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Abstract. The traditional approach to the parallelization of linear algebra
algorithms such as matrix multiplication and LU factorization calls for static
allocation of matrix blocks to processing elements (PEs). Such algorithms suf-
fer from two drawbacks : they are very sensitive to load imbalances between
PEs and they make it difficult to take advantage of pipelining opportunities.
This paper describes dynamic versions of linear algebra algorithms, where
subtasks (matrix block multiplication, matrix block LU factorization) are
dynamically allocated to PEs. It analyses theoretically the performance of the
dynamic algorithms. This paper’s contribution is to show that the dynamic-
pipelined linear-algebra algorithms can be specified compactly in CAP and yet
achieve good performance. CAP is a C++ language extension for the specifi-
cation of parallel applications based on macro-dataflow graphs. The CAP
model, based on macro-dataflow graphs, is general and supports pipelining. 

1  Introduction
The traditional approach to the parallelization of linear algebra algorithms such as
matrix multiplication and LU factorization calls for static allocation of matrix blocks
to processing elements (PEs). Such algorithms suffer from two drawbacks : they are
very sensitive to load imbalances between PEs and they make it difficult to take advan-
tage of pipelining opportunities. Such load imbalances do not occur on dedicated par-
allel hardware, but are common on network of workstations. On the other hand,
pipelined applications are more difficult to write, and tend to overload the process in
charge of allocating sequential operations to PEs. This paper describes dynamic pipe-
lined algorithms for parallel matrix multiplication algorithms and LU factorization,
and analyzes their performance. This paper contribution is to show that dynamic-pipe-
lined algorithms can be compactly specified in CAP and achieve good performance. 
CAP (Computer-Aided Parallelization [3]) is a C++ language extension which sup-
ports the specification of pipelined concurrent programs. CAP’s framework is based
on decomposing high-level operations such as 2-D and 3-D image reconstruction, opti-
mization problems or mathematical computations into a set of sequential subopera-
tions with data dependencies. The application programmer uses the CAP language (1)
to specify data dependencies between sequential suboperations, and (2) to assign each
suboperation to an execution thread. The CAP data dependency model is similar to the
macro dataflow model used successfully by the designers of the Mentat language [5].
The CAP preprocessor translates the CAP specification into a set of concurrent pro-
grams communicating through communication libraries such as MPI, PVM, TCP/IP,
or through shared memory. Due to its support for pipelining, CAP generated programs
achieve the performance of custom-made parallel programs. CAP is compositional, i.e.
it is possible to reuse a parallel routine such as matrix multiplication without modifica-
tion inside another parallel algorithm such as LU factorization. 
Section 2 explains the static and dynamic algorithms for matrix multiplications, ana-
lyzes theoretically their performance, and lists the CAP specification for the dynamic
matrix-multiplication algorithm. Section 3 describes the dynamic algorithm for LU
factorization and analyzes theoretically its performance. Section 4 lists experimental
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performance results. In the experimental setup, the hardware consists of a network of
biprocessor SPARC 20 workstations connected through FDDI. Sequential routines are
performed by the BLAS software package [1].

2  Matrix Multiplication
2.1  Notations
Lowercase letters represent matrix terms. Uppercase letters represent matrices. Sub-
scripted uppercase letters represent matrix blocks. The matrix size is N2. The number
of blocks in the matrix is p2, and the size of the blocks is n2=(N/p)2. A row of blocks is
called a horizontal matrix slice. A column of blocks is called a vertical matrix slice.
For simplicity we assume that N modulo p= 0. Using these conventions, the matrix
multiplication is written as , and the block matrix multiplication is
written as . We consider a physical machine consisting of P2 pro-
cessing elements (PEs) connected to a single client requesting the computation. We
assume that the hardware supports direct memory access, i.e. that it is possible to per-
form data transfers between PEs without interrupting the PEs involved.

2.2  Dynamic parallel algorithm
The dynamic version of the algorithm assumes that initially both input matrices are
located in the client address space. The client divides both matrices in p3 matrix block
pairs, and sends the matrix block pairs to the PEs for partial matrix computation. The
partial results are returned to the client for merging in the final resulting matrix.
The dynamic algorithm requires p times the transfer of both input matrices and p times
the transfer of the output matrix. The total transfer requirement is 3pN2. The transfers
are well distributed among the PEs, but the client, receiving and transferring all mes-
sages is clearly a potential bottleneck. No synchronization is required between the PEs
and it is possible to keep the PEs busy during the execution of the algorithm, assuming
several matrix block pairs are queued waiting to be executed by each PEs. It is easy to
perform load balancing, so as to make the algorithm insensitive to PEs load imbal-
ances. Besides being a communication bottleneck, the client is also a memory bottle-
neck as it is required to store both input matrices and the output matrix in the client
memory. There are two standards solution to reduce the client bottleneck : (1) out-of-
core programming, where matrix blocks are store on disks and prefetched as they are
required and (2) use multiple clients, each owning part of the matrix data. This paper
analyses theoretically and experimentally the performance of the dynamic algorithm
with a single client, and shows possibilities and limits of the dynamic algorithm. 

2.3  Dynamic parallel algorithm : performance analysis
The timing diagram for the dynamic matrix multiplication is presented in Fig. 1. In
Fig. 1, there are 5 PEs, one for the client and 4 for the computation threads. Each PE
features one additional thread for communication. The time line flows from left to
right. The thick arrows represent thread activity, i.e. time during which the communi-
cation or computation occurs. We have assumed DMA, i.e. that communication can
overlap computation on a given PE. The shaded boxes indicate the data transfers. The
thin arrows represent data dependencies. The final timing diagram section (rightmost
part of Fig. 1) represents a minimal length section for 4 matrix-block-pair transfers
(client to computation threads), 4 sequential matrix multiplications, and 4 matrix-block
transfers (computation threads to client). The other sections of Fig. 1 are a stretched
version of the rightmost timing diagram, which allows to overlap two timing diagram
sections without resource conflict. The critical path through the graph consists of P2
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matrix-block-pair transfers (to the threads, when initializing the pipeline), p3/P2

sequential matrix multiplications, and one matrix-block transfer (to the client, for the
last partial result). 

Fig. 1. Dynamic matrix multiplication : timing diagram
Assuming a network latency of lt, a network throughput of 8/τt (τt is the transfer time
for 1 matrix term, and 8 is the number of Bytes per double), and a computation
throughput of 1/τc (τc is the nominal computation time for 1 term of the resulting
matrix), the formula for the delay is :

(1)

The condition on the network bandwidth is that the transfer time during one section of
the timing diagram be less than the computation time during the same time :

(2)

If we assume reasonable values for the parameters (lt = 1ms, τt=1.6µs/elem (5MB/s
throughput), τc=875ns/elem, all numbers resulting from experimental measurements
on the FDDI network and the BLAS routine dgemm), we find for a matrices of
1024x1024 terms, for a block of 128x128 terms and the number of computation pro-
cesses P2 ranging from 1 to 20, speedups ranging from 1 to 19.5, showing that the
dynamic approach is definitely valid. The left and right part of Equation (2) in the
worst case (P2 = 20) are 1.61s and 1.83s, ensuring that the condition holds.

2.4  CAP specification of the matrix multiplication
Program 1 is the textual specification of the dynamic matrix multiplication in CAP.
The indexed parallel construct in Program 1 (line 5 to 9) features 3 range indices. The
CAP runtime iteratively calls the SplitInput routine (line 9) on the TwoMatricesT Input
token, and generates matrix block pairs. As soon as a matrix-block-pair is generated it
is sent to the appropriate thread for a sequential matrix computation (line 10). When all
matrix block pairs are sent, the CAP run time initializes in the client address space
(called Main, line 9) the output matrix (MatrixT Output, line 9). When a computation
thread completes a sequential matrix multiplication, it returns the partial result imme-
diately to the client thread, and gets a new matrix block pair from its input queue. The
client thread, as soon as it receives a partial result from a computation thread, merges
the partial result into the output matrix Result.
Program 1 specifies all communication and synchronization requirements of the paral-
lel matrix multiplication program. The rest is sequential C++ code required to specify
how to split the input matrices in matrix block pairs, to merge partial results into the
output matrix, to describe the TwoMatricesT and MatrixT tokens, to specify the
Sequential matrix multiplication.
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Prog. 1. CAP specification of the ParallelMatrixMultiplication operation
The issue of whether matrix blocks are copied by the SplitInput routine is left to the
implementation of the TwoMatricesT token and the SplitInput routine. A simple
implementation will implement TwoMatricesT tokens as actual matrices and imple-
ment the SplitInput routine as memory copies. A sophisticated implementation will
implement TwoMatricesT tokens as matrix references and make sure that copies occur
only when data is transferred from one address space to the other. Our implementation
uses the sophisticated BLAS array data referencing mechanism which avoids unneces-
sary data copies. We ensure that data is copied only when data is transferred between
address spaces. The actual ParallelMatrixMultiplication operation we used implements
load balancing and consists of 24 lines of CAP specification. 

3  LU factorization
The LU factorization is interesting in two respects. It features more data dependencies
than the matrix multiplication, and uses the matrix multiplication. This example is ide-
ally suited to show two important features of CAP, its compositionality and its support
for pipelining. We reuse without modification the CAP parallel matrix multiplication
specification in the LU factorization algorithm. We pipeline triangular system resolu-
tion with matrix multiplication and permutations, to achieve higher speedups. The
complex data dependencies of the algorithm also shows the generality of the CAP
approach.

3.1  Problem description
Golub [4, p.100] describes the block-based LU factorization (Fig. 2). We summarize it
here. Consider a matrix A divided in 4*4 blocks. Step 0 of the block based LU factor-
ization algorithm consists of (1) performing the LU factorization on the leftmost verti-
cal slice (dgetf2_ routine in LaPack, LU in Fig. 2) ; (2) permuting all other vertical
slices using the permutation vector produced by the LU factorization ; (3) solving the
triangularized system consisting of the top left block and the rest of the top horizontal
slice (trsm_ routine in BLAS, T in Fig. 2) ; (4) multiplying the leftmost vertical slice
(but the top block) and the topmost horizontal slice (but the left block) (dgemm_ rou-
tine in BLAS, M in Fig. 2) and accumulate the result of the multiplication in the lower-
right 3*3 blocks. Step 1 repeats the process on the lower-right 3*3-block matrix. Step
2 on the lower-right 2*2-block matrix, and the last step works only on the lower-right
matrix block. In all steps, permutations are performed on complete horizontal slices.

3.2  Parallelization
The block-based matrix multiplication algorithm is easy to parallelize because the size
of each transfer is O(n2) and the number of scalar multiplications per matrix block
multiplication is O(n3). It is therefore always possible to select n so that communica-
tion time is small compared to computation time. On the other hand, it very difficult to

1 operation CompositeThreadT::ParallelMatrixMultiplaction (int p)
2 in TwoMatricesT Input
3 out MatrixT Output
4 {
5 indexed 
6 ( int i = 0 ; i < p; i++ ) // first construct range
7 ( int j = 0 ; j < p; j++ )// second construct range
8 ( int k = 0 ; k < p; k++ ) // third construct range
9 parallel (SplitInput(p,i,j,k), MergeOutput(p,i,j,k), Main, MatrixT Output) 
10 ( Thread[((i*p+j)*p+k)%4].SequentialMatrixMultiplication ) ;
11 }



parallelize triangular system resolution, since the number of scalar operations in trian-
gular system resolution is O(n2), of the same order as a matrix block transfer. This is
especially true in the case of a network of workstation, where network latency is high. 
However we cannot afford to perform at each step the block LU factorization followed
by the block triangular system resolutions sequentially, before performing in parallel
the matrix multiplication. The sequential part of the algorithm would be much too
long. We resort to pipelining to achieve good performance. We perform the LU factor-
ization by block, sequentially on the client thread, but start the triangular system solu-
tion and the matrix multiplication as soon as the required data is available. This leads
to the following timing diagram (Fig. 2).

Fig. 2. Timing diagram for the 4*4-block LU factorization
In Fig. 2, the gray blocks represent the operations performed by the client thread called
Main. We let the Main thread perform the LU factorization on the first matrix vertical
slice ( ), and get the permutation vector P0, which we apply to the matrix. The per-
mutation represents a global synchronization barrier, as we have to wait until all the
permutations have been performed until we can start the triangular system resolution
and the matrix multiplications. So far all steps have been performed sequentially. Then
we start working in pipeline fashion : (1) Main solves the first triangular system ( ,
involving matrix blocks  and ) ; (2) as soon as the result is available, Main
launches on available computation threads matrix multiplication , involving matrix
blocks , , , and ; (3) Main immediately starts with a new triangular sys-
tem resolution ( , involving matrix blocks  and ). This continues until there are
no more triangular systems to solve. Additionally, as soon as the results of matrix mul-
tiplication  is available in the Main thread address space, the Main thread can com-
pute the LU factorization for the next algorithm step ( ), and get the permutation
vector P1. When all the matrix multiplication results have been returned to the Main
thread and the accumulation has been performed, the permutation is performed
sequentially on the whole matrix (thick vertical line labelled Pi in Fig. 2). When the
permutation is complete, it is possible to start a new parallel LU factorization step.
Fig. 2 is a simplified timing diagram where all permutations are performed serially
after all matrix blocks are available. In fact, the permutation vector can be applied to
the matrix vertical slices as soon as the accumulation step is performed for that vertical
slice. The program on which performance measurements have been performed takes
advantage of pipelined permutations. The CAP specification is a 24-line textual ver-
sion of Fig. 2.
The dominant part of the algorithm is the matrix multiplication, and that it is per-
formed in parallel by the computation threads. The only part of this algorithm during
which the computation threads cannot work is the triangular system resolution of the
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first block of each step. During the rest of the time, all computation threads can per-
form matrix multiplications. The duration of step i ti is given by equation (3). Equation
(5) is the sum of two terms : the sequential triangular system resolution time on one
block tres and the multiplication of the two matrices (see equation (1)). The matrices to
be multiplied at each step have sizes (N-(i+1)n)*n and n*(N-(i+1)n).

(3)

The total time to required to perform the parallel LU factorization is the sum of the ti
for all steps, plus the LU factorization on the first vertical slice.

(4)

The approximated formula of equation (4) is true provided the multiplication takes
longer than the triangular system resolution and the LU factorization together. This
condition is usually true for the early steps of the parallel LU factorization, but
becomes false at the end of the algorithm. We express in equation (5) the condition that
the client thread computation time is less that the PEs multiplication time for step i and
check that it is true for most of the steps of the algorithm.

(5)

We analyze the values of equation 4 as well as speedups as a function of the number of
processors, for a 2048*2048 matrix (N=2048), block size of 128 (n = 128, p = 16), and
for unitary values of the LU factorization τlu, triangular system resolution τres and
matrix multiplication τc of 260ns, 700ns and 875ns. The communication latency and
throughput are 1ms and 5MB/s respectively. For 10 computation threads the formula
gives speed-ups of 9.43 and for 20 computation threads, the speed-up reaches 17.1. 

4  Performance measurements
We have run our performance measurements on a network of Sun Sparc20 with two
processors, connected through FDDI. We run a single computation thread and a single
communication thread per workstation, thus allowing for overlapped communications
and computations. No single thread can exceed 100% utilization per processor.
We integrated LaPack into CAP. Sequential routines are BLAS routines. The imple-
mentation effort consisted of wrapping BLAS routines in CAP tokens, and providing
serialization routines (PVM Pack and Unpack) for the tokens, so that BLAS structures
can be transferred from one address space to the other. The communication and syn-
chronization between sequential operations are specified in CAP. We use a PVM-style
library called MPS. MPS is thread based whereas PVM is process based. The library
was developed at the EPFL and runs under Solaris and WindowsNT. 

4.1  Dynamic matrix multiplication
Fig. 3 displays the speedup-results of the matrix multiplication on 1000x1000 matri-
ces. We compare the speed of the parallel program run with 1 to 20 computation
threads (i.e. 21 workstations involved) to the sequential program performance (single
LaPack call). Two threads run on each workstation, one for computation and one for
communication.
The left part of Fig. 3 shows a near linear speedup as a function of the number of com-
putation threads. The single thread matrix multiplication consisting of a single call to
LaPack is performed in 875s. The 20-computation-PEs matrix multiplication with a
125x125 block size is performed in 46.6s, for 18.8 speed-up, close to the theoretically
predicted speedup. The non-linearity is mostly due to pipeline startup and shutdown
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times. Larger matrix sizes would improve the situation. This is impossible without out-
of-core programming, i.e. storing matrix data on disks, and prefetching the data in
memory as required.

Fig. 3. Matrix multiplication speedup and client thread utilization
The right part of Fig. 2 shows the load on the client PE. The client PE utilization is
affected by the block size. As is expected the smaller the block size, the more data
needs to be transferred between client and computation threads. The utilization ranges
between 0 and 200%, showing that both computation and communication threads are
fully utilized. For the matrix multiplication, the client computation thread handles
matrix-block-pair serialization and partial result accumulation. The client communica-
tion thread handles the matrix deserialization, as well as serialized data emission and
reception. The computation threads have a 100% utilization for the complete duration
of the algorithm, except pipeline startup and shutdown times. 

Fig. 4. .LU factorization performance
4.2  LU factorization
Fig. 4 shows the performance results of the LU factorization for a 2000-by-2000
matrix, for a number of processor varying from 1 to 10. The single process sequential
computation time for the LU factorization of the matrix is 2095s. The fastest parallel
time we achieved is with 10 processors is 250s, for an 8.38 speedup. The difference
with the theoretical model is due to the fact that for later steps of the algorithm, condi-
tion (5) becomes false. 

4.3  Result analysis
Client overload. The client load is much higher than the theoretical analysis suggests.
This is due to the fact that data structure serialization is a time consuming process
requiring many data copies, in particular in the current version of the LSP library.
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Moreover the use of the TCP/IP protocol between workstations consumes large CPU
resources. Typically a 5MB/s throughput at the client leads to a 100% CPU utilization. 
It is not possible to handle matrices much larger than 1000x1000 without the client
thread starting to swap. The three matrices required for a 1000x1000 multiplication
represent 24 MBs of data. Out of core programming is required, where the client
thread prefetches the matrix blocks from the disks as they are required. As pipelining
is a CAP feature, disk prefetching is not difficult to integrate in the CAP implementa-
tion of the LaPack routines. The disk prefetching mechanism has been successfully
used in the CAP implementation of a 3-D visualization package. 
The CAP environment. The good performance of CAP generated programs can be
attributed to the following factors : (1) threads are allocated statically to processing
elements ; (2) operation overhead is small. The input data of each operation is tagged
with a 20-byte header, which typically represents a overhead of less than 1% ; (3) data
can be passed by reference between threads sharing a common address space ; (4)
operations are routed dynamically to threads, allowing to adapt the load of each pro-
cessing element:; (5) pipelining is a part of the CAP semantics, allowing to remove
unnecessary synchronization barrier. Current difficulties in the CAP implementation of
the LaPack routines are : (1) the Solaris version of the MPS communication library
performs 3 copies for each transfer ; (2) serialization of sophisticated data structures is
a time-consuming effort ; (3) some data dependencies are impossible to specify in the
current version of the language ; (4) pipeline control requires the programmer’s atten-
tion. 

5  Conclusion
This contribution has presented pipelined-parallel algorithms for matrix multiplication
and LU decomposition. It has analyzed the theoretical performance of the algorithms,
shown their CAP implementation, and presented performance results. The results
show that the dynamic pipelined approach is viable for matrix multiplication and LU
decomposition for 10 to 20 PEs. Large matrix sizes require out of core programming.
CAP support for pipelining is effective to overcome the large network latencies. CAP
specifications are short, and yet the parallel programs achieve good performance, dem-
onstrating the validity of the CAP model.
Future work involves evaluating theoretically and experimentally the performance of a
CAP-specified static algorithm ([4], p.299), and of the combined static and dynamic
algorithms. Future work will also address the issue of out-of-core programming.

References
[1] E. Anderson et al. LAPack User’s Guide, 2nd edition. Society for Industrial and

Applied Mathematics. Philadelphia, 1995.

[2] A. Geist et al. PVM 3 User’s Guide and Reference Manual. September 94. URL :
http://www.epm.ornl.gov/pvm/.

[3] B. A. Gennart et al.. Computer-Assisted Generation of  PVM/C++ Programs
Using CAP. In Proc. EuroPVM’96, p. 259- 269. LNCS 1156. Münich, Oct. 1996.

[4] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University
Press. ISBN 0-8018-5414-8. Third edition, 1996.

[5] A. S. Grimshaw. Easy-to-Use Object-Oriented Parallel Processing with Mentat.
IEEE Computer, Vol. 26, No. 5, May 1993, pp 39-51. 




