
ELECTRONIC PUBLISHING, VOL. 7(4), 251–260 (DECEMBER 1994)

Towards a universal auto-hinting system for
typographic shapes
JACKY HERZ ROGER D. HERSCH

Open University, Tel-Aviv Swiss Federal Institute of Technology
and Hebrew University, Jerusalem EPFL
Israel CH-1015 Lausanne, Switzerland

SUMMARY
This contribution presents a simple method for the automatic recognition and hinting of char-
acter structure elements such as horizontal and vertical stems. Stem recognition is based on
successive steps such as extraction of straight or nearly straight contour segments, detection
of hidden segments, merging of original and hidden segments into larger segments, sorting
of segments into classes according to their slopes and, finally, composition of black and white
stems. Reference values required for character hinting purposes are obtained by evaluating
the regularity of the font through statistical analysis of features such as stem widths and stem
angles. Knowledge about the location of stems and analysis of outline parts between stems
is used in order to produce automatically appropriate grid constraint rules (hints). The pre-
sented outline analysis and stem extraction techniques are very general and may be applied to
non-Latin characters as well.

KEY WORDS Digital typography Shape analysis Stem recognition Automatic hinting

1 INTRODUCTION

Character outlines are not sufficient for generating high-qualitycharacters on raster devices
such as displays and printers. Additional information in the form of hints is generally added
to the outline descriptions in order to simplify and improve the quality of the rasterization
process. Generally, such hinting information comprises a description of the location of
important character structure elements such as vertical and horizontal bars, curved stems,
and half-serifs [10]. The rasterizer takes this information into account by controlling the
outline phase in respect to the rasterization grid, and, possibly, applying appropriate outline
modifications [5].

Existing hinting systems are often conceived to match particular families of fonts such
as Latin fonts, Kanji, Arabic etc. While this approach usually leads to good results, it suffers
from a lack of generality. This restriction emerges when encountering new font families or
non-conforming font designs within the same font family. A classical example for Latin
fonts is the famous Optima design.

We believe that the reason behind this phenomenon is that existing hinting systems rely
heavily upon a pre-established model of a specific font family [4]. Whenever the typographic
shape encountered fails to match this model, the quality of the result is condemned to
deteriorate rapidly.

We would like to present in this paper an alternative and hopefully more general
scheme for auto-hinting systems and a first implementation. This is not the first work in
this direction; some previous examples may be found in [12], [3] and [8]. Most automatic

CCC 0894–3982/94/040251–10 Received 15 August 1993
1994 by John Wiley & Sons, Ltd. Revised 1 December 1993

© 1998 by University of Nottingham.



252 J. HERZ AND R. D. HERSCH

hinting systems, however, are incorporated into proprietary software which is generally
designed to deal with a myriad of particular cases. The merit of the presented approach
consists in presenting a simple and general-purpose approach to the problem of automatic
stem recognition and hinting. The outline deformation methods used for hint interpretation
are relatively simple and are based on previous work [5]. However, the automatic stem
recognition methods presented here can also be used by more elaborate, mathematically
based outline deformation optimization methods [6]. Furthermore, they can be used for
advanced tasks such as extraction of font features and decomposition of fonts into character
structure elememts [11].

2 GRID-FITTING OF OUTLINE CHARACTERS

Hints are grid-fitting rules specifying which parts of outline characters should be adapted to
the grid in order to obtain nice regular raster characters [5]. These grid-fitting rules mainly
apply to character reference lines, stems, bowls and serifs. Grid-fitting rules for fitting stems
and bowls require two outline support points specifying the stem or bowl width.

The evaluation of a given grid-fitting rule or hint produces a subpixel displacement
which must be applied to certain parts of the character outline. As shown in Figure 1, a grid-
fitting rule comprises a specification part describing the rule’s type and parameters. Based on
the rule specification, the outline character rasterizer computes at character rendering time
one or two displacement values used for grid-fitting specific outline parts. The grid-fitting
rule’s application part specifies the character parts on which the computed displacements
are applied by giving their starting and ending outline support points (Figure 1).

Figure 1. Support points for the specification of grid constraints



TOWARDS A UNIVERSAL AUTO-HINTING SYSTEM FOR TYPOGRAPHIC SHAPES 253

3 SOME WORDS ABOUT THE TITLE

The use of the word universal means that our proposed hinting system should not be
dependent on any particular underlying model of the font that the system is going to
render. The methods employed should adapt automatically to any group of typographic
shapes.

The expression typographic shapes refers to a group of shapes that have a coherent
design, e.g. repetitive elements and metrics. When talking about characters, such a group
of typographic shapes is usually called a font. However, here, the word font encompasses
a broader scope: road-signs, musical notes or icons of a windowing system, all of them are
distinct groups of typographic shapes and members of font families.

When talking about auto-hinting we refer to the information supplied to the system.
Our system should rely exclusively upon the outlines of the shapes without any additional
information, be it declarative (as in Type1 [1]) or procedural (as with TrueType technology
[2]).

The first word of the title — Towards is intended to somewhat lower expectations. For
the moment, the presented auto-hintingmethod has only been applied to vertical, horizontal
and diagonal bars. Further work is required to extend the method to curved stems and to
terminal elements.

4 FUNDAMENTAL ELEMENTS AND FONT METRICS

The basic assumption when trying to build a universal auto-hinting system is that human
observation is very sensitive to particular visible structures, especially when these structures
are repeated all over a group of typographic shapes. Furthermore, typographic shapes are
basically defined by the existence of regular structures. From this point of view they differ
from any other arbitrary group of graphic objects.

Stems (which in this paper refer to long straight strokes that may be vertical, horizontal
or diagonal) are one of the most important and most common structural elements; they
occur in almost any non-cursive font. Furthermore, hinting of stems is relatively easy,
especially when dealing with horizontal and vertical ones.

Even in cursive (italic) fonts, stems having an oblique orientation are the dominant
elements. After back-slanting the font, such stems can be regarded as belonging to the class
of vertical stems.

Figure 2. The vertical stem of ‘B’ is composed of three contours



254 J. HERZ AND R. D. HERSCH

In the following description, we assume that the shapes’ outlines are expressed in a
canonical form such as is described in [9].

Consequently we assume that the following conditions hold for the outline:

1. The outline is composed of curves and/or straight lines.
2. There is a point at every local extremum in X or Y.
3. There are as few points as possible.
4. There is an easy way to determine whether an arbitrary point is inside or outside the

painted (black) area of the shape’s outline.
5. As in most commercial font systems, character outlines don’t cross each other. This is

the main difference with character descriptions such as Metafont, where an “x” char-
acter can be made of two intersecting bars. In non-intersecting outline descriptions,
the information about two bars crossing each other is given only implicitly.

An additional requirement is the existence of a filter that guarantees a minimal distance
between consecutive points of a contour, thus hiding local details while emphasizing global
structures.

5 STEM RECOGNITION

When looking at typographic shapes, the intuitive definition of a stem as the area limited
between two parallel straight lines is both too broad and too narrow. A strict interpretation
is clearly too limited because the geometric definitions of parallel and straight lines are too
restrictive. Furthermore, the straight lines that are visible to the human eye often appear
only implicitly in the outline. The vertical stem of a Latin ‘B’ character is a good example:
its vertical stem is composed of three different contours (Figure 2), and it is only the human
brain that traces an imaginary line through the painted area of the character, thus adding to
the visible contour segments that are not explicitly included in the input data. We will call
such segments hidden segments (Figure 3).

Figure 3. Automatically recognized hidden segments in a Kanji character

The first step towards stem recognition is the identification of hidden segments using
the following stages:

• A: Collect all the segments that are straight or have a flat curvature into a group
S. In the case of segments that are curved, the flatness is defined using a threshold
that takes into account the maximum distance between a point on the curve and the
straight line connecting its endpoints (Figure 4).



TOWARDS A UNIVERSAL AUTO-HINTING SYSTEM FOR TYPOGRAPHIC SHAPES 255

Figure 4. Flat curves. When the distance between the control points P2 and P3 and the segment
[P1,P4] is smaller then a given threshold, the curve is considered to be flat

• B: At this stage we add hidden segments to S using the following procedure:
FOR all flat segments [P1,P2] in S DO

FOR all point P3 on the outline DO
IF P1,P2,P3 are colinear (here again, using a threshold)
AND
IF the segment [P2,P3] can be traced entirely in the painted area
of the shape
THEN [P2,P3] is a hidden segment.

END FOR
END FOR

At the end of this procedure we add to S all the hidden segments just found.

• C: When hidden segments are available as explicit data, it becomes possible to
merge segments within S (original segments and hidden segments) in order to create
continuous straight lines. Here again, the term straight is too restrictive; in reality,
we are thinking about lines that appear to be more or less straight. In practice this
means that the slope variations along the line do not exceed a predefined threshold
value. Hence we will prefer the expression stem-edge to straight-line. The potential
stem-edges are reconstructed iteratively as follows:

WHILE S includes two segments [P1,...,P2] and [P2,...,P3]
such that: The slope of [P1,...,P2] = The slope of [P1,...,P3]

BEGIN
remove [P1,...,P2] from S,
remove [P2,...,P3] from S,
add the segment [P1,...,P2,...,P3] to S.

END
END WHILE

At the end of this procedure the group S includes the potential stem-edges.

• D: Now we sort all potential stem-edges in S according to their slope into several
groups:

SV — includes only vertical segments.
SH — includes only horizontal segments.
SD1...SDn — Each group includes diagonal segments of similar slopes.

• E: We are now in a position which makes stem recognition possible. To achieve this
goal we proceed as follows. For each group defined above, try to compose couples



256 J. HERZ AND R. D. HERSCH

Figure 5. Black and white stems in a Russian character

of stem-edges into a single stem. Here we demand that the following conditions hold
for each couple of segments:

1. The segments, should appear parallel (that is, within a predefined slope dif-
ference threshold). This condition is normally fulfilled by means of the group
partition in the previous stage.

2. A stem is defined as a black stem if most of the trapezoid enclosed between
both stem-edges is included inside the painted area of the shape.

3. A stem is defined as a white stem (commonly called “counter") if most of the
trapezoid enclosed between both stem-edges is included outside the painted
area of the shape.

4. All stems are either black or white (Figure 5).

6 COMPUTING THE INFORMATION REQUIRED FOR STEM HINTING

Recall the information we now have for each recognized stem:

1. Each stem is defined by its two edges.
2. Each edge is composed of an ordered list of points.

It is now easy to compute some other useful pieces of information:

1. The stem width is defined as the average distance between its edges.
2. The medial axis of a stem is a line traced midway between both edges.

This information is local, that is, it has been computed for each stem independently from
the others. After discovering the stems throughout a given font, we can use histograms to
find global values that reflect the regularity of the design. Some examples are listed below:

1. Stems with close width values (relative to a given pixel size or relative to the shape’s
height) may be considered as having exactly the same width. These repetitive width
values are inserted into a special table of reference width values.

2. Horizontal stems are often placed on reference lines. Reference lines are horizontal
lines delimiting the extension of characters of a given font (e.g. baseline, x-height
line, capsline).

3. Another useful global value is the slope of slanted stems. In italic fonts, slanted stems
generally have an identical slant angle. After applying a back-slanting transformation,
they can be handled, up to a certain extent, as vertical stems. Slant angles can generally
be found in the font tile header. In certain cases, this information may have to be
retrieved automatically.



TOWARDS A UNIVERSAL AUTO-HINTING SYSTEM FOR TYPOGRAPHIC SHAPES 257

The hinting process may be viewed as an attempt to emphasize the appearance of
selected elements and their properties within the font. As resources are usually limited (e.g.
output resolution), this emphasis has its price: other elements of the shape are considered as
flexible and as a consequence their distortion (e.g. stressed or narrowed) enables a faithful
rendering of specific parts within a shape. At rendering time, a vertical or horizontal stem
is generally rendered by placing its medial axis at specific grid locations. The medial axis
of a vertical (or horizontal) bar is placed exactly on pixel centres or at the frontier between
two pixel columns.

Hinted character outline description languages and appropriate interpreters and raster-
izers exist. By using the methods described above we are able to automatically supply the
information needed for declarative hinting systems such as Type1 [1]. For semi-declarative
hinting systems, such as RastWare [5] or fully interpretative hinting systems such as
TrueType [2], one has to add information about the application domain of the computed
displacement, for example, about which outline segments have to be stretched or displaced.
This additional information is easy to compute since the stretched segments are exactly
those which connect the currently processed stem with the last stem that has already been
placed correctly on the grid. If no stem was previously placed, the entire shape is translated
onto the grid according to the computed stem displacement.

7 DETERMINATION OF OUTLINE PART DISPLACEMENTS ASSOCIATED
TO HINTS

We will use our stem detection technique in order to automatically generate the hint
description required by the RastWare hint interpreter and rasterizer [5]. In that system, the
hinting task consists of associating predefined types of grid constraints (hints) to stems and,
for each grid constraint, specifying which part of the outline of the character needs to be
displaced at hint interpretation time.

The same techniques can be applied to automatically generate the hints in the TrueType
format [2]. We will rely on the RastWare hinting principles and show that knowledge about
the location of stems within a shape leads to efficient and automatic hinting. For the sake
of simplicity, we intend to present only the automatic generation of vertical stem hints.

The general idea is very simple. A stem is a symmetrical structure, and its medial axis
(central line) is its axis of symmetry. To maintain this very significant property, the medial
axis of stems should be placed on the grid in a position which ensures that symmetry will
be kept throughout the rasterization process.

There are exactly two possibilities for placing a vertical (or horizontal) medial axis of
a stem symmetrically onto the grid. It should be placed exactly on the border of a column
(row) of pixels when the width of the stem (in pixel units) is rounded to an even number, and
exactly on the centre of a column (row) of pixels when the width of the stem is rounded to
an odd number of pixels. We shall call these two possible positions symmetrical positions.

Following this general principle we may now describe a general procedure for vertical
stem hinting:

Initialization:

1. Mark all the points on the outline as h-free (horizontally free). A point may only
have one of two values: h-free or h-fixed.

2. Create a list L where all vertical stems in the outline are sorted from left to right
according to their medial axis.



258 J. HERZ AND R. D. HERSCH

3. For each stem compute its width in pixel units.
4. Find all the outline parts (segments) that connect two consecutive stems in L. These

segments are considered as flexible segments.

BEGIN
IF L is empty THEN exit; /* No stem to process */
/* Fixing the leftmost stem */
1. Remove the first stem S out of L;
2. Move the outline on the grid, in a way that will put the medial axis of S on its
nearest symmetrical position;
3. Add S to a new stem list FSL (fixed stems list).
4. Mark as h-fixed all the points that are not located horizontally on the right side
of S.

/*
These points are now horizontally fixed and will not move any more during
this procedure

*/
WHILE L is not empty DO
BEGIN
1. Remove the first stem S out of L;
2. Move the outline on the grid, in a way that will put the medial axis of S
on its nearest symmetrical position but this time the points of the outline are
treated differently according to their location relative to the medial axis:

A. All the points that are not located horizontally on the left side of S
move horizontally according to the medial axis of S.
B. All the h-free points on flexible segments that connect S to its preceding
stem in FSL, are stretched proportionally in the horizontal direction, to
compensate for the movement of S.

3. Mark as h-fixed all the points that are not located horizontally on the right
side of S.
END /* of WHILE */

END /* of the stem hinting procedure */

In Figure 6 we see the shape of the character ‘m’, to which we have added all the
information needed for vertical stem hinting. Note that all of this information has been
collected automatically: the position of its three vertical stems, the position of their medial
axis and the location of the flexible segments.

8 RESULTS

An example of the results is shown in Figures 7 (Kanji), 8 (Devanagari) and 9 (Latin).
The figures labelled with (a) show the results of a naive rasterization without any hints.
The figures labelled with (b) show a similar rasterization but after automatic stem hinting
as described above. In the figures labelled with (c) an additional well-known mechanism
— the dropout control [5] — is applied at character rasterization time. This mechanism
enables holes to be avoided in thin character parts. In the present examples, this mechanism
was applied to generate dropout-free curved stems and arches.



TOWARDS A UNIVERSAL AUTO-HINTING SYSTEM FOR TYPOGRAPHIC SHAPES 259

Figure 6. Information collected automatically about vertical stems in the character ‘m’: stem width,
medial axis and flexible segments

(a) (b) (c)

Figure 7.

(a) (b) (c)

Figure 8.

(a) (b) (c)

Figure 9.



260 J. HERZ AND R. D. HERSCH

9 COMPLEXITY

Assuming that a shape includes at most N segments, the price of examining all couples
of segments for the existence of hidden segments is bounded by N2 operations. This
complexity may be reduced by sorting the segments according to their slopes and checking
the existence of hidden segments only between couples of segments with similar slopes.
The same time bound also holds for testing couples of stem-edges because their number
cannot exceed N. Hence, if the number of shapes in a font is F then the complexity of
extracting all stems out of the raw outlines is O(F× N2).

In any case, the complexity of stem extraction is not very significant compared to the
complete character preparation process. The information about stems has to be computed
only once during the auto-hinting process. This information is used for hint interpretation
each time typographic shapes are scaled and rasterized.

10 CONCLUSION

The automatic stem recognition method described above is very simple and follows an
intuitive logic by trying to mimic human perception. Methods like the one described in this
paper may simplify existing sophisticated and specialized hinting systems, enabling them
to work correctly with any group of typographic shapes.

In spite of its simplicity the method is very general and can be used not only for
automatic hinting, but also for solving a wide range of problems, such as rasterization of
Kanji fonts on limited resolution displays, automatic regularization of typefaces, extraction
of font features and font decomposition into character structure elements.

REFERENCES

1. Adobe Systems Inc., Adobe Type 1 Font Format, Addison-Wesley, Reading, MA, (1990).
2. Apple Computer, TrueType Spec — The TrueType Font Format Specification, July (1990).
3. S. Andler, “Automatic generation of grid fitting hints for rasterization of outline fonts or graphics”,

EP90 — Proceedingsof the International conferenceon Electronic Publishing, DocumentManip-
ulation and Typography, September 90, ed. R. Furuta, Cambridge University Press, Cambridge,
1990 pp. 242–250.

4. R.D. Hersch and C. Bétrisey, “Model-based matching and hinting of fonts”, Proceedings SIG-
GRAPH’91, ACM Computer Graphics, 25, 71–80, (1991).

5. R.D. Hersch, “Font rasterization, the state of the art”, Visual and Technical Aspects of Type, ed.
R.D. Hersch, Cambridge University Press, Cambridge (1993), pp. 78–109.

6. John S. Hobby, “Generating automatically tuned bitmaps from outlines”, Journal of the ACM,
40(1), 48–94 (1993).

7. Louisa Lam, Seong-Whan Lee and Ching Y. Suen, ‘Thinning methodologies — a comprehensive
survey’, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 869–885, (1992).

8. P. Karow, “Automatic hinting for intelligent font scaling", Raster Imaging and Digital Typog-
raphy, Eds. J. André and R.D. Hersch), Cambridge University Press, Cambridge (1989), pp.
232–241.

9. P. Karow, Digitale Schriften, Darstellung und Formate, Springer Verlag, Berlin, (1992).
10. P. Karow, Schrifttechnologie, Methoden und Werkzeuge, Springer Verlag, Berlin, (1992).
11. C. D. McQueen and R. G. Beausoleil, “Infinifont, a parametric font generation system",Electronic

Publishing — Origination, Dissemination and Design 6(3), 117–132, (1993).
12. Chialing Ou and Yoshio Ohno, “Font generation algorithms for Kanji characters”, in J. André

and R. D. Hersch (eds.), Raster Imaging and Digital Typography, Cambridge University Press,
Cambridge (1989), pp. 123–133.


	SUMMARY
	1 INTRODUCTION
	2 GRID-FITTING OF OUTLINE CHARACTERS
	3 SOME WORDS ABOUT THE TITLE
	4 FUNDAMENTAL ELEMENTS AND FONT METRICS
	5 STEM RECOGNITION
	6 COMPUTING THE INFORMATION REQUIRED FOR STEM HINTING
	7 DETERMINATION OF OUTLINE PART DISPLACEMENTS ASSOCIATED TO HINTS
	8 RESULTS
	9 COMPLEXITY
	10 CONCLUSION
	REFERENCES

