Infrastructure for data processing in large-scale
Interconnected sensor networks

Karl Aberer, Manfred Hauswirth, Ali Salehi*
*Distributed Information Systems Lab, Ecole Polytechnigié&eérale de Lausanne, Switzerland
Digital Enterprise Research Institute, National Univigrsif Ireland, Galway, Ireland

| Base

Computer

Serial
Connector

Abstract—With the price of wireless sensor technologies di-

minishing rapidly we can expect large numbers of autonomous A

sensor networks being deployed in the near future. These ssor @’—»W\ L \
networks will typically not remain isolated but the need of @ w,y@i@r
interconnecting them on the network level to enable integrted “ '; f

data processing will arise, thus realizing the vision of a glbal @ Sink oo

“Sensor Internet.” This requires a flexible middleware laye
which abstracts from the underlying, heterogeneous sensaret-
work technologies and supports fast and simple deployment
and addition of new platforms, facilitates efficient distributed
query processing and combination of sensor data, provides
support for sensor mobility, and enables the dynamic adaptin We do not make any assumptions on the internals of a
of the system configuration during runtime with minimal (zero- - gensor network other than that the sink node is connected to

programming) effort. This paper describes the Global Senso . :
Networks (GSN) middleware which addresses these goals. Wethe base computer via a software wrapper conforming to the

present GSN’s conceptual model, abstractions, and architture, GSN API..On top of this p_hySica| access |a){er GSN proyides
and demonstrate the efficiency of the implementation throug So-calledvirtual sensors which abstract from implementation

experiments with typical high-load application profiles. The GSN details of access to sensor data and define the data stream
implementation is available from http://gsn.sourceforgenet/. processing to be performed. Local and remote virtual sspsor
|. INTRODUCTION their data streams and the associated query processingecan b
& mbined in arbitrary ways and thus enable the user to build a
&%ta—oriented “Sensor Internet” consisting of sensor ot/

Fig. 1. GSN model

Until now, research in the sensor network domain h
mainly focused on routing, data aggregation, and energy c .
servation inside a single sensor network while the intd¢igma connected via _GSN‘)) o
of multiple sensor networks has only been studied to a lunite_'" the follwoing we start with a detailed description of the
extent. However, as the price of wireless sensors dimigishértual sensor abstraction in Section I, discuss GSN'sadat
rapidly we can soon expect large numbers of autonomous s&fj€am Processing and time model in Section Ill, and present
sor networks being deployed. These sensor networks will FoN'S System architecture in Section IV. We evaluate the
managed by different organizations but the interconneaiio Performance of GSN in Section V and discuss related work
their infrastructures along with data integration andritigted " S€ction VI before concluding.
guery processing will soon become an issue to fully exploit
the potential of this “Sensor Internet.” This requires faanhs
which enable the dynamic integration and management ofype key abstraction in GSN is thértual sensor. Virtual
sensor networks and the produced data streams. sensors abstract from implementation details of access to

The Global Sensor Networks (GSN) platform aims &lgnsor data and correspond either to a data stream received
providing a flexible middleware to accomplish these goal§jrectly from sensors or to a data stream derived from other
GSN assumes the simple model shown in Figure 1: A sensgfy o sensors. A virtual sensor can be any kind of data
network internally may use arbitrary multi-hop, ad-hoctiog ,oqcer, for example, a real sensor, a wireless camera, a
algorithms to deliver sensor readings to one or more Siskion computer, a cell phone, or any combination of virtua
node(s). A sink node is a node which is connected 10 &nsors. A virtual sensor may have any number of input
more powerful base computer which in turn runs the GShhs sreams and produces exactly one output data stream
middleware and may particpate in a (large-scale) network gl seq on the input data streams and arbitrary local proggssi

base computers, each running GSN and servicing one or Mg, specification of a virtual sensor provides all necessary
sensor networks. information required for deploying and using it, including

The work presented in this paper was supported (in part) byNational (1) metadata used for identification and discovery, (2) the

Competence Center in Research on Mobile Information andr@amication strycture of the data streams which the virtual sensor goasu
Systems (NCCR-MICS), a center supported by the Swiss NaltiSoience d d 3 SOL-b d ificati f th t
Foundation under grant no. 5005-67322 and by the Lion grsiepported by and produces (3) an SQL-based specification of the stream

Science Foundation Ireland under grant no. SFI/02/CE1/113 processing performed in a virtual sensor, and (4) functiona

Il. VIRTUAL SENSORS

processing systems. The structure of the data stream alvirtu
sensor produces is encoded in XML as shown in lines 7—
10. The structure of the input streams is learned from the
respective specifications of their virtual sensor defingio
Data stream processing is separated into two stages: (1)

1 <virtual -sensor nanme="room nmonitor" priority="11">

2 <addr essi ng>

3 <predi cate key="geogr aphi cal ">BC143</ pr edi cat e>

4 <predi cate key="usage">room noni tori ng</ predi cate>
5 </ addr essi ng>

6 <life-cycle pool-size="10" />

7 <out put - struct ure>

8 <field name="i nage" type="binary:jpeg" />

9 <field nane="tenp" type="int" />

10 </ out put -structure>

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

<predi cate key="type">Caner a</ predi cat e>
</ addr ess>
<query>sel ect * from WRAPPER</ query>
</ sour ce>
<source alias="tenperaturel" storage-size="1n{
di sconnect - buf f er - si ze="10">
<address wrapper="renote">
<predi cate key="type">tenperature</predi cate>
<predi cat e key="geogr aphi cal “>BC143- N</ predi cat e>
</ addr ess>
<query>sel ect AV tenpl) as T1 from WRAPPER</ query>
</ source>
<source alias="tenperature2" storage-size="1nf
di sconnect - buf f er - si ze="10">
<address wrapper="renote">
<predi cate key="type">tenperature</predi cate>
<predi cate key="geogr aphi cal ">BC143- S</ pr edi cat e>
</ addr ess>
<query>sel ect AVG(tenp2) as T2 from WRAPPER</ query>
</ source>

11 <storage permanent="true" history-size="10n" /> processing applied to the input streams (lines 20, 28, and 36
12 <streams>

13 <stream name="cant > and (2) processing for combining data from the differentinp

14 <source alias="can storage-size="1" . .

15 di sconnect - buf f er -si ze="10"> streams and producing the output stream (lines 38-43). To
16 <address wr apper ="renot e">
17 <pr edi cate key="geogr aphi cal " >BC143</ pr edi cat e> specify the processing of the input streams we use SQL querie

which refer to the input streams by the reserved keyword
WRAPPER. The attributem apper ="r enot e" indicates that

the data stream is obtained through the network from another
GSN instance. In the case of a directly connected local senso
thewr apper attribute would reference the required wrapper.
For exampleywr apper ="t i nyos" would denote a TinyOS-
based sensor whose data stream is accessed via GSN’s TinyOS
wrapper. GSN already includes wrappers for all major TinyOS
platforms (Mica2, Mica2Dot, etc.), for wired and wireless
(HTTP-based) cameras (e.g., AXIS 206W), several RFID read-

38 < > . .

3 el ect campicture as image, temperature.TL as temp ers (Texas Instruments, Alien Technology), Bluetooth desj

40 f t t 1
a where temperatured. T1 > 30 AND Shockfish, WiseNodes, epuck robots, etc. The implementatio
42 tenperaturel. T1 = tenperature2. T2 .

a3 < query> effort for wrappers is rather low, for example, the RFID resad

44 </stream i i

55 <Isireams wrapper has 50 lines of code (LOC), the TinyOS 2.x wrapper

46 </virtual -sensor>

has 80 LOC, and the generic serial wrapper has 180 LOC.

In the given example the output stream joins the data
received from two temperature sensors and returns a camera
image if certain conditions on the temperature are satisfied
properties related to persistency, error handling, lifele, (lines 38—43). To enable the SQL statement in lines 39-42 to
management, and physical deployment. produce the output stream, it needs to be able to reference

To support rapid deployment, these properties of virtugie required input data streams which is accomplished by
sensors are provided in a declarative deployment descripthe al i as attribute (lines 14, 22, and 30) that defines a
Figure 2 shows an example which defines a virtual sensor tlsgtnbolic name for each input stream. The definition of the
reads two temperature sensors and in case both of them hstvecture of the output stream directly relates to the dat@as
the same reading above a certain threshold in the last minygeocessing that is performed by the virtual sensor and reeds
the virtual sensor returns the latest picture from the webceae consistent with it, i.e., the data fields in thel ect clause
in the same room together with the measured temperature(line 40) must match the definition of the output stream irdin

A virtual sensor has a unique name (thane attribute 7-10.
in line 1) and can be equipped with a set of key-value In the design of GSN specifications we decided to separate
pairs (lines 2-5), i.e., associated with metadata. Botlesypthe temporal aspects from the relational data processimg us
of addressing information can be registered and discovel®@@L. The temporal processing is controlled by various at-
in GSN and other virtual sensors can use either the uniguibutes provided in the input and output stream specificasti
name or logical addressing based on the metadata to refeelg., the attributest or age- si ze (lines 14, 22, and 30)

a virtual sensor. The example specification above definesiefines the time window used for producing the input stream'’s
virtual sensor with three input streams which are identifiedhta elements. Due to its specific importance the temporal
by their metadata (lines 17-18, 25-26, and 33-34), i.e., pyocessing will be discussed in detail in Section IIl.

logical addressing. For example, the first temperaturecsens In addition to the specification of the data-related prop-
is addressed by specifying two requirements on its metadatéies a virtual sensor also includes high-level specifica-
(lines 25-26), namely that it is of type temperature senedr ations of functional properties: Theri ori ty attribute (line

at a certain physical certain location. By using multiplput 1) controls the processing priority of a virtual sensor, the
streams Figure 2 also demonstrates GSN’s ability to acceds f e- cycl e> element (line 6) enables the control and
multiple stream producers simultaneously. For the momentanagement of resources provided to a virtual sensor such
we assume that the input streams (two temperature sensbrsasithe maximum number of threads/queues available for pro-
a webcam) have already been defined in other virtual sensessing, the<st or age> element (line 11) allows the user
definitions (how this is done, will be described below). to control how output stream data is persistently stored, an

In GSN data streams are temporal sequences of timestamtbexldi sconnect - buf f er - si ze attribute (lines 15, 23,
tuples. This is in line with the model used in most streai®1) specifies the amount of storage provided to deal with

Fig. 2. A virtual sensor definition

temporary disconnections. a distributed “Sensor Internet,” imposing a specific terapor
For example, in Figure 2 thpri ority attribute in line semantics seems inadequate and maintaining it might come at
1 assigns a priority of 11 to this virtual sensor (10 isinacceptable cost. GSN provides the essential buildingkblo
the lowest priority and 20 the highest, default is 10), thior dealing with time, but leaves temporal semantics largel
<life-cycl e> element in line 6 specifies a maximunto applications allowing them to express and satisfy their
number of 10 threads, which means that if the pool size $pecific, largely varying requirements. In our opinion,sthi
reached, data will be dropped (if no pool size is specified, pragmatic approach is viable as it reflects the requirements
will be controlled by GSN depending on the current loadand capabilities of sensor network processing.
the <st or age> element in line 11 defines that the output In GSN a data stream is a set of timestamped tuples. The
stream’s data elements of the last 10 hoinisst or y- si ze order of the data stream is derived from the ordering of the
attribute) are stored permanently to enable off-line pset®), timestamps and GSN provides basic support for managing and
the st or age- si ze attribute in line 14 defines that the lastmanipulating the timestamps. The following essential ises/
image taken by the webcam will be returned irrespective afe provided:
_the_time it was taken, Wh_ereas tQEOr age- si ze attributt_as 1) a local clock at each GSN container:
in lines 22 and 30 define a t|_me window of one mlnute_ 2) implicit management of a timestamp attribute
for the amount of sensor readings subsequent queries will (TIMEID):

be run on, i.e., theAVG operations in lines 28 and 36 are gy jmpjicit timestamping of tuples upon arrival at the GSN
executed on the sensor readings received in the last minute’ . niainer (reception time);

which of course depends on the rate at which the underlying4) a windowing mechanism which allows the user to define

temperature virtual sensor produces its readings, andyfinal count- or time-based windows on data streams.
thedi sconnect - buf f er - si ze attributes in lines 15, 23,

and 31 specify up to 10 missed sensor readings to be read this way it is always possible to trace the tempo.ral h'y_stor
after a disconnection from the associated stream source. ©f data stream elements throughout the processing history.

The query producing the output stream (lines 39-42) aiMultiple time attributes can be associated with data steeam
demonstrates another interesting capability of GSN assd al"’lnd can be manipulated through S_QL gueries. Thus sensor
mediates among three different flavors of queries: The afirt"€WOTKS can be used as observation tools for the physical
sensor itself uses continuous queries on the temperattag d4°'1d: in which network and processing delays are inherent

a “normal” database query on the camera data and producég%oerties of the obser_/ation process which cgnnot be_made
result only if certain conditions are satisfied, i.e., afication Uansparent by abstraction. Let us illustrate this by a &mp
analogous to pub/sub or active rules. example: Assume a bank is being robbed and images of the

Virtual sensors are a powerful abstraction mechanism whi€Me Scene taken by the security cameras are transmitted to

enables the user to declaratively specify sensors and eonfBf Police. For the insurance company the time at which the

nations of arbitrary complexity. Virtual sensors can be gdnages are taken in the bank will be relevant when processing
claim, whereas for the police report the time the images

fined and deployed to a running GSN instance at any tinfe© X i) e
without having to stop the system. Also dynamic unloadin r_|ved at the police stat_|on will be relevant to justify "‘“‘.‘e

is supported but should be used carefully as unloading %:_nterventlon. D_ependm_g on the context the robbery isthu
virtual sensor may have undesired (cascading) effects.tpue@king place at different times. S

space limitations we cannot describe all possible configpra 1 1€ temporal processing in GSN is defined as follows: The
options, for example, how virtual sensors are mapped %oductlon qf a new output stre_am element of a virtual sensor
wrappers which facilitate the physical access or the variolf Ways triggered by the arrival of a data stream element
notification possibilities, such as email or SMS. A compleilom one of its input streams. Thus processing is evenedriv
list along with a user manual and examples is available frofftd the following processing steps are performed:

the GSN website at http:/gsn.sourceforge.net/. 1) By default the new data stream element is timestamped
using the local clock of the virtual sensor provided that
the stream element had no timestamp.

Data stream processing has received substantial atténtion 2) Based on the timestamps for each input stream the
the recent years in other application domains, such as mletwo stream elements are selected according to the definition
monitoring or telecommunications. As a result, a rich set of of the time window and the resulting sets of relations
query languages and query processing approaches for data are unnested into flat relations.
streams exist on which we can build. A central building block 3) The input stream queries are evaluated and stored into
in data stream processing is the time model as it defines the temporary relations.
temporal semantics of data and thus determines the desijn amd) The output query for producing the output stream ele-

IIl. DATA STREAM PROCESSING AND TIME MODEL

implementation of a system. Currently, most stream praegss ment is executed based on the temporary relations.
systems use a global reference time as the basis for theib) The result is permanently stored if required (possibly
temporal semantics because they were designed for ceptiali after some processing) and all consumers of the virtual

architectures in the first place. As GSN is targeted at engbli sensor are notified of the new stream element.

Stream elements coming Stream elements coming

from stream source from stream source research/aurora/) users can compose stream relatioresips
@ ii construct queries in a graphical representation which és th
Sveam data clemen|Timestam Stream data clemert Timesta used as input for the query planner. The Continuous Query
Persistent storagd Language (CQL) suggested by the STREAM project [2] (http:
IIwww-db.stanford.edu/stream/) extends standard SQtagyn
l @ . l with new constructs for temporal semantics and defines a map-
/ ping between streams and relations. Similarly, in Cougal [1
l l (http://www.cs.cornell.edu/database/cougar/) an addnver-
sion of SQL is used, modeling temporal characteristics in
Quiput Relation Quiput Relation the language itself. The StreaQuel language suggested by
l l the TelegraphCQ project [3] (http://telegraph.cs.berkeldu/)
follows a different path and tries to isolate temporal setican
@ Set of stream elements from the query language through external definitions in a C-
like syntax. For example, for specifying a sliding window fo
Virtual Sensor's Main Java Class a query dor-loop is used. The actual query is then formulated
in an SQL-like syntax.
Fig. 3. Conceptual data flow in a GSN node GSN'’s approach is related to TelegraphCQ’s as it separates

the time-related constructs from the actual query. Tenipora
)) o specifications, e.g., the window size and rates, are spad¢ifie
Figure 3 shows the logical data flow inside a GSN node.y;) in the virtual sensor specification, while data procegsi
Additionally, GSN provides a number of possibilities 1qg specified in SQL. At the moment GSN supports SQL queries
control the temporal processing of data streams, €.9.0 yjith the full range of operations allowed by the standard
« The rate of a data stream can be bounded in order to anQL syntax, ie., joins] SubquerieS, ordering, groupim'(jpms,
overloading the system which might cause undesirai&ersections, etc. The advantage of using SQL is that ielé-w

delays. known and SQL query optimization and planning techniques
« Data streams can be sampled to reduce the data ratecan be directly applied.

« A windowing mechanism can be used to limit the amount

of data that needs to be stored for query processing. IV. SYSTEM ARCHITECTURE
Windows can be defined using absolute, landmark, orGSN uses a container-based architecture for hosting Virtua
sliding intervals. sensors. Similar to application servers, GSN provides an

« The lifetime of data streams and queries can be boundgglironment in which sensor networks can easily and flexibly
such that they only consume resources when actuai$ specified and deployed by hiding most of the system
active. Lifetimes can be specified in terms of explicitomplexity in the GSN container. Using the declarative spec
start and end times, start time and duration, or numbigieations, virtual sensors can be deployed and reconfigured
of tuples. in GSN containers at runtime. Communication and processing

As tuples (sensor readings) are timestamped, queries esmnong different GSN containers is performed in a peer-&r-pe

also deal explicitly with time. For example, the query irstyle through standard Internet and Web protocols. By vigwi
lines 39—42 of Figure 2 could be extended such that @GSN containers as cooperating peers in a decentralizezhsyst
explicitly specifies the maximum time interval between thee tried avoid some of the intrinsic scalability problems of
readings of the two temperatures and the maximum age ro&ny other systems which rely on a centralized or hieraathic
the readings. This would additionally require changes m tharchitecture. Targeting a “Sensor Internet” as the lomgite
input stream definitions as the input streams then must geovigoal we also need to take into account that such a system will
this information, and also the averaging of the temperatucensist of “Autonomous Sensor Systems” with a large degree
readings (lines 28 and 36) would have to be changed to bkfreedom and only limited possibilities of control, sianily
explicit in respect to the time dimension. Additionally, S as in the Internet.

supports the integration of continuous and historical .datet Figure 4 shows the layered architecture of a GSN container.
example, if the user wants to be notified when the temperatur€each GSN container hosts a number of virtual sensors
is 10 degrees above the average temperature in the lastit2ié responsible for. The virtual sensor manager (VSM) is
hours, he/she can simply define two stream sources, gettiegponsible for providing access to the virtual sensors)-ma
data from the same wrapper but with different window sizeaging the delivery of sensor data, and providing the necgssa
i.e., 1 (count) and 24h (time), and then simply write a quedministrative infrastructure. The VSM has two subcompo-
specifying the original condition with these input streams nents: The life-cycle manager (LCM) provides and manages

To specify the data stream processing a suitable languagéhis resources provided to a virtual sensor and manages the

needed. A number of proposals exist already, so we compargeractions with a virtual sensor (sensor readings, .€thg
the language approach of GSN to the major proposals from thput stream manager (ISM) is responsible for managing the
literature. In the Aurora project [5] (http://www.cs.brovedu/ streams, allocating resources to them, and enabling resour

‘ Integrity service ‘ sensor’s properties and measurement characteristics asich
type of measurement, scaling, and calibration information

‘ Access control ‘ a so-called Transducer Electronic Data Sheet (TEDS) wisich i
‘ GSN/Web/Web-Services Interfaces ‘ stored inside the sensor. When a new sensor node is detected
— by GSN, for example, by moving into the transmission range
S [Notification Manager] of a sink node, GSN requests its TEDS and uses the contained
é [Query Processor] infornjat_ion for th(_a dynamic generation of a_vi_rtual sensor
2 description by using a virtual sensor description template
3 [Query Repository] and deriving the sensor-specific fields of the template from
the data extracted from the TEDS. At the moment TEDS
‘ Storage ‘ provides only that information about a sensor which enables

interaction with it. Thus for some parts of the generatetuair
sensor description, e.g., security requirements, stoeage
Life Cycle Input Stream Manager resource management, etc., we use default values. Then GSN

Virtual Sensor Manager

Manager [Stream Quality Manager } dynamically instantiates the new virtual sensor based &n th
synthesized description and all local and remote procgssin
dependent on the new sensor is executed. This is done on-the-
fly while GSN is running. The inverse process is performed if

Pool of Virtual Sensors a sensor is no longer associated with a GSN node, e.g., it has

moved away.
In connection with RFID tags this “plug-and-play” feature
of GSN even provides new and interesting types of mobility
Fig. 4. GSN container architecture which we will investigate in future work. For example, an
RFID tag may store queries which are executed as soon as
the tag is detected by a reader, thus transforming RFID tags
sharing among them while its stream quality manager subcofrem simple means for identification and description into a
ponent (SQM) handles sensor disconnections, missing ¥alueontainer for physically mobile queries which opens up new
unexpected delays, etc., thus ensuring the QoS of strealins.akd interesting possibilities for mobile information sysis.
data from/to the VSM passes through the storage layer which
is in charge of providing and managing persistent storage V. EVALUATION
for data streams. Query processing in turn relies on all of GSN aims at providing a zero-programming and efficient
the above layers and is done by the query manager (QMjfrastructure for large-scale interconnected sensovorés.
which includes the query processor being in charge of SQI0 justify this claim we experimentally evaluate the thrbpgt
parsing, query planning, and execution of queries. Theyquetf the local sensor data processing and the performance
repository manages all registered queries (subscriptiand and scalability of query processing as the key influencing
defines and maintains the set of currently active queries f@ctors. As virtual sensors are addressed explicitly antl GS
the query processor. The notification manager deals with thedes communicate directly in a point-to-point (peer-ée)
delivery of events and query results to registered, local 8¥/le, we can reasonably extrapolate the experimentaltsesu
remote consumers. The notification manager has an extensfglesented in this section to larger network sizes. For our

architecture which allows the user to largely customize igxperiments, we used the setup shown in Figure 5.
functiona”ty, for examp]e, ha\/ing results mailed or being The GSN network consisted of 5 standard Dell desktop PCs

notified via SMS. with Pentium 4, 3.2GHz Intel processors with 1MB cache,
The top three layers of the architecture deal with acce$6B memory, 100Mbit Ethernet, running Debian 3.1 Linux

to the GSN container. The interface layer provides acce48h an unmodified kernel 2.4.27. For the storage layer use

functions for other GSN containers and via the Web (througfgndard MySQL 5.18. The PCs were attached to the following

a browser or via web services). These functionalities agensor networks as shown in Figure 5.

protected and shielded by the access control layer prayidin « A sensor network consisting of 10 Mica2 motes, each

access only to entitled parties and the data integrity layer mote being equipped with light and temperature sensors.

which provides data integrity and confidentiality throudgce The packet size was configured to 15 Bytes (data portion
tronic signatures and encryption. Data access and datgilyte excluding the headers).

can be defined at different levels, for example, for the wholee A sensor network consisting of 8 Mica2 motes, each
GSN container or at a virtual sensor level. equipped with light, temperature, acceleration, and sound

An interesting feature of GSN'’s architecture is the support sensors. The packet size was configured to 100 Bytes
for sensor mobility based on automatic detection of sensors (data portion excluding the headers). The maximum pos-
and zero-programing deployment: A large number of sensors sible packet size for TinyOS 1.x packets of the current
already support the IEEE 1451 standard which describes a TinyOS implementation is 128 bytes (including headers).

30 T T T T T T T T T
1) 15 bytes —+—

B B
P 32KB - |
o-

15 b e

Processing Time in (ms)

10

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Output Interval (ms)

Fig. 6. GSN node under time-triggered load

- T TI-RFID ¥ axis 206w | Mica2 with WRT54G
o) oo B e © oty the GSN node and the WRT54G access point which repeated
Fig. 5. Experimental setup the last available frame in order to reach a frame interval of
10 milliseconds. All GSN instances used the Sun Java Virtual
Machine (1.5.0 update 6) with memory restricted to 64MB.

« A sensor network consisting of 4 Tiny-Nodes (TinyOS The experiment was conducted as follows: All motes and
compatible motes produced by Shockfish, http://mwwwgameras were set to the same rate and produced data for
shockfish.com/), each equipped with a light and twg hours and we measured the processing delay. This was
temperature sensors with TinyOS standard packet sizerepeated 3 times for each rate and the measurements were
29 Bytes. averaged. Figure 6 shows the results of the experiment éor th

« 15 Wireless network cameras (AXIS 206W) which cagifferent data sizes produced by the motes and the cameras.
capture 640x480 JPEG pictures with a rate of 30 framesHigh data rates put some stress on the system but the abso-
per second. 5 cameras use the highest available cdote delays are still quite tolerable. The delays drop digéfp
pression (16kB average image size), 5 use mediufie interval is increased and then converge to a nearly aonst
compression (32kB average image size), and 5 use fi@e at a rate of approximately 4 readings/second or less. Th
compression (75kB average image size). The camefasult shows that GSN can tolerate high rates and incurs low
are connected to a Linksys WRT54G wireless accegserhead for realistic rates as in practical sensor depdoygsn
point via 802.11b and the access point is connected Véver rates are more probable due to energy constraintseof th
100Mbit Ethernet to a GSN node. sensor devices while still being able to deal also with high

o A Texas Instruments Series 6000 S6700 multi-protocedtes.

RFID reader with three different kind of tags, which can
keep up to 8KB of data. 128 Bytes capacity. B. Scalability in the number of queries and clients

The motes in each sensor network form a sensor networIJ” this experiment the goal was to measure GSN's scalabil-

and routmg among the motes is done with the surge multi- hB]zS in the number of clients and queries. To do so, we used

o Flgure 5 which each ran 250 lightweight GSN instances. The
A. Internal processing time lightweight GSN instance only included those componers th

In the first experiment we wanted to determine the internale needed for the experiment. Each GSN-light instance used a
processing time a GSN node requires for processing sensmmdom query generator to generate queries with varyirig tab
readings, i.e., the time interval when the wrapper gets thames, varying filtering condition complexity, and varying
sensor data until the data can be provided to clients by tbenfiguration parameters such as history size, samplirgg rat
associated virtual sensor. This delay depends on the sizeetsf. For the experiments we configured the query generator
the sensor data and the rate at which the data is produced,tbuproduce random queries with 3 filtering predicates in the
is independent of the number of clients wanting to receiee thvher e clause on average, using random history sizes from
sensor data. Thus it is a lower bound and characterizes fheecond up to 30 minutes and uniformly distributed random
efficiency of the implementation. sampling rates (seconds) in the inter{@D1, 1].

We configured the 22 motes and 15 cameras to produce datdhen we configured the motes such that they produce
every 10, 25, 50, 100, 250, 500, and 1000 milliseconds. &s measurement each second but would deliver it with a
the cameras have a maximum rate of 30 frames/second, ipggbability P < 1, i.e., a reading would be dropped with
a frame every 33 milliseconds, we added a proxy betweprobabilityl — P > 0. Additionally, each mote could produce

T T T T
50 SES =100 Bytes —+—

2 : SES = 15 KB
12 ; SES=25KB - 1

T
SES=30Bytes —+—]

40 ; x

=
15}
T

®
T

20

Total processing time (ms) for the set of clients
Avg Processing Time for each client (ms)

L L L L
0 100 200 300 400 500
Number of Clients Number of clients

Fig. 7. Query processing latencies in a node Fig. 8. Processing time per client

a burst of R readings at the highest possible speed depending and the average processing time decreases as the newly

on the hardware with probability3 > 0, where R is a arriving clients can already use the services in place.

uniformly random integer from the interval, 100]. lL.e., a CPU usage then drops to around 12%.

burst would occur with a probability o? x B and would 2) Again the spikes in the graph relate to bursts. Although

produce randomly 1 up to 100 data items. In the experiments the processing time increases considerably during the

we usedP = 0.85 and B = 0.3. On the desktops we used bursts, the system immediately restores its normal be-

MySQL as the database with the recommended configuration havior with low processing times when the bursts are

for large memory systems. Figure 7 shows the results for a over, i.e., it is very responsive and quickly adopts to

stream element size (SES) of 30 Bytes. Using SES=32KB varying loads.

gives the same latencies. Due to space limitations we do noB) As the number of clients increases, the average pro-

include this figure. cessing time for each client decreases. This is due to
The spikes in the graphs are bursts as described above. the implemented data sharing functionalities. As the

Basically this experiment measures the performance of the number of clients increases, also the probability of using

database server under various loads which heavily depends Ccommon resources and data items grows.

on the used database. As expected the database server’s

performance is directly related to the number of the cliests VI. RELATED WORK

with the increasing number of clients more queries are ent t g, ¢4 oniy few architectures to support interconnected sen
the database and also the cost of.the query compiling ineseag) networks exist. Sgroi et al. [11] suggest basic abstrast
Nevertheless, the query processing time is reasonably WA gianqard set of services, and an API to free application

the g:_aphs Show that the alveraghe time to process a C}“e%é(/elopers from the details of the underlying sensor nétsvor
500 clients issue queries is less than 50ms, i.e., approg&iyna ,ever, the focus is on systematic definition and classifi-
0.5ms per client. If required, a cluster could be used t0 8o of apstractions and services, while GSN takes a more

improve query processing times which is supported by Mgk ra) view and provides not only APIs but a complete query

of the existing databases already. processing and management infrastructure with a dealarati
In the next experiment shown in Figure 8 we look %mguage interface.

the average processing time for a client excluding the querypyorgiass [12] provides an Internet-based infrastructore
processing part. In this experiment we uséd = 0.85, connecting sensor networks to applications and offersctopi
B =0.05 andR is as above. _ ~ based discovery and data-processing services. SimilaSté G
We can make three interesting observations from FigureBiries to hide internals of sensors from the user but fosuse
1) GSN only allocates resources for virtual sensors that are maintaining quality of service of data streams in the
being used. The left side of the graph shows the situatipnesence of disconnections while GSN is more targeted at
when the first clients arrive and use virtual sensorfiexible configurations, general abstractions, and disteih
The system has to instantiate the virtual sensor aqdery support.
activates the necessary resources for query processindiliFi [7] provides efficient, hierarchical data stream query
notification, connection caching, etc. Thus for the firgirocessing to acquire, filter, and aggregate data from plelti
clients to arrive average processing times are a bit highdevices in a static environment while GSN takes a peer-&r-pe
CPU usage is around 34% in this interval. After a shoperspective assuming a dynamic environment and allowigg an
time (around 30 clients) the initialization phase is ovarode to be a data source, data sink, or data aggregator.

IrisNet [8] proposes a two-tier architecture consisting afeployment and data-oriented integration of sensor nétsvor
sensing agents (SA) which collect and pre-process senaod supports dynamic configuration and adaptation at rentim
data and organizing agents (OA) which store sensor dataZaro-programming deployment in conjunction with GSN’s
a hierarchical, distributed XML database. This database pghig-and-play detection and deployment feature provides a
modeled after the design of the Internet DNS and suppobasic functionality to enable sensor mobility. GSN is imple
XPath queries. X-Tree [] extends lIrisNet by providing anented in Java and C/C++ and is available from SourceForge
database centric programming model (stored functions aadhttp:/gsn.sourcefourge.net/. The experimental exaln of
stored queries) with efficient distributed execution. Imitast GSN demonstrates that the implementation is highly efficien
to that, GSN follows a symmetric peer-to-peer approach affers very good performance and throughput even under high
already mentioned and supports relational queries using SQoads and scales gracefully in the number of nodes, queries,

Rooney et al. [10] propose so-called EdgeServers to in@ad query complexity.
grate sensor networks into enterprise networks. Edge&erve
filter and aggregate raw sensor data (using applicatiorifgpec
code) to reduce the amount of data forwarded to applicatiol! II\D/I?tr;II?I é @?ﬁﬂf&{a’ﬂgﬁﬁmﬁdgﬂ”aﬂﬁﬁ”a E\‘Af/i(';ﬁZigikavL?n%fgtemr
servers. The system uses publish/subscribe style comenunic —yzcr. Rt e Ryvkina, Nesime Tathul Ying cimnd
tion and also includes specialized protocols for the irg#gn Stanley B. Zdonik. The Design of the Borealis Stream Proogss
of sensor networks. While GSN provides a general-purpose Engine. InCIDR, 2005.

. L [2] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, ko,
infrastructure for sensor network deployment and distetu R. Motwani, U. Srivastava, and J. Widonata-Sream Management:

query processing, the EdgeServer system targets enterpris Processing High-Speed Data Streams, chapter STREAM: The Stanford
networks with application-based customization to redwme s @l g;a,tahsgﬁa”:j Manliigemerg SVStecm- SP”“Ageﬂ IZgOG-h dehadi 3
.. . Irs andarasekaran, wen Cooper, mo esnpan .
sor da.ta traffic in Close_d environments. Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishoghy,
Besides these architectures, a large number of systems Samuel Madden, Vijayshankar Raman, Frederick Reiss, arfuliMe
for query processing in sensor networks exist. Aurora [5] \?\/ha% Te'g?lgagh%?oécomi”uous Dataflow Processing for ageitain
(Brandeis University, Braun University, MIT), STREAM [2] ore o

4] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakevaluating
(Stanford), TelegraphCQ [3] (UC Berkeley), and Cougar [13] = Probabilistic Queries over Imprecise Data. IGMOD, 2003.

(Cornell) have already been discussed and related to GSN [l Mitch Chemiack, Hari Balakrishnan, Magdalena Balakia, Donald
Secti " C_arn_ey, Ugur Cetintemel, Y_|ng Xing, and Stanley B. Zdon8calable
ection . .) Distributed Stream Processing. GiDR, 2003.

In the Medusa distributed stream-processing system [14}] Amol Deshpande and Samuel Madden. MauveDB: Supportimgle#
Aurora is being used as the processing engine on each of based User Views in Database SystemsSIGMOD, 2006.

. . . 7] M. Franklin, S. Jeffery, S. Krishnamurthy, F. Reiss, Sz\R E. Wu,
the participating nodes. Medusa takes Aurora queries aM O. Cooper, A. Edakkunni, and W. Hong. Design Consideratifams

distributes them across multiple nodes and particuladuses High Fan-in Systems: The HiFi Approach. GIDR, 2005.

on load management using economic principles and higll P- B. Gibbons, B. Karp, V. Ke, S. Nath, and S. Seshan. ktshn

. e . . Architecture for a World-Wide Sensor WelEEE Pervasive Computing,
availability issues. The Borealis stream processing enffih 2(4), 2003,

is based on the work in Medusa and Aurora and supports dyg] A. J. G. Gray and W. Nutt. A Data Stream Publish/Subscrire
namic query modification, dynamic revision of query results chitecture with Self-adapting Queries. International Conference on

. A, L Cooperative Information Systems (CooplS), 2005.
and flexible optimization. These systems focus on (disteit [10] Sean Rooney, Daniel Bauer, and Paolo Scotton. Techsidar Inte-

query processing only, which is only one specific component grating Sensors into the Enterprise NetworlEEE eTransactions on

of GSN, and focus on sensor heavy and server heavy applica- Network and Service Management, 2(1), 2006.

fi domains [11] M. Sgroi, A. Wolisz, A. Sangiovanni-Vincentelli, and M. Rabaey. A

1on 0) : o)] service-based universal application interface for ad heless sensor
Additionally, several systems providing publish/subiseri and actuator networks. lAmbient Intelligence. Springer Verlag, 2005.

Style query process|ng Comparable to GSN ex|St, for exa‘md@] J. Shneidman, P. Pietzuch, J. Ledlie, M. RoussopOLM)s,SeItzer,

9. GSN | int t i isti h and M. Welsh. Hourglass: An Infrastructure for Connectingn&r
[9]. can also integrate easily existing approaches (as a Networks and Applications. Technical Report TR-21-04, \ded

REFERENCES

new virtual sensor) for precision estimation, for exampig, University, EECS, 2004. http://www.eecs.harvard.ediyrah/hourglass/
or aggregation handling uncertainty, for example, [4]. papers/tr2104.pdf. o
[13] Yong Yao and Johannes Gehrke. Query Processing in Séletaorks.
In CIDR, 2003.

VIl. CONCLUSIONS [14] Stan Zdonik, Michael Stonebraker, Mitch Cherniack,ud@etintemel,
The full potential of sensor technology will be unleashed Magdalena Balazinska, and Hari Balakrishnan. The AurotaMedusa

through large-scale (up to global scale) data-orientesyiiat Eg%%ﬁ%%ggyf’fztgg;&hmm Committe on Data Engineering, |EEE
tion of sensor networks. To realize this vision of a “Sensor

Internet” we suggest our Global Sensor Networks (GSN)

middleware which enables fast and flexible deployment and

interconnection of sensor networks. Through its virtualses

abstraction which can abstract from arbitrary stream data

sources and its powerful declarative specification andyquer

tools, GSN provides simple and uniform access to the host

of heterogeneous technologies. GSN offers zero-progragmmi

