000099701 001__ 99701
000099701 005__ 20180317094151.0
000099701 0247_ $$2doi$$a10.1090/S0025-5718-99-00988-6
000099701 037__ $$aARTICLE
000099701 245__ $$aNormal bases in finite fields via general Gauss periods
000099701 269__ $$a1999
000099701 260__ $$c1999
000099701 336__ $$aJournal Articles
000099701 520__ $$aGauss periods have been used successfully as a tool for constructing normal    bases in finite fields. Starting from a primitive $r$th root of unity, one obtains    under certain conditions a normal basis for $mathbb F_q^n$ over $ F_q$, where   $r$ is a prime and	$nk=r-1$ for some integer $k$. We generalize  this   construction by allowing arbitrary integers $r$ with $nk=\varphi(r)$, and  find in	  many cases smaller values of $k$ than is possible with the previously  known   approach
000099701 6531_ $$aalgoweb_numbertheory
000099701 6531_ $$aalgoweb_compalg
000099701 700__ $$aFeisel, S.
000099701 700__ $$avon zur Gathen, J.
000099701 700__ $$0241952$$aShokrollahi, A.$$g156849
000099701 773__ $$j68$$k225$$q271-290$$tMathematics of Computation
000099701 8564_ $$uhttp://www.ams.org/mcom/1999-68-225/S0025-5718-99-00988-6/S0025-5718-99-00988-6.pdf$$zURL
000099701 909CO $$ooai:infoscience.tind.io:99701$$particle$$pIC
000099701 909C0 $$0252198$$pALGO$$xU10735
000099701 917Z8 $$x156849
000099701 937__ $$aALGO-ARTICLE-1999-003
000099701 970__ $$aFeisel1999/ALGO
000099701 973__ $$aOTHER$$rREVIEWED$$sPUBLISHED
000099701 980__ $$aARTICLE