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Abstract

In this work, we present a method that jointly separatesy@@udio and visual structures on a given mixture.
This new concept, the Blind Audiovisual Source SeparatiBAVSS), is achieved by exploiting the coherence
existing between the recorded signal of a video camera ahdare microphone. An efficient representation of
audio and video sequences allows to build robust audiolvislationships between temporally correlated structures
of both modalities or, what turns to be the same, two parthefsame audiovisual event. First, video sources are
localized and separated on the image sequence exploitintethporal occurrence of audiovisual events and using
a spatial clustering algorithm, without necessity of angviwus assumption about the number of sources in the
mixture. Second, the same audiovisual relationships egetith a time-frequency probabilistic analysis allow the
separation of the audio sources in the soundtrack, andeqgaestly, the complete Audiovisual Separation.

Index Terms

Audiovisual processing, blind source separation, spdagsekrepresentation.

. INTRODUCTION

It is well known from every-day experience that visual imf@tion strongly contributes to the interpretation of
acoustic stimuli. This is particularly evident if we think speech signals : speaker’s lips movements are correlated
with the produced sound and the listener can exploit thisespondence to better understand speech, especially
in adverse environments [1, 2]. The multi-modal nature afesjin is exploited since at least two decades to design
speech enhancement [3-5] and speech recognition algerifyid] in noisy environments. Lately, this paradigm
has been adopted also in the speech separation field to sectiea performances of audio-only methods.

Few methods exist that exploit audiovisual coherence tars¢pstereoaudio mixtures [8—12]. All the existing
algorithms consider the problem from audio source separation point of viewe. they use the audio-video
synchrony as side information to improve and overcome ditinihs of classical Blind Audio Source Separation
(BASS) techniques. For a comprehensive survey of BASS terimjy, methods and algorithms the reader is referred
to an exhaustive report by Vincent and co-workers [13].

In [8] the authors propose to estimate the de-mixing processy a criterion based on audiovisual coherence:
one speech source of interest is extracted using the viet@hiation simultaneously recorded from the speakers
face by video processing. The coherence between audio dad data is modeled by a joint audiovisual probability
estimated as a mixture of Gaussian kernels whose paranaeteiesarned from a large training set. Video information
consists of geometric parameters describing the spediEs'seight and width that are extracted using a chroma-
key process on lips under controlled head position and lagimiditions [14]. The system was shown to be able
to estimate the un-mixing matrix in the case of instantasesdditive mixtures. A very similar approach, but for
stationary convolutive mixtures, has been developed ih Adother method inspired by [8, 11] is presented in [12].
In this case video features are deduced using active appmanmaodel [15] and the algorithm is tested on a limited
set of2 x 2 linear instantaneous mixtures.

The authors acknowledge the support of the Swiss Nation@&n8e Foundation through the IM.2 National Center of Compet for
Research.
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Dansereau [9] also propose an audiovisual speech souregasep system plugging the visual information,
representing again the speaker’s lip height and width, ir@delation system with first-order filters. Visual cues
are mapped to word structures with a continuous HMM thataséd on a corpus of visual speech. The method
was tested simulating 2x 2 speech separation problem by mixing one audio source redawith one microphone
and one speaker captured with one camera and one micropRajegam and colleagues [10] suggest instead a
Bayesian framework fo2 x 2 linear mixtures of audio-video sources. In this case thewithformation is quite
simple and it basically provides a binary weight that intisathe activation of a source, while the mixing model
parameters are estimated on-line.

The approach we consider in this report is very differentrfrexisting ones. First, we localize and separate visual
sources using audiovisual synchrony. Once located theovsteirces on the image sequence, we can reconstruct
them by assuming that the structures close to a source bétnitg We obtain thus several groups of video
structures, each group corresponding to a detected sdtiiseimportant to underline that sources in the video
domain, e.g. people speaking in front of a camera, are tifpiaell separated in space. This information will help
us in separating the audio mixture as well, exploiting theedations established between audio and video entities.
Since only a one-microphone signal is considered, the agparof an unknown number of unknown sources is in
fact extremely challenging.

We want to stress three important differences between oypgsed approach and state-of-the-art audiovisual
separation methods:

1) The BASS problem is solved for stereo audio signals, usapgration techniques helped by visual information.

In contrast the audio signal we consider here comes from on#/ microphongewhich makes the source
separation task considerably more challenging;

2) Existing methods simplify the task of associating audim avideo information. Either the audio-video
association is givem priori, i.e. it is known which audio signal corresponds to whicheddsignal [10, 12],
either it is considered the case where one single audidvisuace is mixed with amudio-onlysource [8,

9, 11]. In the latter case the separation problem basicatlystinto separate two mixed speech signals, one
of which has a corresponding video counterpart. Here, irtrast)y we simultaneously separate audio-video
sources, automatically building correlations betweeruatio and visual entities. The only hypothesis that we
make is that each video source present in the scene has oranlgnohe corresponding audio source in the

audio mixture;

3) Existing audiovisual separation methods, with the oxigeption of [10], require an off-line training step to
build the audiovisual source model. This is mainly due tof#lwt that the algorithms proposed in [8,9, 11, 12]
try to map video information into the audio feature spacegisechniques similar to lip-reading (requiring
moreover accurate mouth parameters that are difficult taieg)q In contrast, in the proposed method no
training will be required.

To summarize we essentially want to solve a blind Singler@B&BASS problem, but aided by the video. Since
no hypothesis is made on the relationships between audiwidad structures, video sources have to be localized
and separated at the same time, exploiting the informatimained in the audio channel. The approach we use is
inspired by the previous work performed by by Monaci, Digoand Vandergheynst [16], which already succesfully
localized in the image the video sources of an audiovisualieslece. This method is based on sparse geometric
representation of video sequences. They searched for de® wtructure more temporally correlated with a given
audio feature, the average acoustic energy. Then, thistgteuwas assumed to be the speaker mouth (body part
whose movement is highly coherent with the speech energylBlY indicating, thus, the situation of the video
source in the image.

The steps of ouBlind Audiovisual Source SeparatigBAVSS) algorithm will be detailed in the following of this
report, while in the next section we describe the audio addwifeatures that we use to represent both modalities.

Il. AUDIO AND VIDEO REPRESENTATIONS

The efficiency of the proposed algorithm is basically dueh®riepresentations used for describing the audio and
video signals. These representations decompose the sigoebrding to their reliant structures, whose variations
in characteristics such as dimensions or position repteaethe same time, a relevant change in the whole signal.
For example, a variation in one pixel value may mean movermenbt, but a position change of one full structure
will probably have this meaning. Next sections describeasgntation techniques used for both modalities.
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A. Audio Representation

The previous work [16] used the average acoustic energhéatidio representation. With only this basic feature
the Video Source Localization goal was achieved. Howevereninformation is required in order to perform the
Audio Separation task. In this research work, not only tharithution of the energy through time is considered,
but also the information concerning the frequency comptmehthe signal is included.

The audio signal in the time-frequency plane is decompos@yuMP over a dictionary of Gabor atori®,
where a single window function(®), generates all the atoms that compose the dictionary. Baah® = U,¢(®,
is built by applying a transformatioty;, to the mother functioy(®). The possible transformations are scaling by
s > 0, translation in time byu and modulation in frequency by. Then, indicating with an index the set of
transformationgs, u, £), an atom can be represented as

o () = % g (t - ”) e, ()

where the valud /,/s makes¢(® (t) unitary.
Thus, an audio signal(t) can be approximated using atoms as

K-1

a(t) ~ Z ck¢,(€a) (t),

k=0

wherek is the summation index;, corresponds to the coefficient for every atdxﬁ‘i) (t) from dictionaryD(@. In
all the performed experiments the audio signals are apmbeid usingK’ = 2000 Gabor atoms.

The main motivation behind the use of MP decomposition ig tharovides a sparse representation of the
audio energy distribution in the time-frequency plane vehg the frequency components evolution. Moreover, MP
algorithm performs a denoising of the input signal, poigtout the most relevant structures [19].

B. Video Representation

The video signal is represented using the 3D-MP algorithwpgsed by Divorra and Vandergheynst [20].
The image is decomposed into a set of video atoms repregesdilient video components and their temporal
transformation is posteriorly tracked through time. A niiedi MP approach based on Bayesian decision criteria is
used for the tracking.

The first frame of the video signal; (z1,x2), is approximated with a linear combination of atoms regtv
from a redundant dictionar(*) of 2-D atoms as

1(z1,22) Z Cy, gﬂf ) (1, 22), (2)
TE Q

wheren is the summation index,,, corresponds to the coefficient for every 2-D video atg)%(:nl,xg) and( is
the subset of selected atom indexes from dictiorf§). As in the audio case, the dictionary is built by varying
the parameters of a mother function, an edge-detector attmodd symmetry.

Then, this 2-D atoms are tracked from frame to frame. Theiplesgansformations experienced by the atoms
are: translations over the image plane, rotations to lpaaient the function along the edge and scaling to adapt
the atom to the considered image structure. Fig. 1 showslanstic example of this procedure in a sequence of
frames.

Thus, the video signal can be approximated usi@-D video atomsbff’) as

33‘1,332, ZC ¢(U ﬂi'l,l'g,t),

wheren is the summation index ang,;) are the coeff|C|ents corresponding to each video atom. lexalkriments,
sequences are represented usivig= 100 video atoms, and each atom has an associated feature dggat
displacement (considering spatial translations from &aoframe).

The interest in using this video decomposition is that, kentihe case of simple pixel-based representations,
when considering image structures that evolve in time we wéh dynamic features that have a true geometrical
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Fig. 1. Successive schematic updates of basis functionssggaence of frames. In the second row, ellipses represkammstically the
possible positioning of some 2D atoms.

meaning. Thus, the considered video features reflect theement, from frame to frame, of the image relevant
structures. Furthermore, geometric sparse video decdtigmssprovide compact representations of information,
allowing a considerable dimensionality reduction of thpunsignals.

[1l. BLIND AUDIOVISUAL SOURCE SEPARATION (BAVSS)

Fig. 2 illustrates schematically the whole BAVSS proce$stfthe video sources are localized using a clustering
algorithm that spatially groups the video structures inithage temporally correlated with the audio atoms of the
soundtrack. Second, a purely spatial criterion is used parsge the sources. Then, the correlations between audio
and video events are employed to identify temporal perioitls @nly one source active (audio source localization).
Finally, the sources frequency behavior is estimated ire tpariods during which only they are active alone in
order to separate the sources in the mixed periods.

There are two main assumptions that we make on the type oksega that we can analyze using the proposed
algorithm. First, we assume that for each detected videacedhere is one and only one associated source in the
audio mixture. This means that if there is an audio “distiécin the sequence (e.g. a person speaking out of the
camera’s field of view), it is considered as noise and its rilmuntion to the mixture is associated to the sources
found in the video. This assumption clearly simplifies thalgsis, since we know in advance that a one-to-one
relationship between audio and video entities exists. \ge we consider the video sources approximately static,
i.e. their positions over the image plane do not change tochmthis assumption is less stringent in our opinion
and it is formulated only not to have to worry about dynamipesss of the scene. However it can be removed
for example by analyzing the sequences using shifting tinmelews. One typical sequence that we consider in
this work, taken from th@roupssection of the CUAVE database [21], is shown in Fig. 3. It ies two speakers
arranged as in Fig. 3 [Left] that utter digits in English. Agllighted in Fig. 3 [Right], in the first part of the
clip the girl on the left speaks alone, then the boy on thetrighrts to speak as well, and finally the girl stops
speaking and the boy speaks alone.

A. Video Source Localization

This first phase of the Audiovisual Separation process sthén spatially locate the active video sources in
the image. It is divided into two main parts: the temporaloagstion between audio and video features with the
correspondent measure of synchrony, and the spatial docafi the video sources in the image.

1) Audio and Video Atoms Association: Correlation scoxgs, between each audio atoazﬂf) and each video
atoquS’) are computed. These scores measure the degree of syncletweebrelevant eventén both modalities:
more synchrony indicates higher possibility of belonginghie same audiovisual event. For the audio, a relevant
event is the presence, at one particular moment, of an atmho @udio energy concentration in the time-frequency
plane), and, for the video, a peak in the video atom displacgm.e., the uttering of a sound is caused by the
movement of the lips, and both are relevant events in thedlatiies.

« Audio feature The featuref,(¢) that we consider is the projection over the temporal axihefWigner-Ville
distribution of each audio atom [1%,(¢) = W(j),(f) (t, w = 0), which describes evolution of the atom energy
through time. In the case of Gabor atoms is a 2D Gaussianifunathose position and variance depend on
the atoms parameters. An scheme of this feature is showngin4kiThus, instead of considering only one
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Fig. 2. Schema of the audiovisual source separation afgoriPhase 1. in (a) audio entities (green dot on the spectrogram) areetaded
with video atoms (green and yellow footprints are highleghbn the left image) and exploiting this information on piet (b) video sources
are localized (blue and red crosseBhase 2: video atoms are classified into the corresponding videacssu(c), as highlighted by the
footprints colors (blue for the left speaker and red for thyghtr one).Phase 3: audio atoms (red dot on the right) are classified into the
corresponding audio sources using the audiovisual asgmctiaformation (d). Periods with only one audiovisualieetsource are detected.
Phase 4: in temporal periods when a single source is active (blue redmarkers) the probability for each frequency to belongre
source is estimated (e). These probabilities are used taraepthe sources in mixed periods (green markers).
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Frequency

Girl Both  Boy

Fig. 3. Example of a sequence analyzed with BAVSS algoritiihe sample frame [Left] shows the two speakers; as higidijlon the
spectrogram of the audio [Right], in the first part of the dlig girl on the left speaks alone, then the boy on the rightssta speak as
well, and finally the girl stops speaking and the boy speatseal

audio feature for all the soundtrack as in [16] (the averagrustic energy), a feature for each audio atom in

the decomposition is used.

« Video feature An Activation Vectory,,(¢) is built for each video atom displacement function by détecthe
peaks locations, a positive slope followed by a negative aseshown in Fig. 5. The value of these Activation
Vector peaks is 1 when the peaks in the displacement featger and 0 otherwise, and their duration is
W = 13 samples. This length is chosen in order to model delays legtveeidio and video signals, and it
is big enough to associate each audio atom to at least one witen (necessary condition to avoid energy
losses on the reconstructed soundtrack).

Fig. 4. Scheme of an audio feature.
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Fig. 5. Displacement function and Activation Vector ob&irfor a video atom.

Finally, a scalar product is computed between both featuresder to obtain thecorrelation scoresyy, , =
(fi(1), Y, (D), V..

2) Clustering: At this point, a list of correlations between audio and viéggoms has been built. However, the
goal is to locate the video sources on the image, and each fotheege sources are composed of several video
atoms. Therefore, the idea, now, is to spatially group &l dtructures belonging to the same speaker in order to
estimate its location in the image.

In this section, we define an empiricabnfidence value:,, of the n-th video atom as the sum of the MP
coefficientse, of all the audio atoms associated to it in the whole sequence:

Kn =Y cp With k Stxg, #0. (3)
k

Thus, this confidence value is a measure of the number of atdios related to it and their weight in the MP
decomposition of the audio track. Each video atom thus isatherized by its position over the image plane and
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by its confidence value, i.€(¢1,,t2,), s, ). LOOKINng at Fig. 6, the idea of a clustering is very intuitivgoms with
higher confidence value form two different and well sepatapoups pointing out the sources, one at the left and
the other at the right part of the image, while those lyingdamy from these regions have considerably smaller
confidence values. Audio and video atoms association stefoéen successful, as it correlates atoms close to the
source center much more often than the others.

Confidence
o L N w S (5] o ~

120

Fig. 6. Video atoms location in the image. Their confidenceievas represented in the third dimension.

The proposed clustering algorithm is divided into threenrsteps:

« Clusters Creation First the algorithm createg clustersC; C P where P = {((t1,,%2,), %n)}n IS the set
of all points to be classified, i.e. all video atoms with coafide value different from zero. The clusters are
created with the following iterative algorithm :

1) Initialization : Z =0, Py, = Py = P,

2) Find the point((fy, , %2, ), %,) € Pz with highest confidence value. It has the most important@athms
associated, and consequently this video atom is the mobapl® to be the center of a source;

3) Create a new clustér; aggregating all the video atoms that are closer than a §pagi@mum distance
to (¢1,,1s,) (cluster sizedefined in pixels);

4) Remove all the video atoms assigned to this cluster fragnstt of points to be classified, i.Bz 1 =
Pz \ Cz;

5) Stop the algorithm if all the points with confidence ovee timean are already classified, otherwise
increment”Z «— Z + 1 and go back to step 2. Only video atoms with significant configevalue can be
the center of a new cluster.

Considerations:

— The cluster sizeused in step 3 determines the number of clusters createdebglgorithm, and, conse-
quently, the detected sources in first stage of the clugteiowever, as we will see in the next paragraphs,
the setting of this parameter does not affect significaritéy final result.

— It is basically impossible to remove real sources by thestmotd applied in step 5, since most of the
video atoms have a negligible confidence value, as we camsEig.i 6.

« Centroids Estimation The center of mass of each cluster is computed. The confideaige of every atom
is taken as the mass, and it ponders its contribution to tloelledion of the centroid position over the image.
Thus, for each created cluster, indexeddy we calculate its centroic{fli,fgi), as :

JUA N TR AT o~ Ki-tos
(t1,,t2,) = (Egea, 11 2gec, s 2J>7 4)

ZjEC«L K’j ’ szCi I{j

where(ty;,t2;) are the coordinates of the video atoms andheir confidence values. These centroids are the
coordinates in the image where the algorithm locates théoasmlrces. An example of the created clusters

and their calculated centroids is shown in Fig. 7. Some ofcthsters are, as expected, close to the speakers
mouth, while others do not represent a souaraiigecluster, the less important and the last one created, with
cluster size 40 pixels). Next step goal is to remove theweliable clusters
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(a) Clusters creation with radius 40 pixels (b) Clusters creation with radius 60 pixels

Fig. 7. Clusters created using different cluster sizes @ép &t of the algorithm. The atom represented with a ciroleig the one with
highestconfidence valuand builds the cluster in step 2. Crosse} represent the coordinates of the video atoms aggregattek toluster

in step 3. Finally, the computed centroids of each clusterirdicated by an asterisk) Each cluster is represented with a different color,
from first to last created (descendent cluster importange)low, cyan and the last one, orange, which is present onlpicture (a).

« Unreliable Clusters Elimination We define thecluster confidence valuE ¢, as the addition of the correspond-
ing confidence values; of the atoms belonging to the cluster, if€c, = Zjeci ;. Based on that measure,
unreliable clustersi.e. clusters with small confidence val#&- ., are removed. A cluster is considered to be
a unreliable clusterif its confidence value is 0.2 times the maximum valueiGf, found.

Considerations about the applied threshold:

— High enough to eliminate the clusters that do not represespeaker.

— Not too high to avoid removing clusters indicating real s@st When one source is active much more
time than the others, video atoms belonging to this speakknave more correlated audio atoms making
its cluster confidence valuE ¢, considerably bigger.

At this point, a good speaker localization is achieved bymse# the creation of audiovisual synchronous structures
together with a robust clustering that spatially groupswiteo atoms forming these structures into sources. The
number of sources does not have to be specified in advaneeastunfidence measure is introduced to automatically
eliminate unreliable clusters. The algorithm is robust #mal localization results do not critically depend on the
choice of the cluster parameters.

B. Video Source Separation

Once the Video Source Location is achieved, each video asoassigned to the speaker it belongs in order to
posteriorly reconstruct the video sources. Regardingdhjsctive, amaximum distance pixels from the cluster
centroid is defined. All the points that are closer than sustadce from a centroidt; ,#,,) are assigned to the
corresponding source. With this procedure, we end up witletaob Ng cIusters,{Sl-}fisl. Each group of video
atoms.S; describes the video modality of an audiovisual source. Tahgemaximum distancparameter, we have
to take into account several conditions:

« We do not want to assign one video atom to more than one soneceideo separation).

« At the same time, the radius has to be big enough to contaimtdrémum number of atoms belonging to
the source. If all the video atoms related to an audio atonmaste(not assigned), this audio atom cannot be
assigned to one source, and severe energy losses could applea reconstruction of the audio signal.

« It is important not to assign to one source structures béhgntp another one.

Figure 8 shows an example of the reconstruction of the cuspeaker detected by the algorithm. Only video
atoms close to the sources estimated by the presenteddeehanie considered. Thus, to carry out the reconstruction,
the algorithm adds their energy and the effect is a highliflthe speaker’s face. In both frames, the correct speaker
is detected.
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Fig. 8. Example of the video sources reconstruction. On dfteplicture the left person is speaking while on the righttyrie the right
person is speaking.

C. Audio Source Localization

The objective of this phase is to determine the temporabgdsrivhere each source is active. This goal is achieved
by means of the classification of each atom into its corredponsource using the information obtained in the last
steps. For every audio atom we take into account all the videms related to it, their correlation scores and their
classification into a source. According to this, the audarats assigned to the source with higher number of video
atoms belonging to it, but also rewarding the temporal syorch between these video atoms and the analyzed
audio structure. Therefore, for each audio er‘zﬁi&) the assignation to a source can be done in the following way:

1) Take all the video atom$7(f’) correlated with the audio atom,g“), i.e. for whichxy , # 0;
2) Each of these video atoms is associated to an audiovisuadess; ; for each source&; compute a valué{,
that is the sum of the correlation scores between the audin ag’) and the video atom$§”) s.t.jeS;:

Hg, = Z Xk,j

JES;
3) Classify the audio atom into the sourSgif the valueHg, is “big enough” : here we requiré/ s, to be twice
as big as any other valuEg, for the other sources. Thus we attribw‘tg) to S; if

Hg, >2-Hg, with h=1,...,Ng, h#1i.

If this condition is not fulfilled, this audio atom can belong several sources and further processing is
required.

The decision bound in step 3 is introduced because, at tht pbthe processing, not all audio atoms can be
clearly classified into one of the sources. Some of them amniimntermediate position and we cannot base the
decision only on a small difference of the sources scéfges These atoms may belong to more than one source, or
we could be making a mistake choosing one source insteadotfi@mnone. This is typically the case when several
speakers are simultaneously active. For these atoms @ulitprocessing is required, as it will be shown in the
next section.

As an example, let us consider the situation shown in Taltete one audio atom has six video atoms associated
(i.e. with correlation scores different from 0). Four of thdelong to sourcé;, and two to sourced,, with the
correlation scores shown in in the table. Then, the sum oftoees are 13.88776 and 1.71717 for soutteand
Sy respectively. The score for the first source is much biggepr@ximately eight times bigger than the other) and
thus this audio atom will be assigned to soufe

Using this labelling of audio atoms, time periods during ethonly one source is active are clearly determined.
This is done using a very simple criterion: if in a continudimse slot longer thar?” seconds all audio atoms are
assigned to sourc#;, then during this period only sourcg is active. In the examples that we provide in this
chapter, the value df is set to 1 second.

The classification of the audio atoms representing the tstdirack shown in Fig. 3 is depicted in Fig. 9. The
points in the pictures represent the position over the fimguency plane of the audio atoms centers. The atoms
locations in the original mixture are shown in picture (ajile the atoms classification is in (b). The sequence
involves two speakers: at the beginning only the girl tatken both persons speak together and finally the boy
only talks. This partitioning of the signal is reflected by throposed audio source classification method: atoms
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Source S;  Source S,
6.9348 1.1146
5.8186 0.60257

0.809
0.32536
13.88776 1.71717

TABLE |
EXAMPLE OF THE LIST OF CORRELATION VALUES BETWEEN ONE AUDIO ADM AND THE CORRELATED VIDEO ATOMS FOUR OF THEM
BELONG TO SOURCEL AND TWO TO SOURCE2.

assigned to the girl and the boy are highlighted in blue addrespectively, whileambiguousatoms are indicated
with green markers.

IR TR "5 0
<
4
s
'
o

-~
o NTR s goa

| (EBePREe

.

Frequency
Frequency
e At .
LR

i
k¢ '5'31
PP

- -‘n\

(]

ir

i RN ST N

L
H
2

e £ 11 21 T

(3 o
re

H

L ERRIT
(a) Time-frequency representation (b) Audio segmentation

Fig. 9. Example of the classification of audio atoms into therespondent sources. The points represent the timedneguposition of
audio atoms. The atoms of the original mixture are in (a),levtiie atoms classification is in (b). The speech evolutiothensequence is
reflected by the proposed classification method : at the begjnonly speaker 1 is active (blue markers), then two persme speaking
(green markers) and finally only speaker 2 is active (red erajk

When several sources are present, temporal informatiomed® not sufficient to discriminate different audio
sources in the mixture. To overcome this limitation, in thasnbiguoustime slots a time-frequency analysis is
performed, which is presented in details in the next section

D. Audio Source Separation

In this phase, the classification of the audio atoms in theespondent source is performed in order to, posteriorly,
reconstruct the separated soundtracks for each sourcéd@hés to use the frequency characteristics of each source
when only this source is active in order to classify #mabiguousatoms of the previous phase. Thus, the audio
atoms are assigned according to their time-frequency aoates in aMap of Probabiltieswhich is built computing
the product between time and frequency probabilities oheamrce as follows:

Ps, (t,@) = P§,(f) - P§ (@) (5)

where P{ (i) is the probability of an audio atom with time indéxto belong to sources;, and P () is the
probability for an audio atom with frequency indéxo belong to sourcé;. This process, applied to the considered
test sequence, is schematized in Figure 10. The steps flolirnguthis Map of Probabiltiesare the following:

1) Frequency probabilitieP&_ (w) are computed considering temporal slots where the soureeactive alone,
so that a reliable association between audio atoms andesuen be established. For every valuesolve
keep the set of atomdy, 1., = {(uk, &k = @), {Xk.n}n}r @and we estimate the frequency probabil}?gi(w)

as: Card(A@7k€5i7n)

card(Ag k) (©)

P¢ (@) =
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Fig. 10. First, frequency probabilities for the female [fleind male [Right] speakers 10(a) are estimated on partheotdst sequence
during which the subjects speak alone (blue and red dotserspiectrogram of Fig. 9(b) that is reproduced on the uppérctehers of

the figures). Then, temporal probabilities 10(b) are edtohausing the part of the test sequence during which bothopsrspeak together
(indicated by green dots in the spectrogram of Fig. 9(by)aly, the Map of probabilities for the female [Left] and radRight] speakers
is build computing the product between both probabiliti®gc)

2)

The probability of each frequency value is normalized to, dree Zﬁ\fl ng, (w)=1.

Temporal probabilitiesDéc(f) instead, are estimated in the period where both sourcesup@osed to be
active. These probabilities are estimated exploiting thieetation scoregxy, ,,},, between audio atoms and
video atoms classified into a source. For each time ingtan¢ recover the set of atoms;, , = {(ur =
t,&k), {Xk,n}n}r and we compute the temporal probabilitieg (f) as:

T ZkeA{k nes; Xk,n
PS»L (t) = — -
ZkeAtA,k,n Xk,n
This probability basically acts like a mask: when it is O medimat no chance is given to sourSgto be

active, since no correlated event between the video satir@nd the audio signal is detected at this time
instant. Again the probability of each temporal value ismalized to one, i.ezf\fl Péf_ (t) = 1.

()
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3) For each time-frequency poifit, &) the probabilityPs, (£, &) in (5) is computed as a product betweBf (%)
and Pg (w) in order to penalize sources with low probability eitherime or in frequency. One aspect has
to be taken into account: not all the frequency values necigdhave a probability associated. In this case,
the closest frequency with a probability value associasedsied in (5).

Thus, according to thitap of Probabiltiesan audio atom centered in coordinatésy) will be classified into

sources; if
Ps, (t,&) = max{Ps, (f,&)} , with j = 1,..., Ng, (8)

where Ng is the total number of detected sources.

Reconstruction of the Separated Signals
The audio signal coming from a source is reconstructed bylgiradding the audio atoms classified in this
source, weighted by their energy coefficients. Therefoeeith audio sourceqg,(t), can be reconstructed as:

as.(t) = Y erop” (t), 9)

keS;

where ¢; is the coefficient found by MP and corresponding to the Gatbomazbl(f) (t) and S; indexes the set
of atoms attributed to théth source. The reconstructed souregs(t) are time-evolving waveforms that can be
listened using a media-player. The reconstructed soutw@srsin Fig. 11, for example, result well audible and the
digits uttered by the two speakers can be clearly distitgads However, quantitative measure of the quality of the
source separation and reconstruction is required in omasses the performances of the proposed algorithm.

4

Frequency(kHz)

Time(sec)

(a) Original sequence

Frequency (kHz)
Frequency(kHz)
o

Time(sec) Time(sec)
(b) Separated source 1 (girl) (c) Separated source 2 (boy)
Fig. 11. Blind Source Separation of a real-world mixtureresgnting a boy and a girl uttering digits simultaneouslye Tolor map of

the time-frequency plane images goes from black to redutiirdlue, green and yellow, and the pixel intensity reprissére value of the
energy at each time-frequency location.

IV. EXPERIMENTS

In this section the proposed BAVSS algorithm is evaluatedymhesized audiovisual mixtures. The interest of
analyzing synthesized sequences resides in the fact thatiadjtruth can be assessed and thus an objective measure
of the discrepancy between this ground truth and the renarietl sources can be defined. The features used to
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evaluate the algorithm are the percentage of correctlysified atoms for each audio source and the percentage of
acoustic energy of the source that these correctly clagsitiems represent.

Synthesized sequences are generated using clips takentieogroups partition of the CUAVE database [21]
with one girl and one boy uttering sequences of digits adteévely. The video data is at 29.97 fps with a resolution
of 480 x 720 pixels, and the audio at 44 kHz. The video data have beeresiza resolution of20 x 176 pixels,
while the audio signal has been sub-sampled to 8 kHz, withastjood audible quality. The video sequence is
decomposed into 100 video atoms and the mixture soundtsadecomposed into 1000 Gabor atoms. The audio
and the video atoms of one speaker are then temporally dhifterder to obtain time slots with both speakers
active. The steps carried out to synthesize the sequengalsyed in the experimental tests are the following:

1) Choose a clip of thgroupssection of the CUAVE database where two speakers (a boy arid) autier

numbers in turns;

2) Shift the audio atoms of one speaker so that their voiaewrlapped part of the time. The MP decomposition
of the audio gives us the temporal position of the audio atbalenging to each one of the speakers. Thus,
we only need to take all the atoms of one speaker, which arpdgatty separated from those of the other
one since they are speaking alternatively, and change térajporal index appropriately. The same quantity
is added or subtracted from all the atoms;

3) The same procedure is applied to the video atoms. After deeomposition in 2D time-evolving atoms, the
feature to analyze is the evolution of the video atoms dispieent through time. In the CUAVE database,
each speaker is located at one side of the image, so that aigees belonging to one speaker have the
abscissa value extracted from the decomposition betweetspl and 88, and the other one between 89 and
176 (the resolution of the video bein@0 x 176). Thus, the procedure consists in temporally shifting the
video atoms corresponding to one speaker by the same tehabua of the corresponding audio atoms.
Notice that the shift in audio is in samples and we have to edrvin frames to apply the same temporal
shift to the video.

This procedure translates the whole part of the audioviseguence belonging to one speaker in order to have a
synthetic mixture where both speakers are uttering differeimbers at the same time. In the resultant synthetic
clips, four cases are represented: both persons speak sarte time, only the boy or the girl speaks or silence.

First, the percentage of correct atoms is assessed. Figugledlvs the sources extracted by the proposed algorithm
[Top] and the real ones represented with 2000 Gabor atonmtojag for a syntectic sequence generated by applying
a shift of 150 frames to the sequence part with the male spéakdip g20 of CUAVE database. For this synthetic
sequence, on average our algorithm assigi¥s of the audio atoms to the correct source (Table II).

Another measure is employed in order to evaluate this metih@dpercentage of the original energy that these
correct atoms represent. This value gives us the informattative to the difference of the original and estimated
soundtracks for each speaker after the reconstruction $tép measure is performed in order to discard the very
improbable fact that the% of audio atoms that are misclassified contribute to the s¢parsoundtracks with the
main part of the energy, i.e., this audio atoms are the firshinMP decomposition of the original mixture. For
each source, this percentage is computed as the sum of tieieoés of all the atoms correctly assigned by the
algorithm to the source divided by the sum of the coeffici@iftall the atoms belonging to this source. Therefore,
this percentage can be seen as the part of the estimated Is&doaging to the original one. The remaining energy
is due to the assignation of the audio atoms to the incorpEaler and constitutes the noise of the separated signal
estimated by the algorithm. Figure 13 shows the originalef@ms reconstructed with 2000 Gabor atoms on the
bottom and those estimated by the proposed time-frequemalysis on the top.

Waveforms are very similar in the original and estimatedieeges, and the percentages of the original energy that
the correct atoms assigned to each source represent theri286%b6 for the male and female speaker respectively.
These percentages are high and similar to those obtaingddarumber of correct atoms assigned to each speaker
(92% and 90%). It seems thus that correctly assigned audimsatepresent most of the energy of the speakers
separated signals. Results obtained analyzing differpiences are summarized in Table II.

The values obtained for the percentage of correct atomstengdrcentage of energy that these atoms represent
are similar. We can thus argue that the algorithm distributee errors over audio atoms of all sizes, and the
percentage of correct atoms is already a good measure oflgbétiam performance. Results are satisfactory,
around 80-90% except for sequergE? of CUAVE database, with a worse performance for the boy. &dbl
also shows that the results obtained are linked with the esezputo analyze and they are independent of the shift
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(a) Time-frequency analysis, speaker 1 (girl) (b) Time-frequency analysis, speaker 2 (boy)
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(c) Real audio atoms, speaker 1 (girl) (d) Real audio atoms, speaker 2 (boy)

Fig. 12. Comparison between audio atoms resulting of tiragtfency analysis in a synthetic mixture [Top] and the aagbnes [Bottom].
The points are the centers of the audio atoms over the tietgpsncy plane. The sequence is generated by applying a0§Hi80 frames
to the male speaker in clig20 of CUAVE database.

% correct atoms % correct energy
Sequence . .
girl boy girl boy
g12 shift 100 frames 86 54 73 42
g20 shift 150 frames 92 90 92 86
g21 shift 130 frames 83 81 81 75
g21 shift 169 frames 82 78 84 73
TABLE II

RESULTS OBTAINED WITH SYNTHETIC SEQUENCES GENERATED FOR DFERENT CLIPS OFCUAVE DATABASE.

introduced. The performance for sequemy@l is around 80% with shifts of 130 or 169 frames, with a small
difference in favor of the first case.

It is important to underline that lower performances in ssmpegl2 are mostly due to errors done in the
sequence part during which both speakers are active andatieegaused by the low discriminative power of the
simple model based on the probability maps of the speakearsially, for all tested sequences the time periods
during which the sources are active alone are correctlylilserh except for some minor error in sequergi.

The signals in these time slots are essentially perfectignstructed, with a Signal to Noise Ratio (SNR) between
the ground-truth MP reconstructions and the separated¢dsswf about 50 dB. In contrast, performances are much
lower in mixed periods. Although the separated speech Edra still audible and the uttered digits can be clearly
distinguished most of the time, we have measured SNR vaareggirg from 3 dB (for the first part of the signals
shown in Fig. 13(b),(d)), down to -1dB. This shows that whike proposed framework is able to localize the
sources on the video and to detect time slots during whichealsy alone is present, improvements are needed
in the time-frequency separation of audio mixtures. This lba done using more complex one-microphone source
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Fig. 13. Comparison between estimated [Top] and real [Bojtwoundtracks for a synthetic sequence generated by appéyshift of 150
frames to the male speaker in clj20 of CUAVE database.

separation techniques. An HMM-based generative modeltikeone proposed in [22] would probably match well
our considered scenario, since we could still keep a comlygldtlind setting and we could think of learning a
model of the sources in time slots during which they are actibbne. However this type of techniques typically
require large training audio portions that can be unavhilébthe presented scenario. Another interesting option
could be then the use of a blind method to track the evolutfdmaomonics and resonances, like the one proposed
in [23], but aided here by the information available in timeripds presenting audiovisual sources active alone.

As a final remark, we have noticed that the quality of the retroicted signals is considerably better for synthetic
sequences than for real ones. This effect is caused by thegeha the speakers fundamental frequency, and,
consequently, spectral harmonics, when they speak sinadtssly in real sequences. Humans tend to change their
speech characteristics in order to differ more from the ro#peakers and to be, thus, more easily heard. This
change in the sources frequency behavior causes a worgemarifce of the algorithm, since the speakers models
are learned in temporal periods during which they are alone.

V. DISCUSSION

In this report we have introduced a new algorithm to perforrBliad Audiovisual Source Separation task.
We consider sequences made of one soundtrack and the vigleal sissociated, without the stereo audio signal
usually employed for the BASS task. The method builds cafi@h between acoustic and visual structures that
are represented using atoms taken from redundant dicimnarideo atoms that exhibit strong correlations with
the audio track and that are spatially close are groupedthiegeaising a robust clustering algorithm that can
confidently count and localize on the image plane audioVisoarces. Then, using such information and exploiting
the coherence between audio and video signals, audio soaredocalized as well and separated. The presented
algorithm needs time periods with sources active alone ¢dlipt their behavior in the mixture. This condition is
however not very restrictive, since it is rare that in reald mixtures all the sources are active all the time.

Several tests are performed in real-world and synthetiaeseces, and encouraging results are obtained for both
of them. The speaker spatial localization is successfutifgpmed in challenging sequences where two persons
speak simultaneously. Concerning the audio source sémapart, the audible quality of the separated audio signals
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is also reasonably good, with reconstructed waveformsectosthe original ones. However, we believe that the
proposed method can be improved using more sophisticatbditpies for the separation of audio sources in time
slots that present source mixtures. To this end, HMM-basedets [22] or audio feature tracking techniques [23]
could be plugged in the proposed framework.
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