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Abstract

Advanced applications for Distributed Hash Tables
(DHTs), such as Peer-to-Peer Information Retrieval, require
a DHT to quickly and efficiently process a large number (in
the order of millions) of requests. In this paper we study
mechanisms to optimize the throughput of DHTs. Our goal
is to maximize the number of route operations per peer per
second a DHT can perform (given certain constraints on the
lookup delay). Each peer receives congestion feedback from
the DHT, which it uses to adjust its routing decisions. This
way, peers can avoid routing through slow parts of the over-
lay network and hence increase the rate at which they insert
new messages into the DHT. We provide a numerical analysis
of congestion-aware routing in DHTs and show that consid-
erable improvements in throughput are possible compared to
DHTs with proximity neighbor selection and strictly greedy
routing.

1 Introduction

Distributed Hash Tables (DHTs), such as Chord [13], Pas-
try [12], P-Grid [1], and many more, provide a scalable
means to map identifiers (ids) to socket addresses (i.e. IP
address and port). The basic operation is route(id, data),
which routes data, e.g. queries, inserts, updates, to a peer
responsible for id.

Peer-to-peer (P2P) environments have rapidly changing
performance characteristics as peer client software often
shares CPU and network resources with other processes run-
ning on the same machine. Moreover, churn in the DHT
causes routes to change often, which entails further perfor-
mance variations.

The goal of this paper is to study mechanisms to increase
the throughput of DHTs by quickly adapting routing accord-
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ing to performance changes in the overlay network. Until
now, most DHTs perform greedy routing in the id space,
i.e. peers always select the closest neighbor to the searched
(destination) id when forwarding messages. So far, the goal
was to reduce the number of hops to resolve an id, without
taking the routing capacity of peers in the overlay network
into account. Proposals to select neighbors taking proxim-
ity in the underlying network into account can avoid build-
ing extremely inefficient routes, e.g. routing back and forth
between different continents. However, these proposals are
unable to react to rapid performance changes in a DHT.

Optimizing the routing performance of DHTs is an im-
portant requirement for advanced applications, such as P2P
Information Retrieval (P2P-IR). In P2P-IR, a DHT has to
quickly process a large number of, usually fairly small, mes-
sages. Some P2P-IR approaches, such as those presented
in [7, 8], require a DHT to handle in the order of millions
of messages in a short period of time during indexing and
searching.

The paper is structured as follows: we first review related
work in section 2. We then describe the P2P environment
and explain how peers adapt their message insertion rates to
the currently available routing capacity of a DHT (section 3).
Section 4 introduces congestion-aware routing to increase
the throughput of a DHT. Each peer monitors congestion
feedback, which it receives when inserting new messages
into the DHT. This feedback allows peers to quickly adapt
routing to avoid overloaded parts of the DHT. We present
a numerical analysis and an evaluation of our algorithm in
section 5. Finally, we provide a discussion of our work in
section 6 and conclusions in section 7.

2 Related Work

For recursive routing in DHTs, there has been very few
work that focuses on maximizing the routing throughput as
the main measure of performance. [3] proposes mechanisms
to reduce latency and increase throughput for the Chord
DHT, however, it concentrates on data delivery.
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Other studies introduce methods for exploiting network
proximity in DHTs, e.g. [2]. One option is proximity routing,
as proposed for CAN [11] and Chord [3], where each peer
considers both progress towards the searched id in the space
and physical proximity when forwarding a message. This
mechanism, as well as proximity neighbor selection during
the construction of a DHT, work well for relatively stable
performance characteristics. However, they cannot handle
short-lived performance changes, which are very likely to be
stronger in P2P than in controlled environments.

Load balancing algorithms proposed for DHTs, e.g. [10],
assure that a peer’s capacity (e.g. storage) corresponds ap-
proximately to its responsibility in the id space. These algo-
rithms, however, do not consider routing load and are there-
fore orthogonal to our work.

3 Description of the Environment

We now introduce the basics of Distributed Hash Tables
(DHTs) in section 3.1 and congestion control in DHTs in
section 3.2.
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Figure 1: Ring topology with bidirectional links shown for peer
P0.

3.1 Routing in DHTs

We use a ring topology as shown in figure 1. With n peers,
each peer maintains connections to O(log(n)) other peers
(called neighbors) in the network (2 · [log2(n)− 1] in our
case). In principle, we build the routing tables as in other
popular O(log(n)) DHTs (i.e. [1, 12, 13]): the probabil-
ity that a peer Px chooses a peer Py as routing entry is in-
verse proportional to the distance between Px and Py in the
id space, i.e. Py is more likely to be chosen if it is close to
Px. The resulting network has small-world properties [4, 5].
Routing is done recursively and in a greedy fashion: when
a peer receives a message for an id for which it is not re-
sponsible, it chooses the neighbor closest to the searched id
to forward the message. At any peer, a route request for any

id reaches a responsible peer with only O(log(n)) overlay
hops. Two peers communicate using TCP. All links are there-
fore bidirectional.

3.2 Congestion Control in DHTs

As peers in a DHT relay messages, there can be conges-
tion if new messages are inserted at a rate faster than the
DHT can handle. Limiting factors are the CPU and network
capacities of peers. To avoid a congestion collapse, load-
intensive applications, such as P2P-IR, have to adapt mes-
sage insertion rates to the current routing capacity of a DHT.

We use additive increase, multiplicative decrease (AIMD)
congestion control (CC), as presented in [6]. Note that this
CC avoids congestion in the overlay network and is thus in-
dependent of TCP CC between two neighboring peers, which
takes care of not overloading the underlying IP network.

CC for DHTs is similar to TCP using ECN [9] and works
as follows: each message routed in the DHT has an explicit
overlay congestion notification (ECNo) bit in its header,
which is initially set to 0. When a message is relayed by
a congested peer, the ECNo bit is set to 1 to indicate conges-
tion on this path. For each received message a responsible
peer returns an overlay acknowledgement (acko) to the ini-
tiator of the message (either as direct UDP packet or routed
in the DHT). This acko contains the information whether the
ECNo bit in the message header was set when arriving at
the responsible peer. The acko also indicates that a message
successfully arrived at the responsible peer. Note that over-
loaded peers drop messages. In case of a missing acko, a
peer can reinsert messages. A peer increases or decreases its
insertion rate according to the ECNo feedback as explained
in the following subsections.

3.2.1 Notation

We use the following notation:

p Prob. of the ECNo bit set
x Message insertion rate per peer
cpos Constant for additive increase
cneg Constant for multiplicative decrease

3.2.2 Adaptation of Insertion Rates

In case of positive feedback from the overlay network, a peer
increases its message insertion rate x in the following way:

x = x + cpos, cpos > 0

In case of negative feedback a peer decreases its rate x as
follows:

x = x · cneg, 0 < cneg < 1
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The constants cpos and cneg determine the aggressiveness
of a source and thus depend on the environment. We shall
see in section 5.3 how they affect the throughput.

With pt being the probability of a peer receiving nega-
tive feedback (ECNo bit set) at time t, we can calculate the
change ∆t of the rate xt for a peer:

∆t = pt · (−xt · cneg) + (1− pt) · cpos

xt+1 = xt + ∆t

(1)

4 Congestion-Aware Routing

In this section we first introduce our congestion-aware
routing algorithm. We then describe an analysis to calculate
potential throughput gains for DHTs in section 4.2.

4.1 Overview

The basic idea is to loosen the rule in greedy routing of
strictly selecting the neighbor closest to the searched id when
forwarding a message: each peer considers the k closest
neighbors (if closer than itself to the searched id) and mon-
itors their performance. When inserting new messages into
the DHT, each peer tracks the feedback it receives (carried
in overlay acknowledgements as explained in section 3.2) to
evaluate the option of routing through certain neighbors. The
information which neighbor a peer had taken to forward a
new message is stored together with a number identifying
each outstanding message (e.g. acko seq. no.).

To simplify the presentation, we take the case k = 2, i.e. a
peer considers the closest and second-closest neighbor when
forwarding a message. Table 1 shows the routing options P0

has when forwarding messages (cf. figure 1). Take the third
line, for example: for destination P3, the first choice of P0 is
to route via P2 using link l0−2 and the second choice is via P1

using link l0−1. If the next hop is responsible for the searched
id, there is no second choice (N/A). If two neighbors are
equally distant to the searched id (e.g. to P4), we choose the
left-hand neighbor as first option.

destination 1st choice 2nd choice
P1 l0−1 N/A
P2 l0−2 N/A
P3 l0−2 l0−1

P4 l0−2 l0−6

P5 l0−6 l0−7

P6 l0−6 N/A
P7 l0−7 N/A

Table 1: Routing options for peer 0

4.1.1 Adaptive Routing

Each peer observes the ECNo feedback it receives when us-
ing the first or second choice for routing. Therefore, for each
pair of routing choices, each peer maintains k (here k = 2)
observed probabilities (opi) of the ECNo bit set in the ac-
knowledgement as shown in table 2 for P0.

pair 1st choice 2nd choice
(l0−2 − l0−1) op1 op2

(l0−2 − l0−6) op1 op2

(l0−6 − l0−7) op1 op2

Table 2: Options with observed probabilities

These probabilities are the only state each peer has to
maintain for congestion-aware routing. It grows O(log(n))
per peer and thus scales well with the number of peers in the
network.

4.1.2 Shifting Traffic

We now come to an important part in increasing the through-
put of a DHT: shifting traffic between the considered neigh-
bors for each routing decision. Each peer considers up to k
possible options to forward a message. We first look at the
case k = 2. As seen in table 2, each peer tracks observed
probabilities op1 and op2 of negative feedback for all rout-
ing options. Depending on the observed probabilities, a peer
sends a fraction f1 of the traffic via the first choice and a frac-
tion f2 via the second choice (f1 + f2 = 1). A peer updates
f1 and f2 in the following way (cf. eq. 2): δ is the amount of
traffic shifted from the first to the second option. It is the dif-
ference of the two observed probabilities times a constant φ,
which determines how fast a peer adapts to changes. If δ is
negative, traffic is shifted back to the first option. Each frac-
tion is at least fmin. Therefore, each peer receives feedback
for both options of each pair.

δ = (op1 − op2) · φ
f1 = f1 − δ, f2 = f2 + δ

fmin ≤ fi, fj ≤ 1− fmin

(2)

For k > 2 we first calculate opmean, the mean of all ob-
served probabilities opi. We then increase or decrease each
fi depending on how far the according opi is under or over
opmean.

A peer updates its observed probabilities whenever initi-
ating new messages. When a peer forwards messages from
other peers, it splits the traffic according to the calculated
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fractions for the different choices. Thus, on each hop, an op-
timization choice is made, overall leading to higher through-
put.

Whenever a peer does not choose the closest neighbor for
forwarding a message, the number of routing hops necessary
to reach a responsible peer will increase. However, if the
routing tables are large enough, the number of hops will only
slightly increase as we also show in the numerical analysis in
section 5.

4.2 Analysis

We now describe an analysis of congestion-aware routing
to calculate the throughput gains we can achieve. We show
how to calculate the message insertion rates per peer for a
DHT with given capacities when AIMD congestion control
is used. The following subsections use the notation in table 3.

Pi Peer i
xi Message insertion rate of peer i
lij Link between Pi and Pj

xij Traffic of linkij

cij Capacity of linkij

pij Probability of linkij setting an ECNo bit

Table 3: Notation

4.2.1 Calculation of p

Each peer observes the probability p of receiving negative
feedback (i.e. an ECNo bit set). p is the average of the feed-
back received in a certain time frame. It depends on the paths
the traffic generated by a peer uses and the link capacities and
loads on these paths.

A link lij has a capacity cij of messages it can process per
time unit. A peer sets an ECNo bit in the header of a message
for linkij with probability pij , which depends on the load xij

of the link, and its capacity cij . We use the following formula
to set 0 ≤ pij ≤ 1. The more xij approaches cij , the faster
pij goes to 1:

pij = 1−
√

1− xij

cij
, 0 ≤ xij ≤ cij (3)

To calculate the probability pi of negative feedback for a
peer Pi, we have to take into account how much of the traffic
generated by Pi flows through each link lij . We assume that
searched ids are uniformly randomly distributed, which is
valid after certain load balancing, randomized hashing, and
caching techniques have been applied. Thus, each peer Pi

generates xi/n fresh traffic for each of the n peers in the net-
work. We can thus calculate xij and pij for all links, which
gives us pi for all peers.

4.2.2 Rate Calculation

To calculate the insertion rate xi per peer, we perform the
following iteration until the change ∆t of the rate of eq. 1 is
small (e.g. < ε).

Initialization: All peers start with rate xi = 0. All link
traffic xij is thus zero and hence pij = 0. The link capacities
cij are initialized according to a chosen network topology
(cf. section 5.1).

Iteration steps:

1. For each peer Pi, calculate the probability pi of ECNo

bits set (avg. over all destinations) when sending re-
quests at rate xi as described in 4.2.1 and using eq. 3. If
congestion-aware routing is enabled, for each peer and
all neighbor pairs, calculate the traffic shift as shown in
eq. 2.

2. Given pi, a peer changes its rate xi by ∆i,t according
to eq. 1. If ∀i, ∆i,t < ε, stop the iteration. Otherwise,
continue with step 3.

3. After the insertion rates xi for all peers have been
changed, the traffic xij for all links is updated according
to the fraction of traffic each peer sends through each
link. Start again with step 1.

5 Numerical Analysis of an Example

We have seen in section 4 how to calculate the message in-
sertion rates for all peers. We now present an example with
256 peers. Each peer has 14 bidirectional links to peers cho-
sen as described in section 3.1. We first discuss different
strategies to construct a locality-aware DHT and show how
we model link capacity variations. We then study the perfor-
mance of congestion control and congestion-aware routing.

5.1 Locality-Aware DHTs

We initialize the DHT as follows: Each peer has a uni-
formly random chosen coordinate in a 5-dimensional space.
The link capacity between two peers decreases with increas-
ing distance in the space. We construct the DHT using the
following locality scenarios:

NL: No Locality Some DHTs do not provide proximity
neighbor selection. In this case, we build a random
ring among the peers without taking proximity into ac-
count and choose the routing entries as described in sec-
tion 3.1.

L1: Locality-aware I We simulate a locality-aware join al-
gorithm, which builds the ring in such a way that phys-
ically close peers tend to be close on the ring.
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Figure 2: Example of an autoregressive process (a), analysis of AIMD (b-c), and congestion-aware routing (CAR) (d-f)

L2: Locality-aware II We simulate the algorithm for se-
lecting routing entries as proposed in [2], where peers
select physically close long-range links. In conse-
quence, direct neighbors on the ring tend to be physi-
cally distant.

5.2 Modeling Of Varying Link Capacities

We change the link capacities over time according to an
autoregressive process of order one, which is rich enough to
allow us to model correlation of changes, mean capacity, and
standard deviation. The link capacity at time t is ct, which
changes as follows:

ct+1 = ρ · ct + (1− ρ) · c̄ +
√

1− ρ2 ·N · σ,

where ρ the correlation, c̄ the mean capacity, N a normally
distributed random variable with mean 0 and standard de-
viation 1, and σ is the standard deviation of ct. Figure 2(a)
shows an example for mean link capacity c̄ = 50, correlation
ρ = 0.95, and standard deviation σ = 10.

5.3 Effects of cpos and cneg

We first study the functionality of the AIMD congestion
control algorithm and the influence of its constants. We use
a stable network, i.e. the link capacities are not changing.

The choice of the topology has no effect as the goal of this
experiment is to study the influence of cpos and cneg of sec-
tion 3.2.2. Figure 2(b) shows the change of the average peer
insertion rate x, which stabilizes (according to eq. 1) be-
tween 40 and 60 message insertions per peer per time unit.
Then, 8− 20% of overlay acknowledgements have the ECN
bit set (figure 2(c)). A larger cpos lets a peer quicker find
the available capacity as the increase for positive feedback
is stronger. cneg determines the aggressiveness of a peer: a
smaller value lets a peer back-off less in case of negative
feedback. Thus rate and p are higher for larger cpos and
smaller cneg.

5.4 Benefits of Congestion-Aware Routing

Figures 2(d) to 2(f) compare the achieved throughput (i.e.
avg. insertion rate x) for three locality scenarios (NL, L1,
and L2). For the model of varying link capacities we choose
ρ = 0.95, σ = 0.2 · c̄, where c̄ is set according to the locality
scenario. Furthermore, the AIMD constants are cpos = 4 and
cneg = 0.5. We compare greedy routing with congestion-
aware routing (CAR). For CAR, we set k = 2, i.e. we con-
sider two options for adaptive routing. The plots show the in-
crease of the avg. insertion rate over time. We also calculate
the increase in hops, which is caused when CAR does not
choose the neighbor closest to the searched id but the second
option. As the throughput depends on the randomly chosen
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topology and random link capacity variations, we present the
average of five runs with mean deviation error bars.

In all three locality scenarios, CAR can considerably in-
crease the throughput, while only moderately increasing the
hop count. Locality scenario L1 shows the best performance,
as progress towards the target id in the id space directly
entails progress in the physical network. The low perfor-
mance of L2 first seems surprising. The reason is that L2
introduces imbalance in the number of routing entries each
peer has. Therefore, some peers become routing bottlenecks.
However, CAR manages to avoid these bottlenecks and thus
achieves considerable performance gains in L2.

6 Discussion

The analytical model shows that considerable improve-
ments are possible with congestion-aware routing. However,
the model does not cover all aspects: first, as congestion
feedback is returned in overlay acknowledgements, it is de-
layed by 0.5 to 1 round trip time (RTT). Second, this feed-
back delay is not stable as it depends a) on the destination
and b) on varying queuing delays, which are not considered
in our model. Furthermore, for a good estimate of the prob-
ability of negative feedback p, a peer has to perform a suffi-
cient number of requests per time unit. Despite these short-
comings, we believe that congestion-aware routing will lead
to substantial gains in a real implementation.

Our model does not account for latency in the DHT. La-
tency is largely influenced by queuing delays in congested
peers. Our algorithm avoids congested peers and is thus ex-
pected to decreases queuing delays. Furthermore, the choice
of cpos and cneg of AIMD in section 3.2.2 determines the
aggressiveness of peers, and thus the number of outstanding
messages. As shown in section 5.3, these constants can be
used to trade-off between high throughput and low delay.

The strength of our scheme is that it allows peers to
quickly adapt to performance changes in the overlay net-
work, without generating extra messages, and requiring only
few additional state to be maintained.

7 Conclusions

This work presents the first analysis of throughput in
DHTs. We are aware that it is in an early state. However, we
believe that such an analysis is an essential first step for aug-
menting DHTs with mechanisms to increase the throughput,
an important requirement for demanding DHT applications.
Our analysis shows that adaptive routing using explicit con-
gestion notifications can potentially achieve significant im-
provements.

The immediate next steps of this work include testing the
performance in a prototype implementation. Furthermore,

the model can be easily extended to take peer processing ca-
pacities (e.g. CPU) into account.

Some open research questions for future work are: what
is the influence of the number of considered routing choices?
How can we take network dependencies of overlay links into
account? After introducing some simplifications, is a the-
oretical analysis of the throughput of a DHT with millions
of peers possible? Can other joint congestion control and
routing algorithms from the networking domain be applied
in DHTs?
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