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Summary. Trust and reputation systems have proven to be essential to enforc-
ing cooperative behavior in peer-to-peer networks. We briefly describe the current
approaches to building reputation systems: social networks formation, probabilis-
tic estimation and game theoretic models. We then observe that all of the current
models make a number of simplifying assumptions that may not necessarily hold in
real networks, such as either irrational (probabilistic) or completely rational behav-
ior, instant propagation of reputation information and homogeneity of interactions.
We argue that dropping those assumptions and allowing more degrees of freedom
is necessary in order to construct more realistic and rich reputation models. We
support our argument by citing reputation research done in economics, evolutionary
psychology, biology and sociology and and consider models that take into account
adaptive behavior changes, co-evolution of behaviors, bounded rationality and vari-
able interaction patterns. We then outline how those complexities can be dealt with
and point out main directions for the future study of more realistic and less con-
strained reputation models that can potentially lead to construction of more secure,
responsive and cooperative peer-to-peer systems.

1 Introduction

Reputation systems have proven to be essential to enforcing cooperative be-
havior in peer-to-peer networks. Many solutions have been proposed [19, 32,
23, 14, 7, 3], each employing a different model of computing trust, dissemi-
nating and storing reputation data and responding to non-cooperation in the
network [26]. In this paper we focus on the reputation and trust models them-
selves rather than practical considerations of implementing and deploying a
reputation system. We begin with the description of the basic concepts, then
survey the current approaches, examine the different assumptions commonly
made by the different reputation and trust models and propose ways in which
they can be relaxed or extended.
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2 Fundamentals

Assume a set of nodes continuously engaging in bilateral interactions. For
simplicity we assume that a single interaction always involves a pair of nodes
and that a interactions involving a larger group of nodes can always be de-
composed into a set of binary interactions.

Each interaction has an associated benefit and cost. These two values are
normally such that nodes face a Prisoner’s Dilemma (PD) [13]. It is beneficial
for the node to cooperate only if the other node cooperates as well, otherwise
it is better to defect.

When Alice interacts with Bob it can gain more if it is able to predict
that Bob will cooperate. The extent to which a node believes the other will
cooperate is the extent to which a node trusts the other node. There are
a number of ways this belief can be inferred and they are captured by the
different trust models. One of the inferences that can be made is: if Alice
cooperated with Bob then it implies Alice will also cooperate with Carol.
If this inference is applied universally, the collective actions of Alice form
a commonly shared belief among the other nodes of how likely Alice is to
cooperate. This belief is what is termed reputation. In the paper we will focus
on reputation-based models of trust, whose computation solely depends on
the actions of the peers instead of relying on other elements such as third
party guarantors of trust (e.g. PKI) or virtual currency for which trust can
be purchased etc.

3 State-of-the-art

In reputation-based models trust towards a given node A is determined based
on the past actions of A. Every node Vi only has information about the actions
of A that Vi itself experienced. To compute the reputation of A, nodes need
to exchange the information about the actions of A that they have observed.
This exchange and the subsequent computation of reputation can proceed in
many ways.

There are four classes of approaches [8]: social networks, probabilistic es-
timation, game-theoretic models and evolutionary approaches.

3.1 Social networks

The social network approach assumes an existence of a digraph of social links
between nodes. The interactions between the nodes proceed along the links
and each link has a trust value associated with it. That value is updated based
on the interactions between the nodes at the two ends of the link. A node V
can compute the trust value for another non-neighbor node W by aggregating
trust values from other nodes in the following way:
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1. enumerate (all) paths from W to V
2. aggregate trust values along the paths
3. merge the results of aggregation at V as the final trust value

The social network approaches vary in the details of the three above steps:
what domain is used to represent trust, what the selected paths are, what are
the aggregation and merging functions. Trust values are either computed on
demand between specific W and V or simultaneously for all nodes using some
form of iterative methods that converge on an eigenvector of trust values.

3.2 Probabilistic estimation

The computations in social networks produce trust values that are hard to in-
terpret. In particular, given a trust value for the node A it is hard to translate
that value into the probability that A will cooperate. But this can be rectified
if the assumption about probabilistic behavior of the nodes is made explicit
and then well known probabilistic estimation techniques such as Bayesian es-
timation and maximum likelihood estimation are used to compute the trust
of a given peer [9]. This is what probabilistic estimation methods do. As
an example, consider a network consisting of peers having associated innate
probabilities of performing trustworthy. Denote by θj the probability of peer
j. Assume that peer j interacted with n other peers p1, . . . , pn and its perfor-
mances in these interactions were x1, . . . , xn, where xi ∈ {0, 1} (1 denoting
the honest performance and 0 the dishonest one). When asked to report on
peer j’s performances witnesses p1, p2, . . . , pn may lie and misreport. Assum-
ing that they lie with specific probabilities, say lk for peer pk, the probability
of observing report yk from peer pk can be calculated as:

P [Yk = yk] =
{

lk(1− θj) + (1− lk)θj if yk = 1
lkθj + (1− lk)(1− θj) if yk = 0.

(1)

By definition, the likelihood function associated with a random sample of
reports y1, y2, . . . , yn is:

L(θj) = P [Y1 = y1]P [Y2 = y2] · · ·P [Yn = yn]. (2)

After collecting the reports on the peer it is about to interact with, the trust
computing peer just has to make this product and find θj that maximizes it.
This number is the maximum likelihood estimate of the unknown probability.
To do this, the computing peer must have good estimates of the parameters
l1, . . . , ln. They can be made by comparing own performances with reports
on them. Note also that the own experiences are seamlessly integrated into
this model - the trust computing source peer i just has to put pi = 1 for his
own experiences xi. As another advantage of the probabilistic methods, we
emphasize that, when compared to social networks, they bring a substantial
reduction of the communication overhead. The reason is that they deal only
with feedback on the target peer, while social networks essentially aggregate
all available feedback, i.e. opinions of all peers about all other peers.
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3.3 Game theoretic approach

In game theoretic approaches to the reputation systems it is often assumed
that the players are perfectly rational in the sense that they are only interested
in maximizing their own payoffs. These assumptions allow the computation of
Nash equilibria as strategy profiles where peers have no incentive to deviate.
Normally, game theoretic modeling of reputation effects requires repeated in-
teraction and uncertainties among the players with respect to their opponents’
payoffs [22]. More recently, there have been attempts to extend these mod-
els in order to more closely model real world settings. Most notably, the two
important models are: private and public monitoring games. In these games
players do not observe each other’s actions but only their signals. In private
monitoring games [21] the signals are different for different players, while in
public monitoring games [24], all peers observe the same signals about the
actions of other peers.

However, we see a number of problems with respect to the application of
game theoretic reputation models. One is related to the behavior. There are
plenty of settings where the full rationality of the players cannot be expected.
Any setting with human players would be an example. The second is the diffi-
culty of introducing the rationality assumption into the reputation mechanism
implementation itself.

3.4 Evolutionary approach

Game theorists have also approached the problem of cooperation in a popu-
lation of PD-players from a more experimental angle. Most notably, Axelrod
[4] has demonstrated the success of the tit-for-tat strategy in an Evolutionary
Prisonner’s Dillemma setting. In this setting pairs of players are involved in
repeated PD games. Each player maintains a score, which is updated after
every game round according to the PD payoff matrix. The players with the
highest score are considered most fit and their strategies are replicated re-
placing other unfit strategies. The winning tit-for-tat strategy follows three
simple rules:

1. initially cooperate - when interacting with an opponent for the first time,
always cooperate

2. punish - if the opponent defected in the previous round, punish him by
defecting

3. forgive - if the opponent cooperated in the previous round, cooperate even
if there is a history of opponent’s defection

The tit-for-tat strategy has been shown to be evolutionary stable, being able
to drive into extinction small populations of invading defectors, that try to
exploit cooperators. At the same time groups of tit-for-taters are always coop-
erating with each other, which allows them to accumulate score surplus which
in turn can be used to fight against transient groups of defectors.



The complex facets of reputation and trust 5

To be successful, the tit-for-tat strategy needs a setting in which the PD
interactions are repeated many times for the same pair of players, which al-
lows punishment to occur. In a large population of infrequently interacting
individuals this may not be possible (e.g. eBay and its transactions). This ob-
servation led to the definition of a new setting in which every pair of players
can only play one round of PD and never meet again. Building cooperation in
this setting relies on the rule: ”If A cooperates with B then B can reciprocate
and cooperate with some other player C”. This rule is termed indirect reci-
procity, as opposed to the direct reciprocity rule followed by tit-for-tat. In this
case, to build cooperation players can no longer rely on private observation of
the actions of the opponent. Once an observation is made, remembering that
observation is pointless since all interactions are one-shot and such observa-
tion can never be used to make cooperation decisions. Hence there arises the
need to exchange observations with other players. This can be implemented by
associating a public label with each player. All players can read the label, and
all players except the owner of the label are allowed to change it. It has been
shown that to enable sustainable cooperation only two states of the label are
sufficient [20]. The two states correspond to good and bad reputation. When
a pair of players interacts, their labels are modified according to their actions.
The behavior of the player can be succinctly described as two functions: the
action function and the assessment function. The action function takes the
label of self and the opponent and produces the decision to either cooperate
or defect. The assessment function is executed after the actions of both agents
have taken place. The assessment function takes the label of self, the label of
the opponent and the action of the opponent and produces the new value for
the opponent’s label. Since the outputs of the functions are binary, there is a
relatively small number of all possible functions. There are exactly 16 possible
action functions and 256 possible assessment functions, which together results
in 4096 possible behaviors. Ohstuka et. al. [15] have performed a systematic
experimental study of all those 4096 behaviors. Out of these they have found 8
evolutionary stable cooperative strategies, termed ”the leading eight” (Table
1).

A population of agents using one of these strategies is able to sustain co-
operation and drive out of existence any small population of defectors and/or
reputation liars (i.e. players that set the labels to ”bad” value even though
their opponent cooperated).

There is a remarkable similarity between tit-for-tat and the leading eight
strategies. The leading eight strategies exhibit all the properties of tit-for-
tat: initial cooperation, forgiveness and punishment for defection. Tit-for-tat
can be implemented with one bit of local state in the player, leading eight
strategies make this state public by storing it in the player’s label.
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assessment function:

GG BG GB BB

C G * G *

D B G B *

action function:

GG GB BG BB

C D C *

Table 1. The ”leading eight” behaviors in the evolutionary indirect reciprocity
game. G and B stand for good and bad reputation labels respectively. C and D
stand for cooperation and defection. The GG, GB, BG, BB encode 4 possible states
of the labels. The first letter is the label of self and the second letter is the label of
the opponent. The 3 asterisks in the fields of the assessment function can take any
value, hence 8 possible assessment functions are possible. The value at the asterisk
in the action function is uniquely determined based on the choice of one of the eight
assessment functions (for details refer to [15]). As can be seen from the tables, the
leading eight behaviors are similar to tit-for-tat, bad behavior is forgiven after it is
punished. In addition to that, punishment of bad behavior is justified, a good player
defecting with a bad player is assessed as good.

4 Propagation of reputation information

If we compare the two cases - direct reciprocity and indirect reciprocity - they
are two extremes in reputation information propagation. In the case of direct
reciprocity it is sufficient to rely on privately gathered history of interactions
with players, no propagation of reputation is necessary. On the other hand,
in the case of indirect reciprocity, once two players interact, their reputation
labels are updated and immediately available to all other players, the repu-
tation information propagates instantaneously. When a reputation system is
implemented in a peer-to-peer setting the assumptions about the propaga-
tion of reputation no longer hold. The character of reputation propagation is
determined by the implementation. The question that arises is whether the
non-instantaneous reputation propagation influences the performance of the
reputation system. There is at least one piece of evidence [5] which suggests
that delaying the communication of reputation in games with imperfect pri-
vate monitoring leads to more efficient equilibria. Taking the propagation of
reputation information into account might lead to the discovery of entirely
new phenomena.

Question 1 How do the reputation propagation dynamics influence the per-
formance of the reputation system?

The propagation of reputation can not only be delayed, it may also be
possible to propagate it partially while still maintaining the reputation system
performance at an acceptable level. Participating in a reputation system incurs
a cost to the peers, the smaller the fraction of nodes that need to participate in
each reputation update the smaller the load on the system. We have performed
simulations to test the impact of limited reputation information propagation
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on the performance of the system (Figure 1). Experiments indicate that it is
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Fig. 1. A population of honest agents using one of the leading eight strategies (see
Section 3.4) is pitted against a population of defectors, who always defect and propa-
gate negative reputation information about others. We vary the number of defectors
in the population and observe the level of cooperation in the system measured by
the fraction of interactions amongst the honest agents in which both agents cooper-
ate. Every reputation update is propagated to a fraction α of the whole population
chosen uniformly at random. We repeat the experiment for different values of α.
We can observe that if the reputation updates are propagated to a few agents only
(2%) even a small number of badmouthing defectors can subvert cooperation. On
the other hand, the reputation propagation rate set to 30% is sufficient to allow
practically linear graceful decrease in cooperation level as the number of defectors
increases.

sufficient to make the reputation information available to 30% of the agents
to obtain performance that is close to the performance of the system with full
propagation. This suggests that there are substantial communication savings
to be gained by simply limiting the propagation of the reputation information.

Question 2 Is it necessary to propagate the reputation information to all the
nodes to have a robust reputation system?

Question 3 How does the fraction of nodes to which reputation information
is propagated influence the performance of the system?

Question 4 How to choose the fraction of nodes to which the reputation in-
formation is propagated?

5 Bounded rationality

Game theorists have considered imperfect monitoring games in which noise is
allowed to occur in the system: imperfect observation of other players’ actions,
imperfect action execution, error-prone reputation information exchange, etc.
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While considering limitations of perception of the players, game theory still
usually assumes that the players are absolutely rational. However, they may
have limited resources available to them to compute their behavior. Nash
equilibria have been shown to be NP-hard to compute [12]. In the extreme,
being unable to compute their behavior peers can behave entirely irrationally
(randomly). This set of limitations is commonly termed bounded rationality.
Conlisk [6] provides a plethora of empirical evidence from economics and ex-
perimental psychology in support of bounded rationality. The key observations
are that:

• bounded rationality can explain a number of empirical anomalies in eco-
nomics for which unbounded rationality models fail

• rationality is scarce, good decisions are costly, they require both reliable
information, which is difficult to obtain and computational power

• bounded rationally leads people to imitate behaviors of others, which is
cheaper than computing the behavior on their own

Given the predictive success of bounded rationality models, questions arise:

Question 5 How can we incorporate bounded rationality into reputation mod-
els?

Question 6 What are the bounds on rationality in peer-to-peer systems and
how can they influence the dynamics of cooperation and reputation?

6 Behavioral evolution

In the previous section we have already mentioned how imitation plays a role
in selection of behaviors by agents. When a behavior is replicated its utility
is locally evaluated by the agent. If the utility of the behavior is low it is
promptly replaced by another behavior. This creates an evolutionary setting
in which behaviors are replicated by imitation and selected by the agents for
utility. An agent might use a set of behaviors (rules of behavior) and each
of them can be individually imitated, creating a setting in which groups of
mutually dependent behaviors co-evolve. The two main mechanisms of behav-
ioral imitation in human societies are: payoff-biased transmission - imitating
the behavior of the most successful individuals and conformist transmission -
imitating the most frequent behavior [16].

How can we relate the above facts about behavioral evolution to interact-
ing populations of selfish peers in peer-to-peer systems? First, we must clarify
that it is not the peers that are selfish, but the human users of the peer-to-peer
software. It is the users themselves who decide how their peers should behave.
Hence, we could conjecture that a lot of the social mechanisms described above
are driving the evolution of peer behaviors. This conjecture is confirmed by
the following empirical evidence. A peer-to-peer file sharing software called
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eMule [2] is open source, which allows anyone to make modifications to it
and distribute them. This has given rise to a number of mutated versions of
the base eMule client, the so-called ”mods” [1]. There are mods that pro-
tect the user privacy by encrypting downloaded data, there are mods which
implement various bandwidth saving heuristics, there are extremely non coop-
erative mods that cut off uploads to other peers to conserve bandwidth, there
are mods that detect non-cooperative mods and disconnect from them, there
are even mods that detect those policing mods and use stealth techniques to
hide their defection etc. These mods are constantly created and propagated
via numerous websites and evaluated by users on various electronic forums.
The social network of peer-to-peer system users selecting behaviors for their
peers is tightly interrelated with the overlay network providing an arena for
the execution of those behaviors selected by the users. Up to our knowledge
there have been no attempts to study these two networks as one entity with
all their dependencies.

Question 7 How can we model behavioral evolution in peer-to-peer systems?

Question 8 How can we model the peer-to-peer software choices and mod-
ifications made by humans and how do they affect the performance of the
system?

7 Second-order defection problem

In an indirect reciprocity setting with cooperation being sustained by the
means of reputation there exists a following problem: in order for the rep-
utation system to work, agents need to cooperate on exchanging reputation
information and the information about the actions of other agents they have
observed. Moreover, for the reputation system to be effective agents need to
punish defectors which incurs additional costs. This creates a second-order
cooperation problem, which could be solved by adding yet another reputation
system on top of the existing one, but this in turn would lead to a third-order
cooperation problem.

In peer-to-peer reputation systems research the problem is rarely explicitly
addressed, the usual practice is to test the robustness of the system by intro-
ducing subpopulations of second-order defectors, i.e. peers that withhold or
provide false reputation information. These evaluations only show that first-
order cooperation can be sustained under a second-order defector invasion but
it does not show that second-order cooperation is sustainable.

One of the game theoretic solutions to this problem is the construction
of an providing incentives [18] to motivate agents to share their reputation
information truthfully, however the solution relies on a third party to handle
the payments. This and many other similar approaches simply reformulate
the problem of second-order defection and delegate it to another, normally
centralized system component. Up to now there has been no self-contained
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distributed reputation system proposed that is free from second-order defec-
tion problem.

There is, however, a natural system that appears to have solved that prob-
lem - human society. Biologists and psychologists studying indirect reciprocity
among humans have been trying to find the exact reasons for the remarkable
stability of reputation and how it evolved [31, 27]. Many hypotheses have been
proposed, most notably:

• group selection - Boyd et al. [28] suggest that cooperation can evolve by
natural selection at the level of groups. Those groups that use reputation
are more cooperative and hence more fit.

• conformist transmission - Heinrich et al. [16] show how weak conformity
in populations can lead to the stabilization of reputation exchange and
cooperation.

• costly signalling - Gintis et al. [30] show how using costly signals agents
can advertise their quality as cooperators and in this way increase their
reproductive success.

These mechanisms could be implemented and studied in artificial repu-
tation systems potentially leading to increased performance and stability of
second-order cooperation.

Question 9 How can we apply the known reputation stability mechanisms
from natural systems to engineering peer-to-peer systems free from second-
order defection problem?

8 Inhomogeneous interactions

In models of reputation systems it is frequently assumed that the structure
of interactions between agents is homogenous, i.e. each agent is equally likely
to interact with any other agent. This assumption allows the construction of
tractable analytical models, however, in practice the pattern of interactions
in the system may not be homogenous, which may produce large deviations
from the predictions of the models. For example nodes that interact with a
large number of other nodes may need to rely more on reputation information
exchange and nodes that frequently interact with a small subset of nodes
may rely more on bilateral tit-for-tat strategies and may have no incentive
to share the reputation. These two types might need to co-exist in the same
network. More complex behaviors are possible, a group of nodes that are highly
interacting with each other may choose to collude by artificially increasing
each other’s reputations but defecting with other nodes that are not part of
the group. Once non-homogeneous interactions are allowed there is no single
wining behavior, such as Ohtsuka’s leading eight or Axelrod’s tit-for-tat. A
complex set of mutually dependent behaviors can successfully coexist.
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In overlay routing substrates the structure of interactions is normally de-
termined by the underlying overlay maintenance algorithm - the interactions
are packets forwarded by the nodes to their neighbors. In the case of DHTs
the interactions are the key access and insertion requests, which are deter-
mined by the particular data placement strategy, normally a hash function.
The inhomogeneities in the structure of interactions in any of those cases may
warrant the existence of different equilibrium behaviors for different nodes.

Question 10 What is the character of interaction inhomogeneities in peer-
to-peer networks?

Question 11 How can those inhomogeneities influence the behavior of the
selfish peers exchanging reputation information?

So far, we have assumed that inhomogeneities arise from some external
mechanism outside the peer’s control. In general, however, a peer might decide
what peers it interacts with based on its selfish choice. For example, a peer may
choose to interact less frequently with low reputation peers. Selection of who
to interact with becomes part of the peer behavior, which leads to a recursive
problem: the structure of interactions determines the optimal behaviors at
every node and the behaviors of nodes determine the structure of interactions.

A number of studies have looked at network formation by selfish peers
[29, 11, 17]. However, all of the studies assume behavioral homogeneity of
peers, i.e. all peers having the same utility function. Also, none of the studies
consider both network formation and cooperation building via reputation as
a single problem.

Question 12 How can peers use the reputation information to choose what
peers they want to interact with? What is the structure and dynamics of the
resulting interaction network?

9 Identity stability

Most reputation systems rely on the assumptions that identities of the agents
are stable and can be reliably used, however, in contrast to human societies,
identities in a peer-to-peer systems are low cost and easy to change. A mali-
cious peer whose reputation is low, can leave the system and rejoin under a
different identity thus clearing the whole history of its defections. A malicious
peer can also assume a number of identities to have significant presence in the
network [10]. Identity can also be stolen to take advantage of the reputation
of previous owner.

A well-known solution to the problem of identities is public key infras-
tructure. However, maintaining a hierarchy of trusted third parties creates
scalability problems as well as introducing a single point of failure. Another
widely employed solution is increasing the cost of identities by initializing the



12 Aberer, Despotovic, Galuba, Kellerer

reputation of newly coming peers to a low value and making the peers grad-
ually build their reputation. This, however, creates a disadvantage for short
lived peers who loose their identity every time they depart from the system
and during their short lifetime are not able to accumulate enough reputation
to gain any benefit from participation in the system.

When considering identity, researchers commonly assume one of the two
extremes: either a cheap, easy to change identities or expensive, reliable ones.
However, there exist cases which lie in between. For example, when two peers
open a TCP connection to communicate through it, the stability of the iden-
tities at both ends of the TCP link is guaranteed. This concept of pairwise
identity stability can be extended to arbitrary groups of communicating peers
within which peer identities are stable, identity stability needs to be associated
with a particular scope.

We may also add assumptions about partial perception of identity, i.e.
a peer might only be able to determine that a node belongs to some larger
group but not pinpoint exactly which node it is. For example, a node might
be identified as belonging to a university campus, but the individual identity
of the peer might be unknown. This creates new challenges and adds more
complexity to the already wide range of possible behaviors in a reputation
system. Up to our knowledge, partial perception of identities has not been
considered in the context of reputation systems.

Question 13 What are the minimal assumptions on the stability and percep-
tion of identity needed to construct a robust reputation system?

Identity is inextricably linked with anonymity and privacy in peer-to-peer
networks. Having accurate identity models might enable the designers to make
more precise statements about the anonymity guarantees in their peer-to-peer
systems [25].

Question 14 Can cooperation be sustained while maintaining anonymity in
a peer-to-peer system? What are the tradeoffs?

10 Conclusions

Each of state-of-the-art approaches to reputation systems for peer-to-peer
networks is based on a set of assumptions about the target deployment en-
vironment. We have demonstrated how breaking of some of these fundamen-
tal assumptions leads to unexpected phenomena and complex peer behavior.
Clearly, there exists no single universal solution that can work well in all dis-
tributed environments, instead the properties of the environment should be
precisely determined before designing a reputation system. We have identi-
fied the main dimensions along which these environment properties can be
categorized:
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• communication model - how information propagates in the environ-
ment, how costly the propagation is, this influences the speed at which
reputation information can be disseminated and how many peers it may
reach

• computational constraints - how costly computation and local storage
are, these assumptions determine the degree to which peers’ rationality is
bounded

• peer software dynamics - how selfish users deploy new software, how
software is modified, these processes drive the behavioral evolution of the
system and put constraints on how fast new behaviors can be deployed or
enforced in an existing system

• interaction model - how peers interact, to what degree they can choose
their interaction partners, these properties of the system can strongly in-
fluence the reputation dynamics and the choice of the optimal behavior

• identity model - whether identity might change, how identity is created
and represented and to what degree it can be accessed by other peers, this
determines the level of privacy and anonymity and the precision at which
statements about the reputation of individual peers can be made

• peer goal dynamics - what the goals of the peers are, how they change
over time, this describes the behavioral heterogeneity of the population
and at the same time groups of peers with malicious goals can be used to
model many forms of attacks on the system

All of these environment properties strongly influence the design choices
that need to be made when constructing a reputation system. How do the envi-
ronment properties constrain the performance of the reputation system? What
are the combinations of environment properties that fundamentally prevent
from building any cooperation in the system? What is the best formal model
of the distributed target environment which allows to make precise statements
about all of its properties? These and many other problems constitute a new
and exciting agenda for trust and reputation research in peer-to-peer systems.
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