depend on windows number 2, 4 and 5.

C. Stem position

1) The distance between the center lines of the vertical stems (dx in Figure 6).
The center lines of the stems (marked by vertical white lines inside the stems)
are obtained from Windows 2 and 5.

2) The white distance between vertical stems (dw in Figure 6).
In order to obtain this parameter, we measure the distance between the right side
of the left stem (included in Window 2) and the left side of the right stem
(included in Window 5).

D. Serif metrics

1) Serif width (sw in Figure 7).
This is the horizontal distance measured between the vertical stem's right edge
and the rightmost shape primitive vertex in Window 1.

2) Serif height (sh in Figure 7).
This is the vertical distance between the vertices of the vertically oriented shape
primitive (straight line or Bézier spline segment) defining the serif extremity
(two rightmost vertices in Window 1)

3) Serif depth (sd in Figure 7).
This is the vertical distance between the starting point and the ending point of
the curved part of the lower serifs.

Fig. 7. Parameters that depend on window 1.

4) Angle of top serif (θ2 in Figure 8).

This is the departure tangent of the segment that connects the top serif with the
left (vertical) side of the serif. The top serif is included within Window 3.

Fig. 8. The departure tangent of the top serif is measured in Window 3.

6 Conclusions and further research

The idea of using parameters as the basic tool for automatic font generation has
emerged at the very beginning of digital typography. For instance, when describing the
digital design of the Computer Modern typeface using the METAFONT system, D. E.
Knuth states that this typeface is completely controlled by 62 parameters (listed in [9]).
Knuth implicitly claims that for every alphabet there exists a final set of controlling
parameters. Varying these parameters would create all possible fonts of this alphabet.
This implicit claim has raised many objections. One of the most powerful arguments
against it appeared in [7]. In this article, D. R. Hofstadter agreed that parameters are
crucial for creating new typefaces, but he argued that there can never exist such a final
set of parameters, (or knobs in his words). The reason, according to Hofstadter, is that
the art of font design consists mainly of inventing new parameters. In other words, cre-
ativity is often expressed by the invention of new parameters - ones that were never
known before.

Once we agree upon the importance of font parameters, the question to be asked is
which are the relevant parameters and how can they be found. In this paper we tried to
answer the second question. We first presented a list of parameters and showed where
they appear on a letter shape. Then we suggested a simple method to extract these
parameters.

Fortunately, parameters are often related to special areas of a letter form - like junc-
tions, serifs etc. These are also the places where the vertices of the correspondent virtual
skeleton are usually located. For instance, a junction of a virtual skeleton is marked by a
vertex connecting three or more arcs (like Vertex 2 in Figure 4a). Therefore character
and font parameters are likely to be recognized by looking into the windows which
match the vertices of the corresponding virtual skeleton.

The presented window-based method distinguishes itself from automatic character
analysis and feature extraction methods [8][5][13] by its ability to extract a feature at a
precise location within a character. In character “g” for example, the parameters associ-
ated with the top round part can be differenciated from the parameters associated to the
bottom round part. In addition, the window-based method enables to measure global
distances such as the distance between the center lines of two successive stems.

The window-based method offers only a semi-automatic system for parameter
extraction: For each parameter we explained explicitly what has to been done in order
to extract it from the data included in the relevant window. A step further would be the
design of a high level language able to formally describe matching windows and meas-
uring methods for each parameter. Once this is achieved, parameter position could be
specified by a few instructions and parameter extraction is likely to become more auto-
matic, at least for traditional typeface families.

References

1. D. Adams, “abcdefg, a better constraint driven environment for font generation”, Raster
Imaging and Digital Typography (Eds. J. André, R.D. Hersch), Cambridge University Press,
1989, 54-70.

2. Bauermeister et al., Method and system for creating, specifying, and generating parametric
fonts, United States Patent No. 5586241, Dec. 17, 1996.

3. R. C. Beach, An introduction to the Curves and Surfaces of Computer-Aided Design, Van
Nostrand Reinhold, New-York, NY, 1991.

4. C.H. Cox, “Skeleton: A Link between Theoretical and Physical Letter Descriptions,” Pattern
Recognition, Vol. 15, No. 1, 1982, 11-22.

5. J. Herz, R.D. Hersch, “Towards a Universal Auto-Hinting System for Typographic Shapes”,
Electronic Publishing (EP-odd journal), Vol. 7, No. 4, Dec. 1994, 251-260.

6. J. Herz, Coherent Processing of Typographic Shapes, Ph.D. thesis no1676, EPFL, Lausanne,
1997 (will soon be available on the WEB).

7. D. R. Hofstadter, METAFONT, Metamathematics, and Metaphysics, republished in Metama-
gical Themes: Questing for the essence of mind and pattern, pp.260-299, Bantam books, N.
Y. 1985.

8. P. Karow, “Automatic Hinting for Intelligent Font Scaling”, Proc. Raster Imaging and Digital
Typography 89, (Eds. J. André, R.D. Hersch), Cambridge University Press, 1989, 232-241.

9. D. E. Knuth, The METAFONT book, Addison-Welsey, Reading Mass. 1986.

10. Clyde D. McQueen III and Raymond G. Beausoleil, “Infinifont: a parametric font generation
system”, RIDT 94, Electronic Publishing, Vol.6(3), pp.117-132, John Wiley & Sons, 1993.

11. J. Rocha, T. Pavlidis, “A Shape Analysis Model with Applications to a Character Recognition
System”, IEEE PAMI, Vol. 16, No. 4, April 1994, 393-404.

12. R. D. Hersch, C. Bétrisey, “Model-based matching and hinting of fonts”, Proceedings SIG-
GRAPH’91, ACM Computer Graphics, 25, 71-80, 1991.

13. A. Shamir, A. Rappoport, “Extraction of Typographic Elements from Outline Representations
of Fonts”, Proc. Eurographics 1986, Computer Graphics Forum, Vol 15, No. 3, 259-268.

