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Sensitivity Analysis and Optimization of a
Standing Wave Ultrasonic Linear Motor

José M. Fernandez and Yves Perriard

Abstract—This paper presents the sensitivity analysis
of an ultrasonic linear motor using design of experiments
(DOE) and the finite element (FE) optimization of its defor-
mation amplitude. A first ultrasonic linear motor prototype
has been built at the laboratory. A deformation amplitude
of about 6.6 um can be obtained by applying a 100 V volt-
age. The goal is to obtain a bigger deformation amplitude
by varying the motor parameters, in particular the vibra-
tory piece dimensions. First of all, a parametrization of the
motor structure is carried out. Then, with the aim of re-
ducing the variation ranges of the input parameters—but
also to avoid performing a large number of simulations—a
preoptimization stage is necessary. Thus, sensitivity anal-
ysis is carried out using design of experiments, which is a
good way to obtain the influence of the input parameters
on the objective function. Factorial designs have been cho-
sen to find out the effects of each input factor but also the
effect of their interactions. This method then is compared
with Doehlert design technique, which is generally used for
optimization approaches. The results show that it is abso-
lutely necessary to take into account the quadratic terms in
the model because they represent an important effect. The
use of design of experiments revealed to be an interesting
way to analyze numerically the ultrasonic motor as a pre-
optimization stage and already allows one to improve the
deformation amplitude but also to reduce the input parame-
ter variation ranges. Different FE optimization methods are
then applied, and results show that the deformation ampli-
tude can be increased by a factor higher than 10 compared
to the initial design.

I. INTRODUCTION

LTRASONIC motors are a good alternative to conven-

tional electromagnetic motors because they provide a
large output torque but also a braking force without en-
ergy consumption [1], [2]. The standing-wave type ultra-
sonic motor presented in this paper is composed of a vi-
bratory piece that is connected to two piezoelectric drivers
and which tip portion generates flat-elliptical movement.
A slider, which is pressed against the vibrating body by a
prestressing force, can move linearly thanks to the friction
forces present at the interface between the stator and the
slider. A first ultrasonic linear motor prototype has been
built at the laboratory. A deformation amplitude of about
6 pm can be obtained by applying a 100 V voltage to the
piezoceramics. The goal is to obtain a bigger deformation
amplitude by varying the motor parameters, in particular
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the vibratory piece dimensions. First of all, a parametriza-
tion of the motor structure is carried out. Then, with the
aim of reducing the variation ranges of the input parame-
ters but also to avoid performing a large number of simu-
lations, a preoptimization stage is necessary. Thus, sensi-
tivity analysis is carried out using design of experiments,
which is a good way to obtain the influence of the input
parameters on the objective function (deformation ampli-
tude). Sensitivity analysis refers to any numerical strategy
that aims to get insight of the influence of input factors on
the simulation output. Recently, it is becoming a research
subject in itself, and new methods are emerging to answer
an urging demand originated in the every day, more larger
use of computer modeling [3].

Two different techniques have been used in this study.
The first one, using factorial designs, consists of an identifi-
cation method for additive models with interactions (com-
bination between two or more input parameters) while
varying them simultaneously. The second one (Doehlert
design) will allow one to know the behavior of our system
on an entire experimental field by carrying out many simu-
lations distributed in the field in question. In this manner,
it will be possible to predict the result in a point in which
no simulation was made (by interpolation) using response
surfaces. These techniques have been integrated in Matlab
(MathWorks, Inc., Natick, MA) and can interface with the
finite element (FE) simulation program Ansys (ANSYS,
Inc., Canonsburg, PA) working in batch mode. The opti-
mization study, based on the results obtained thanks to the
preoptimization stage, is realized using the finite element
method (FEM) Ansys software. The structure obtained
then is analyzed to validate the optimization method.

II. STRUCTURE AND MODELING OF THE ULTRASONIC
LINEAR MOTOR

A. Introduction

Modeling of the motor has been performed using FEM
analysis, which is one of the most effective numerical meth-
ods for engineering problem solving. The aim of numeri-
cal modeling is to calculate natural frequencies and modal
shapes of the motor and to perform harmonic or transient
response analysis. Basic equations for the motion of the
motor can be written in matrix form as follows:
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Fig. 1. Ultrasonic linear motor.

TABLE 1
DIMENSIONS AND MATERIALS OF THE SIMULATED MOTOR.

Parameter Value
D 4.4 mm
B 3 mm
H 2 mm
L 9 mm
E 1.55 mm
G 0.5 mm
« 45°
C 1.4 mm
R1 1.2 mm
R2 2.55 mm
R3 5/3 mm
Material of the stator: steel
Density 7900 kg/m3
Young’s modulus 2.1 10! N/m?
Poisson’s ratio 0.32

where M is the mass matrix, C' is the damping matrix, K3
is the stiffness matrix, K is the piezoelectric matrix, K3 is
the dielectric matrix, F' is the vector of nodal mechanical
force, @ is the vector of nodal electrical charge, u is the
nodal displacement vector, and ® is the nodal potential
vector.

Eq. (1) can be solved by applying FEM. Details are not
presented here but easily can be found in the literature
[4], [5]. Modeling was carried out using FEM software An-
sys, which is used to create a solid finite element model
and make different analyses. Simulations have been made
in air, although other mediums could be considered while
keeping the same methodology for the sensitivity analysis
and the optimization. The next sections describe the op-
erating principle as well as the modal shape and natural
frequency obtained.

B. Operating Principle and Characteristics of the Motor

The FEM model of the motor is represented by Fig. 1.
Dimensions and materials used for the simulations are
given in Table I and the Appendix. The operating principle
of the motor is based on two perpendicular piezoelectric
ceramics joined by a steel element (stator). These ceramics
are activated by two electrical signals, which phase differs
90° from each other. This generates on the top of the stator
a flat elliptical motion (thanks to the standing wave cre-
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Fig. 2. Modal shape at resonance frequency.
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Fig. 3. Vertical displacement of a surface point.

ated). The application of a slider on the top of the stator
produces a translation (linear motion).

The modal shape obtained and the vertical displace-
ment as a function of the frequency are presented in Figs. 2
and 3, respectively.

The harmonic response of the motor shows that the
natural frequency is located at 30.09 kHz. With this fre-
quency, elliptical displacement motion is obtained at the
surface points of the motor as shown in Fig. 4.

Some experiments with a prototype built at the labora-
tory have been performed to confirm the numerical model-
ing and simulation. Materials used and dimensions of the
motor are given in Table I and the Appendix. Fig. 5 shows
the prototype.

The admittance (amplitude and phase) of the motor has
been obtained using an impedance analyzer. This enables
one to determine experimentally the value of the resonance
frequency. Fig. 6 represents the measured admittance, and
it shows that there are two resonance frequencies located
at about 30 kHz and 38 kHz, respectively. These values
validate the results obtained by simulation (Fig. 3) and
confirm that the resonance frequency that gives a maxi-
mum of deformation amplitude is indeed 30.09 kHz.

Moreover, the comparison of the vertical displacement
(of a surface point of the motor) as a function of the ap-
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Fig. 4. Elliptic motion of a surface point.

Fig. 5. Prototype of the motor realized in the laboratory.
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Fig. 6. Admittance versus frequency of the motor.
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Fig. 7. Comparison of the vertical displacement versus applied volt-
age between Ansys simulation and experimental data and power con-
sumption of the motor.

plied voltage at the resonance frequency between simu-
lation and experiments has been carried out. The power
consumption of the motor also has been measured. Results
are presented in Fig. 7. They show that the model simu-
lation results fit with the experimental values, although
the attenuation factor used in the simulations should be
determined precisely in order to be closer to reality.

As the results show, a deformation amplitude of about
6.6 pum is obtained by applying a voltage of about 100 V.
The goal of the study is to reach a bigger deformation
amplitude by changing the motor dimensions. This is the
purpose of the next sections.

III. PARAMETRIZATION IN SIGHT OF OPTIMIZATION

For our study, the output parameter chosen for the op-
timization is the deformation amplitude (vertical displace-
ment) of the vibrating piece (stator) describing the ellipti-
cal trajectory. The parametrization of the motor and the
external parameters are described in Fig. 8, in which it is
possible to obtain structures with or without a hole.

The different dimensional and external parameters of
the motor are defined as follows:

« D: spacing between piezoceramics,

e B: width of piezoceramics,

o L: length of piezoceramics,

o H: thickness of piezoceramics,

o E: half-thickness of the stator,

e G: supplementary width added to the stator,
« a: angle defining stator’s hole,

e Rq: stator’s inner radius,

e Rs: hole’s inner radius,

e R3: stator’s outer radius,

o C: width of the hole,

« U: voltage applied to piezoceramics,
« F: frequency of the input voltage,
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Fig. 8. Parametrization of the vibratory piece and external parame-
ters.

TABLE II
VARIATION RANGES OF THE DIFFERENT INPUT PARAMETERS.

Param. Min (—1) Max (+1) Unit
U (=a) 20 40 4!

F (= a2) free free [Hz]
N (= a3) 0 50 [N]

D (= a4) 2 20 [mm)]
B (= as) 2 10 [mm]
H (= as) 2 10 [mm)]
L (=a7) 10 30 [mm]
E (= ag) 1 7 [mm)]
G (= ao) 1 7 [mm]
a [= a1o) 1 45 [°]

Ryt 1 10 [mm]
R3? 4.8 31.8 [mm]
Ry (= (111) R1+0.1-(R3—R1) R1+0.6~(R3—R1) [mm]
C (= a12) 0.1-(Rs—R1) 0.3-(R3 — R1) [mm]

Ry =L,

2

*Rs = \/[4(2G+B)r+ [72(2G+B)+% i

o N: prestressing force.

Once the dimensional parameters are chosen, it remains
to define the variation range of each one. This must be
done, of course, by respecting the physical constraints as
well as the constraints imposed by the voltage U applied to
the piezoceramics and the prestressing force IN. Table II
gives the different variation ranges initially selected for
the dimensional and external parameters to respect the
constraints. These boundaries will be fitted more precisely
thanks to the stage of preoptimization presented in the
following section.
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IV. PREOPTIMIZATION

This stage of the study consists in analyzing the influ-
ence of each input parameter on the deformation ampli-
tude of the vibrating piece of the motor. To do this, de-
sign of experiments (DOE) is used. This technique makes
it possible to characterize the influences of the parameters
taken individually (order 1) but also those coupled with
each other (order 2, 3, etc.). In this manner, it is possible
to determine which parameters will be kept as variables
(and so define a more precise variation range) and which
will be fixed during the optimization stage.

A. Sensitivity Analysis

Through the use of more or less complex algorithms,
the sensitivity analysis using design of experiments allows
one to reduce the number of simulations while obtaining
a maximum of information. There are several kinds of ex-
perimental designs [6], [7]. Only two types will be used in
this study: factorial designs and the Doehlert method. The
sensitivity analysis is performed according to the following
steps:

o choice of the parameters,

o random draw or according to an experimental design
of N sets of values of the parameters,

 simulations,

« storage of the output results to be analyzed,

o determination of the most dominating parameters.

These different steps are carried out by using two pro-
grams: Matlab and Ansys'. The first allows one to create
simulation files by varying the input parameters accord-
ing to the selected method. Once these files are created,
they are used in a reference file that is launched N times
toward the finite element program Ansys via Matlab in
batch mode. At the end of each simulation, a result file is
created by Ansys and treated with Matlab, which stores
the results obtained in a vector. This answer vector then
is analyzed to determine the most dominating input pa-
rameters. Fig. 9 describes the routine used as well as the
various interactions between the two softwares.

B. Sensitivity Analysis Methods

1. Factorial Design: This method consists of choosing
the simulation points at the edge of the multidimensional
domain defined by the input parameter ranges and fitting
the simulation results to an appropriate polynomial func-
tion corresponding to a Taylor series of the model being
analyzed [8]. Full factorial design allows one to determine
all coefficients of a linear model with all possible interac-
tions within 2V runs (2). This design methodology has the
disadvantage of requiring a lot of runs and is practicable

I Ansys Multiphysics 8.1 version, User manual, Ansys Inc., Canons-
burg, PA, 2004.
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Simulation files
isim_filexx.txti

Reference file

iREFfile.txti + input isim filexx.txti

Output file

iresults.txti

Sensitivity study
Monte-Carlo, Factorial design, Doehlert

Results analysis

Fig. 9. Steps of the sensitivity analysis.

only for a small number of input parameters:

N N
Y(z)=ao+ Zaﬂ}i + Zaijxixj + -
=1

i#]
N
iFj#k

The coefficients ag,aq,... are called the effects of the
x; factors. One makes the distinction between:

e ag: constant effect (equal to the experiments mean),
e a;: principal effects,

e a;;: effects of the first order interactions,

o a;ji: effects of the second order interactions.

The linear meta-model (whose coefficients are
[ag,a1,az2...] = C) is fitted on the results (defined in a
matrix R) using a model matrix X by the operations given

by (3):

XC=R=C=(x"X)" X"R. (3)

2. Doehlert Design (Response Surfaces): The second
selected method, usually called Doehlert network, makes
it possible to easily move the center of interest in an ex-
perimental space (through an iterative way) according to
the results ([9], [10]). Moreover, this design method is very
interesting for optimization problems. As an example, the
two dimensional Doehlert’s network (two input parame-
ters) and its corresponding model matrix X are repre-
sented in Fig. 10.

The calculation methodology used in the factorial
method also can be applied to Doehlert design (only the
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Fig. 10. Two-dimensional Doehlert’s network and the corresponding
model matrix.

model matrix is different). The larger the number of input
parameters, the larger the number of simulations N is, and
thus the experimental matrix is bigger. For a more precise
analysis of our system, it would be judicious to consider
more simulation points besides lower and upper bounds
of the variables variation ranges, but the simulation time
then would be larger. This is why, in a first approximation,
less simulation points have been taken into account.

In the next section, the results obtained applying these
two methods are presented. The different input parame-
ters selected vary according to the case in which one is
structure with or without a hole. The output parameter is
the deformation amplitude obtained at the top of a stator
surface point (vertical displacement). The analysis of the
results will be done using two types of graphs. First, the
graphs representing the effects. It is a graphical representa-
tion of the coefficients a;, a;j, aiji, ... shown in (2). This
representation just makes it possible to see the parame-
ters having the most important influence on the vertical
displacement of the stator. As the number of analyzed pa-
rameters is large, only those being the most influential will
be indicated by arrows on the graphs. It should be noted
that, in this case, the analysis of the effects will be limited
to those going until order 2. The quadratic effects also will
be taken into account. The others (order 4 and higher) will
be neglected.

C. Results

First of all, an analysis of the input parameters effects
on the deformation amplitude has been carried out. The
results obtained are represented in Figs. 11, 12, and 13 for
a structure without a hole.

The graph representing the influences is based on the
results obtained and given by the graphs of the effects.
To better understand and see which are the most influ-
ential parameters, a program (Matlab) has been imple-
mented, and the influence of each parameter is calculated
then normalized in relation to the most influential one. In
this manner, a more representative graph showing the pa-



FERNANDEZ AND PERRIARD: ANALYSIS OF STANDING WAVE ULTRASONIC MOTOR

Principal relative effects

200
N ™ -
o I ST 1 I
-200F / B
a2
-400 .
-B00 | B
a4
-800 L 1 1 L

Fig. 11. Relative effects of the different input parameters for a struc-
ture without a hole; principal effects.
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Fig. 12. Relative effects of the different input parameters for a struc-
ture without a hole; first order interactions effects.

rameters that are the most important is obtained. This is
shown in Fig. 14.

The same methodology has been applied for a structure
with a hole. The results are presented in Figs. 15, 16, and
17.

D. Comments

The results obtained for both structures, with and with-
out a hole, are very interesting. It can be noticed that the
influence of this hole is very important, as well as from a
point of view of the deformation amplitude as of the vari-
ous influences of the input parameters. Indeed, in the case
of a structure without a hole, the most significant input
parameter is the voltage U applied to the piezoceramics.
One can easily understand this result because of the direct
relation between the displacement of the stator, the dila-
tion of the piezoceramics, and the applied voltage. Indeed,
it is obvious that the larger the applied voltage the bigger
the dilation and the displacement. Furthermore, the half-
thickness of the stator E also has an important effect on
the deformation amplitude, and the other input parame-
ters have a more or less equal influence but definitely lower
than that of U and E. However, for a structure with a hole,
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Fig. 13. Relative effects of the different input parameters for a struc-
ture without a hole: (top) second order interactions effects, (bottom)
quadratic effects.

Influence of each input parameter on the deformation amplitude

Fig. 14. Input parameters influences for a structure without a hole.
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Fig. 15. Relative effects of the different input parameters for a struc-
ture with a hole: (a) principal effects, (b) first order interactions
effects.

the frequency F' has a more influential effect than the ap-
plied voltage (see Fig. 17). This can be explained by the
fact that the addition of a hole generates a considerable
modification of the stator structure, and thus its resonance
frequency. But, in the case of a structure without a hole,
the stator remains overall identical, only the variation of
its thickness can lead to a slight modification of the res-
onance frequency, but not as important as in the case of
the presence of a hole.

Moreover, the displacement amplitudes obtained in
both cases are quite different. Indeed, the values for a
structure with a hole are much more often positive than
those obtained for a structure without a hole, but also big-
ger (20 pm compared to 10 pum). Table III, Figs. 18 and
19 summarize the different results obtained.

It should be noted that there is a clear difference of
calculation condition between a structure with a hole and
one without. Indeed, the simulation of a structure like that
presented in Fig. 18 takes three times less computing time
than the simulation of a structure with a hole (Fig. 19).
The size of the mesh also is smaller in the area of the
hole, which implies an increase in the computing time.
Moreover, there are more parameters in a structure with
a hole, which increases the computing time to a value of
approximately 8 minutes per simulation.
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TABLE IIT

INPUT PARAMETERS AND MAXIMUM DEFORMATION AMPLITUDE.

Without a hole  With a hole
Max. amplitude 9.1 ym 22.6 pm
External parameters U=30V U=30V
F =17.38 kHz F =12.0 kHz
N =602 N N =50N
Dimensional parameters D = 18.1 mm D =11 mm
B =6 mm B =6 mm
H =6 mm H = 8.6 mm
L =20 mm L =19.1 mm
E =4 mm E =3.7mm
G =4 mm G = 1.8 mm
a = 23°
Ro = 8.5 mm
C =17 mm
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Fig. 18. Structures comparison: maximum amplitude without a hole.

The results found in the preoptimization stage then can
be applied to the FE optimization, which is described in
the following section.

V. FE OPTIMIZATION

A. Introduction

The process involved in a FE optimization consists of
following precise steps. An analysis file to be used during
looping first must be created. It will build the model para-
metrically, obtain the solution, and retrieve and assign to
parameters the response quantities that will be used as
state variables and objective function. The next step is
to declare the optimization variables (+ objective func-
tion) and choose an optimization method. Two different
approaches have been chosen in our case: the first order
method and the factorial design tool.

1359

Vert. direction

>
Hor. direction

(x10%%-5)
— 2.5
£ N\
€ 1.5
£
g .5
®
> -5
2
W -1.5
o
§ /
g -2.5 {x10#*-5)
-2.5 -1.5 -.5 .5 1.5 2.5
-2 -1 0 1 2

Horizontal displacement [m]

Deformation amplitude: 22.6.m

Fig. 19. Structures comparison: maximum amplitude with a hole.

B. First Order Method

First order methods use gradients of the dependent
variables with respect to the design specifications. The
Gauss-Newton method is a class of methods for solving
this type of problem. An improved and efficient version
of the method is the so-called Levenberg-Marquardt algo-
rithm. For a detailed discussion of these methods, see [11].

C. Factorial Tool

Factorial design tool uses a two-level, full or fractional
factorial evaluation to generate design set results at all
extreme points of the design space! [7]. In our case, a
full evaluation will be performed: the program realizing
2n loops, where n is the number of design variables. Ev-
ery component of the design variable vector will take two
extreme values (maximum and minimum). So, in a full
factorial evaluation, every combination of design variable
extreme values is considered in the n-dimensional design
space.

In the next section, the results obtained using both
methods are presented and compared.

D. Results

The structure chosen for the FE optimization is repre-
sented in Fig. 18. The choice to simulate a structure with-
out a hole is made because the computing time is definitely
shorter as there are fewer parameters, and thus fewer itera-
tions to perform. The maximum amplitude obtained in the
preoptimization stage using the Doehlert design method is
9.1 um. The external and dimensional parameters given in
Table ITI have been taken as initial variables, and varia-
tion ranges have been chosen as shown in Table IV. The
objective function is obviously the deformation amplitude.
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TABLE IV
INITIAL VALUES AND VARIATION RANGES OF THE INPUT
PARAMETERS FOR THE FE OPTIMIZATION.

Parameter Initial value Variation range
U 30V fixed
F 7.38 kHz [5.9 kHz; 8.9 kHz]
N 60.2 N fixed
D 18.1 mm [18.0 mm; 18.2 mm]
B 6 mm [6 mm; 7 mm)]
H 6 mm [6 mm; 7 mm]
L 20 mm (15 mm; 25 mm]
E 4 mm [3 mm; 5 mm]
G 4 mm (3.9 mm; 4.1 mm]
Objective function
Defor. ampl.  Init. val.: 9.1 pm Tol.: 0.01 mm

The first order and fractional methods have been applied.
Figs. 20 and 21 show the results obtained with both meth-
ods.

FE. Discussion

As the results show, the preoptimization stage already
allows an improvement of the deformation amplitude of
the motor-vibrating body, but FE optimization makes it
possible to obtain a bigger deformation amplitude. Re-
sults obtained with the first-order method give a bigger
deformation amplitude, which shows that this optimiza-
tion method is better than the factorial one, although com-
puting time is much longer. The structure optimized with
Ansys does not have a hole, and within sight of the results
obtained in the preoptimization stage, the FE optimization
of a structure with a hole will give even better results, al-
though the computing time necessary for the analysis of a
single case study is very long and does not yet converge.
Moreover, the structures presented in this paper have reso-
nance frequencies that are not in the ultrasonic range; this
could be obtained by restricting the variation range of the
frequency F to frequencies higher than 20 kHz. Neverthe-
less, methodology used appears to be very effective and
already allows one to multiply the deformation amplitude
by a factor higher than 10 (from 3.3 um to 33.6 um) com-
pared to the initial design model, and reduce the voltage
applied to the piezoceramics by a factor of 3 (from 100 V
to 30 V).

VI. CONCLUSIONS

Simulation works should incorporate a sensitivity anal-
ysis indicating the confidence limits of output data. This
can be done efficiently by using up-to-date statistical tech-
niques as it is done in other fields [12]. Sensitivity analysis
also must be considered when developing models as well
as when beginning a new study. In our case, some of these
techniques have been applied to carry out the sensitivity
analysis of a piezoelectric motor.

Design of experiments applied as a preoptimization
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Model:
Final parameters: U =30V

F =6.6 kHz
N=60.2N
D=18.1mm
B =551 mm
H=5mm
L=20.15 mm
E =3.98 mm
G=4mm

Deformation:

Vert. direction
{\‘>
Hor. direction
Elliptical trajectory of a surface point:
{(x10**-5)

E 4

= N

S 2.4

; /

3 8

<

> -8

/

® -2.4

Q /

E i (x10%%-5)

-4 -2.4 -.8 8 2.4 4
-3.2 -1.6 0 1.6 3.2

Horizontal displacement [m]

Deformation amplitude: 33.6um

Fig. 20. FE optimization; first order method.

stage and then FE optimization method are a very inter-
esting way to maximize the deformation amplitude of an
ultrasonic motor and show good complementarity. Design
of experiments makes it possible to simplify the problem by
reducing the variation ranges of the input parameters used
to carry out the FE optimization. Nevertheless, a feasibil-
ity study should be achieved before designing the motor.
Indeed, some structures found by applying our methodol-
ogy should be the subject of a thorough analysis by means
of the mechanical constraints acting on the vibrating piece,
in particular by realizing various prototypes for experi-
mental measurements. However, design methodology and
optimization methods described in this paper allow one
to explore a new way in the optimization field of smart
ultrasonic actuators [13].

APPENDIX A

Material data of the used stacked PZT ceramic NLA-
2 x 3 x 9 from Tokin Company, Tokyo, Japan.

Density:

p = 7700 kg/m?.
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Model:

Final parameters: U =30V

F=5.9kHz
N=602N
D=18.1mm
B=5mm
H=7mm
L=25mm
E=5mm
G=4mm

Deformation:

Vert. direction

Hor. direction

Elliptical trajectory of a surface point:

(x10%%-5)
T 4
E 2.4
g .
5 /]
2 8
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R { }
2
g 2
£
5] - 10##-5
9 4 (x )
-4 -2.4 -.8 8 2.4 4

Horizontal displacement [m]

Deformation amplitude: 24.1um

Fig. 21. FE optimization; factorial method.

Stiffness matrix:

128 6.8 6.6 0 0 O
128 66 0 0 O
B 100 0 0 O 10 9
c’ = 9510 0 -10"° N/m*.
21 0
2.1
Piezoelectric constants:
0 0 0 0 1180
e=| 0 0 0 11.8 0 0| As/m*
—6.1-6.1157 0 0 O
Dielectric constants:
88 0 0
“=102880]-107%As/Vm.
0 0 88
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