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Abstract

A secure peer-to-peer communication over an insecure channel without any prior exchanged
key can be established with the help of an authentication step to exchange a public key.
Then, standard methods of public-key cryptography such as RSA can be used to communicate
securely.

In this work, we concentrate on message authentication protocols which require an extra
authenticated channel. We start by describing some possible human communications chan-
nels, such as telephone, and by analyzing them according to some properties, in particular
authentication properties. Then, we recall some message authentication protocols which use
an authenticated extra channel. In addition, we recall different types of authentication. For
instance, we recall biometrics-based systems which use the ability of humans to recognize the
voice of the distant user. We recall also distance bounding-based systems which assumes that
there is no other systems in the “integrity area”.

In a second step, we prove the maximal security of a message authentication protocol
against adversaries and we show that a protocol using k-bit authenticated strings reaches the
maximal security when the distribution among all possible authenticated strings is uniform.
More precisely, we sketch three generic attacks against any message authentication protocol.
Using these results, we study the security of different authentication protocols, either non-
interactive or interactive.

In addition, we propose a new protocol which achieves the same security level against
offline attacks as that of the one used today in many systems, such as SSH or GPG, but
using much less authenticated bits.

Finally, we compare interactive and non-interactive authentication protocols and we study
their usability in different applications.
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Introduction

One key issue in cryptography is to achieve secure peer-to-peer communications over insecure
channels. Chapter 1 describes how to establish such a channel. In shot, using conventional
cryptography, like DES [DES77], it is necessary that the users share a confidential key K.
The only human manner to exchange a private key is to encounter. Phone, mail and email
are not secure. Consequently, the users must meet face to face which can be hard and
expensive. Using the Diffie-Hellman model [DH76] the key establishment has been reduced
to the exchange of authenticated messages. Using public key cryptography, like RSA [RSA78],
we know that it is possible to reduce the problem of establishing a secure communication over
an insecure channel by exchanging public keys in an authenticated way. This work is about
how this exchange is performed.

Different solutions were proposed to authenticate a public key. In Chapter 2 we recall
some of them. In particular, we describe authentication protocol using distance bounding
which is well adapted for devices pairing. We also describe a biometric-based system which
use the ability of human beings to identify a voice. Finally, we recall three systems which use
an extra authenticated channel such as telephone. These three are described in short below.

The most straightforward way to authenticate public keys is a scheme which was formal-
ized by Balfanz et al. [BSSW02]. The proposed protocol is non-interactive and based on a
collision resistant hash function. It simply consists of first sending the message and then au-
thenticating its hashed value. The authenticated value must contains at least 160 bits (to be
collision resistant) which is quite long. Note that this protocol is actually used in OpenSSH
for the server public key authentication, in PGP and GPG for the exchange of personal public
key, and many others.

Gehrmann-Mitchell-Nyberg have proposed in [GMN04] the MANA I Protocol. It allows
to authenticate a message in a non-interactive way using an authenticated string of 16-20
bits only. On the other hand, the security requires strong assumptions on the authentication
channel since the protocol is known to be insecure in other cases. Note that MANA protocols
have been designed for wireless devices such as Bluetooth devices.

Vaudenay proposed in [Vau05] an interactive message authentication protocol based on
Short Authenticated String (SAS). It is shown that a 15-bit SAS provides pretty good se-
curity which is much shorter than the first protocol presented. Note that it uses a weak
authentication channel while MANA requires a stronger one.

The problem of message authentication using extra authenticated channels was also for-
malized by Vaudenay [Vau05]. The present thesis is based on this formalism. Chapter 3
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describes the necessary preliminaries based on this formalism. First, this chapter starts by
describing the adversarial model and defining authenticated channels and message authen-
tication protocols. Then, it recalls some properties of commitment schemes and trapdoor
commitment schemes. In particular, it explains that a commitment scheme can be seen as
a “locked combination safe” which allows a user to commit on a value without revealing it.
Finally, it defines properties of hash functions.

In Chapter 4, we analyze the maximal security of a general message authentication pro-
tocol. First, we consider only one-shot adversaries which can use one instance of each two
peers. Then, we generalize to powerful adversaries that can use several instances of the two
peers, i.e. considering collision attacks. In addition, we prove that a message authentication
protocol is optimal when it uses uniformly distributed authenticated strings.

In Chapters 5 and 6, we discuss the security of the above message authentication proto-
cols. We propose a new non-interactive protocol based on a commitment scheme and weakly
collision resistant hash function. Our protocol allows shorter authenticated strings than the
ones required by the protocol presented by Balfanz et al. [BSSW02]. We prove that our
proposed protocol is optimal and we deduce the non-optimality of the other protocol.

The Vaudenay SAS-based protocol [Vau05] had never been used in a practical implemen-
tation. In Section 6.3, we propose an implementation in OpenSSH which is a straightforward
application. A first advantage of [Vau05] is the fact that users are forced to enter the SAS
since in the other case they can not establish the connection. More precisely, users can not
agreed the key without authentication. A second advantage is the short length, in particular
when users must establish a secure communication quickly. Suppose for example a disaster
cause in a bank and the administrator is abroad. Thus, he must establish a very quick con-
nection with the server using a new generated pair of keys. The administrator is forced to
authenticate the public key quickly. Using the SAS-based protocol, he has just to call the
bank, starts the protocol, and finally types the SAS which has been obtained with the help
of a responsible person.

In this application, the interactivity of the protocol is a problem: Suppose a client would
open a connection with an OpenSSH server using the SAS-based protocol. He requires to
enter the authenticated SAS which is in general transmitted by telephone. Consequently, the
administrator must reply to telephone and transmit the SAS for each new connection in his
park of hosts. Clearly, the administrator becomes quickly overloaded by the fact of having
to transmit many SAS. We have thus to discuss about interactivity and non-interactivity as
it is made in Chapter 7.

Finally, we propose an application of the SAS-based authentication protocol proposed by
Vaudenay [Vau05] in which the interactivity is not a problem. In Section 6.4, we consider file
authentication and in particular peer-to-peer file authentication. Note that a public key is in
reality a file and thus can be authenticated by using this new application. In this example,
the SAS can be exchanged by telephone between the two persons as if they had to exchange
a fingerprint but exchanging only 15 bits instead of the 160 bits of a fingerprint.

12



Chapter

ONE

The Authentication Problem

1.1 The Human Communication Channels

Humans can communicate in different ways, i.e. using different human communication chan-
nels. Depending on the requirements, he chooses one of them. For example, if a human
being needs to reach another human being for urgent matters, he must choose a channel
with high availability and low latency such as a telephone link. But, if he would transfer
an amount of money, he must establish a reliable authentication by going to the desk to
encounter the person of the bank. (Nowadays, he can use the Internet with prior established
security association.)

The security of communication channels can be characterized by some security attributes
which are defined below.

Definition 1 (Security Attributes). Suppose a communication channel between a sender,
called Alice, and a receiver, called Bob. A message m is sent on the input and a message m̂
can be read on the output. We define the following security properties:

Confidentiality assumes that only the legitimate receiver, i.e. Bob, can read the message
m̂.

Integrity assumes that the received message m̂ is the same as the input message m, i.e.
m̂ = m.

Authenticity assumes that only the legitimate sender, i.e. Alice, can input a message m
into the channel. This is often combined with integrity, i.e. m = m̂ can only be issued
by Alice.

Freshness assumes that the received message m̂ was not received before.

Liveliness assumes that a message m which has been sent by Alice will eventually be delivered
to Bob.

13
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Timeliness assumes that a message m which has been send by Alice will be delivered imme-
diately to Bob.

In addition, to compare the different human communication channels, it is necessary to
define other properties which characterize the usability of these channels. These communica-
tion properties are defined below.

Definition 2 (Communication Properties). Suppose a communication channel between a
sender, called Alice, and a receiver, called Bob. We define the following communication
properties:

The cost represents the required amount of money spent to establish the communication
channel and to transmit a message from Alice to Bob.

The availability expresses the fact that the channel can easily be established at any time.

The speed rate represents the amount of data that can be transfered from Alice to Bob for
a fixed time duration.

The latency represents the amount of time between the moment when Alice sends the mes-
sage and the moment when Bob receives it.

Using Definition 1 and Definition 2, it is possible to compare the common human com-
munication channels in a cryptographic way.

Face to face conversation allows perfect authentication, perfect integrity and in certain
cases, confidentiality. In addition, freshness, liveliness, and timeliness are trivially ensured.
However, this channel can have a very high cost if, for example, the two persons are far from
each other. For the same reasons, the availability is also bad. Note that the communication
has no latency but a low speed rate. In conclusion, this human channel achieves high security
but low throughput.

Telephone is like a face to face conversation but allows a third party to spy the commu-
nication. Thus, this channel does not guarantee confidentiality.
On the other hand, it has a much lower cost and a higher availability. In short, it guarantees
authentication assuming that both users can recognize the remote voice.

Mail, like a postcard or a parcel, is not confidential either. It can be easily lost and thus
this channel does not guarantee liveliness.
We can consider that a handwritten mail achieves authentication by assuming that the recip-
ient can identify the writing. As for telephone, this channel guarantees availability but has a
long latency.

Electronic mail is the worst communication channel in terms of security, it protects
nothing by itself.
However, it is the easiest communication channel and its costs is very small (too small if we
consider the spam phenomenon), the availability and the speed rate are very high.

A short overview of the security and communication properties for each human communi-
cation channel is described on Fig. 1.1. Note that it is in fact a trade off between the security
and the human usability. I.e. the more secure is a face to face conversation but it is the less

14



1 - The Authentication Problem

Interactive Non-interactive
Encounter Telephone Mail Email

Authenticity X X X
Integrity X X X
Confidentiality X
Freshness X X X
Liveliness X X
Timeliness X
Cost X X X
Availability X X
Speed rate X
Latency X X X

Figure 1.1. The Common Human Communications Channels

usable. In the other hand, the more usable is the email channel but it is the less secure. For
a specific use, we have to choose the better human communication channel depending on the
security required and the available cost.

Remark 1. Confidentiality is achieved only using a face to face conversation which can be
very expensive in certain cases. However, a phone call, which is very easy to setup world-
wide, achieves authentication assuming that the two speakers can identify the distant one by
recognizing his voice.

1.2 Setup a Secure Communication over an Insecure Channel

One of the main cryptographic issues is the problem of establishing a secure peer-to-peer
communication over an insecure channel. Often, users can use an extra channel which achieves
confidentiality and/or authenticity. In this section, some solutions are analyzed depending
on the extra channel assumptions.

1.2.1 Conventional Cryptography

Using conventional cryptography, it is possible to establish a secure peer-to-peer channel as-
suming that we can establish a private and authenticated key. In fact, we use the Shannon
Model [Sha49] which is depicted on Fig. 1.2. Using this model, confidentiality can be achieved
using symmetric encryption. Symmetric encryption can be done using either stream ciphers,
like E0 [Blu03], or block ciphers, like DES [DES77], AES [AES01], or FOX [JV03]. Authentic-
ity and integrity can also be achieved using message authentication codes (MAC). In general,
MAC can be constructed from stream ciphers or block ciphers, like the One-Key CBC MAC
(OMAC) by Iwata and Kurosawa [IK03], or hash functions, like HMAC by Bellare-Cannetti-
Krawczyk [BCK96]. Note that confidentiality, authenticity and integrity can be achieved at
the same time using a combined mode.

From the previous section, one can note that a face to face conversation is the only
common human communication channel which achieves confidentiality, see Remark 1. These
human communication channels can be very expensive and hard to establish. One would
therefore favor the usage of channels which do not require confidentiality.
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INSECURE
Enc

AUTHENTICATED

Dec
YX

Key K

CONFIDENTIAL

Message
Destination

Source

Source
Key

X

Adversary

Figure 1.2. The Shannon Model [Sha49].

1.2.2 Setting up Secure Channels without Confidential Channel

In Merkle [Mer78] and Diffie-Hellman [DH76], it was shown a way to reduce the confidential
extra channel to an authenticated extra channel. This channel is used to agree on a private
key only by authenticating the exchanged messages. This is described by the Merkle-Diffie-
Hellman model [Mer78, DH76] which is depicted on Fig. 1.3.

INSECURE

Y

AUTHENTICATED

Adversary

Enc

Key K Key K

Dec

ExchangeA ExchangeB

Message
Source

X
Destination

X

Figure 1.3. The Merkle-Diffie-Hellman Model.

An example is the Diffie-Hellman key agreement protocol [DH76] which is depicted on
Fig. 1.4. Each party knows the public parameter g which spans a group G. Alice, resp. Bob,
picks a random number x, resp. y and computes X ← gx, resp. Y ← gy. Then, Alice sends
X to Bob and Bob sends Y to Alice. Alice, resp. Bob, computes Y x, resp. Xy, which are
in fact gxy. Thus, they share a secret key K = gxy. Note that g is chosen such that for any
adversary who knows X and Y it is hard to retrieve x and y (Discrete Logarithm Problem).
Consequently, it is hard to find the key K. On the other hand, without authentication an
adversary can run a man-in-the-middle attack between the two participants, so authentication
is required for this protocol.

1.2.3 Public-Key Cryptography

Using public-key cryptography, it is also possible to relax the private hypothesis (confiden-
tiality) on the extra channel. It can further be assumed to be unidirectional. We obtain
a semi-authenticated key transfer, for example using RSA [RSA78], as depicted in Fig. 1.5.
For instance, it can be used to transfer a private symmetric key and thus establish a secure
communication using an extra channel which achieves authenticity only. Thus, the required
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Alice Bob
pick x pick y

X ← gx X−−−−−−−−−−−−−−→
Y←−−−−−−−−−−−−−− Y ← gy

K ← Y x = gxy K ← Xy = gxy

Figure 1.4. The Diffie-Hellman Key Agreement Protocol.

channel, which before required confidentiality, has been reduced to an authenticated channel.

INSECURE
Enc Dec

YXMessage
Destination

Source
X

AUTHENTICATED

Generator
Key

Adversary

Secret key KsPublic key Kp

Figure 1.5. The Semi-Authenticated Key Transfer Using Public-Key Cryptography.

Remark 1 says that establishing a private channel, i.e. which achieves confidentiality and
authenticity, is hard since it requires a face to face conversation. In addition, it says that
an extra channel which achieves only authenticity can be established simply by telephone.
Thus, we can setup a secure communication over an insecure channel without requiring to
encounter, but simply using telephone by exchanging a public key in an authenticated way.

To conclude, establishing a secure peer-to-peer communication can be reduced to “sim-
ply” exchanging a public key in an authenticated way as described on Fig. 1.5. Note that
RSA [RSA78] requires actually 1024 bits which is still long for authenticated human commu-
nication channels like telephone. We have thus to reduce the amount of authenticated bits by
using protocols and by assuming that a fixed security S is enough, where S is a set contain-
ing the maximal probability of success p, the maximal complexity T , the maximal number of
trials Q (instances). For instance, we can consider T ≤ 270, Q ≤ 210, and p ≤ 2−20.
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Chapter

TWO

Message Authentication Nowadays

In the previous chapter, we have reduced the problem of establishing a secure communication
over an insecure channel to the problem of exchanging a public key in an authenticated way,
e.g. using the telephone. We have also seen that a key is in general 1024 bits long.

In addition, we have seen some human authenticated channels that can be used. For
instance, using telephone as the human authentication channel, it can take long time to
authenticate the 1024 bits as is. Thus, human beings would use more user-friendly systems.
In this chapter, we present protocols which allow to reduce the amount of authenticated data.

Many authentication methods exist and we describe briefly some of them. First, we discuss
authentication methods which use an extra authenticated channel, such as telephone or mail
(see Section 1.1). Then, we discuss about biometrics-based authentication. In particular, we
talk about voice recorded signal that can be exchanged over the insecure channel. This records
can be seen as an authenticated channel with particular assumptions. Finally, we discuss
about distance bounding authentication. These methods check whether the two devices are
alone in a bounded area, called integrity area, by measuring round trip times. Then, they
conclude on an authenticated channel between them since they are ensured that they were
communicating with no third party.

2.1 Protocols Using an Authenticated Channel

In this section, we present some message authentication protocols which can be used to
authenticate a public key Kp by transmitting shorter authenticated strings through an au-
thenticated channel and the complete message through an insecure channel.

Assume that Bob wants to authenticate the public key Kp of Alice with no prior exchanged
keys. She can communicate over an insecure channel and over an extra authenticated channel.
Note that the authenticated channel is expensive and she has to minimize the amount of
authenticated data through them. Assume that the exchange of the public key (without
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authentication) is easy, it can be done for example by email. Many solutions exists for Bob
to authenticate the public key of Alice. In the following, we discuss about three message
authentication protocols and we consider the more general problem of authenticating an
arbitrary message m, instead of a public key Kp (e.g. m = Kp).

Today, the most common way to authenticate a message was presented by Balfanz et
al. [BSSW02]. The protocol is based on a collision resistant hash function. It is depicted on
Fig. 2.1. The sender of the message m, Alice, sends it to the recipient, Bob, using the insecure
channel. Recall that m is not private. Note that we put a hat on the non authenticated values
since they can differ from sent messages. Alice, resp. Bob, computes the hash value h, resp.
ĥ, of the message m, resp. of the received message m̂. Now, Alice has to authenticate the
hashed value h to Bob. Comparing the received value h and his computed value ĥ, Bob can
check whether the received message m̂ has been send by the owner. One advantage of this
protocol is that it is non-interactive. On the other hand, due to the non-interactivity, offline
attacks are possible and are often very dangerous. Collision attacks works with a complexity
of O(2k/2) where k is the size of h. Thus, the authenticated message must contains at least
160 bits to avoids attacks using the birthday paradox.

Alice Bob
input: m

m−−−−−−−−−−−−−−→ ĥ← H(m̂)

h← H(m)
authenticateAlice(h)−−−−−−−−−−−−−−→ check h = ĥ

output: Alice, m̂

Figure 2.1. Non-Interactive Message Authentication Using a Collision Resistant Hash Func-
tion.

To reduce the size of the authenticated strings, Gehrmann-Mitchell-Nyberg [GMN04] have
proposed the MANA I protocol which is depicted on Fig. 2.2. As in [BSSW02], the sender of
the message m Alice sends it to the recipient Bob using the insecure channel. As before, this
step can be done for example by email. Then, she picks a key K uniformly in {0, 1}k and
computes µ← HK(m). Finally, she authenticates K||µ to Bob. Bob can also check whether
the hashed value of the received message m̂, i.e. HK(m̂), is equal to µ. The security requires
a “stronger” authenticated channel since the protocol is known to be insecure with “weak”
authentication only. Note that the randomness of the key K avoids collision attacks. Indeed,
an adversary must run several instances of the protocol which is easy to detect. It allows to
authenticate a message in a non-interactive way using only a 16-20 bits authenticated string.

Finally, an interactive message authentication protocol based on Short Authenticated
String (SAS) which uses very few authenticated bits was proposed by Vaudenay [Vau05]. His
protocol is depicted on Fig. 2.3. The sender of the message m Alice, resp. the recipient Bob,
picks a random value RA, resp. RB. Alice sends the message m to Bob and commits on his
value of RA. Note that this protocol uses a tag-based commitment scheme in which the tag m
is revealed, but the value RA is kept hidden to Bob. As before, the message can be exchanged
for example by email from Alice to Bob. Due to the commitment, Alice cannot change his
value of RA. Bob sends his random value RB and finally Alice sends the decommit value.
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Alice Bob
input: m

m−−−−−−−−−−−−−−→
pick K ∈U {0, 1}k

µ← HK(m)
authenticateAlice(K||µ)−−−−−−−−−−−−−−→ check µ = HK(m̂)

output: Alice, m̂

Figure 2.2. The MANA I Protocol.

Both can compute its local SAS value. Alice authenticates, e.g. by telephone, the SAS value
to Bob which can check whether it is valid. It is shown in [Vau05] that a 15-bit SAS using
weak authentication provides pretty good security.

Alice Bob
input: m

pick RA ∈U {0, 1}k pick RB ∈U {0, 1}k
(c, d)← commit(m, RA)

m||c−−−−−−−−−−−−−−→
RB←−−−−−−−−−−−−−−
d−−−−−−−−−−−−−−→ R̂A ← open(m̂, ĉ, d̂)

SAS← RA ⊕ R̂B
authenticateAlice(SAS)−−−−−−−−−−−−−−→ check SAS = R̂A ⊕RB

output: Alice, m̂

Figure 2.3. Interactive SAS-based Message Authentication.

2.2 Protocols Using Biometric Signals

A method to setup secure communications based on vocal biometric signals was proposed by
Wu-Bao-Deng [WBD05]. The protocol is depicted on Fig. 2.4. It allows Alice to authenticate
Bob and to setup a secret session key. Note that it uses Diffie-Hellman values to establish
the secret session key. These values are authenticated using voice signals and agreed with the
help of a timer which allows to detect man-in-the-middle attacks.

In the proposed protocol, Alice, resp. Bob, chooses a value x, resp. y, and computes her
Diffie-Hellman value X ← gx, resp. Y ← gy. Alice, resp. Bob, computes their local key by
hashing their Diffie-Hellman value, i.e. KA ← h(X), resp. KB ← h(Y ). Then, Alice records
a “challenge” CA which is authenticated by her voice and sends the encrypted value ECA

to
Bob. The encryption is done using her local key KA. Note that this notion of “challenge”
is quite trivial here. The only challenge is indeed, for Bob, to make an answer which is
consistent with the “challenge” from Alice. For instance, the “challenge” can be the sentence
“what did you wrote in your last mail?”. Bob makes the same operations and sends ECB

to Alice. Note that each recorded sound must be as least of duration T . We stress that at
this time nobody can listen to the challenges since they are encrypted and the keys are kept
secret. Alice starts a clock and reveals her Diffie-Hellman value X. Thus, Bob computes KA,
i.e. KA ← h(X̂), decrypts the challenge of Alice, listens to it and checks the voice identity. If
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the voice is not the one of Alice, Bob stops the protocol, otherwise he records a response RB

to the challenge CA. Bob can now compute the common key KBA using the Diffie-Hellman
protocol, i.e. KBA ← X̂y. He encrypts the response using the common key KBA, sends the
encrypted value and reveals his Diffie-Hellman value Y . When Alice receives the values, she
stops the clock. She can now deduce the common key KAB, i.e. KAB ← Ŷ x, and the key
of Bob, i.e. KB ← h(Ŷ ). Now, she can listen to the challenge of Bob ĈB and the response
of Bob R̂B to her challenge CA. Finally, she checks the time elapsed and the identity of the
two sounds recorded by Bob and whether the response is consistent with the challenge. If no
attack occurred, she outputs the identity, i.e. Bob, and the Diffie-Hellman session key.

Alice Bob
pick x ∈U {0, 1}k pick y ∈U {0, 1}k

X ← gx Y ← gy

KA ← h(X) KB ← h(Y )
CA ← record()

ECA
← EncKA

(CA)
ECA−−−−−−−−−−−−−−→ CB ← record()
ECB←−−−−−−−−−−−−−− ECB ← EncKB (CB)

start(clk1) X−−−−−−−−−−−−−−→ K̂A ← h(X̂)
KBA ← h(X̂y)

ĈA ← DecK̂A
(ÊCA)

check identity(ĈA)

RB ← record()

ta ← stop(clk1)
ERB

||Y←−−−−−−−−−−−−−− ERB ,KBA ← EncKBA(RB)

K̂B ← h(Ŷ )
KAB ← h(Ŷ x)

ĈB ← DecK̂B
(ÊCB

)
R̂B ← DecKAB

(ÊRB
)

check ta, ĈB , R̂B

output: Bob,KAB output: KBA

Figure 2.4. Semi-Authenticated Key Agreement Using Voice Records.

To understand the role of the timer, we present the man-in-the-middle attack depicted
on Fig. 2.5. An adversary can obtain a challenge from Alice CA simply by answering a
challenge C ′

B since it is encrypted and thus cannot be verified by Alice at this moment.
Alice responds with her Diffie-Hellman value X and gives CA to any adversary. Note that
the adversary cannot mimic Bob, but he can encrypt an old challenge of Bob (replay), i.e.
Cold

B . The adversary has now to respond to the challenge of Alice. It cannot mimic Bob
and consequently he has to request Bob to respond to the challenge CA from Alice. He
proceeds simply by impersonating Alice to Bob, submitting the challenge CA and obtaining
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the response RB. Finally, the adversary answers to Alice with the response RB (encrypted)
from Bob.

Alice Adversary Bob
KA KZ KB

ECA−−−−−→
ÊCB←−−−−− ÊCB

← EncKZ
(Cold

B )
start(clk1) X−−−−−→ CA ← DecKA

(ECA
)

ÊCA ← EncKZ (CA)
ÊCA−−−−−→
ECB←−−−−− CB ← record()

Z−−−−−→ listen(CA)

RB ← DecKB
(ERB

)
ERB

||Y←−−−−− RB ← record()

ta ← stop(clk1)
ÊRB

||Z←−−−−− ÊRB
← EncKZ

(RB)
check ta, ĈB , R̂B

output: Bob,KAZ output: KBZ

Figure 2.5. Man-In-The-Middle Attack (Simplified Version).

Note that the time elapsed ta corresponds to the time for Bob to record the challenge CB,
to listen to the challenge from Alice CA, to record the response RB, and some duration δ for
computations and transmissions, i.e. ta = |CB|+ |CA|+ |RB|+ δ ≥ 3T + δ. Without attack,
Bob does not have to record his challenge during this time since it has been recorded before,
i.e. ta = |CA| + |RB| + δ ≥ 2T + δ. Using the timer, Alice can detect man-in-the-middle
attacks. This attack shows the important role of the timer in this protocol.

We note that this protocol is very sensitive to the time in which Bob responds. Suppose
Bob has make a mistake in his record sample and records another one. He have listened to the
challenge of Alice and recorded two samples. Thus, the time elapsed seems to be a man-in-
the-middle attack. In conclusion, this protocol is quite hard to implement in a user-friendly
way since the timing is constraining for Bob.

2.3 Protocols Using Distance Bounding

Brands and Chaum [BC93] have proposed a practical method to upper-bound the physical
distance between two devices. For instance, during an authentication phase between an
employee and an access control, the system would like to be ensured that the employee is near,
i.e. a few meters. The proposed principle is quite simple. It consists of a challenge-response
using only one bit on each message. The verifier V sends a bit (challenge) and the prover P
replies immediately with a bit (response). They assume that electronic devices which play
the role of prover can have very short timings between the reception of a challenge and the
sending of the corresponding response. The verifier V has simply to measure the time elapsed
between the sending of the challenge and the reception of the response. Knowing the time
elapsed, it can easily deduce the maximal distance between them. Two attacks are described
in [BC93]: the mafia fraud which is a man-in-the-middle attack where the adversary is a
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fraudulent verifier at the same time as a fraudulent prover and an attack in which the prover
P sends bits out too soon. Solutions for preventing both attacks are proposed in [BC93] and
the final protocol proposed is depicted on Fig. 2.6.

P V
∀i ∈ 1..k mi ∈R {0, 1} ∀i ∈ 1..k αi ∈R {0, 1}

(c, d)← commit(m1|| · · · ||mk) c−−−−−−→

Begin of rapid exchange
αi←−−−−−−

βi ← α̂i ⊕mi
βi−−−−−−→ m̂i ← β̂i ⊕ αi

End of rapid exchange

m← α1||β1|| · · · ||αk||βk

σ ← sign(m)
d||σ−−−−−−→ m← α1||β̂1|| · · · ||αk||β̂k

check (c, d) = commit(m̂1|| · · · ||m̂k)
check σ̂ = sign(m)

Figure 2.6. Distance-Bounding Protocol.

Based on this distance upper-bounding, Cagalj, Capkun and Hubaux [CCH05] have pro-
posed a key agreement protocol for wireless network, in particular for peer-to-peer commu-
nication. In the previous protocol, it is not clear how the prover should sign the message.
Cagalj, Capkun and Hubaux [CCH05] propose a method which only need authentication.
The protocol is depicted on Fig. 2.7.

Brands and Chaum [BC93] proposed a method that prevents frauds where an adversary
runs a man-in-the-middle attack between a legitimate prover and legitimate verifier. Frauds
where a malicious prover and an adversary collaborate to cheat a verifier have been left
opened. Bussard and Bagga [BB05] propose a solution for preventing both types of attacks.

Distance-bounding authentication cannot be used through the Internet since users are in
general far and some others users are closer to the distant one (with very high probability).
In general, this not very useful for wired links.

In conclusion, this method is not useful for authentication through a large network, but it
is well adapted for local wireless networks such as mobile phones, headset or PDA’s which are
very close. We don’t go more in detail into distance bounding protocols since we concentrate
on general methods to do worldwide authentication.
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Alice Bob
input: IDA, gXA input: IDB , gXB

Pick NA, RA ∈U {0, 1}k Pick NB , RB ∈U {0, 1}k
mA ← 0||IDA||gXA ||NA mB ← 1||IDB ||gXB ||NB

(cA, dA)← commit(mA) (cB , dB)← commit(mB)

(c′A, d′A)← commit(0||RA)
cA||c′A−−−−−−→ (c′B , d′B)← commit(1||RB)
cB ||c′B←−−−−−−

dA−−−−−−→ m̂A ← open(ĉA, d̂A)
Verify 0 in m̂A

m̂B ← open(ĉB , d̂B) dB←−−−−−− iB ← NB ⊕ N̂A

Verify 1 in m̂B

iA ← NA ⊕ N̂B

Begin of Distance Bounding Phase
β0 = 0

αi ← RA,bit i ⊕ iA,bit i ⊕ β̂i−1
αi−−−−−−→
βi←−−−−−− βi ← RB,bit i ⊕ iB,bit i ⊕ α̂i

End of Distance Bounding Phase

d′A−−−−−−→ 0||R̂A ← open(ĉ′A, (d̂′A)

1||R̂B ← open(ĉ′B , (d̂′B)
d′B←−−−−−−

îB,bit i ← αi ⊕ β̂i ⊕ R̂B,bit i îA,bit 1 ← α̂1 ⊕ R̂A,bit 1

îA,bit i ← α̂i ⊕ βi−1 ⊕ R̂A,bit i

check iA = îB check iB = îA
check integrity region check integrity region

output: ˆIDB, iA output: ˆIDA, iB

Figure 2.7. Key Agreement Protocol Using Distance Bounding.
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Chapter

THREE

Preliminaries

This chapter explains and defines the necessary prerequisites. Definitions and formalism are
used in the following chapters and thus need to be recalled. Note that the formalism used in
this thesis was published by Vaudenay [Vau05].

The considered model is a communication network made up of devices which use insecure
broadband communication channels between them. Note that “device” is a generic term
for communication entities. For instance, a device can be a personal computer, a mobile
phone, or a satellite antenna. In our model, devices can in addition use narrowband channels
which can be used to authenticate short messages, i.e. short authenticated strings (SAS). We
consider that a verifier Bob would authenticate a message m from a claimant Alice using the
model depicted in Fig. 3.1. A device is located on a network node n of a given identity IDn.

AUTHENTICATED

INSECURE
Alice Bob

Adversary

Figure 3.1. Message Authentication Protocol Channels (General) Model

In addition, it can run several instances which are formally denoted by a unique instance tag
πi

n.

3.1 Adversarial Model

We assume that adversaries have full control on the broadband communication channel.
Indeed, an adversary can read messages from the channel, he can prevent a message from
being delivered, he can delay it, replay it, modify it, and change its recipient address.

The security model is based on Bellare-Rogaway [BR93] which places the adversary at
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the center of the network. The adversary can make queries to any instances on any nodes.
He has full control on which node launches a new instance of a protocol, on the input of
the protocol, and on which protocol instance runs a new step of the protocol. Namely, we
assume that the adversary has access to a launch(n, r, x) oracle in which n is a node of the
network, r is a character (i.e. a role to play in the protocol), and x is the input of the protocol
for this character. This oracle returns a unique instance tag πi

n. Since a node can a priori
run concurrent protocols, there may be several instances related to the same node n. We
restrict ourselves to 2-party protocols so that there are only two characters Alice and Bob
in protocols. Any node can play any of these characters. The adversary also has access to
oracles

• execute(πi
p, π

j
q) which runs the full protocol with a given instance pairs and returns the

full transcript of protocol messages (this models passive attacks);

• send(πi
p,m) which sends a message m to a given instance and returns a message m′

which is meant to be sent to the other participant (this models active attacks).

For example, a protocol with input x and y can be run on node A and B respectively as
follows.

1. π1
A ← launch(A,Alice, x)

2. π1
B ← launch(B, Bob, y)

3. m1 ← send(π1
A, ∅)

4. m2 ← send(π1
B,m1)

5. m3 ← send(π1
A,m2)

6. ...

until a message is a termination message. Note that the Bellare-Rogaway [BR93] model
considers additional oracles which are shortly described below.

• reveal(πi
n) which reveals the session key sk to the adversary if the instance πi

n have
accepted them before. This query models the loss of the session key and can be used
to show the consequences on others instances.

• corrupt(n) which corrupts the collection of instances related to the node n. This query
models the corruption of a node (all instances), for example a user-password has been
stolen or a “Trojan horse” has been installed on the device on node n.

• test which is specific to the semantic security of key agreement protocols. This query
is used to measure the probability of success of an adversary.

These requests are not relevant in this paper since we never use long-term secrets and the
output of the protocols are not secret.

By convention, we describe protocols by putting a hat on the notation for received mes-
sages which are not authenticated since they can differ from sent messages in the case of an
active attack.
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3.2 Authenticated Channels

When referring to “channel”, we refer by default to an insecure broadband channel without
any assumption. As mentioned before, the devices can use an authenticated channel.

An authenticated channel is related to a node identity ID. Formally, an authenticated
channel from a node n has an identifier IDn. It allows to the recipient of a message to know
the identity of the node from which the message has been sent as is. Note that an adversary
cannot modify it (i.e. integrity is implicitly protected), but she can delay it, remove it, replay
it, and of course read it. Precisely, an authenticated channel does not provide confidentiality.

By convention, we note authenticateIDn(x) a message x which has been sent from node n
through the authenticated channel.

The send oracle maintains unordered sets of authenticated messages in every channel IDn

from node n. Only send oracles with a πi
n instance can insert a new message in this set. When

a send oracle is queried with any instance and any message authenticateIDn(x), it is accepted
by the oracle only if x is in the set related to channel IDn. Note that concurrent or successive
instances related to the same node write in the same channel, i.e. in the same set. Thus,
when an instance πi

n sends a message, the recipient of this message can only authenticates
the node from which it has been sent, i.e. n, but not the connection to the right instance,
i.e. i.

For simplicity, we assume that the input or output to the send oracle are either authen-
ticated or non-authenticated messages, but not both. Namely, protocols do not concatenate
authenticated and non-authenticated messages.

3.2.1 Weak Authenticated Channels

By default, authenticated channels without any other assumption are called weak. This means
that an adversary can delay a message, remove it, or replay it. In particular, the owner of
the message has not the insurance that the message has been delivered to the recipient.

3.2.2 Stronger Authenticated Channels

In some cases we need special assumptions on the authenticated channel. Thus, we can
consider stronger authenticated channels, namely channels in which additional properties are
achieved. In the following, we propose some possible properties that can be assumed on a
stronger authentication channel.

Stall-free transmission assumes that when a message is released by a send oracle either it
is used as input in the just following send oracle query (either authenticated or not) or
it is never used.

Transmission with acknowledgment assumes that messages are released with a destina-
tion node identifier and the sender can check whether an instance at the destination
node has received the message or not.

Listener-ready transmission assumes that the sender can check if an instance at the des-
tination node is currently ready to listen to the authenticated channel.
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Interactive Non-interactive
Encounter Telephone Mail Email Voice record

Stall-free X X
Acknowledgment X X
Listener-ready X X
Immediate delivery X

Figure 3.2. Stronger Properties of Human Authenticated Channels

Transmission with immediate delivery assumes that an input message of a send oracle
is immediately delivered to the recipient.

3.2.3 Examples

As seen in Section 1.1, a face to face conversation and a telephone call achieve authen-
ticity. In addition, these channels achieve some of the stronger properties described above.
Suppose two persons would communicate. When the first person starts talking, he knows
that the second one is listening (listener-ready). When one talks to the other one, he know
that the message has not been recorded since interactivity implies coherent conversations
(stall-free). Humans can also sense if the other one has listened to the message (acknowledg-
ment). Finally, when a person talks face to face with another one, he has the insurance that
the another one has received immediately the sound (immediate delivery). Using telephone,
this is not the case: sometimes we feel a delay between the moment when one starts to speak
and the other hears. Often this delay brings collisions of voices.

A mail can be stalled and released in a different order. The sender has no confirmation in
general that the mail has been received (except using a registered mail). Finally, the recipient
may not be ready to receive it. Thus, a conventional mail achieves none of these properties
and a registered mail is a transmission with acknowledgment only.

An electronic mail is worst in term of security as a mail and also achieves none of these
properties. Note that an email without any cryptographic appendix tools such as a GPG
signature is in fact not an authenticated channel since it can easily be forged.

A voice record achieves none of these properties since the message could be a recorded
one. The recorder has no confirmation that the destination has heard it. The recipient is in
general not ready to listen.

It is clear that mail, electronic mail and voice record are not delivered immediately.

3.3 Message Authentication Protocols

A message authentication protocol has an input m on the side of the claimant Alice and
nothing on the side of the verifier Bob. It has an output ˆID||m̂ on Bob’s side and nothing
on Alice’s side. Authentication is successful if the output is ˆID = IDA and m̂ = m, meaning
that m̂ coming to Bob was authenticated as sent by a node of identity IDA.

We call a protocol non-interactive if only it uses messages send by Alice to Bob. Otherwise,
we say that the protocol is interactive.
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On a global perspective, several launch(Ak, Alice,mk) and several launch(B`,Bob, ∅) can
be queried. These queries create several πik

Ak
instances of Alice (authentication claims) and

several πj`
B`

instances of Bob (authentication verifications). We may have a perfect matching
between the k’s and `’s such that related instances have matching conversations which fully
follow the protocol specifications, and the πj`

B`
ends with output IDAk

||mk for the matching
k. In any other case, we say that an attack occurred.

Attack Definition. We say that an attack is successful if there exists at least an instance
πj`

B`
which terminated and output ˆID||m̂ such that there is no k for which ˆID = IDAk

and
m̂ = mk. Note that many protocol instances can endlessly stay in an unterminated state or
turn in an abort state.

We call one-shot attacks the attacks which launch a single instance of Alice and Bob. We
call attacks the general attacks that can use several instances of Alice and Bob. The attack
cost is measured by

• the number Q of launched instances of Alice and Bob, i.e. the online complexity.

• the additional complexity C, i.e. the offline complexity.

• the probability of success p.

An attack of cost (Q,C, p) is cheaper than an attack of cost (Q′, C ′, p′) if Q ≤ Q′, C ≤ C ′,
and p ≥ p′, but note that some attacks are incomparable in terms of cost without any more
implementation assumptions.

Here is a useful lemma taken from [Vau05].

Lemma 1. We consider a message authentication protocol with claimant Alice and verifier
Bob in which a single SAS is sent. We denote by µA (resp. µB) the complexity of Alice’s (resp.
Bob’s) part. We consider adversaries such that the number of instances of Alice (resp. Bob)
is at most QA (resp. QB). We further denote T0 and p0 their time complexity and probability
of success, respectively. There is generic transformation which, for any QA, QB, and any
adversary, transforms it into a one-shot adversary with complexity T ≤ T0 + µAQA + µBQB

and probability of success p ≥ p0/QAQB.

Assuming that no adversary running a one-shot attack has a probability of success larger
than p, using Lemma 1, we can upper bound the probability of success of an attack which
uses QA, resp. QB, instances of Alice, resp. Bob. More precisely, it has a probability of
success at most QAQBp.

3.4 Commitment Schemes

A commitment scheme can be seen as a “locked combination safe”. When Alice would commit
on a message m, she placed m into the “safe” and closed it. The safe is also the commit object
c and can be given to another party. The message is revealed only when the combination
is known, i.e. the decommit d is revealed. Obviously, the message m cannot be known by
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others party prior its opening, i.e. the “locked safe” is “hiding”, and cannot be modified by
Alice, i.e. the “locked safe” is “binding”.

We can formalize a commitment scheme by two algorithms commit and open. For any
message m we have (c, d) ← commit(m). The c value is called the commit value and the d
value the decommit value. Knowing both c and d, the message can be recovered using the
open oracle, i.e. m← open(c, d). As a “locked safe”, a commitment scheme should be hiding,
meaning that for any c, it is hard to deduce any information about the corresponding message
m, and binding, meaning that one cannot find c,d,d′ such that (c, d) and (c, d′) open to two
different messages.

We also introduce keyed commitment schemes which have in addition a setup oracle to
initialize a pair of keys, i.e. (Kp, Ks) ← setup(). The public key Kp is used in commit and
open oracles. Note that Kp may be empty.

3.4.1 Tag-Based Commitment Model

Tag-based commitment schemes are particular commitments schemes in which the message x
is composed of two parts: a known part m called tag and an hidden part r. Let k be the bit
length of the hidden value r. The setup algorithm is the same as for tag-less commitments,
but the two algorithms commit and open are redefined. The three algorithms are finally de-
fined as follows.
Setup algorithm. It yields a pair of keys (Kp,Ks).
Commit algorithm. For any pair of keys (Kp,Ks), any tag m, and any value r we have
(c, d)← commit(Kp,m, r).
Open algorithm. From Kp, c, d and the tag m, the hidden value r can be recovered using
the open oracle, i.e. r ← open(Kp, m, c, d).

Standard commitment schemes, as previously defined in which the message m′ is kept
hidden, can be constructed using a tag-based commitment scheme with an empty tag, i.e.
m =⊥, and an hidden value equals to the conventional message, i.e. r = m′. We have finally
x = m||r = m′.

3.4.2 Completeness, Hiding, and Binding Properties

We define here the completeness, hiding and binding properties for tag-based commitment
schemes.

Any commitment scheme must clearly satisfy the completeness property, i.e. a commit
value c and a decommit value d which has been yield by the commit algorithm with input m
and r would open to r. More formally, the completeness property is defined as follows.

Completeness property. For any pair of keys (Kp,Ks), any tag m, any value r, and any
(c, d)← commit(Kp,m, r), we have r = open(Kp,m, c, d)

In addition, commitments schemes should be hiding, i.e. the commit value c reveals no
information about the hidden value r. More formally, the hiding property is defined as follows.
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Hiding property. For any pair of keys (Kp,Ks), any tag m, any values r0, r1, and any
(c, d)← commit(Kp,m, rb), c gives no information on the random binary value b.

We defeat the hiding property with the semantic hiding (SH) game which is described on
Fig. 3.3: the adversary A selects a tag m and two hidden values r0 and r1 and sends them
to the challenger C. The challenger flips an unbiased coin b and commits to (m, rb). Given
the commit value the adversary guesses b and succeeds if the guess is correct. The scheme is
(T, εh)-semantically hiding if any adversary A bounded by a complexity T has a probability
of success at most 1

2 + εh.

A C
Kp←−−−−−−−−−−−−−− (Kp,Ks)← setup()

select m, r0, r1
m||r0||r1−−−−−−−−−−−−−−→

pick b ∈ {0, 1}
c←−−−−−−−−−−−−−− (c, d)← commit(Kp, m, rb)

b̂← guess on b

Winning condition: b̂ = b

Figure 3.3. SH Game.

We also can defeat the hiding property with the full hiding (FH) game which is described
on Fig. 3.4: The adversary picks a tag m and sends it to the the challenger C. C picks a
hidden value r ∈ {0, 1}k and commits on (m, r). C reveals the value c to the adversary A. The
adversary guesses r and succeeds if the guess is correct. The scheme is (T, εh)-fully hiding if
any adversaries A bounded by a complexity T has a probability of success at most 2−k + εh.

A C
Kp←−−−−−−−−−−−−−− (Kp, Ks)← setup()

select m
m−−−−−−−−−−−−−−→

pick r ∈ {0, 1}k
c←−−−−−−−−−−−−−− (c, d)← commit(Kp,m, r)

r̂ ← guess on r
Winning condition: r̂ = r

Figure 3.4. FH Game.

Note that a scheme is perfectly hiding if it is (∞, 0)-hiding.

Lemma 2 ([Vau05]). There exists a (small) constant v such that for any T and εh, a (T +
v, εh)-semantically hiding scheme is a (T, 2εh)-fully hiding commitment scheme.

Obviously, a (T + v, εh)-fully hiding commitment scheme is (T, εh)-semantically hiding.
Hence, the two notions of hiding commitment schemes are essentially equivalent.

In addition, commitments should be binding, i.e. an adversary which has committed on
a value with c can not opens to two different hidden values r0 and r1. More formally, the
binding property is defined as follows.
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Binding property. For any pair of keys (Kp,Ks) and any adversary A bounded by a com-
plexity T , there exists a small ε such that A cannot find (m, r0, r1, c, d0, d1) where
open(Kp,m, c, db) yields rb respectively for b = 0 and b = 1 and r0 6= r1 with probabil-
ity bigger than ε.

The semantic binding (SB) game of Fig. 3.5 must be hard, i.e. for any tag m and any commit
value c, it is hard to find two decommit values d and d′ such that r ← open(Kp,m, c, d) and
r′ ← open(Kp,m, c, d′) with r 6= r′. The scheme is (T, εb)-semantically binding if given m
and c any adversaries A bounded by a complexity T has a probability to find two decommit
values d and d′ which is at most εb.

A C
Kp←−−−−−−−−−−−−−− (Kp,Ks)← setup()

select m, c, d, d′
m||c||d||d′−−−−−−−−−−−−−−→ r ← open(Kp,m, c, d)

r′ ← open(Kp,m, c, d′)
Winning condition: r, r′ 6=⊥ and r′ 6= r

Figure 3.5. SB Game.

We can also define the full binding (FB) game. As described on Fig. 3.6, it works as
follows: the adversary A selects a tag m and a commit value c. Then, he sends it to the
challenger C. C picks a random value r and sends it to A. The adversary A proposes a
decommit value d and succeeds if it opens to r, i.e. r = open(Kp,m, c, d). The scheme is
(T, εb)-fully binding if any adversaries A bounded by a complexity T has a probability of
success at most 2−k + εb.

A C
Kp←−−−−−−−−−−−−−− (Kp,Ks)← setup()

select m,c
m||c−−−−−−−−−−−−−−→

r←−−−−−−−−−−−−−− pick r ∈ {0, 1}k
d−−−−−−−−−−−−−−→ r̂ ← open(Kp, m, c, d)

Winning condition: r̂ = r

Figure 3.6. FB Game.

Note that a scheme is perfectly binding if it is (∞, 0)− binding.

3.4.3 Ideal Commitment Model

The notion of ideal commitment model describes a scheme which is perfectly hiding and
perfectly binding.

For instance, an ideal commitment scheme can be implemented using a trusted third party
(TTP) as follows.
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The commit(m) algorithm consists of sending the message m securely to the TTP. The
TTP binds it to a unique commit value c, inserts (c, m) in a database with a protection flag
and returns c to the owner. There is no decommit value.

4. c

3. c

2. store (c, m)protected in the database

1. commit(m)

BobAlice

TTP

Figure 3.7. Ideal Commitment: Commit Algorithm.

The open(c) algorithm is in fact a call to the TTP. The TTP clears the protection flag of
(c,m) which becomes available for anyone.

2. clear protection flag on (c, m)

Alice Bob

TTP

4. m

3. open(c)

1. clear(c)

Figure 3.8. Ideal Commitment, Decommit Algorithm.

Ideal commitment can be also implemented using the notion of universal composable
commitment schemes as proposed by Damg̊ard and Nielsen in [DN02]. Canetti and Fischlin
in [CF01] propose another commitment scheme which behaves like an “ideal commitment
service”. It is based on the common reference string model (CRS), see after, where all parties
uses or can access to the same common string.

3.4.4 Extractable and Equivocable Commitment Schemes

We define an extractable commitment scheme as an extension of a general tag-based com-
mitment scheme in which there is an additional deterministic algorithm extract. With inputs
m and c, the extract algorithm yields a r value, i.e. r ← extract(Ks,m, c) whenever there
exists d which opens to r using r ← open(Kp,m, c, d). Note that extractable commitments
are perfectly binding since for a given m and a given c, only one r can be yield by the ex-
tract algorithm. Thus, there exists only one d and any adversary looses the SB game with
probability 1.

We define an equivocable commitment scheme as an extension of a tag-based commitment
scheme in which there are two additional algorithms commit and equivocate. With input
m, the commit algorithm yields a fake commit value c and an information value ξ using the
secrete key Ks, i.e. (c, ξ) ← commit(Ks,m). Using Ks, and with inputs (m, r, c, ξ) where
c and ξ are outputs of commit algorithm, the equivocate algorithm yields a decommit value
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d ← equivocate(Ks,m, r, c, ξ) such that (m, c, d) opens to the r value. Assume that for any
Kp||Ks and any m, the distribution of fake commit values are identical to the distribution of
real commit values for any r, equivocable commitments are perfectly hiding since a c can be
generated before and independently of the hidden value r.

Adversaries playing the SH, FH, SB, or FB games may have access or not to oracles. For
extractable commitments, they may query an extract(Ks, ·, ·) oracle, except on the target tag
m. (Note that they have no access to Ks, but the oracle has.) For equivocable commitments,
they may query commit(Ks, ·) and the related equivocate(Ks,m, ·, c, ξ) oracles, except on the
target tag m, but cannot see the value ξ. (Namely: an oracle equivocate(Ks,m, ·, c, ξ) is
created by commit(Ks, ·) so that Ks and ξ remain hidden to the adversary.)

3.4.5 Trapdoor Commitment Model

The notion of trapdoor commitment was introduced by Brassard-Chaum-Crepeau [BCC88].
We define (tag-less) (T, ε)-trapdoor commitment schemes by four algorithms setup, commit,
open, and equivocate. The first three work as before. The algorithm equivocate defeats
the binding property by using the secret key Ks. There is no fake commitment algorithm.
Indeed, the algorithm equivocate needs no additional information except Ks. Note that this
primitive is a particular case of strongly equivocable commitment as described by Damg̊ard-
Groth [DG03].

More precisely, for any (Kp,Ks)← setup(), a trapdoor commitment scheme is such that

Commitment properties. The algorithms setup, commit and open form a tag-less commit-
ment scheme which satisfies the completeness property, which is perfectly hiding, and
which is (T, ε)-binding.

Trapdoor property. For any pair of keys (Kp,Ks) and any message m, the two distribu-
tions

(c, d)← commit(Kp,m)

and (
c ∈U C, d← equivocate(Ks,m, c)

)

are indistinguishable.

For instance, a trapdoor commitment based on the discrete logarithm problem was pro-
posed by Boyar and Kurtz [BK90]. Another trapdoor commitment scheme was proposed by
Catalano et al. [CGHGN01] which is detailed in the next section.

Trapdoor commitment schemes are perfectly hiding and computationnaly binding com-
mitment schemes. Note that it is impossible to distinguish whether a committed value and
its corresponding decommit value, i.e. (c, d) have been yield by using the standard commit
algorithm or by using the trapdoor, the equivocate algorithm, and choosing c uniformly at
random.

In the Damg̊ard-Groth construction, adversaries can query equivocate(Ks, ·, ·, ·) oracle
(except on the selected c). In the Boyar-Kurtz and Catalano et al. constructions, they
cannot.
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3.4.6 Examples

Extractable Commitment Model Using a Random Oracle. Extractable commit-
ment schemes can be designed from a random oracle H. Such a schemes were defined
in Pass [Pas03]. The random oracle H yields from any input d a value c ← H(d), with
c ∈ {0, 1}h. The setup() algorithm actually returns no key at all.

The commit(m, r) algorithm with input hidden value r in {0, 1}k picks a random value e
in {0, 1}`, builds d← r||e, and call the random oracle c← H(m||d).

The open(m, c, d) algorithm simply extracts r from d and checks that c = H(m||d).
An extract(m, c) oracle can be added to this commitment scheme. Indeed, when there was

no collision on the outputs of the oracle H, the hidden value corresponding to a given tag m
and commit value c queried to the oracle H can be extracted from the history of H queries.

Note that by allowing q queries to the oracle H, the scheme is (∞, q · 2−`−k)-extractable
with probability at least 1−q2 ·2−h−1. This scheme is pretty safe with h = 2` and k = 80 (see
e.g. [Vau05]) and the oracle H can be typically an hash function, e.g. SHA-1 [SHA93, SHA95].

Commitment Scheme in the Common Reference String Model. We assume all im-
plementations to use the same trusted public key, a common reference string (CRS), and
believe that no corresponding secrete key is kept by anyone. Note that the use of the com-
mon public key can be “hard-coded” or can be an access. As said before, Canetti and
Fischlin [CF01] propose a commitment scheme based on the CRS model which behaves like
“ideal commitment scheme”. All commitment schemes below are in the CRS model.

Paillier-based Trapdoor Commitment Scheme. A trapdoor commitment scheme was
proposed by Catalano et al. [CGHGN01] based on the Paillier’s trapdoor permutation [Pai99].
The proposed scheme is tag-less. It uses a RSA modulus N = pq and a value h ∈ ZN2 such
that its order is a multiple of N . The public key is Kp ← (N, h) and the private key is
Ks ← (p, q, h).

The setup() algorithm outputs the two keys, Kp and Ks, as described previously.
The commit(Kp, m) algorithm of a message m ∈ ZN picks uniformly two random values

r, s and outputs c ← (1 + mN)rNhs mod N2 and d ← (r, s). Note that the commit value
c is uniformly distributed for any m since r and s are uniformly distributed and (r, s) 7→
rNhs mod N2 is the Paillier trapdoor permutation (see [Pai99]). We denote Fh(r, s) this
permutation.

The open(Kp, c, d) algorithm yields m by solving c = (1 + mN)rNhs mod N2 from d =
(r, s) and Kp = (N, h).

The equivocate(Ks,m, ĉ) algorithm uses the collision-finding function, i.e. given a commit
ĉ and a message m, one can find d̂← (r̂, ŝ) such that ĉ = (1+mN)Fh(r̂, ŝ) mod N2 by using
the trapdoor on the Paillier permutation and knowing p, q, i.e. (r̂, ŝ)← F−1

h (ĉ(1 + mN)−1).
Thus, given a ĉ, an adversary can find d̂ for any message m and thus defeats the binding
property.

37



Sylvain Pasini

Pedersen Commitment Scheme. An interesting and simple tag-less commitment scheme
was proposed by Pedersen in [Ped91].

The setup() phase consists of choosing two prime numbers p and q such that q divides
p−1. Let Gq the unique subgroup of order q of Z∗p and let g a generator of Gq. In addition, it
picks a random y ∈ Gq such that nobody knows loggy. The public parameters are (p, q, g, y).
Note that the setup phase can be done by a trust third party.

The commit(Kp, m) algorithm with input message m ∈ Zq starts by picking a random
` ∈ Gq and then computes c← gmy`. The decommit value is simply d← (m, `).

The open(Kp, c, d) algorithm has just to check that c = gmy`.
This scheme is perfectly hiding since y` is a random value and thus c reveals no information

about m. On the other hand, this scheme is computationally binding. Indeed, an adversary
who can win against the tag-less SB game proceeds as follows: He discloses some c, d, d′ such
that d = (m, `), d′ = (m′, `′), m 6= m′, and c = gmy` = gm′

y`′ . The secret parameter leaks
by logg(h) = m−m′

`′−`

A Tag-based Equivocable Commitment Scheme. We present here a tag-based trap-
door commitment scheme from MacKenzie and Yang [MY04]. The scheme is based on the
Pedersen commitment scheme [Ped91] and on the DSA signature scheme [DSS94, DSS00].

The setup() algorithm generates a DSA pair of keys (Kp,Ks), i.e.

Kp = (g, p, q, y), Ks = x.

The commit(Kp,m, r) algorithm with input r in Zq picks a k and computes g′ and h as
follows.

k ∈U Zq, g′ ← gk mod p, h← gH(m)yg′ mod p.

Note that (rDSA, sDSA) is a DSA signature of m where rDSA = g′ mod q and sDSA = logg′(h),
i.e. sDSA = H(m)+xr

k .
Then, it uses the Pedersen commitment scheme to commit on r using (g′, h) as public pa-
rameters, i.e. it picks ` and computes c′ as follows.

` ∈ Zq, c′ ← (
g′

)`
hr.

Finally, the commit value c and the decommit value d are the following.

c← (g′, c′), d← (r, `)

The open(Kp,m, c, d) algorithm computes h as follows.

h← gH(m)yg′ mod p

Then, it checks that
c′ =

(
g′

)`
hr

and if the condition is verified it outputs r, otherwise it outputs ⊥.
These three first algorithms form a commitment scheme. In addition, this scheme as a

commit(Ks,m) algorithm which use the secrete key Ks to yield a fake commit value and
additional information which are required by the equivocate algorithm.
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The commit(Ks,m) algorithm computes a DSA signature σDSA ← (rDSA, sDSA) on m
using the secrete key Ks, i.e.

k ∈ Z∗q , rDSA ← gk mod p mod q, sDSA ← H(m) + xrDSA

k
mod q.

Then, it computes g′ and h as

h← gH(m)yrDSA mod p, g′ ← hs−1
DSA mod p

and picks ` and computes c′ as

` ∈ Zq, c′ ← h` mod p.

Finally, the fake commit value ĉ and the auxiliary information ξ are

ĉ← (g′, c′), ξ ← (`, sDSA).

Note that g′ is in fact equal to gk mod p.
The equivocate(Ks,m, r̂, ĉ, ξ) algorithm outputs a fake decommit value d̂ such that open(Kp,m, ĉ, d̂)

yields r̂. Thus, it must find a d̂, i.e. a ˆ̀ (since r̂ is given), such that

c′ = (g′)ˆ̀
hr̂ mod p

which can be written as
c′ = (g′)ˆ̀

gr̂H(m)yr̂g′ mod p.

But, we know that y = gx mod p and g′ = gk mod p and we obtain

c′ = gk ˆ̀+r̂H(m)+xr̂g′ mod p.

In reality, the c′ value yields by the commit algorithm is

c′ = h` mod p = gH(m)`+xrDSA` mod p.

Recall from DSA that g is of order q. Thus, we can deduce that

k ˆ̀+ r̂H(m) + xr̂g′ = H(m)` + xrDSA` mod p− 1.

Note that rDSA = g′ mod q. We have

ˆ̀= (`− r̂)
H(m) + xrDSA

k
mod q

Consequently, we obtain
ˆ̀= (`− r̂)sDSA mod q

and this is the reason why ` and sDSA are in the extra information ξ.
Note that this scheme has a stronger binding property called simulation sound binding

property which guarantees that a commitment made by an adversary with tag m is binding
even if he has seen many simulated commit values but never a commitment using m. It is
showed in [MY04] that if an adversary can break this property then it can also break DSA.
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3.5 Hash functions

3.5.1 Collision-Resistant Hash Functions

A collision-resistant hash function (CRHF) is a hash function in which it should be hard to
find two inputs x and y such that H(x) = H(y) and x 6= y. Due to the birthday attacks, the
output space must be at least of 2160.

3.5.2 Weakly Collision-Resistant Hash Functions

Weak collision resistance means that the game of Fig. 3.9 is hard. Assume a (T, ε)-weakly
collision-resistant hash function (WCRHF) H defined on a finite set X . For any adversary
A bounded by a complexity T , A wins the WCR game on Fig. 3.9 with probability smaller
than ε.

A C
x←−−−−−−−−−−−−− pick x ∈U X
y−−−−−−−−−−−−−→

winning condition: H(y) = H(x) and y 6= x

Figure 3.9. WCR game.

3.5.3 Universal Hash Functions Families

An ε-universal hash function family (UHFF) is a collection of functions HK from a message
space to a finite set {0, 1}k which depends on a random parameter K such that for any x 6= y
we have

Pr[HK(x) = HK(y)] ≤ ε.

where the probability is over the random selection of K.
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FOUR

On the Required Entropy of Authenticated
Communications

In this chapter, we would like to upper bound the security of an arbitrary message authentica-
tion protocol P given the amount of authenticated strings it uses. Assume that the protocol
is used between Alice and Bob. We consider the more general case by supposing that the
protocol can use any sequence of authenticated messages in a given set S during the protocol.
We call it a transcript. Note that authenticated strings are interleaved with regular messages
which are not represented in the transcript. For any input message m, the used transcript
during a protocol instance is picked in the set S of all possible transcripts with a distribution
Dm.

First, we analyze the security against one-shot adversaries, which can only use one instance
of Alice and one instance of Bob.

Second, we consider adversaries which can use many instances of Alice and Bob. Using
a weak authenticated channel, adversaries can delay or replay authenticated messages. With
protocols using a single k-bit SAS, we have the following attacks.

Delay attack. An attacker can start a protocol with Alice to recover an authenticated SAS.
Then he can launch several protocols with Bob until a SAS matches and then deliver
the SAS to this instance of Bob.

Catalog attack. Similarly, an attacker can launch several instances of Alice and use an
authenticated SAS to pass the authentication with Bob. This attack works when the
SAS catalog is close to the complete one.

Trade-off attack. We can further trade the number of Bob’s instances against the number
of Alice’s instances and have a birthday paradox effect.

Note that the first two attacks work within a number of trials around 2k but the third one
needs only around 2k/2 trials.
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4.1 A Generic One-Shot Attack

Theorem 1. We consider an arbitrary message authentication protocol between Alice and
Bob which uses an authentication channel. Let S be the set of all possible protocol transcripts
through the authentication channel for any input message. Let s be its cardinality. There
exists a generic one-shot attack with probability of success greater than 1

s − 2−t which runs
in polynomial time in terms of t (with equality 1

s − 2−t if and only if the SAS distribution is
uniform among S).

Theorem 1 says that there exists a one-shot attack against any message authentication
protocol which succeeds with probability at least essentially 1

s where s is the size of S. Thus,
any message authentication protocol which has no better one-shot attack is essentially optimal
since any other protocol can be attacked using this generic attack and consequently can not
have a better security. In addition, Theorem 1 says that a protocol is more resistant to
one-shot attacks when its SAS distribution is uniform.

Proof. We consider a general man-in-the-middle attack in which the adversary first picks
m ∈U {0, 1}t and m̂ ∈U {0, 1}t and launches Alice with input m. The attack runs synchro-
nized protocols between Alice and a simulator for Bob, and a simulator for Alice with input
m̂ and Bob as depicted on Fig. 4.1. Following the attack, every authenticated message which

Adversary

Simulator
of Bob

Simulator
of AliceAlice Bob

Figure 4.1. Generic One-Shot Attack

must be sent by the simulator is replaced by an authenticated message which has just been
received by the simulator.

Let SASm be the (random) sequence of all authenticated strings (the transcript) which
would be exchanged in the protocol between Alice and the simulator if the simulator where
honest, and SASm̂ be the similar sequence between the simulator and Bob. Clearly, if
SASm̂ = SASm, the attack succeeds. Note that an attack makes sense only if m̂ is dif-
ferent of m.

We have

Pr[success] = Pr[SASm = SASm̂ and m = m̂]
≥ Pr[SASm = SASm̂]− Pr[m = m̂].

Note that SASm and SASm̂ are two identically distributed independent random variables
whose support are included in S. Due to Lemma 4 (see Appendix) we can write

Pr[SASm = SASm̂] ≥ 1
s

where the equality occurs if and only if the SAS distribution is uniform.
Since m and m̂ are uniformly distributed in {0, 1}t, we have Pr[m = m̂] = 2−t. Finally,

we obtain
Pr[success] ≥ 1

s
− 2−t
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where the equality occurs if and only if the SAS distribution is uniform among the set S.

4.2 A Generic Multi-Shot Attack

In this section, we sketch a generic attack bounded by QA, resp. QB, instances of Alice, resp.
Bob, which works against any message authentication protocol.

Theorem 2. We consider an arbitrary message authentication protocol between Alice and Bob
which uses a weak authenticated channel. Let S be the set of all possible protocol transcripts
through the authenticated channel for any input message and let s be its cardinality.

There exists a generic attack which uses QA instances of Alice and QB instances of Bob
with probability of success approximatively 1− e−

QAQB
s .

Proof. We consider that the adversary can use QA instances of Alice and QB instances of
Bob. As before, we consider a general man-in-the-middle attack. The adversary first picks
mi ∈U {0, 1}t with i = 1, .., QA and m̂j ∈U {0, 1}t with j = 1, .., QB and launches several
instances of Alice with input mi. For each instance of Alice, the attack runs a synchronized
protocol with a simulator for Bob and for each instance of Bob, it runs a simulator for Alice
with input m̂j . Every authenticated message which must be sent by a simulator of Alice is
replaced by an authenticated message which has just been received by a simulator of Bob.

Let SASi be the (random) sequence of all authenticated strings (the transcript) which
would be exchanged in the protocol between Alice and the simulator of Bob if the simulator
where honest, and ŜASj be the similar sequence between the simulator of Alice and Bob.
Let S the set of all possible protocol authenticated transcripts and s its cardinality. Note
that all SASi and all ŜASj are independent and identically distributed among the set S and
let D their distribution.

Clearly, if there exists a couple (i, j) such that ŜASj = SASi, the attack succeeds. Note
that an attack makes sense only if the m̂j is different of the mi. Consequently, the probability
of success can be written as

Pr[success] = Pr[∃ i, j s.t. (SASi = ŜASj and mi 6= m̂j)]

= 1− Pr[∀ i, j, (SASi 6= ŜASj or mi = m̂j)]

≥ 1− Pr[∀ i, j, SASi 6= ŜASj or ∀ i, j, mi = m̂j ]

≥ Pr[∃ i, j s.t. SASi = ŜASj ]− Pr[∃ i, j s.t. mi = m̂j ]

Pr[∃ i, j s.t. mi = m̂j ] is constant for all message authentication protocols and is smaller than
QAQB2−t.

Thus, it remains to upper bound Pr[∃ i, j s.t. SASi = ŜASj ]. Using Lemma 5 (see
Appendix B), we can bound this probability by the one using a uniform distribution, i.e.

Pr[∃ i, j s.t. SASi = ŜASj ] ≥ Pr[∃ i, j s.t. SASi = ŜASj |D is uniform].

Consequently, we can approximate the probability of collision using the birthday paradox
and finally we obtain

Pr[success] ≈ 1− e−
QAQB

s −QAQB2−t.
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4.3 A Generic Multi-Shot Attack Against Non-Interactive Pro-
tocols

We can also provide a generic attack against any non-interactive message authentication
protocol (NIMAP).

Theorem 3. We consider an arbitrary NIMAP between Alice and Bob which uses a weak
authenticated channel. Let S be the set of all possible protocol transcripts through the authen-
tication channel for any input message. Let s be its cardinality. There exists a generic attack
which uses QA instances of Alice, one instance of Bob, and an offline complexity O(T ) with

probability of success approximately 1− e−
T ·QA

s .

Proof. We consider the generic attack in which the adversary starts by simulating T Alice
instances launched with random inputs m̂i and obtains a list of possible SAS, i.e. ŜASi.
Then, he launches QA real instances of Alice with random inputs mj and consequently obtains
QA authenticated SAS, i.e. SASj . The attack succeeds when at least one authenticated SAS
released by Alice corresponds to a computed one, i.e. there exists k, ` such that SASk = ŜAS`.
The adversary can launch a single Bob with input m̂` by simulating Alice and can use SASk

for the authentication when needed.
If the distribution of all SAS is uniform, we have a birthday effect and thus the probability

of success is approximately 1−e−
T ·QA

s . When the distribution is not uniform, the probability
is even larger du to Lemma 5 (see Appendix B).

4.4 A Short Overview

In conclusion, we have three theorems which are proving the best expected security of any
message authentication protocol. More precisely,

Theorem 1 says that there exists a one-shot attack against any message authentication pro-
tocol, either interactive or non-interactive, which succeeds with probability essentially
1
s where s is the size of the set S of all possible transcripts.

Theorem 2 says that there exists a generic attack bounded by QA instances of Alice and
QB instances of Bob against any message authentication protocol which succeeds with
probability essentially 1− e−

QAQB
s .

Theorem 3 says that there exists a generic attack bounded by a complexity T against
any NIMAP which uses a weak authenticated channel which succeeds with probability
essentially 1− e−

T ·QA
s where QA is the number of instances of Alice used. Hence, they

cannot be secure unless T ·QA is negligible against s.
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Non-Interactive Authentication Protocols

We call non-interactive message authentication protocols (NIMAP) the message authentica-
tion protocols in which the insecure and the authenticated channels are unidirectional, i.e.
from Alice to Bob. Consequently, Alice can only send messages and Bob can only receive it.

AUTHENTICATED

INSECURE
Alice Bob

Adversary

Figure 5.1. Non-Interactive Channels Model

We will start to study two popular protocols. The first one is used nowadays in many ap-
plications which require key exchange, for instance applications such as GPG or SSH. It was
presented by Balfanz et al. [BSSW02] and requires a collision resistant hash function (CRHF)
but weak authentication only. To achieve enough security, it requires 160 authenticated bits.
The second protocol was published by Gehrmann-Mitchell-Nyberg [GMN04]. It allows to au-
thenticate a message with only 16–20 authenticated bits but requires a stronger authenticated
channel.

In a second time, we will propose a new protocol which has the same security than the first
one presented but using less authenticated bits, without any stronger communication model,
and without requiring the hash function to be collision-resistant. Our protocol is based on a
trapdoor commitment scheme.

45



Sylvain Pasini

5.1 A Non-Interactive Authentication Protocol Based on a
Collision-Resistant Hash Function

On Fig. 5.2 is depicted the non-interactive protocol presented by Balfanz et al. [BSSW02]
which is based on a collision resistant hash function.

Alice Bob
input: m

m−−−−−−−−−−−−−−→
h← H(m)

authenticateAlice(h)−−−−−−−−−−−−−−→ check h = H(m̂)
output: Alice, m̂

Figure 5.2. Non-Interactive Message Authentication using a CRHF.

Note that the authenticated string is fixed by a non-probabilistic algorithm from the input
message m, i.e. the authenticated string is H(m). Thus, the authenticated string is the same
for each instance of the protocol which uses the same input m. This particularity allows
adversaries to run attacks completely offline. An adversary has simply to find a collision
on the hash function H between two messages m1 and m2, i.e. H(m1) = H(m2) and then
succeeds with probability 1.

Theorem 4 ([Vau05]). Let µ be the overall time complexity of the message authentication
protocol in Fig. 5.2 using weak authentication. We denote by T , Q, and p the time complexity,
number of oracle queries launch, and probability of success of adversaries, respectively. There
is a generic transformation which transforms any adversary into a collision finder on H whose
complexity is T + µQ and probability of success is p.

In short, the best known offline attack against this protocol is the collision attack. Using
a time complexity of T hash computations, an adversary has a probability of success of
1− e−

1
2
T 22−k

. It clearly succeeds for T = O(2k/2)
The generic attack against non-interactive protocol of Theorem 3 can be run here. Any

adversary has a probability of success 1−e−
−T ·QA

s where the adversary is bounded by T hash
computations and QA instances of Alice and a single instance of Bob. Obviously, this attack
is not optimal for small QA.

Collision resistance requires the number of authenticated bits to be at least 160 and cannot
be reduced considering offline attacks and using only weak authentication.

5.2 A Non-Interactive Authentication Protocol using Strong
Authentication

On Fig. 2.2 is depicted a non-interactive authentication protocol taken from Gehrmann-
Mitchell-Nyberg [GMN04]1. They have proposed three protocols, MANA I, MANA II, and
MANA III. The name MANA was chosen for MANual Authentication.

1Note that the original MANA I protocol is followed by an authenticated acknowledgment from Bob to
Alice in [GMN04].
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In short, MANA I was designed for situation where one device has a display and the other
has a keypad. MANA II is a variant of MANA I for situations where the second device has
in addition a display. Finally, MANA III was designed for situation where both devices have
a keypad. Note that MANA I and MANA II were originally published in [GN01]. Then, the
first one was called MANA I in [GN04] and Mechanism I in [MUM03].

MANA I uses a universal hash function family H. Proposed constructions lead to 16–20
bit long SAS values but require strong authentication 2. Indeed, using weak authentication,
an adversary who gets authenticate(K||µ) has enough time to find a message m̂ such that
µ = HK(m̂) and to substitute m with m̂. We can also achieve security with a stronger
authenticated channel which achieves stall-free transmissions.

Alice Bob
input: m

m−−−−−−−−−−−−−−→
pick K ∈U {0, 1}k

µ← HK(m)
authenticateAlice(K||µ)−−−−−−−−−−−−−−→ check µ = HK(m̂)

output: Alice, m̂

Figure 5.3. The MANA I Protocol.

Using only an authenticated hash value, i.e. k = 0, an offline attack succeeds with
probability 1 and time complexity O(2`/2) by simply finding a collision. In fact, it is the
protocol of Fig. 5.2. Using only an authenticated random variable makes no sense since it
doesn’t authenticate the message. MANA I is a trade off: it authenticates the message, but
uses a random value to avoid offline attacks.

Theorem 5. Given an ε-universal hash function family H, any adversary bounded by a
complexity T and by QA (resp. QB) instances of Alice (resp. Bob) against the protocol of
Fig. 5.3 and using stall-free authentication has a probability of success at most QAQBε.

Proof. A one-shot adversary has no advantage to send m̂ before it has received m and he
cannot send m̂ after K||µ is released. Indeed, he would not be able to send m̂ after receiving
K||µ due to the stall-free assumption. Thus, the attacker must select m and m̂ and hope
that HK(m̂) = HK(m). Clearly, the assumption on H limits the probability of success to ε.

Now, consider powerful adversaries. Using Lemma 1, we can deduce that the probability
of success of an adversary is at most QAQBε.

We see that any adversary has a non-negligible probability of success when QAQB is near
1/ε.

2Note that strong authentication renders the protocol “less non-interactive”.
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5.3 A Proposed Non-Interactive Authentication Protocol us-
ing Weak Authentication Only

Consider the protocol depicted on Fig. 5.4 in which the message m is transmitted by sending
(c, d) ← commit(m). This message can be recovered by anyone using the open function. To
authenticate this message, the hashed value of c is sent using an authenticated channel. We
prove that this protocol is secure with authenticated strings which can be shorter than in the
actual protocol of Fig. 5.2.

Kp

↓
Kp

↓
Alice Bob

input: m

(c, d)← commit(Kp,m)
c||d−−−−−−−−−−−−−−→ m̂← open(Kp, ĉ, d̂)

h← H(c)
authenticateAlice(h)−−−−−−−−−−−−−−→ check h = H(ĉ)

output: Alice, m̂

Figure 5.4. Non-Interactive Message Authentication Based on a WCRHF.

A non-deterministic commitment scheme is the heart of this protocol since an attacker
cannot predict the c value and thus cannot predict the H(c) value which is the authenticated
one. Commitment is assumed to be set up in the Common Reference String (CRS) model.

Lemma 3. Consider the message authentication protocol depicted in Fig. 5.4. We assume
that the function H is a (T + µ, εh)-weakly collision resistant hash function and the commit-
ment scheme is a (T + µ, εc)-trapdoor commitment scheme in the CRS model. There exists
a (small) constant µ such that for any T , any one-shot adversary against this message au-
thentication protocol with complexity bounded by T has a probability of success p smaller than
εh + εc.

Recall that the c value is sent through the insecure broadband channel and thus has not
to be minimized. Thus, we can use an εc as small as desired since we can use any commitment
scheme as secure (as long) as desired.

Assuming that H is optimally WCR, the best WCR attack using T hash computations
has a probability of success εh ≈ 1− e−T2−k

. So, we need T = Ω(2k) to succeed with a one-
shot attack. Thus, using the same amount of authenticated bits as the protocol of Fig. 5.2,
our protocol has a better resistance against offline attacks. Equivalently, we can achieve the
same security as the protocol of Fig. 5.2 using only half amount of authenticated bits, e.g.
80 bits.

Proof. A one-shot adversary A against the protocol in Fig. 5.4 follows the game depicted on
Fig. 5.5 in which it runs a man-in-the middle attack.

Clearly, it can be reduced to an adversary A who plays the game described in Fig. 5.6.
Assume a one-shot adversary A bounded by a complexity T . Given c, the adversary A

has to find a ĉ such that H(ĉ) = H(c). In addition, it must find a d̂ which opens to m̂ (using
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Kp

↓
Kp

↓
Kp

↓
Alice A Bob

m←−−−−−−
(c, d)← commit(Kp,m)

c||d−−−−−−→ ĉ||d̂−−−−−−→ m̂← open(Kp, ĉ, d̂)
h← H(c) h−−−−−−−−−−−−−−−−−−−−→

Winning condition: H(ĉ) = h and m̂ 6= m

Figure 5.5. Game Against the Proposed Protocol.

A C
Kp←−−−−−− (Kp,Ks)← setup()
m−−−−−−→

c||d←−−−−−− (c, d)← commit(Kp,m)
ĉ||d̂−−−−−−→ m̂← open(Kp, ĉ, d̂)

Winning condition: H(ĉ) = H(c) and m 6= m̂

Figure 5.6. Reduced Game.

ĉ) which is different from the input m. He can of course choose a ĉ either equal or either
different to c. We study the two cases.

Case 1. (ĉ = c) The adversary A chooses ĉ equal to c and obviously fulfills the condition
H(ĉ) = H(c). As depicted on Fig. 5.7, we can reduce the adversary A to an adversary
against the binding game of Fig. 5.4. We use an algorithm B bounded by complexity µ
which plays the binding game with a challenger C on one side and simulates a challenger
for A on the other side at the same time. Using adversary A and algorithm B, we
construct an adversary AB which plays the binding game. Note that adversary AB has
a complexity bounded by T + µ.

First, the challenger C generates the pair of keys (Kp,KS) and sends Kp to B. B sends
it to A and receives a message m from A. He computes (c, d) using the commit function
with Kp and sends c||d to A. As assumed, A chooses a ĉ equal to c and also sends ĉ||d̂
to B. B can now deduce m̂ using the open function with inputs c and d̂. Finally, B
sends all required values to the challenger C.
Note that B simulates perfectly a challenger for A. Hence, A and AB win their re-
spective game at the same time. Consequently, both win with the same probability of
success. Recall that the probability of success of an adversary bounded by a complexity
T + µ against the binding game of Fig. 5.4 is smaller than εc when the commitment
scheme is a (T + µ, εc)-trapdoor commitment. Hence, the probability that A succeeds
and c = ĉ is at most εc.

Case 2. (ĉ 6= c) The adversary A searches a ĉ different from c. As depicted on Fig. 5.8, we
can reduce the adversary A to an adversary against a second preimage search game.
We use an algorithm B bounded by a complexity µ with the help of one query to the
equivocate oracle. B plays the second preimage game with a challenger C on one side
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A B C
Kp←−−−− Kp←−−−−−− (Kp, Ks)← setup()
m−−−−→

c||d←−−−− (c, d)← commit(Kp,m)

(ĉ = c)
ĉ||d̂−−−−→ m̂← open(Kp, c, d̂)

c||d||d̂−−−−−−→ m← open(Kp, c, d)
m̂← open(Kp, c, d̂)

Winning condition: m̂,m 6=⊥ and m̂ 6= m

Figure 5.7. Reduction to the SB Game (ĉ = c).

A B C
Kp←−−−−−− (Kp, Ks)← setup()
m−−−−−−→

c←−−−−−− pick c ∈U C
c||d←−−−−−− d← equivocate(Ks, m, c)
ĉ||d̂−−−−−−→ m̂← open(Kp, ĉ, d̂)

ĉ−−−−−−→
Winning condition: H(ĉ) = H(c) and m 6= m̂

Figure 5.8. Reduction to the WCR Game (ĉ 6= c).

and simulate a challenger for A on the other side at the same time. Using adversary A
and algorithm B, we construct an adversary AB which plays the second preimage game
with the challenger C. Note that adversary AB has a complexity bounded by T + µ.

First, B generates the keys and sends Kp to A. B receives a message m from A and
receives a challenge c from C . B can deduce the decommit value d by calling the
oracle equivocate(m, c). Note that c has been picked uniformly and consequently the
distribution of (c, d) is the same as if they have been yield by the commit algorithm.
Then, B can send c||d to A. A sends a ĉ||d̂ to B. Finally, B sends it to the challenger C.
Note that B simulates perfectly a challenger for A. Hence, A and AB win their re-
spective game at the same time and consequently with the same probability of success.
Recall that the probability of success of an adversary against a second preimage game
bounded by a complexity T + µ is smaller than εh when H is a (T + µ, εh)-weakly
collision-resistant hash function. Hence, the probability that A succeeds and c 6= ĉ is
at most εh.

We conclude that any one-shot adversary bounded by a complexity T against the protocol
of Fig. 5.4 has a probability of success smaller than εc+εh when the protocol uses a (T +µ, εh)-
weakly collision resistant hash function H and a (T +µ, εc)-trapdoor commitment scheme.

We now consider powerful adversaries.

Theorem 6. Consider the message authentication protocol depicted in Fig. 5.4. We assume
that the function H is a (T + µ, εh)-weakly collision resistant hash function and the commit-
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ment scheme is a (T + µ, εc)-trapdoor commitment scheme in the CRS model. There exists
a (small) constant µ such that for any T , any adversary against this message authentication
protocol with complexity bounded by T and with number of Alice’s (resp. Bob’s) instances
bounded by QA (resp. QB) has a probability of success p at most QA(εh + εc).

Assuming that WCR hash functions and trapdoor commitments such that εc ¿ εh =
O(T2−k) exist, we have p = O(T · QA2−k) which meets the data of the generic attack from
Theorem 3 for T · QA ¿ 2k. Hence, our protocol is essentially optimal. As an example,
assuming that an adversary is limited to QA ≤ 210, T ≤ 270, and that the security level
requires p ≤ 2−20, the protocol of Fig. 5.2 requires k ≥ 160 and our protocol requires k ≥ 100.
Using MD5 [Riv92], our protocol still achieves a quite luxurious security even though collisions
have been found on MD5 [WY05].

Proof. Consider an adversary who launches QA instances of Alice and QB instances of Bob.
Clearly, we can simulate all instances of Bob, pick one who will make the attack succeed, and
launch only this one. Hence, we reduce to QB = 1. Recall from Lemma 3 that any one-shot
adversary has a probability of success smaller than εh + εc. Using Lemma 1, we conclude that
any adversary has a probability of success at most QA(εh + εc).

In conclusion, using the same amount of authenticated bits than the protocol of Fig. 5.2,
we conclude that both have the same security against online attacks, but this latter protocol
has a better resistance against offline attacks.
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Interactive Authentication Protocol

In this chapter, we will recall the Vaudenay [Vau05] SAS-based message authentication pro-
tocol. In a second time, we will present two implementations. The first one is a modification
of OpenSSH which allows users to use this protocol. The second application is a generic
peer-to-peer file authentication which allows two distant users to authenticate any files such
as public keys, and if required to exchange it assuming that they knows the distant voice and
they can authenticate it.

6.1 The Vaudenay SAS-based Protocol

On Fig. 6.1 is depicted the SAS-based message authentication protocol taken from Vaude-
nay [Vau05]. In this protocol, Bob will authenticate a message m from Alice. After the
exchange of the three first messages through the insecure channel, Alice has to authenticate
a short string SAS = RA ⊕RB where RA and RB are randomly selected at the beginning by
Alice and Bob respectively.

Alice Bob
input: m

pick RA ∈U {0, 1}k pick RB ∈U {0, 1}k
c||d← commit(m||RA)

m||c−−−−−−−−−−−−−−→
RB←−−−−−−−−−−−−−−
d−−−−−−−−−−−−−−→ R̂A ← open(m̂, ĉ, d̂)

SAS← RA ⊕ R̂B
authenticateAlice(SAS)−−−−−−−−−−−−−−→ check SAS = R̂A ⊕RB

output: Alice, m̂

Figure 6.1. SAS-based Message Authentication.

Recall that using a weak authentication channel, the adversary can delay or replay au-
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thenticated messages. These two channel defects can lead to powerful attacks as seen on
the beginning of Chapter 4. This protocol resists to general attacks run by any adversary
bounded by a number of protocol runs, i.e. the online complexity. Indeed, assuming that
hiding commitment schemes exist, this protocol resists to offline attacks.

6.2 Short Security Analysis, Optimality

Due to interactivity, this protocol does not allow offline attacks. In addition, the authenticated
string is uniformly distributed and independent of the message m. Vaudenay [Vau05] proves
that a one-shot attack has a probability of success at most 2−k + ε where ε ≥ 0 represents a
small advantage for attackers due to a non-perfect commitment scheme (non perfectly hiding).

Theorem 7 ([Vau05]). We consider one-shot adversaries against the message authentication
protocol in Fig. 6.1. We denote by T and p their time complexity and probability of success,
respectively. We assume that the commitment scheme is either (TC , ε)-extractable or (TC , ε)-
equivocable. There exists a (small) constant µ such that for any adversary, we have either
p ≤ 2−k + ε or T ≥ TC + µ.

In addition, he proves in [Vau05] that attacks which use QA instances of Alice and QB

instances of Bob have a probability of success against this protocol at most QAQB(2−k + ε).
Note that the proof was done using Lemma 1. Consequently, any adversary which can use
at least Q instances of Alice and Bob have a probability of success less than Q2

4 (2−k + ε).
This meets the data of the generic attack from Theorem 1 for q ¿ 2k. So, the protocol is
essentially optimal.

Theorem 1 tells us that the security of the protocol of Fig. 6.1 is optimal among all com-
parable protocols since it reaches the maximal security of a message authentication protocol
and these it cannot exists a better protocol using the same amount of authenticated bits.

6.3 A First Application: OpenSSH

Since SSH uses public key cryptography, it needs public key exchange and thus an authen-
tication step is required. Most of the time, the authentication of the distant public key is
made by comparing the footprint computed locally by the client with the distant footprint,
which is obtained from the SSH server in an authenticated way. One advantage of this way
is the non-interactivity. Fig. 6.2 shows a possible SSH connection setup between a client and
a server.

Actually, the major drawback is that users often accept the distant public key by just
answering “yes” to the first question without checking the fingerprints. This leads to the
non-authentication of the distant public key and thus to a security problem.

To improve the security of OpenSSH, we have implemented the Vaudenay SAS-based
message authentication protocol [Vau05] in addition to the existent method. We use the
authentication protocol to authenticate the remote public key (from the server). This new
method forces the user to authenticate the public key since it can not continue until it has
not entered the valid SAS. Indeed, he must type the true SAS (and not just answer “yes”).
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#> ssh pasini@lasecpc12
The authenticity of host ’lasecpc12 (128.178.73.67)’ can’t be
established.
RSA key fingerprint is
fb:0c:0e:bc:fd:c7:3d:68:e9:8b:2d:6b:c6:ae:88:e2.
Are you sure you want to continue connecting (yes/no)? yes

30651: Warning: Permanently added ’lasecpc12,128.178.73.67’ (RSA)
to the list of known hosts.

Password: ********

Have a lot of fun...

#> exit
logout
Connection to lasecpc12 closed.

Figure 6.2. Connection to a Remote Host using a Conventional Protocol

Unconscious users cannot use the system as before accepting all keys without authentication.
Thus, this new system guarantees to the network a higher security. Fig. 6.3 gives us an exam-
ple of an OpenSSH connection setup using the Vaudenay SAS-based message authentication.

We have tried to render our implementation compatible with other OpenSSH systems.
Indeed, we have added the option -Z to both client and server. In particular, if the server
would accept to use the Vaudenay SAS-based protocol [Vau05], the administrator must spec-
ify the option -Z when he launches the daemon. Consequently, when the server send his
version to the client, the string is SSH− 1.99− OpenSSH 3.9p1-sas. The last option indi-
cates that the server could use the Vaudenay SAS-based protocol [Vau05]. The conventional
implementations of OpenSSH would accept this version since it stops before the -. Similarly,
if the client would use the Vaudenay SAS-based protocol [Vau05] for the authentication, he
have to specify the option -Z in the command line. During the parameters negotiation, they
determine whether they use the new protocol or not. Four cases are now possible. The new
protocol is of course used only if both have enabled the SAS protocol, i.e. they sends a version
terminating with -sas.

Recall that the only manner to attack the SAS-based protocol of Fig. 6.1 is launching
several protocol instances which is not hard to detect.

This method of authentication would be perfect if it did not have the following defect:

The SAS must be obtained (and authenticated) for each unknown distant public key,
for instance by phone if the administrator voice is known, or physically otherwise.

Suppose an administrator is responsible of a very big number of hosts, for instance a depart-
ment of EPFL. He has to respond to a big number of phone calls or to encounter some students
since his voice is not known by them. When a user starts a connection with an unknown
host, he needs the corresponding SAS. The administrator must be available at this moment
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On the client side:

#> /scratch/pasini/myssh/bin/ssh -Z pasini@lasecpc16
From the server : SSH-1.99-OpenSSH_3.9p1-sas
Use SAS authentication.
Start SAS protocol:

Wait on commit... Done.
Commit=22348769876106551

Pick Rc. Rc=747
Send Rc.
Wait on decommit...Done.

Fingerprint=37:3a:3d:96:4b:c8:04:de:bc:3a:2b:c3:5c:d5:bd:f6
Rs=990

Commit received valid

Enter the SAS: 1737 [entered by the user]
SAS correct

pasini@lasecpc16’s password: ******** [entered by the user]

#> exit
logout
Connection to lasecpc16 closed.

On the server side (daemon output):

#> /scratch/pasini/myssh/sbin/sshd -Z
SAS authentication enabled by the daemon.
Start infinite loop

Child created to handle connection, pid=28649.
Start SAS protocol:

Compute commit and decommit
Decommit=37:3a:3d:96:4b:c8:04:de:bc:3a:2b:c3:5c:d5:bd:f6-990
Commit=22348769876106551

Send the commit.
Wait on Rc...Done.

Received Rc=747
Send the decommit.
Compute the SAS.

SAS=1737
Save the SAS in the SAS database (for administrator).

On the server side (SAS database):

128.178.73.71 1737 [new line created]

Figure 6.3. Connection to a Remote Host using the SAS-Based Protocol
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which can be impossible in some cases. Using the conventional way, the administrator must
be available too, but not necessarily at the same time since the protocol is non-interactive. In
conclusion, this new system is more secure in particular for unconscious users. On the other
hand, it is not practically usable in most cases.

Possible applications of this implementation can be the exchange of public keys between
distant users (or companies) that require a high security and very quickly. As presented in
the introduction, suppose for instance a disaster cause in a bank and the administrator is in
trip. Thus, he must establish a very quick connection with the server using a new generated
pair of keys. The administrator is forced to authenticate the public key (very) quickly. Using
the SAS-based protocol, he has just to call the bank, starts the protocol, and finally types
the SAS which has been obtained with the help of a responsible person. In this case, the
security can be achieved with few bits, typically 15 bits, which is much less than the 160 bits
of a fingerprint.

6.4 A Peer-To-Peer File Authentication

In Section 6.3, we have seen that the implementation in OpenSSH of the Vaudenay SAS-based
message authentication protocol [Vau05] was a problem. Indeed, the interactivity forced the
administrator to be available at “any time” to exchange some SAS. This reason encouraged
us to propose a better application for this protocol. It seems reasonable to assume that two
users, who can arrange themselves between them, can be available during the exchange of a
message, e.g. a public key. In this section, we propose a peer-to-peer application that help
to authenticate public keys. In fact, the proposed system is more general and allows users to
authenticate, and if required to exchange, files like GPG public key files.

The application which have been implemented communicates through the Internet net-
work using a chosen port (the insecure channel). In addition, they needs an human com-
munication channel, which achieves authentication, typically telephone (the authenticated
channel). The application is based on the client-server model and works in short as follow:
Suppose two persons: Alice and Bob. Bob would authenticate a file from Alice (e.g. her GPG
public key). First, he launches the SAS File Exchange application and wait for connection
(i.e. he is the server). Then, he contacts Alice, for example by telephone, and asks him to
authenticate one of her files. Alice launches the application too, selects the file to authen-
ticate and the destination address, i.e. IP address and port number. Then, she starts the
authentication protocol (i.e. she is the client).

6.4.1 The Implemented Protocol

The Vaudenay SAS-based authentication protocol depicted on Fig. 6.1 has been adapted for
a practical implementation. The implemented version works as described on Fig. 6.4. In
particular, the file which has to be authenticated can be exchanged or not. If Alice and Bob
has already exchanged the file, e.g. by email, authentication only is made, otherwise the file
is exchanged at the beginning of the protocol.
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Alice Bob
input: m input: mB

Wait for connection...
open connection−−−−−−−−−−−−−−→

r←−−−−−−−−−−−−−− r ←
{

1 if mB =⊥
0 otherwise

if r = 1 then ask Alice.

a←
{

1 if Alice accepts
0 otherwise

a−−−−−−−−−−−−−−→
if a = 0 then abort if a = 0 then abort

m(if r==1)−−−−−−−−−−−−−−→ m̂B ←
{

m̂ if mB =⊥
mB otherwise

pick RA ∈U {0, 1}k
pick Rdm ∈U {0, 1}80

c← SHA1(m||RA||Rdm) c−−−−−−−−−−−−−−→
RB←−−−−−−−−−−−−−− pick RB ∈U {0, 1}k
RA−−−−−−−−−−−−−−→

Rdm−−−−−−−−−−−−−−→
SAS← RA ⊕ R̂B

authenticateAlice(SAS)−−−−−−−−−−−−−−→ check ĉ = SHA1(m̂B ||R̂a||R̂dm)
check SAS = R̂A ⊕RB

output: Alice, m̂B

Figure 6.4. Implementation of the Vaudenay SAS-based Message Authentication with Ran-
dom Oracle Commitment.
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Figure 6.5. Screen-shot of the Main Frame

6.4.2 The Final Application

The final application has been implemented in Java for its simplicity of designing user-friendly
interfaces. It is principally composed of three windows.

The main window is the only visible at the launches of the application. It allows users to
open one of the two other windows or to quit the application. A screen-shot is printed
on Fig. 6.5.

The receive window is normally opened by the user, i.e. Bob, who will authenticate a
distant file, i.e. form Alice, and possibly will receive it. A screen-shot is printed on
Fig. 6.7.
He has to specify the port number and the file destination. Three cases are possible for
the file destination:

No filename specified. The protocol (Bob) requests the source (Alice) to send the
file. If the source accept, Bob receives the file and the correspondent filename.
The received file would be saved in the received filename.

A non-existent filename specified. The protocol (Bob) requests the source (Alice)
to send the file. The received file would be saved in the specified filename.

An existent filename specified. The protocol (Bob) does not request the source
(Alice) to send the file and later use the specified file to check the commit.

By clicking on the button “Waiting authentication”, Bob enters in a waiting mode until
it receives a connection on the specified port.
After the execution of the protocol, Bob has to enter the SAS which has been yield by
Alice for instance by telephone.

The send window is normally opened by the user who has the source of the file, i.e. Alice.
A screen-shot is printed on Fig. 6.6.
She has to specify the source filename, the destination hostname, i.e. the on of Bob,
and the port number to be used.
By clicking on the button “Start authentication”, Alice starts the protocol by estab-
lishing a connection to Bob.
If Bob would have requested the file transfer, a dialog window is opened. Alice can
either accept to send the file, or either abort the protocol.

59



Sylvain Pasini

At the end of the execution of the protocol, Alice has to gives the SAS to Bob using an
authenticated channel, for instance a telephone.

The executions of the SAS-based protocol on Alice and on Bob sides are depicted re-
spectively on Fig. 6.6 and Fig. 6.7. These executions represent a public key authentication
without transfer by considering that Alice has send its public key to Bob prior the protocol,
e.g. by email.

6.4.3 Number of SAS Trials

The used SAS has a fixed length of 5 digits. A sixth digit has been added to check its validity.
In an application of this type, it is important to allow users to make mistake(s). On the other
hand, this flexibility does not reduce the security. If simply two tries are allowed, an attacker
has two tries to attack the protocol. Consequently, the probability of success is twice the
probability of success of the original protocol.

The sixth digit is a digit of redundancy. It is the sum of the five original digits modulo
10. When Bob enter a SAS, first the redundancy is checked.

If the redundancy is bad , Bob has entered a non-valid SAS and can try another one
(only). Note that an attacker has no chance with a generated SAS with bad redundancy
since it would be rejected with probability 1.

If the redundancy is correct , either the SAS entered is right and also the file is authen-
ticated, either it is false and the file authentication is aborted since an attack can be
occurred.

Using this method, users can make a mistake typing the SAS, but the security is not
decreased. On the other hand, it costs one additional digit.

6.4.4 In Short

The proposed application allows users to exchange files on an authenticated way. It can be
used to exchange PGP, or GPG, public keys by authenticating only six digits. Note that the
current method uses the protocol of Fig. 5.2 and requires 160 authenticated bits which are
usually represented by 32 hexadecimal digits. Fortunately, the proposed protocol requires
the exchange of only 15 authenticated bits which is much smaller than the current method.
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Figure 6.6. Screen-shot of the Frame on Alice Side (Verbose Mode)

Figure 6.7. Screen-shot of the Frame on Bob Side (Verbose Mode)
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Chapter

SEVEN

Interactive vs. Non-Interactive Protocols and
their Applications

In Chapter 6, we have seen two applications of the interactive SAS-based protocol. In the
OpenSSH application, the interactivity was a problem, recall that the administrator became
quickly overloaded by the SAS distribution. In the second application, the peer-to-peer file
authentication, the interactivity was an advantage since it allowed users to exchange short
strings instead of longer ones.

In this chapter, we try to compare and analyze interactive and non-interactive protocols.
In a second time, we sketch some applications and we discuss whether interactive or non-
interactive is better in this case.

7.1 A Short Comparison

Usability An interactive protocol allows shorter authenticated strings and thus it is more
user-friendly. On the other hand, an interactive protocol forces the users to be synchronized
which can be not user-friendly.

Security We have seen in Chapter 5 that non-interactive protocols are vulnerable to offline
and online attacks. Interactive protocols are in general resistant to offline attacks and thus
their security is better.

Cost In term of amount of authenticated bits, interactive protocols are lower cost since
they don’t have to resist to offline attacks and thus can use shorter authenticated string

An exception is MANA. Indeed, it is a non-interactive protocol using only few authen-
ticated bits. On the other hand, it requires a stronger authenticated channel which is more
expensive than a weak authenticated one.
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Complexity The non-interactive protocols often use one-way hash functions. Thus, their
complexity is basically a hash computation on each sides of the protocol.

In the proposed (non-interactive) protocol, a commitment scheme is used in addition to
the hash function. Consequently, its complexity is a commitment and a hash computation
on each side.

The only interactive protocol seen in this work uses a commitment and its complexity is
a commit call and an open call on each side respectively.

Note that a commitment scheme can be very complex compared to a simple hash compu-
tation. Thus, protocols using a commitment scheme are in general more complex than ones
using only hash functions.

7.2 Some Applications Examples

7.2.1 Applications Based on Public Keys

SSH. In Section 6.3, we have seen the problem of an interactive protocol in this case. On
the other hand, the interactivity forces users to authenticate the distant public key and not
just accept them. Indeed, with the presented solution, the user must enter the good SAS to
continue.

PGP, GPG. Currently, the protocol used is non-interactive. Consequently, it allows the
two distant users to run a non-synchronized authentication. On the other hand, they must
authenticate a long string, e.g. 160 bits.

In Section 6.4, we have seen that an interactive protocol can be used for peer-to-peer key
(file) authentication. Here, we assume that two distant users can run a synchronized protocol.
The interactivity has the advantage of allowing shorter SAS.

PGPfone. PGPfone is a software package that allows to transform a computer into a secure
telephone. Suppose two persons would communicate securely, i.e. Bob calls Alice. A possible
scenario can be to start with a non-secure communication. The two users can communicate.
In particular, if Bob knows Alice, the non-secure communication is an authenticated channel.
Thus, Alice can send its public key to Bob, e.g. using another TCP port or by email, and she
can authenticate their public key by spelling its fingerprint. After this authentication step,
the two users can setup a secure communication by using the public key which has just been
exchanged.

Clearly, both users are eventually synchronized, thus an interactive protocol can be run
simultaneously on another TCP port without any additional constraint. In addition, this
second method allows shorter SAS as seen in the comparison since the protocol is interactive.

In conclusion, an interactive protocol is better in this case since it allows shorter SAS
without requiring any additional constraint.
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7.2.2 Bluetooth Devices Pairing and Wireless USB

An alternative method to Bluetooth pairing can be to exchange a public key and then au-
thenticate it. Note that a device pairing requires both available. Consequently, an interactive
protocol requires no additional constraint. Thus, short SAS can be used to authenticate pub-
lic keys. For small devices, this can be restrictive since costly commitment schemes can be
hard to implement. Recall that protocol of Fig. 6.1 requires a commitment scheme.

Wireless USB will appear soon. Some USB devices, such as printers, will become wireless.
As for Bluetooth, a WUSB device requires a pairing step otherwise attacks can be run.

Let us consider some applications. We does not focus on the implementation of the
authentication protocol, but rather on the user interface.

A headset has no keyboard and no display and it must communicate to exchange the
SAS (if an interactive protocol is used). Clearly, a telephone must authenticate its headset.
After the protocol execution, a SAS must be exchanged from the headset to the telephone.
A solution would be that the ear-phone pronounces the SAS and then the user types it on
the telephone keyboard.

For a keyboard of a computer, it is important to authenticate the computer and to setup
a secure communication. Otherwise, an adversary can for example recover passwords typed
on the keyboard. Thus, a SAS must be exchanged from the computer to the keyboard.
Fortunately, the keyboard has inputs. The users could type on his keyboard a SAS which
is displayed on the screen of the computer. Here, we consider that the display to user is an
authenticated channel. Note that it does not need a confidential channel since a SAS is not
a PIN code. A symmetric problem is to make sure that the computer is linked to the right
keyboard. For this, we only require the keyboard to have a LED showing when the secure
communication was successfully set up: if the computer says that a connection was setup to
a keyboard but the right keyboard does not, then it was made by a wrong one.

When a user on the road would like to print a confidential document from his laptop
computer to a wireless printer, authentication of the printer is necessary. In the case where
the printer has a display, it is not a problem: the printer just displays the SAS which is typed
on the laptop. Consider that the printer has no display. The printer can still print the SAS
on a page. The protocol can be interactive in this case to allow short SAS.

A hard disk has in general no input/output with the user. Here are some alternate ways
for “deaf-mute” devices:

1. Start with a wired connection to setup a security association. After this step, it can be
disconnected and can use the wireless link securely. Note that a good solution can be
that the device remembers the security association for the next time.

2. “Hard-code” a key on the device and print them on its box. The user has to type it on
its computer during the authentication step.

3. Use resurrecting duckling paradigm from Stajano-Anderson [SA99]. In short, when a
device is booted the first time, it searches another device in its vicinity and trusts the
first found for always.

4. Use a distance bounding authentication which is well adapted in these cases since we
are doing pairings and devices are very close.
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Conclusion

We have analyzed on a global perspective the security of message authentication protocols. In
particular, we have seen that there exists a generic one-shot attack with probability of success
essentially 1/s where s is the size of the set of all possible authenticated strings. We have also
sketched a generic attack which uses QA instances of Alice and QB of Bob with probability
of success essentially 1 − e

QAQB
s . Thus, any message authentication protocol which has no

better attack is essentially “optimal” since any other protocol can be attacked using these
generic attacks and consequently can not have a better security.

We have discussed the security of the non-interactive protocols of Fig. 5.2 and 5.3. We
have proposed a new non-interactive message authentication protocol based on a commitment
scheme. It has the same security as the currently used in SSH (Fig. 5.2) against one-shot
attacks but using only half authenticated bits, e.g. 80 bits. 100 bits only are required against
more general attacks and allowing a quite good security. Indeed, due to the commitment
scheme, the authenticated value is not foreseeable and the proposed protocol is resistant
to collision attacks that are run offline. We stress that the security of our protocol relies
essentially on the hardness of the SB game of the commitment scheme and on the hardness
on the WCR game of the hash function.

In addition, we have proposed two implementations of the Vaudenay SAS-based authen-
tication protocol. The first was an implementation in OpenSSH and the second was a peer-
to-peer file authentication. These two implementations bought us to discuss whether an
application must use an interactive protocol or if it is better to use a non-interactive one. As
expected, it is in fact dependent on the application. Indeed, an interactive protocol allows
shorter SAS than a non-interactive one, but requires a synchronization between the users.
For instance, an interactive protocol in SSH is not well adapted since the synchronization
leads to some problems, but for the second application an interactive protocol is better since
it allows shorter authenticated strings and thus becomes more user-friendly.
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Appendix A

Lemma 4. Let X and Y be two identically distributed independent random variables with
distribution D over a support set S. We have

Pr[X = Y ] ≥ 1
#S

(7.1)

with equality if and only if D is the uniform distribution.

Proof. Let s be the size of the set S. We have

Pr[X = Y ] =
∑

Si∈S

Pr[X = Si] · Pr[Y = Si]

=
∑

Si∈S

p2
i

where pi is Pr[X = Si].
Let us write pi = 1

s + ρi. Thus, we obtains

∑

Si∈S

p2
i =

∑

Si∈S

(
1
s

)2

+ 2
∑

Si∈S

1
s
ρi +

∑

Si∈S

ρ2
i

Knowing that the sum of pi equals to 1 we can easily deduce that the sum of ρi equals 0.
Thus, ∑

Si∈S

p2
i =

1
s

+
∑

Si∈S

ρ2
i

The sum of ρ2
i is greater or equal to 0. Note that it is equal to 0 if and only if all ρi are null,

i.e. D is uniform.
Finally the probability searched is:

Pr[X = Y ] ≥ 1
s

with equality if and only if D is the uniform distribution.
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Appendix B

Lemma 5. We consider two sets of random values {Xi}, resp. {Yj}, of size p, resp. q, where
the elements are picked in a set S of size s with distribution D.

The probability of collision between the two sets is minimal when the distribution D is
uniform.

Proof. Let Cp,q
D the probability that there exists a Xi which corresponds to a Yj given a

distribution D along the set S of s elements, i.e. a collision occurred between the two sets.

Cp,q
D = Pr

[{X1, · · · , XQA
} ∩ {Y1, · · · , YQB

} 6= ∅]

Formally, we have to prove that

Cp,q
D ≥ Cp,q

Us
(7.2)

where UN is the uniform distribution among a set of N possible elements.
We will proceed by first proving that Eq. 7.2 is true for a support S of one element. Then,

we will prove by recurrence that Eq. 7.2 is true for any s, i.e. by proving that it is true for s
elements assuming that it is true for s− 1 elements.

For a set S of one element, i.e. s = 1, the result is straightforward since the only possible
distribution is the uniform distribution and we have Cp,q

D = Cp,q
U1

.

For a set S of any size n, we will prove that it is also true by assuming that Eq. 7.2 is
true for n − 1 or less elements. Let a an elements of S and ta his probability, i.e.
ta = PrD[X = a]. We define the distribution D′ as

Pr
D′

[X = x] =
{

0 if x = a
PrD[X = x|x 6= a] if x 6= a
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Considering the particular element a, we can write

Cp,q
D = Pr

[{Xi} ∩ {Yj} 6= ∅
∣∣a /∈ {Xi}, a /∈ {Yj}

]

·Pr[a /∈ {Xi}, a /∈ {Yj}]
+Pr

[{Xi} ∩ {Yj} 6= ∅
∣∣a ∈ {Xi}, a ∈ {Yj}

]

·Pr[a ∈ {Xi}, a ∈ {Yj}]
+Pr

[{Xi} ∩ {Yj} 6= ∅
∣∣a ∈ {Xi}, a /∈ {Yj}

]

·Pr[a ∈ {Xi}, a /∈ {Yj}]
+Pr

[{Yi} ∩ {Yj} 6= ∅
∣∣a /∈ {Xi}, a ∈ {Yj}

]

·Pr[a /∈ {Xi}, a ∈ {Yj}]

which can be written as

Cp,q
D = Cp,q

D′ · (1− ta)p(1− ta)q

+1 · [1− (1− ta)p][1− (1− ta)q]

+
p∑

i=1

{
Cp−i,q

D′

(
p

i

)
tia(1− ta)p−i

}

·[1− (1− ta)p](1− ta)q

+
q∑

i=1

{
Cp,q−i

D′

(
q

i

)
tia(1− ta)q−i

}

·(1− ta)p[1− (1− ta)q].

Noting that D′ is distributed over n− 1 elements and assuming that Eq. 7.2 is true for
n− 1 elements, we obtain

Cp,q
D ≥ Cp,q

Un−1
· (1− ta)p(1− ta)q

+1 · [1− (1− ta)p][1− (1− ta)q]

+
p∑

i=1

{
Cp−i,q

Un−1

(
p

i

)
tia(1− ta)p−i

}

·[1− (1− ta)p](1− ta)q

+
q∑

i=1

{
Cp,q−i

Un−1

(
q

i

)
tia(1− ta)q−i

}

·(1− ta)p[1− (1− ta)q].

The right hand side of this inequality corresponds to the probability of collisions Cp,q
D0

where the distribution D0 is defined as

Pr
D0

[X = x] =
{

ta if x = a
1

n−1(1− ta) if x 6= a
.

Consequently, we obtain Cp,q
D ≥ Cp,q

D0
. We repeat this step using the same reasoning but

using another element. Let b 6= a an element of the set S and let tb his probability over
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7 - LIST OF FIGURES

D0, i.e. tb = PrD0 [X = b] = 1
n−1(1 − ta). Proceeding as before, we obtain Cp,q

D0
≥ Cp,q

D1

where D1 is defined as

Pr
D1

[X = x] =
{

tb if x = b
1

n−1(1− tb) if x 6= b
.

Finally, we obtain the following recurrence

Cp,q
D ≥ Cp,q

D0
≥ Cp,q

D1
≥ · · · ≥ Cp,q

Di
≥ · · ·

where the distributions are defined as

Pr
Di

[X = x] =
{

ti if x = ai
1

n−1(1− ti) if x 6= ai

with

ai =
{

a if i odd
b if i even

and t0 is PrD[X = ai] and for i ≥ 1, ti is PrDi−1 [X = ai].

Fig. 7.1 represents on its top the original distribution D. The three first steps of the
recurrence, i.e. D0, D1, D2, are represented below it.

Distribution D1

a

a

b

Distribution D0

Distribution D2

Initial Distribution D

X

X

X

X

0.4

0.2

0.0

0.4

0.2
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0.4

0.2

0.0
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0.0

Pr[X]

Pr[X]

Pr[X]

Pr[X]

Figure 7.1. Three First Steps of the Recurrence.
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It seems that the recurrence converges rapidly near the uniform distribution. Indeed, we
have ti+1 = 1

n−1(1− ti) and thus ti = 1
n +(− 1

n−1)i · (t0− 1
n) which converges to 1

n when n > 1.
We can finally write

Cp,q
D ≥ · · · ≥ Cp,q

Dt
−→
t→∞Cp,q

Un
.

We conclude that any probability of collision Cp,q
D , where D is any distribution along S, is

bigger or equal to the probability of collision Cp,q
Us

which uses uniformly distributed SAS.

In conclusion, any authentication protocol must use uniformly distributed SAS. Any other
distribution allows adversaries to find collisions with higher probability or smaller complexity
and thus the protocol is less secure.
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