

TRACING ATTACKS AND RESTORING
INTEGRITY WITH LASCAR

Alexandre Aellig, Philippe Oechslin
LASEC EPFL

Abstract: We present a novel method to trace the propagation of intrusions or malicious
code in networked systems. Our solution is aimed at large numbers of loosely
managed workstations typical of a research environment as found in CERN.
The system tags events which have a potential to become harmful. On a given
machine all processes that results from the tagged event are marked with the
same tag and the tag is carried on to others machines if a tagged process
establishes a connection. Tag creation logs are stored in a central database.
When an intrusion is detected at a later time, all machines and processes that
may have lost their integrity due to this incident can easily be found. This
leads to a quick and effective restoration of the system. Our implementation of
the system is designed to incur very little overhead on the machines and
integrates easily with many flavors of the Linux operating system on any type
of hardware.

Key words: Recovery, Intrusion Propagation, Intrusion Detection

1. INTRODUCTION

Undesired intrusions are always a problem but intrusions in large groups
of workstations are particularly serious. This is especially true if the
workstations are managed by their users or many groups rather than by a
single central entity. An intrusion showing up at a given workstation may be
the result of the compromise of various intermediate machines. All implied
machines may not show the same symptoms with some compromised
machines not showing any symptoms at all. Cleaning up all machines that
show symptoms is thus not enough. Malicious code may still be lingering

2 Alexandre Aellig, Philippe Oechslin

deep in a machine and strike again when all other machines have been
restored. Restoring all systems is not an option when there are too many
machines or too many managers.

2. THE LARGE SCALE ATTACK RECORDER
(LASCAR)

The large scale attack recorder provides a mean to find out exactly which
machines have been hit by a given attack. LASCAR is divided into three
parts, the recorder, the database and the analysis tool. The recorder consists
in a module loaded on every hosts of the workstation cluster. This module
tracks all the events in each workstation and logs the needed information to
the central integrity database. Two types of events are logged by the
recorder: process events and network events. The analysis tool parses all the
events in the integrity database and reconstructs all propagation paths within
and between the workstations. Once a potential integrity breach has been
detected, the analysis tool is able to trace back the origin and the evolution of
the breach in the cluster protected by LASCAR. In particular, it can
determine which are the corrupted machines in the cluster and visualize the
path and the propagation of the attack.

Figure 1. LASCAR at work

Tracing attacks and restoring integrity with LASCAR 3

2.1 Existing Work

Our approach of recording the propagation of suspicious activities across
processes and workstation is quite unique. Previous work that is related to
our approach includes:

• The EMERALD system [2] is an advanced intrusion detection
system aimed at large scale networks. It is composed of classical
IDS systems distributed on all elements of the network and of an
intelligent method to merge and correlate all information
gathered. It is a heavy system in the sense that complex statistics
have to be gathered in many places of the network and it suffers
from typical shortcoming of IDS, namely that they generate false
alarms and that they are not able to detect new classes of attacks
that were not imagined by their conceivers. Our contribution is
much more lightweight and humble, in the sense that we do not
actually detect attacks but we gather evidence for later damage
assessment and integrity restoration when some other system or
person has detected an attack.

• For database security it has been proposed (e.g. in [1]) to tag data
in order to indicate whether it is correct, damaged to some extend
or even unsafe to use. The tags propagate when datasets are
combined in calculations. The advantage of the method is similar
to our case: In case of loss of integrity only the damaged data
needs to be reconstructed rather than the whole database.

• In [3] the propagation of intrusions across multiple workstations
is formally stuidied. The results of the paper could allow us to
find out the intrinsic properties of an intrusion by matching our
data to the mathematical models.

2.2 Tagging inside a workstation

 Inside every machines of the LASCAR cluster, the recorder monitors
network and processes activities. Using the Linux Kernel modules (LKM)
ability to intercept system calls, it can log every incoming or outgoing
connection on the machine and every new listening socket or session id
(SID) change.

When the machine receives an incoming connection, LASCAR checks
whether this connection is considered as trusted or not. In the latter case, the
recorder logs the event and tag the process handling this connection with a
“suspicious” flag. This flag indicates that the corresponding process is

4 Alexandre Aellig, Philippe Oechslin

launched by an untrusted connection and thus can be potentially dangerous
for the machine integrity. All child processes on the machine will
automatically inherit this flag. In order to limit the volume of information
logged, the recorder does not log every new process that inherits a
“suspicious” flag but only processes that are created within a new session. A
new session is typically created when a user launches a process in the
background or when multiple interactive sessions are run in different
windows. Lastly, the recorder logs all outgoing connections which are
established by flagged processes.

A suspicious activity (and a potential loss of integrity) can thus be traced
on the machine from the point where it entered the system up to all points
where connections were made to other machines.

2.3 Tagging on the network

The previous method can be generalized to the entire LASCAR cluster.
However in this case, the "suspicious” flag must now be remotely
transmitted amongst machines of the LASCAR cluster.

The simplest way of propagating the flag is to set a bit in the IP header of
the packets transmitted by a flagged process. This could for example be one
of the Type Of Service (TOS) bits which are not usually used within a local
network. (An alternative would be the “evil bit” suggested in [4] published
on april fools day this year). The best way of using such a bit would be to
use the default value of the bit for the flagged processes and to use a non-
default value for all other processes. Thus, packets providing from machines
not running the LASCAR recorder would automatically appear as
suspicious. Since connections from outside the cluster are considered
suspicious anyway and administrator privileges are required to set IP header
bits, only machines within the cluster where the administrator account has
been compromised could avoid logging by resetting the bit. A more secure
approach would be to use a set of bits to carry the result of a cryptographic
calculation. For example, the calculation of the IP packet ID field (16 bits)
could include a secret key owned by the LASCAR recorder. Finally, to
prevent manipulation of the flag in transit or creation of spoofed packets, the
IPsec protocol could be used to authenticate all packets in a
cryptographically secure way.

In summary, an incoming connection will be logged by the recorder only
if it comes from a machine outside the LASCAR cluster or if its IP header
indicate that the connection was generated by a process previously marked
as “suspicious”. All connections internal to the cluster and originating from
clean processes won't be logged by LASCAR.

Tracing attacks and restoring integrity with LASCAR 5

3. EXPERIMENTAL RESULTS

To illustrate the behavior of LASCAR we have chosen two scenarios that
have been recorded by our implementation of LASCAR: a normal user
activity and a computer worm.

3.1 Normal user activity

Figure 2 shows an output of LASCAR analyzer generated from the
integrity database. It shows the connection of a user to the LASCAR cluster
composed by lasecpc12, lasecpc15 and lasecpc16. The user launches an
xterm window and from that window he connects to two other machines,
maybe to launch two calculations. In the original session he starts the lynx
browser to access a web site on the Internet (198.133.219.25)

Lasecpc12 receives the incoming ssh connection from an outside host at
the IP address 128.178.73.68. It logs the connection attempt and its two
subsequent sessions: xterm and lynx. We see that each session then
connects to others machines.

Figure 2. Propagation graph of a normal user behavior generated automatically by LASCAR

6 Alexandre Aellig, Philippe Oechslin

Lasecpc15 and lasecpc16 consider the incoming ssh connections as
untrusted, even though they come from a machine inside the cluster. Indeed,
connections were launched by sessions that were carrying the “suspicious”
flag.

3.2 Computer worm behavior

The second example illustrates the evolution of a computer worm inside
a cluster where machines are exposed to a common vulnerability of the
secure shell program (SSH) on port 22. In this case, the worm enters through
an external connection and corrupts a first machine of the cluster. It then
tries to initiate each time two outgoing connections to replicate itself To
simulate a work behavior we have manually connected a host by ssh and
recursively opened two new sessions to random hosts from every ssh
session.

With the help of LASCAR, we are able to trace back the evolution of the
worm replication inside the cluster. In particular, we see that machines
lasecpc15 and lasecpc16 are infected twice. When the attack has been
detected, the LASCAR analyzer provides an exhaustive description of the
attack path and scope with the id of the machines involved. This allows
cluster administrators to quarantine only the corrupted machines of the
cluster. In particular, the analysis of the propagation path may identify
machines that have been infected but are not showing any symptoms of
infection.

Tracing attacks and restoring integrity with LASCAR 7

Figure 3. Propagation graph of a simulated computer worm plotted by LASCAR

4. IMPLEMENTATION DETAILS

LASCAR has been implemented on Linux using Linux Kernel Modules
(LKM). These modules allow administrators to load and unload features on
the fly inside the operating system kernel. LKM was the ideal solution for
LASCAR since it combines the power and speed of being directly integrated
into the kernel together with the flexibility of an independent program.
Similar solutions are available on others UNIX systems.

The first implementation of the recorder was made specifically for the
CERN network as a connection logger. After further research it has evolved
to the actual LASCAR. Two functionalities were needed in order to

8 Alexandre Aellig, Philippe Oechslin

implement the recorder: interception and modification of the connections
and tagging of processes.

When a network event occurs or a new session is created, the
corresponding system call is intercepted and LASCAR output is generated
accordingly. The output can be customized, but it contains at least minimal
security information such as connection IP addresses, ports numbers and
processes info (session id, process id, user id) for the LASCAR analyzer. In
the case of a process, we set a "suspicious” flag on the process called by the
incoming connection. Every child process then automatically inherits this
flag.

All the logs generated by the recorder are forwarded by the logging
daemon to a remote integrity database, which centralize the logs of the
LASCAR cluster needed by the analyzer to generate graphs of the LASCAR
reports as shown in section 3. The analyzer currently uses timestamps to link
the events between different machines (e.g. an outgoing connection and the
matching incoming connection on another machine), since the concept of
flagging trough TOS bits has not yet been implemented. Additionally, it has
the ability, as a forensic tool, to regenerate graphs of a whole attack based on
several criteria or to perform some basic intrusion detection using a blacklist.

5. DISCUSSION: LASCAR AND INTRUSION
DETECTION

LASCAR is not an intrusion detection tool by itself. Its main function is
to record traces of potential intrusions. Still, it can provide basic intrusion
detection capabilities.

5.1 The suspicion criteria or identifying the potential
troublemakers:

LASCAR only tags potentially harmful connections and processes. To do
so it must have some criteria to identify potential harmfulness. In our case
the criteria simply is the fact that a connection origins in a machine outside
the cluster. This reflects the belief that the malicious activity that we want to
trace enters the cluster from the internet, either because an attacker is
targeting the cluster or because the attack propagates automatically and
arbitrarily hits the cluster. If desired, the tagging criteria could be extended
to include any process that acquires root privileges. More complex criteria
could be made available by running a complete intrusion detection system on
each workstation and using its output. The important point about our
approach is that there is no need for such a complicated way of finding

Tracing attacks and restoring integrity with LASCAR 9

potentially harmful connections or processes. Indeed, we could even try to
tag and log all connections and processes. The use of the suspicion criteria
only serves to relieve the load on workstations and the main database.

5.2 The detection criteria or finding out when you have
been hit:

Tagging and logging is only one part of LASCAR. The other part is the
analysis of the gathered information in order to identify the machines that
have lost integrity. To start an analysis we first need to know that we have
been attacked. The most evident way of detecting an attack is when its first
symptoms become visible (e.g. data loss, deterioration of service). Of course
it would be more useful to detect an attack when it first appears. This is the
goal of all intrusion detection systems. Alas, there is no way yet to build an
IDS which will catch intrusions early and will not create a large number of
false alarms. In a large setting like ours the amount of false alarms could be
prohibitive. This is why we resort to logging suspicious activity such that
when an attack is later confirmed we can go back and quickly get rid of its
effects. Still, we have built a very pragmatic IDS capability into LASCAR.
A criteria for attack detection used at CERN is a blacklist of IP addresses of
servers hosting malicious code. Although not every attack will generate a
connection to these addresses, any process that connects to the addresses of
the black list must be malicious. Since connections made by potentially
harmful processes are logged by LASCAR anyway, attempts to connect to
addresses from the black list can be signaled with no overhead.

5.3 Using LASCAR as an IDS tool by itself:

The graphs that can be created from data gathered by LASCAR describe
the propagation behavior of potentially harmful code or actions. This data
contains metrics which are closely related to malicious activity and which
could lead to an IDS system that would not have the high false alarm rates of
other known systems. Interesting metrics would be the maximum depth in a
propagation tree (how many times a suspicious activity has jumped to a next
workstation), the maximum out degree of nodes in the trees (e.g. how many
different workstations an activity has jumped to from a single workstation)
or simply the number of nodes in a graph (how many machines at all have
been hosts to the same activity).

10 Alexandre Aellig, Philippe Oechslin

6. CONCLUSIONS

Using a combination of process and connection tagging we have been
able to create a system that can record the propagation of an activity through
a cluster of machine and trace back all machines and processes that
contributed to a loss of integrity. This information makes it possible to
completely retrace the propagation of an attack and to eradicate
compromised malicious code and compromised systems without having to
restore large numbers of unconcerned hosts. Our system is particularly well
suited for large networks of loosely managed systems as found in academic
or research environments.

REFERENCES

1. P. Ammann, S. Jajodia, C. D. McCollum, and B. T. Blaustein,
``Surviving information warfare attacks on databases,'' Proc. IEEE
Symp. on Research in Security and Privacy, Oakland, Calif., May
1997, pages 31-42.

2. Peter G. Neumann and Phillip A. Porras. Experience with
EMERALD to date. In Proceedings of the 1st Workshop on
Intrusion Detection and Network Monitoring. 1999, USENIX,
pages 73–80.

3. Sotiris Nikoletseas, Grigorios Prasinos, Paul G. Spirakis, and
Christos D. Zaroliagis. Attack propagation in networks. In ACM
Symposium on Parallel Algorithms and Architectures, pages 67–
76, 2001.

4. S. Bellovin, The Security Flag in the IPv4 Header, RFC 3514,
Internet Engineering Task Force, April 1st 2003

