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We present a tone mapping algorithm that is derived from a model of retinal processing. Our approach has two
major improvements over existing methods. First, tone mapping is applied directly on the mosaic image cap-
tured by the sensor, analogous to the human visual system that applies a nonlinearity to the chromatic re-
sponses captured by the cone mosaic. This reduces the number of necessary operations by a factor 3. Second,
we introduce a variation of the center/surround class of local tone mapping algorithms, which are known to
increase the local contrast of images but tend to create artifacts. Our method gives a good improvement in
contrast while avoiding halos and maintaining good global appearance. Like traditional center/surround algo-
rithms, our method uses a weighted average of surrounding pixel values. Instead of being used directly, the
weighted average serves as a variable in the Naka—Rushton equation, which models the photoreceptors’ non-
linearity. Our algorithm provides pleasing results on various images with different scene content and dynamic

range. © 2007 Optical Society of America

OCIS codes: 100.2000, 100.2980, 110.5200, 330.1690, 330.4060, 330.6110.

1. INTRODUCTION

Most of today’s digital cameras are composed of a single
sensor with a color filter array (CFA) placed in front to se-
lect the spectral band that is captured at each spatial po-
sition, called a pixel (Fig. 1, left; also see [1]). Since only
one chromatic component is retained for each pixel, a
color reconstruction must be performed to obtain the full
resolution color image with three chromatic components
per pixel.

In traditional color processing workflows [2], this color
reconstruction, or demosaicing [Fig. 2(a)] usually takes
place before applying any rendering operations. The mo-
saiced image captured by the CFA is first demosaiced to
obtain an RGB image with three chromatic components
per spatial location. Color rendering operations, which in-
clude white balancing, color matricing, and tone mapping,
are performed later.

Instead of the workflow shown in Fig. 2(a), we propose
a solution where the demosaicing is the last step of the
color processing workflow. Color rendering operations are
thus performed directly on the CFA image [Fig. 2(b)]. In
this article, we consider only the tone mapping operation
of color rendering. However, color matricing and white
balancing can also be implemented before demosaicing.

Our motivations to use such a workflow is that it is
more analogous to the retinal processing of the human vi-
sual system (HVS) [3-5], as discussed in Section 2. An-
other motivation is that applying the tone mapping di-
rectly to the CFA image requires only one third of the
operations. This, in addition to the use of small filters,
makes our method relatively fast compared with other ex-
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isting local tone mapping algorithms. Finally, because the
rendering operations are performed directly on the values
captured by the sensor, there is no loss of information
prior to rendering.

Our tone mapping algorithm takes inspiration from the
nonlinear adaptation that occurs in the retina, which ef-
ficiently improves local contrasts while conserving good
global appearance [6,7]. Figures 2(c) and 2(d) show an ex-
ample of applying our method to a high-dynamic-range
image (i.e., containing high contrast and important image
details in dark and bright areas). The left image shows
the result obtained with standard global tone mapping
[8,9] (in this case a gamma operator), and the right image
shows the result obtained with our algorithm. Our
method successfully enhances detail visibility in the cen-
ter of the image, the details are well rendered without re-
quiring an additional sharpening operation.

We applied our algorithm to various kinds of captured
scenes having different dynamic ranges and different
keys. Dynamic range is defined as the luminance ratio of
the brightest and darkest object in the scene. High and
low key are terms used to describe images that have a
higher-than-average and lower-than-average mean inten-
sity, respectively. Unlike other methods that work well
only with certain kinds of images, the results show that
our tone mapping operator successfully improves image
appearance in all cases without creating artifacts.

This article is structured as follows: Section 2 provides
background knowledge on tone mapping and the model of
retinal adaptation on which we base our method. Section
3 presents the algorithm. Section 4 shows the results ob-
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Fig. 1. (Color online) Bayer CFA (left) and the spatiochromatic
sampling of the cone mosaic (right) (Inspired from Roorda et al.

[1D.

tained by our proposed workflow, and Section 5 discusses
the differences of our algorithm compared with other ex-
isting methods. Section 6 concludes the article.

2. BACKGROUND

In this section, we discuss the correspondence of our tone
mapping algorithm with a simplified model of retinal pro-
cessing. For this purpose, we take into consideration the
sampling of chromatic information by the cone mosaic
and the nonlinearity that applies to that mosaic. We con-
centrate on one specific nonlinear processing model pro-
posed by Naka and Rushton [6,10] that we use in our al-
gorithm. We discuss the properties of the CFA images on
which we apply our tone mapping. Finally, tone mapping
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operators in general, specifically the center/surround fam-
ily of local tone mapping algorithms is also reviewed, as
our method bears some similarity to the latter.

A. Model of Retinal Processing

Historically, many analogies with the HVS have been ex-
ploited to develop image and computer vision applica-
tions. For example, there is a correspondence between
trichromacy (the ability of human vision to distinguish
different colors given by the interaction of three kinds of
photoreceptors) and the three color channels that consti-
tute a color image [11,12]. Another equivalence exists be-
tween the spatiochromatic sampling of the cone mosaic
and the sampling of color in a single-chip sensor such as
given by the Bayer CFA (Fig. 1) [13,14].

Our proposed workflow [Fig. 2(b)] exploits another
analogy with human vision, namely between the tone
mapping operations in the image processing workflow and
the nonlinear adaptation taking place in the retina. The
goal here is not to precisely model the dynamics of retinal
processing, such as is done, for example, by Van Hateren
[15]. We aim to identify, and simplify, which type of pro-
cessing acts on the retinal signal in order to develop algo-
rithms suitable for in-camera processing. We focus on the
nonlinearities applied to the mosaic of chromatic re-
sponses captured by the cones.

One role of tone mapping is to nonlinearly process the
captured image to mimic the retina’s nonlinear adapta-

Tone—mapped

(d) Our proposed method

Fig. 2. (Color online) (a) Traditional image processing workflow. (b) Our proposed workflow. (¢c) Image rendered with a global tone map-

ping operator (gamma). (d) Image rendered according to our method.
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tion and render the image as if the HVS had processed it.
In traditional workflows, this nonlinear encoding is usu-
ally applied to the RGB color image after the color mosaic
captured by the CFA sensor is demosaiced. For the HVS,
the nonlinear adaptation takes place in the retina directly
after light absorption by the cones. At this level, the reti-
nal image is a spatial multiplexing of chromatic cone re-
sponses, and there is no reconstruction of full color infor-
mation at each spatial position. We know that the
sampled color responses are still in a mosaic representa-
tion at the output of the retina, as illustrated by the be-
havior of ganglion cell receptive fields [3] (see Fig. 3). We
thus propose what we believe to be a new image process-
ing workflow where the nonlinear encoding (tone map-
ping) is performed directly on the mosaic image provided
by the Bayer CFA pattern.

Figure 3 shows the model of the retinal cell layers on
which we base our algorithm (readers not familiar with
the HVS can consult the web pages of Webvision [16]). We
exploit the fact that the retina is composed of two func-
tional layers, the outer plexiform layer (OPL) and the in-
ner plexiform layer (IPL), that both apply an adaptive
nonlinearity on the input signal. These two layers are
composed of the cones, the horizontal and amacrine cells,
which provide the horizontal connectivity, and the bipolar
and ganglion cells. When the light enters the retina, it is
sampled by the cones into a mosaic of chromatic compo-
nents. The horizontal cells measure the spatial average of
several cone responses, which determines the cones’ adap-
tation factors through a feedback loop [17]. The color sig-
nals are then passed through the bipolar cells to the gan-
glion cells. We assume that the role of the bipolar cells is
simply to pass the color signal from the OPL to the IPL.
In the IPL, a similar nonlinear processing is applied. We
assume that the amacrine cells also provide feedback to
modulate the adaptive nonlinearity of the ganglion cells.
This second nonlinearity has been found to provide psy-
chophysical [18,19] and physiological [10] evidence for an
adaptation mechanism to contrast rather than to inten-
sity. Moreover, it has been suggested that this nonlinear-
ity is postreceptoral and applies to color opponent repre-
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Fig. 3. (Color online) Simplified model of the retina.
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sentation [7,19]. We assume here that it originates in the
interaction among bipolar, amacrine, and ganglion cells.
Our tone mapping algorithm also applies two nonlinear
processings on the CFA image in imitation of the IPL and
OPL functionalities. Both non-linear operations are based
on Naka and Rushton [6,10], who developed a model for
the photoreceptor nonlinearities and adaptation to incom-
ing light. Spitzer et al. [20] also proposed a biological
model for color contrast, which used similar adaptation
mechanisms. The nonlinear mosaic image is then demo-
saiced to reconstruct the RGB tone mapped image.

B. Adaptive Nonlinearity
Our model of the OPL and IPL nonlinearities takes inspi-
ration from the Naka—Rushton equation [6,10]

X
Y=c—r, (1)
X+X0

where X represents the input light intensity, X0 is the ad-
aptation factor, and Y is the adapted signal. In the origi-
nal formulation [6], the adaptation factor (X0) is deter-
mined by the average light reaching the entire field of
view. In our method, X0 varies for each pixel. It is a local
variable given by the average light intensity in the neigh-
borhood of one pixel. Figure 4 illustrates the Naka—
Rushton function for different values of X0. If X0 is small,
the cell output has increased sensitivity. If X0 is large,
there is not much change in sensitivity.

In our model, the Naka—Rushton equation is used to
calculate the nonlinearities of both the OPL and IPL; X0
is given by the output of the horizontal cells or amacrine
cells, respectively, and modulates the sensitivities of the
cones and of the ganglion cells.

Usually, the first retinal nonlinearity is assumed to be
due only to the dynamics of the photoreceptors them-
selves [15]. We make the hypothesis that the horizontal
cell network intervenes in the light regulation of the pho-
toreceptors. Because of its local spatial averaging charac-
teristics, the network could allow for a more powerful
regulation of the cone sensitivities. Also, horizontal cells
influence the cone responses through feedback or direct
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feedforward on bipolar cells [17]. Thus, our assumption is
that the mechanism by which horizontal cells modify cone
responses is due to a regulation of the cone’s nonlinear ad-
aptation factor, based on the response of the horizontal
cells network at the cone location.

C. Properties of a CFA Image

The two nonlinearities described above are applied di-
rectly to the CFA image. In our implementation, the CFA
image is obtained using a Bayer pattern [14] in front of
the camera sensor, which results in a spatiochromatic
sampling of the scene. This mosaic image has certain
properties that allow the luminance and the chrominance
of the image to be treated separately.

Alleysson et al. [21] showed that if we analyze the am-
plitude Fourier spectrum of a Bayer CFA image, the lumi-
nance is located in the center of the spectrum and the
chrominance is located at the borders. The luminance is
present at full resolution, while the chrominance is down-
sampled and encoded with opponent colors. It follows that
a wide-band low-pass filter can be used to recover the lu-
minance and that a high-pass or bandpass filter can re-
cover the downsampled chrominance. Choosing the ap-
propriate filters allows one to implement an efficient
demosaicing algorithm. Their method was refined by
Dubois [22] and Lian et al. [23], who propose a more ac-
curate estimation of the luminance.

In Subsection 3.C, we will apply the Alleysson et al.
method for demosaicing. In Subsections 3.A and 3.B, we
use the property of localized luminance and chrominance
when computing the response of the horizontal and ama-
crine cells as a guarantee that using a low-pass filter will
indeed provide the average of the luminance in a sur-
rounding area. In other words, we apply the nonlineari-
ties only to the luminance signals, not to any chromatic
components.

D. Tone Mapping

Tone mapping is the operation in the image processing
workflow that matches scene to display luminances. The
goal of tone mapping may vary, but the intent often is to
reproduce visually pleasing images that correspond to the
expectation of the observer.

Tone mapping algorithms can either be global (spa-
tially invariant) or local (spatially variant). A global tone
mapping is a function that maps the input pixel value to a
display value, not taking into account the spatial position
of the treated pixel (one input value corresponds to one
and only one output value). A typical tone mapping func-
tion can be logarithmic, a power law (often referred to as
a “gamma” function) or a sigmoid, also called an “s
shape.” More sophisticated global tone mapping methods
vary the function parameters depending on global charac-
teristics of the image [8,9,24,25]. The key of the image can
be used to determine the exponent of the gamma function
[24]. In Braun and Fairchild [8] and in Holm [9], an
s-shaped function is defined by the image statistics, such
as the mean and the variance of the intensity. In Ward et
al. [25], the histogram distribution is used to construct an
image-dependent global function.

With local tone mapping algorithms, one input pixel
value can lead to different output values depending on the
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pixel’s surround. A local tone mapping operator is used
when it is necessary to change local features in the image,
such as increasing the local contrast to improve detail vis-
ibility. Many local tone mapping algorithms have been
proposed, which can be grouped into different classes
sharing the same common features (see Delvin [26] and
Reinhard et al. [27] for a review). Center/surround meth-
ods take inspiration from the HVS receptive fields and
lateral inhibition. They increase the local contrast by tak-
ing the difference between pixel values and an average of
their surround [24,28-30]. Their common drawbacks are
the creation of halos along high-contrast edges and gray-
ing out of low-contrast areas. Because center/surround
methods share similarities with the proposed method,
they are described in more detail in Subsection 2.E.
Gradient-based methods [31] work directly on the image
gradient to increase the local contrast by weighting high
and low gradient values differently dependent on sur-
rounding image data. One difficulty of this technique is
integrating the gradient to recover the treated image.
Frequency-based methods [32] separate the low- and
high-frequency bands of the image. The low-frequency
band is assumed to correspond approximatively to the il-
luminant and is compressed while the image details given
by the high-frequency bands are kept. These techniques
work well for high-dynamic-range images but are less ap-
propriate for low-dynamic-range images.

Which tone mapping operation should be performed de-
pends on the dynamic range of the scene. However, it also
depends on the dynamic range of the display, which is
given by the ratio between the brightest and the darkest
display luminance (determined by the display technology
and viewing conditions). In the case of a low-dynamic-
range scene (e.g., a foggy scene with no high contrast), the
input image’s dynamic range is smaller than that of the
display and thus needs to be expanded. In the opposite
case of a high-dynamic-range scene (e.g., a sunset), whose
dynamic range exceeds that of the display, the luminance
ratio must be compressed. Since compressing high-
dynamic-range images causes a loss of detail visibility
over the whole tonal range, it is often necessary to apply a
local tone mapping in addition to the global compression
in order to increase the local contrast and keep detail vis-
ibility.

E. Center/Surround Methods

Traditional center/surround algorithms compute the
treated pixel values by taking the difference in the log do-
main between each pixel value and a weighted average of
the pixel values in its surround:

I'(p) =log((p)) - logU(p) * G), 2

where p is a pixel in the image, I is the treated image, *
denotes the convolution operation, and G is a low-pass fil-
ter (often a Gaussian).

A common drawback of center/surround methods is
that the increase in local contrast depends greatly on the
size of the filter. When a small filter is used, halo artifacts
appearing as shadows along high-contrast edges can be-
come visible. When a large filter is used, the increase in
local contrast is not sufficient to retrieve detail visibility
in dark or bright areas. Another drawback of center/
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surround methods is that they tend to gray out (or wash
out) low-contrast areas. For example, a plain black area
or a bright low-contrast zone will tend to become gray due
to the local averaging.

These drawbacks have already been discussed in the
literature [29,30,33], and solutions to overcome them
were developed. Rahman et al. [30] introduced a multi-
scale method where the center/surround operation is per-
formed for three different scales so that halo artifacts and
graying out are reduced. However, these artifacts are still
visible when the scene contains very high contrasts. Mey-
lan and Siisstrunk [29] introduced an adaptive filter,
whose shape follows the high-contrast edges in the image
and thus prevents halo artifacts. The graying out is
avoided by using a sigmoid weighting function to conserve
black and white low-contrast areas. Their method well re-
trieves details in dark areas but tends to compress high-
lights too much. It is also computationally very expensive,
as the filter has to be recomputed for every pixel. We will
compare our algorithm with these two methods in Section
4.

In general, existing center/surround tone mapping op-
erators work well only for a limited set of images. The ad-
vantage of the algorithm presented here is that it pro-
vides a pleasing, artifact-free reproduction for all kinds of
scenes (see Section 4). It can be considered to belong to
the center/surround family of local tone mapping opera-
tors where the surround is used to modulate an adaptive
nonlinear function rather than as a fixed factor sub-
tracted from the input pixel.

ICFA

Naka—Rushton eq.

1, (p) = (I, (max) + H(p)

I(p)epa+ H(p)

1(P)cra
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3. LOCAL TONE MAPPING ALGORITHM
FOR CFA IMAGES

Our local tone mapping method processes the images ac-
cording to the retinal model that was described in Subsec-
tion 2.A. The input mosaic image (or CFA image), which
has one chromatic component per spatial location, is
treated by two consecutive nonlinear operations. Demosa-
icing is applied last in order to obtain a color image with
three color components per pixel. Each of these steps is
described in the following sections.

A. First Nonlinearity

The first nonlinear operation simulates the adaptive non-
linearity of the OPL. The adaptation factors, which corre-
spond to the horizontal cell responses, are computed for
each pixel by performing a low-pass filter on the input
CFA image:

1
H(p) =Icpalp) * G+ %, (3)

where p is a pixel in the image; H(p) is the adaptation fac-
tor at pixel p; Icpa is the intensity of the mosaic input im-
age, normalized between [0, 1]; * denotes the convolution
operation; and Gy is a low-pass filter that models the
transfer function of the horizontal cells. Here Gy is a two-
dimensional Gaussian filter (Fig. 5) with spatial constant
og. For the images shown in this article, we used oy =3:

Fig. 5. (Color online) Simulation of the OPL adaptive nonlinear processing. The input signal is processed by the Naka—Rushton equa-
tion, whose adaptation factors are given by filtering the CFA image with a low-pass filter. The second nonlinearity that models the IPL

layer works similarly.
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2
Glx,y) = e 16" ")207] (4)

where x € [-40y,40y] and y € [-4oy,405].

The term Iy corresponds to the mean value of the
CFA image pixel intensities. The factor (here %) induces
different local effects and can be adjusted according to the
image key. If we decrease the factor to a value closer to 0,
the contrast in the shadows is enhanced, which might bet-
ter render a low key image.

The input image Icp4 is then processed according to the
Naka—Rushton equation (1) using the adaptation factors
given by H. The responses of the bipolar cells network is
computed with the following equation [Eq. (5)]. The pa-
rameters correspond to the mosaic and horizontal cell re-
sponses. A graphical representation is given in Fig. 5.

Icra(p)
Icpa(p) +H(p)’

The term (Iopa(max)+H(p)) is a normalization factor
that ensures that I,;, is again scaled in the range of [0, 1].

Lip(p) = Ucpa(max) + H(p)) (5)

B. Second Nonlinearity

A second, similar nonlinear operation that models the be-
havior of the IPL is applied on the image I;, to obtain the
tone mapped image I, as

Ibip(p)
Lip(®) +Ap)’

where A(p) simulates the output of the amacrine cells and
I, models the output signal that would be transferred
from the ganglion cells to the visual cortex. Similar to Eq.
(3), A is a low-pass version of the image intensities at the
bipolar cells level. It is computed by convolving the mo-
saic image I;;, with a Gaussian filter of spatial constant
4. We used 04=1.5:

Igo(p) = (Ip(max) + A(p)) (6)

Ibip
)

A(p) =Ibip(p) * Gy + 2 (7)

where G4 is given by
Galar,y) = e T2, (8)

and x € [-404,404] and y e [-404,404].

The resulting mosaic image I,, has now been processed
by a local tone mapping operator. Local contrast has been
increased. The next step before displaying the result is to
recover three chromatic components per spatial location.
This can be performed by any demosaicing algorithm.

C. Demosaicing

We use the demosaicing algorithm described by Alleysson
et al. [21], which first obtains the luminance image using
a wide-band low-pass filter. Although some high frequen-
cies are removed by this method [22], the filter is suffi-
ciently accurate to well estimate the luminance. We chose
a low-pass filter that removes even more high frequencies
than the one presented in Alleysson et al., as the two non-
linearities applied before already enhance the contours of
the image. The implied difference of Gaussian (DOG) fil-
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tering [12] results in a sharpening effect. In addition, re-
moving high luminance frequencies also reduces noise.
We choose the luminance estimation filter to be Fy,,,:

1 4 6 41
4 16 24 16 4

Fum= 55| 6 24 36 24 6. 9)
416 24 16 4
1 4 6 41

Then
L(p) =Iga(p) >kF‘dem’ (10)
where I,

0 18 the tone mapped CFA image and L represents
the nonlinearly encoded luminance, which we call “light-
ness.” Note that in [21], L corresponds to the luminance,
while here L is nonlinear and corresponds to perceived
lightness. Nevertheless, the properties of the Fourier
spectrum remain the same. We will use the term “light-
ness” to refer to L in the rest of the article.

The chrominance is then obtained by subtracting L
from the mosaiced image I,:

C(p) =Ig(p) - L(p), (11)

where C(p) is also a mosaic and contains the down-
sampled chrominance. In C(p), each pixel contains infor-
mation only for one spectral band and can be separated
into three downsampled chrominance channels using the
modulation functions mp, mg, and mp [see Eq. (12)]. This
is illustrated in Fig. 6.

mp(x,y) = (1 + cos(mx))(1 + cos(my))/4,
mg(x,y) = (1 - cos(mx)cos(my))/2,

mp(x,y) = (1 - cos(mx))(1 — cos(my))/4, (12)

where x,y is the coordinate of a pixel p in the image, with
the upper-left pixel having coordinate 0,0. The chromi-
nance channels are given by

Cl(x7y) = C(.’)C,y) . mR(xyy)>

C2(x,.’)’) = C(x’y) : mG(xyy)’

Fig. 6. (Color online) Chrominance channels are separated be-
fore interpolation.
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Cs(x,y) = Clx,y) - mp(x,y). (13)

In C{,Cy,C3, the missing pixels (having a zero value)
must be reconstructed to recover the full resolution im-
age. This is done using a simple bilinear interpolation. Al-
though more sophisticated methods exist, we deem it suf-
ficient as the chrominances are isoluminant and do not
contain high spatial frequencies [34].

After interpolation, the treated RGB image is obtained
by adding the lightness and the chrominance channels to-
gether:

R(p)=L(p) + Ci(p),
G(p)=L(p) + C5(p),

B(p)=L(p) + C4(p), (14)

where R(p), G(p), B(p) are the RGB channels of the im-
age; L is the lightness [Eq. (10)]; and Cj, Cj, C; are the
interpolated chrominance channels.
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4. RESULTS

We present results obtained with a Canon camera (Canon
EOS 300D) and legacy images. In order to retrieve the
RAW data, we used the free program DCRAW [35], which
can handle RAW formats from nearly all cameras but
does not apply color matricing or white balancing. Thus,
to better illustrate the effect of the tone mapping algo-
rithm alone, we present the results in black and white so
that incomplete color rendering does not influence the vi-
sual results. Figure 2(d) shows a color example obtained
from our algorithm.

To obtain simulated RAW images from legacy images,
we inversed the original nonlinearity assuming a power
function (gamma) [36] of 2.4 and recreated the mosaic ac-
cording to the Bayer pattern.

The results for three scenes representing different dy-
namic ranges is shown in Fig. 7. The left and right images
are legacy images. The image in the middle is a Canon
RAW image. The results of our algorithm are compared
with two center/surround local tone mapping algorithms:
MSRCR (multiscale Retinex with color restoration) devel-

Fig. 7. Comparison of our algorithm with other tone mapping operators. Left column: Low-dynamic-range scene. Middle column:
Medium-to high-dynamic-range scene. Right column: High-dynamic-range scene. First row: Global tone mapping with camera default
setting. Second row: Images processed with MSRCR [30]. Third row: Images processed with the Retinex-based adaptive filter method

[29]. Fourth row: Images processed with our proposed algorithm.



2814 J. Opt. Soc. Am. A/Vol. 24, No. 9/September 2007

oped by Rahman et al. [30] and the adaptive filter method
by Meylan and Sisstrunk [29]. The MSRCR image was
obtained with the free version of the software
“PhotoFlair” using the default settings [37] (which puts
“demo” tags across the image). The globally corrected im-
age (default camera settings) is also shown.

The advantage of our method is that it provides good-
looking images regardless of the characteristics of the in-
put image, while other methods are often restricted to a
set of images having common features (dynamic range,
key, and content). For example, MSRCR provides good
tone mapping when the dynamic range is standard or
slightly high, but it tends to generate artifacts when the
input image has a very high dynamic range such as the
one of Fig. 7, right-hand column, second row. The method
is not able to retrieve all details in the center-right build-
ing, for example. The adaptive filter method [29] does not
have these drawbacks but in general does not sufficiently
increase local contrast in the light areas, which is visible
in all images in the sky regions (Fig. 7, third row). Our
method performs well for all three examples, the sky ar-
eas still have details, and the contrast in the dark areas is
also enhanced.

In addition, another advantage of our method is that it
is quite fast compared with other existing local tone map-
ping algorithms. First, the operation is performed on the
CFA image, which divides the time of computation by
three. Second, the fact that relatively small filters can be
used for tone mapping (see Section 5) ensures that the al-
gorithm has a reasonably low complexity.

5. DISCUSSION

We propose a tone mapping algorithm that is applied di-
rectly to the CFA image. It is inspired by a simple model
of retinal processing that applies two nonlinearities on
the spatially multiplexed chromatic signals. The nonlin-
earities are modeled with a Naka—Rushton function,
where the adaptation parameter is an average of the local
surround. It performs well in comparison with other local
tone mapping algorithms.

Our interpretation of retinal processing is only partly
supported by the literature on retina physiology. How-
ever, there are two processes supporting our hypothesis
that can be found. First, there is a nonlinear process that
occurs postreceptorally. Second, the role of horizontal cells
that perform neighborhood connectivity is important for
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the formation of the center/surround receptive fields
present in the retina. As pointed out in Hood [7] (pp. 519—
520), the formation of receptive fields is not yet com-
pletely understood. In particular, how horizontal cells
modulate the cone responses is still under debate. We
show here that using the horizontal cell responses to
regulate the adaptive nonlinearity gives a good constraint
on the signals and also prevents the appearance of arti-
facts. Finally, the hypothesis that the regulation in the
IPL operates similarly to the one in the OPL is supported
by studies that show a second nonlinearity in chromatic
processing after the coding into opponent channels
[18,19].

Section 4 compared the results of our algorithm with
images obtained with other center/surround methods. We
saw that our algorithm does not suffer from halos nor
graying out and renders different scenes equally well. The
reason why our method is more generally applicable is
due to the fact that it is not based on the same general
equation [Eq. (2)]. Indeed, with traditional methods, the
local information is averaged and subtracted from the
value of the treated pixel. Our algorithm also uses an av-
erage of the surrounding pixel values, given by H or A.
However, it uses it as a variable in the Naka—Rushton
equation (the adaptation factor), which is then applied to
the treated pixel. If the treated pixel lies in a dark area,
the adaptation factor is small and thus the output value
range allocated to dark input values is large (Fig. 4). In a
bright area, the adaptation factor is large and thus the
mapping function between the input pixel value and the
output pixel value is almost linear. This allows us to in-
crease the local contrast in dark areas while still conserv-
ing local contrast in bright areas.

Another advantage of using such a technique is that
the resulting image does not change much with different
filter sizes. This makes our algorithm robust to varying
parameters. In our implementation of the algorithm, we
used oz=3 and o,=1.5. However, other values can be
used without corrupting the results. Figure 8 shows an
example of our method using different filter sizes, (oy=1;
o4=1) for the left image and (oy=3; 04=5) for the right
image. There is no tonal difference between the two re-
sulting images. The slight discrepancy between the two
images is due to the different sharpening effects induced
by the change in filter size.

Our method aim was to achieve pleasing reproductions
of images. This cannot be measured objectively. “Pleas-

Fig. 8. (Color online) Example of our method applied with different filter sizes. Left: Small filters (6z=1 and o,=1). Right: Large filter

((TH=3 and O'A=5).
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ing” can mean different things to different people and is
dependent not only on scene dynamic range and key but
also on scene content. There are no objective criteria, and
pleasantness should be evaluated using psychovisual ex-
periments and human subjects. Previous evaluations of
tone mapping algorithms, however, led to different con-
clusions depending not only on the scene content but also
on the task [38,39]. Here, we provide a comparison with
two other algorithms on three scenes. A few additional
comparisons were published in a conference paper by Al-
leysson et al. [40]. We also made the code available online
[41] so that figures and results are reproducible [42] for
readers who wish to try our method on their own images.

6. CONCLUSION

We present a color image processing workflow that is
based on a model of retinal processing. The principle of
our workflow is to perform color rendering before color re-
construction (demosaicing), which is coherent with the
HVS. Our focus is on the tone mapping part of the general
problem of color rendering. The integration of other ren-
dering operations, such as white balancing and color ma-
tricing, is considered for future work.

Our proposed tone mapping algorithm is performed di-
rectly on the CFA image. It shares similarities with
center/surround algorithms but is not subject to artifacts.
The algorithm is fast compared with existing tone map-
ping methods and provides good results for all tested im-
ages.
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