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Sensing Reality and
Communicating Bits:
A Dangerous Liaison

Is digital communication sufficient for sensor networks?

he successful design of sensor network architectures depends crucially on the
structure of the sampling, observation, and communication processes. One of the
most fundamental questions concerns the sufficiency of discrete approximations in
time, space, and amplitude. More explicitly, to capture the spatiotemporal variations
of the underlying signals, when is it sufficient to build sensor network systems that
work with discrete-fime and -space representations? And can the underlying amplitude varia-
tions of interest be observed at the highest possible fidelity if the sensors quantize their obser-
vations, assuming that quantization is done in the most sophisticated fashion, exploiting the
principles of (ideal) distributed source coding? The former can be rephrased as the question of
whether there is a spatiotemporal sampling theorem for typical data sets in sensor networks.
This question has a positive answer in many cases of interest, based on the physics of the
processes to be observed. The latter can be expressed as the question of whether there is a
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(source/channel) separation theorem for typical sensor network
scenarios. We show that this question has in many cases a nega-
tive answer, and we show that
the price of separation can be
large. To illustrate the concep-
tual issues related to sampling,
source representation/coding
and communication in sensor
networks, we review the
underlying theory and discuss specific examples.

INTRODUCTION
To paraphrase Shannon, the goal of signal acquisition by means
of sensor networks is to reproduce at a read-out station a dis-
tributed signal (or some of its key characteristics) under a fideli-
ty constraint, using limited communication resources. In the
nondistributed setting, this problem elegantly decomposes into
a signal compression (or representation) problem and a com-
munication problem [1]. Consequently, signal processing and
communications have become separate topics over the past sev-
eral decades, developing in quite different directions. In signal
processing research, under the conventional paradigm, the data
is first brought into a central location, where it is then
processed jointly. Paradigmatic instances of this are signal
transform techniques, where typically a large portion of the data
(if not all of it) is processed simultaneously. The task of bringing
the data to the processor is analyzed separately in the frame-
work of communications research.

With the advent of sensor networks, a body of research has
begun to develop that addresses signal processing and commu-
nication jointly. This originates from the insight that the new
data sets look fundamentally different: sensors are capable of
acquiring vast amounts of data, and there is little hope of first
shipping all the data to a central location. Such undertaking
would immediately drain the power supplies of all sensors and
in a wireless setting would create major interference problems.
More specifically, it can be shown that sensor network
algorithms designed under such a paradigm may not
scale. To address this problem, it has become imperative
to process the data (at least partly) in a distributed fash-
ion at the sensors. Such an approach may drastically
reduce the communication needs.

In this article, we take a structure-driven, end-to-
end approach to the sensor network problem, illustrat-
ed in Figure 1. Underlying the whole problem is the
physics of the process of interest. This structures the
data sets, points to sampling schemes, and indicates
what types of correlation will be present in the sensor
data. After sampling using the sensors, we are faced
with the classic dilemma of the communication engi-
neer: “to separate or not to separate.” That is, we
either go to the digital domain and apply discretiza-
tion of the data through quantization and source com-
pression, or we keep data in analog form. The former
implicitly assumes a separation into source and chan-

IN SENSOR NETWORKS, A BODY OF
RESEARCH HAS DEVELOPED THAT
ADDRESSES SIGNAL PROCESSING
AND COMMUNICATION JOINTLY.

nel coding and can be optimal in certain scenarios, while the
latter permits any form of joint source-channel coding. Thus,
the main focus and goal is to
show how the structure of the
distributed sensing and com-
munication problem dictates
new processing architectures.
The key challenge lies in the
discretization of space, time,
and amplitude, since most of the advanced signal processing
systems operate in discrete domain. In the sequel, we investi-
gate and illustrate the sufficiency of such discretization, but
also the lack thereof.

We will discuss the general framework, outlining that while
the temporal and spatial discretization can be understood from
(essentially) the same arguments as in the traditional signal
processing applications, the situation is different for ampli-
tude. We formalize this question in an information-theoretic
way as one of source-channel separation: Can an optimal cod-
ing strategy be implemented by first compressing the source(s)
into bit streams and communicate those via error-correcting
codes? This question has a positive answer for the point-to-
point link but not for general networks, and we outline some
of the well-known key arguments.

We will also discuss the spatial structure of sensor data. The
main insight is that this structure is governed by the physics of
the underlying process. As we illustrate, in some cases, this
leads to spatial sampling theorems, showing that a discrete-
space consideration is sufficient.

We will discuss and illustrate the sufficiency of discrete-
amplitude (digital) processing, i.e., the question of where and
when there is a source-channel separation theorem in sensor
network situations. We show that the answer crucially depends
on the interplay between the source structure, the source obser-
vation process, and the communication infrastructure. Via the
following two paradigmatic examples, we illustrate this issue.

==

(a) (b) ()

[FIG1] The end-to-end sensor network problem. (a) A physical
environment, possibly driven by sources, generates a distributed data set,
like a temperature distribution or a sound field. (b) A number of sensors
acquire, through spatial sampling, a discrete space version of the physical
data set (temporal sampling is typically also done). This leads to a
spatiotemporal discrete signal. (c) The data set needs to be conveyed to a
central location for reconstruction of the original field. This can be
accomplished with standard (albeit distributed) source compression and
appropriate communication or a joint source channel scheme.
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EXPANDING SENSOR NETWORK

Consider the sensor network scenario illustrated in Figure 2,
and suppose that the sources Sp,,, m=1,2,..., M, are inde-
pendent and identically distributed Gaussian with mean zero
and unit variance, and that the matrix B is the identity matrix.
Then, it is immediate to see that D = 1/[Pt°t/(M+azz)],
hence the distortion scales like D(M) ~ M/Py,+(M). (For scal-
ing law relationships, we use the notation f(x) ~ g(x) if
limy_. o f(x)/g(x) = ¢ for a finite nonzero constant c.) Since in
this case, we simply have M parallel channels, it is equally
immediate to show that this distortion can be achieved via
separately designed source and channel codes, and hence, a
separation theorem applies. This insight can be extended to
more general cases: Whenever the covariance matrix of the
source vector (51, S, ..., Sy) has full rank (and bounded con-
dition number), and when the MIMO communication channel
matrix B has full rank (and bounded condition number), it can
again be shown that if Pt ~ M, then D(M) ~ const. To show
that this is achievable, it suffices to combine standard distrib-
uted source coding (see, e.g., [47]) with standard channel cod-
ing. A lower bound follows from a consideration of the
idealized scenario where all sensors in Figure 2 are merged
into one “super sensor.” For the resulting scenario, optimum
performance is well known. Hence, this establishes a (scaling-
law) separation theorem for a certain class of expanding sen-
sor networks.
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[FIG2] The expanding sensor network. Each new sensor also
adds new data of interest. In this example, the
communication infrastructure (the dashed box) is “rich,”
meaning that the rank of the channel matrix B is of the order
of M. An example is for B to be the M-dimensional identity
matrix, which represents the case of a wired sensor network.
A scaling-law separation theorem applies.

PARADIGMATIC SENSOR NETWORK EXAMPLE 1

The Expanding Sensor Network with Rich (e.g., Wired)
Communication Infrastructure

Consider the sensor network scenario of Figure 2, where we
assume that the (continuous-time) source signals
81,89, ..., Sy are sufficiently independent of each other.
Hence, this models the case where each sensor explores new ter-
ritory, and thus the sensor network is expanding. The base sta-
tion wishes to recover all of the (continuous-time) sensor
readings. For this to be reasonably possible, it is necessary that
the communication infrastructure be rich. In Figure 2, this
means that the matrix B characterizing the communication
channel is essentially of full rank. A special case is when B is a
diagonal matrix. Then, the sensors are individually connected to
the base station via wired links. To make matters somewhat
more specific, for the purpose of this article, we will measure
the quality at which the base station can recover the sensor
readings by considering the mean-squared error, even though
other distortion measures can be studied in an analogous fash-
ion. For a compact parameterization, we will focus on the nor-
malized sum of the M distortion terms, i.e.,

oy iellm-sl] o

m=1

where, in slight abuse of notation, we have used S, to denote the
entire source signal (either discrete time or continuous time), Sm
to denote its estimate constructed at the base station, and
1Sm — Sm | to denote the standard 2-norm between the two sig-
nals. The goal of our considerations is then to understand the rela-
tionship between the achievable distortion D, the source
characteristics, and the communication infrastructure (the total
transmitted power Pt and the required bandwidth). We briefly
consider a sensor network of this kind in “Expanding Sensor
Network,” where we show that in a certain sense, there is a source-
channel separation theorem for such sensor network situations.

PARADIGMATIC SENSOR NETWORK EXAMPLE 2

The Refining Sensor Network

with Poor Communication Infrastructure

By contrast to the previous example, consider now the sensor
network scenario of Figure 3. There is a (relatively small)
number of underlying sources (or degrees of freedom) that
need to be observed, and each sensor picks up a merged and
possibly noisy version of all of these underlying sources. As
more sensors are added, a better and better reconstruction can
be provided at the base station. Therefore, this can be thought
of as a “refining” sensor network. Here, the interesting case is
when the communication infrastructure is relatively poor,
which, as expressed in Figure 3, we model by considering a
matrix B with low rank. An example is the standard (scalar)
multiple access channel where the rank of B is one. By analo-
gy, we again consider the mean squared error
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via the same slight abuse of notation as in (1). The goal of our
considerations is again to understand the relationship between
the achievable distortion D, the source and observation char-
acteristics, and the communication infrastructure (the total
transmitted power Pt and
the required bandwidth). In
this article, we consider an
example where there is no
observation noise (see
“Camera Sensor Network”)
and one where the source
observation process is linear and the observations are noisy
(“Digital Architectures for Sensor Network Example” and
“Analog Architectures for Sensor Network Example”). We show
that in such sensor network situations, the price of separately
designed source and channel codes can be arbitrarily large.

In summary, in the sensor network models of interest to
our study, the observed source is (typically) continuous in
time, space, and amplitude. The data collection point is
required to reconstruct the entire source sequences, for all
time (and space), with respect to an average distortion crite-
rion, as expressed in (1) and (2) and subject to power con-
straints at the sensors.

It is important to point out that
this is not the only interesting way
of modeling sensor network situa-
tions. For example, one can remove

THE QUESTION IS WHETHER THERE
IS A SOURCE/CHANNEL SEPARATION
THEOREM FOR TYPICAL SENSOR
NETWORKS.

the well-studied common communication scenarios, such as a
telephone conversation across a wired or wireless connection.

In either case, due to the nature of the most interesting pro-
cessing devices available today, one of the key questions for the
engineer is whether discrete approximations in time, space, and
amplitude are sufficient and, if not (or not quite), what kind of
a loss they imply.

For the traditional point-
to-point communication
problem, this set of questions
has been well studied and has
led to a set of intuitively
pleasing (if initially some-
what surprising) answers.

To understand the sufficiency of discrete-fime approxima-
tions, the central result is the well-known sampling theorem
for band-limited functions and extensions to other linear
subspace cases [8]. When the functions of interest do not fit
the model (for example, they are not bandlimited) then pre-
processing (like low-pass filtering) has to be applied. This
may or may not always be possible.

The problem of the sufficiency of discrete-space approxima-
tions bears some formal resemblance to the case of discrete-
time approximations. From a practical point of view, however,
the two problems are quite distinct. While discretization in

the requirement that the source
sequences must be estimated for all
time. Instead, one can consider a
(distributed) parameter estimation

Sensor 1

problem, such as in [2]-[4], or a
(distributed) hypothesis testing or
detection problem, such as in [5]
and [6]. If the source sequence does
not need to be estimated for all
time, then it becomes interesting
and meaningful to replace the
power constraints with energy con-
straints, and to analyze the lifetime
of the network. Such a perspective
is taken in [6] and [7].

THE WAY OF THE BIT

Un

Sensor 2

Base
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\

Wi
The physical reality observed by a é
sensor network typically lives in
time and space, both of which are
best thought of as continuous. The
measurements taken by the sensor
network are also often continuous

SensorM

[FIG3] The refining sensor network. A vector source (with arbitrary distribution) is observed M-
fold through a vector-valued function A (for example, A could be a matrix) and in additive
noise, independently by M sensors. The M sensors communicate over an additive noise MIMO

channel, characterized by the matrix B, to a base station that houses the central estimation

in amplitude (and potentially
phase). This is not different from

officer. The sensors may have (generally limited) cooperation capabilities. No scaling-law
separation theorem applies.
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time can be seen as an engineering choice, discretization in
space really is a physical necessity in most cases: sensors are
spatially localized objects, and this leads necessarily to spatial
sampling. However, one can again ask the question under what
conditions discrete-space considerations are sufficient and
what loss they imply otherwise. The fact that no spatial low-
pass filtering is possible in general shows how critical spatial
sampling and aliasing can be.

The remaining issue, then, is the question whether discrete
in amplitude (often referred to as digital) is sufficient if the
original data is analog in amplitude (such as a temperature, a
sound pressure waveform) and if the communication medium
is analog in nature (such as a voltage or an electromagnetic
field). By analogy to spatiotemporal sampling, the question is
again whether it is without loss of optimality to pass from an
infinite set (continuous data) to a countable set (a set of

MULTIUSER INFORMATION THEORY AND SOURCE-CHANNEL SEPARATION

One of the most studied networks in multiuser information
theory is the multiple access channel (MACQ). A simple MAC is
the scenario where two terminals transmit with power P each
on the same frequency band to a single receiver (base station),
subject to additive white Gaussian noise of variance o2. The
capacity region C is the set of rate pairs (Rq, Ry) satisfying
R1 < (1/2)log,(1+ (P/0?)), Ry < (1/2) log 2(1+ (P/o?), and
R1+ Ry < (1/2)log, (1 + (2P/02)). This leads to a pentagonal
shape [9, Fig. 14.17].

Recently, a scaling-law perspective has been developed in
multiuser information theory: How does capacity behave as the
number of users in the network increases? For the Gaussian
MAG, it is easy to see that the sum of the rates grows logarithmi-
cally in the number of nodes [9, p.407]. Recent work has shown
that for the Gaussian (multiple) relay channel, it also grows loga-
rithmically [10], [11]. Finally, for an ad hoc network scenario, the
sum of all the rates grows like the square-root of the number of
nodes [12]. These results are sometimes interpreted in a pes-
simistic fashion as saying that in all these networks, the rate per
user vanishes as the number of nodes tends to infinity.

On the rate-distortion side, an interesting scenario for which
a solution has been found is the so-called CEO problem [13].
Here, M agents all observe independently noisy versions of
one and the same source and have to produce separate
descriptions. If a total rate R bits per source sample is avail-
able, it has been shown that as the number of agents becomes
large, the attainable distortion behaves inversely proportional
to the rate. One interesting way of understanding this result is
by noting that in the standard single-source rate-distortion
problem, the distortion usually decreases exponentially in the
rate. Some other interesting cases are discussed in “A Glimpse
at Distributed Source Coding.”

Unfortunately, even if the rate-distortion region R for any
source coding problem and the capacity region C for any chan-
nel network were known, this would not solve the overall joint
source-channel communication problem. A classical example
illustrating the fact that source-channel separation does not
hold for networks is usually given as follows [14]: The channel is
the binary adder multiple access channel, taking two binary
{0, 1} inputs and outputting their sum {0, 1, 2}. The capacity
region C of this channel has the pentagonal shape given in
Figure 4; see [9, Fig.14.13] for more details. Now suppose that the
two transmitting terminals each observe a binary sequence, call
them S7 and S5. The two sequences are correlated with each
other such that for each time instant, the events

(51,52) = (0,0), (0, 1), and (1, 1) are all equally likely, and (1, 0)
does not occur. Clearly, at least H(S1, S;) = log, 3 ~ 1.58 bits per
source sample are required. The full Slepian-Wolf rate region R
is also given in Figure 4; the point labeled x is log, 3 — (2/3). The
two regions do not intersect, and hence, one is tempted to
guess that these two sources cannot be transmitted across this
MAC. However, this conclusion is wrong: While there is no “digi-
tal” architecture that achieves this, there is a simple “analog”
strategy: pure uncoded transmission will always permit to recov-
er both source sequences without error, due to the fact that the
dependence structure of the sources is perfectly matched to the
channel. This illustrates that no separation theorem applies to
general networks. An example where the gap between the best
digital strategy (along the lines of the separation theorem) and
the optimum scheme increases as the number of nodes in the
network becomes large is analyzed in detail in “Analog
Architectures.”

While the general answer is unknown, there are also net-
work cases known where a separation theorem of the
shape of (5) can be given, including the transmission of
independent sources with respect to independent fidelity
criteria across any multiple access channel, see e.g., [15,
Thm.1.9], and the error-free transmission of discrete corre-
lated sources across separate (parallel) channels, see [16].
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[FIG4] Capacity region C and rate-distortion region R do not
intersect in this example.
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messages). The simplest example is scalar quantization, a more
sophisticated version being vector quantization. For the point-
to-point communication problem if we allow any vector quan-
tizer and any error-correcting code, even the abstract,
information-theoretic ones, then it is well known that the
answer to the above question is positive; it is given by
Shannon’s celebrated joint source-channel coding theorem,
often referred to as (source-channel) separation theorem.

More precisely, the source coding problem can be character-
ized in terms of a rate-distortion function, often denoted as
R(D), and the channel coding problem in terms of a capacity-
cost function, denoted as C(P). The separation theorem then
states that a distortion D is attainable if

R(D) < C 3)
and cannot be attained if
R(D) > C. 4)

The case R(D) = C is attainable in some cases but not in all.
(This issue shall not be discussed in any detail in this article.)
Owing to the stunning success of the digital communica-
tion paradigm in practical systems, it is clear that the same
approach has been taken to the design of communication
networks. Along the lines of the development for the point-
to-point case, one can now consider the rate vectors
(R1, ..., Ry), in bits per source symbol, required to main-
tain prescribed distortion levels on all sources. Generally,
many different rate vectors will be permitted to achieve this,
and one usually thinks of the corresponding rate-distortion
region, denoted by R. Similarly, for the communication net-
work, one can determine the number of bits per channel
used that can be simultaneously pushed through the inputs
of the network. The vectors of reliably achievable rates can
be captured in terms of a capacity region C. It is then easy to
see that a set of prescribed distortion levels is attainable if

RNC # 0, )

but this is not a necessary condition. In other words, even if the
intersection of the rate-distortion region and the capacity region
is empty, there may exist a code that achieves the prescribed dis-
tortion levels. However, that code is not a digital code; that is, it
cannot be understood in terms of source compression followed
by reliable communication across noisy channels. Rather, it
requires joint source-channel coding.

DISCRETE SPACE: SAMPLING OF DISTRIBUTED SIGNALS

Sampling is so common that we sometimes forget it is a little
miracle and that it comes with a few strings attached. In the
case of sensor networks, the critical issue is certainly the sam-
pling in space, inherent in the discrete nature of the sensors.
Also, distributed signals exist in time and space and are thus
inherently multidimensional. Distributed signal acquisition is

thus the spatiotemporal sampling of such signals. Of course,
the field of array signal processing has dealt with such prob-
lems in the past (see, e.g., [17]) but with a perspective that is
different from the one used in sensor networks. In typical
array signal processing, the array is one dimensional, regular,
and the signals are often narrow band. In sensor networks, the
array is irregular and two dimensional (random sensor place-
ment on a plane), and the signals can be wide band (e.g.,
sound, images). The obvious question is one of spatial sam-
pling, with the twist that there cannot be any spatial low-pass
filtering before sampling. Thus, most sensor network data is
aliased with respect to spatial frequency.

In “The Plenacoustic Function,” we discuss the interaction
between the physics of the process and spatial sampling, in
particular in the case of distributed audio signals and the ple-
nacoustic function [18]. Other examples of interest where
such an analysis can be applied include distributed camera
systems, where the plenoptic function [19] plays a key role.
This function can be used as an underlying model for distrib-
uted image or video acquisition. Interestingly, a sampling
theorem for spatial sampling can also be derived in this case
[20]. Finally, the distribution of temperature, where the heat
equation is central, has been considered in [21].

From the above, we can summarize the methodology. First,
consider the physical process producing the quantity of interest
for the sensor network. This leads to a specific spatiotemporal
behavior. From there, analyze the possible sampling and alias-
ing, especially in the spatial dimension.

A final question of interest is if sampling can be considered
in isolation, without referring to compression and communica-
tion issues. This is certainly of great interest but does not have a
simple answer. Clearly, if we have the freedom to place sensors
at will, we can optimize sensor placement so that energy usage
is reduced, for example. At the same time, putting all the sen-
sors close to the base station will lead to a very ill-conditioned
interpolation of the original data, something to be avoided in
the presence of noise. From results on irregular sampling, it is
intuitively clear that to first order, it will not be possible to sub-
stantially deviate from uniform placement, and therefore, only
limited gains are possible.

DIGITAL ARCHITECTURES

The term digital has become so pervasive that it is sometimes
assumed to be given. That is, we go from whatever analog values
to some discrete representation. This is what we will assume in
this section. But then, in the next section, we will show that
things are not always so simple in general.

To discuss digital architectures, we need to define them
somewhat more formally. A digital architecture is a two-
stage procedure, where each stage is designed independent-
ly, the only link between the two stages being digital rate
constraints. Intuitively, any scheme whose performance can
be expressed in terms of a rate-distortion behavior combined
with a capacity region will be considered a “digital”
architecture. In more detail, this can be described as follows:
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1) The source code is designed with only the capacity (region)
of the channel network available. No further information
about the finer structure of

Clearly, any traditional digital communication strategy falls
under this category, such as a system where the source is first
passed through a vector

the channel can be used. ' THE SENSOR NETWORK quantizer, followed by, for
i) The cdhan?:}e]l cide is PERFORMS SAMPLING BUT exe(tjmp}lle, artlhentlropl);cod;r£
esigned without any WITHOUT SPATIAL FILTERING. and where the resulting bi

knowledge about the

source at all. Its goal is to

communicate messages in such a way as to avoid errors.

It is perhaps worth illustrating what constitutes digital

architectures according to this definition and what does not.

THE PLENACOUSTIC FUNCTION

To make matters specific, we first consider the concrete case of
acoustics signals and microphone arrays. The sound field, be it in
open space or inside a room, is the solution of a second-order
partial differential equation called the wave equation. The driv-
ing term in the differential equation is given by the various
sound sources. The key is thus the kernel of the wave equation,
since the source distribution is convolved with the kernel to pro-
duce the actual acoustic field. This kernel, also known as the
Green function, has a particular form. Its Fourier transform for a
particular temporal frequency is essentially band-limited in spa-
tial frequency. For a concrete example, consider a line in a room,
and the spatiotemporal room impulse response h(x, t) with
respect to a source. The Fourier transform H(w) is essentially sup-
ported on a triangle with

¢ =<—, (6)

e

where c is the speed of sound and ¢ and o are the spatial
and temporal frequencies, respectively. Figure 5 shows a
simulated and a measured spectrum of the Green function
or plenacoustic function of a room, indicating clearly the

Amplitude (dB)

stream is communicated via
an error-correcting code
that avoids (block) errors on the noisy channel. On the other
hand, a strategy where the channel provides soff information,
and the source code is designed to work with such soft

bow-tie shape of the spectrum that can be used in sam-
pling. For details, we refer to [18].

Now we are in a position to address the sampling question.
First, it is worth remembering that while the temporal frequency
can be limited using low-pass filtering, there is no such possibility
over space. That is, spatial sampling cannot be preceded by any
spatial filtering. Nonetheless, thanks to the shape of the spec-
trum, if the maximal temporal frequency is wp, then the spatial
spectrum is limited to wg/c. That is, spatial sampling with a dis-
tance between microphones of the order of d = ¢/wyg is ade-
quate to obtain a good representation of the acoustic field. Such
a rule of thumb is well known in array signal processing [17]. A
precise analysis is given in [18], where the decay of the spectrum
and the analysis of the resulting signal-noise ration is given. It is
to be noted that the discrete spectrum over time and space is
not white, and thus residual correlation is present and can be
used in distributed compression. One such scheme is analyzed in
[22], where it is shown that distributed compression using quin-
cunx sampling achieves the same D(R) as centralized compres-
sion. This points to the close interaction of signal structure,
spatiotemporal sampling, and distributed compression.

Amplitude (dB)

[FIG5] The Fourier transform of the plenacoustic function, with spatial and temporal frequencies. (a) Simulated and (b) measured
plenacoustic function of a room. The triangular shape of the Fourier transform is clearly visible, which leads to a sampling theorem

over space when the temporal frequency is limited.
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information, is not considered a digital architecture since the
two stages are not truly designed independently of each other.
It is clear that such a strategy really constitutes a joint source-
channel code.

In this section, we discuss
some of the key aspects of dig-
ital architectures, focusing
primarily on the source cod-
ing side. To compress a single
source, one can think of applying a suitable vector quantizer
to an entire vector of source symbols. Unless the vector quan-
tizer is an information-theoretically optimal construction, the
resulting quantization indices still have redundancy in them,
and it is customary to pass them through an entropy coder.
An alternative and very popular approach known as transform
coding consists in applying a suitable (linear) transform to
the vector before quantizing each transformed component
independently and, in the case of jointly Gaussian vector, it is
well known that the optimal transform is the Karhunen-Logve
transform (KLT). To be more precise, if we denote the covari-
ance matrix of the input vector S by Xg and assume that the
vector is jointly Gaussian, then the optimal transform coder
operates as follows: The input vector S is first transformed
with a KLT, then the transformed components are quantized
independently, and more rate is allocated to the components
related to the largest eigenvalues of Xg.

Let us now consider the sensor network problem where we
have multiple correlated sources that need to be compressed
in a distributed fashion. Specifically, consider the source cod-
ing problem illustrated in Figure 6. If sensors could collabo-
rate among themselves (at no cost), then the distributed
source coding problem would be mute: we could merely apply
the same algorithms as in the single-source case. However,
such sensor collaboration is usually not feasible since it would
require an elaborate intersensor communication and would
consume most of the power of the sensors. In other words, it
is no longer possible to apply a vector quantizer or a trans-
form coder to the entire source vector. Instead, these algo-
rithms have to be approximated in a distributed fashion.
Suppose that each sensor has applied a suitable vector quan-
tizer to its observed data and is now left with quantization
indices. There are two different kinds of redundancies that can
still be exploited. On the one hand, each sensor’s indices may
be dependent; on the other hand, and more interestingly, the
quantization indices of sensor 1 may be correlated with the
indices of sensor 2, and so on. This type of redundancy can be
removed in a very elegant fashion, pioneered by Slepian and
Wolf [23], and further developed (and extended to the case of
lossy compression) by Wyner and Ziv in [24]. An overview of
these fundamental results on distributed source coding is
given in “A Glimpse at Distributed Source Coding.”
Constructive distributed encoders have been developed more
recently in [25]-[33].

This leaves us with the question of how the transform
coding paradigm changes in this new distributed context.

DISTRIBUTED SOURCE CODING
IMPLICITLY ASSUMES A DIGITAL
ARCHITECTURE.

Namely, if each sensor were to apply a transform to the
observed subvector, should this transform be the same as in
the single-source case or should it be modified, and should
the quantization and bit allo-
cation strategies be modified
as well? The interesting
answer is that, in the new dis-
tributed scenario, the optimal
solution usually requires not
only a modification of the structure of the KLT (leading, for
instance to the conditional KLT) but also to a modification
of the bit allocation strategy and of the quantization process
[34], [35]. Extensions to the centralized transform coding
paradigm have also been investigated in [36].

Let us now return to the overall design of the digital archi-
tecture, specifically to the interactions between the observa-
tion process, the source coding, and the channel coding. While
the general problem is hard and comes in many flavors, we
want to consider three special cases. The first special case is
discussed in “Expanding Sensor Network” and is related to the
expanding sensor network of Figure 2. We show that, in this
case, the architecture scales properly with the number of sen-
sors and that separation holds in a scaling-law sense.

The two examples found in “Camera Sensor Network” and
“Digital Architectures for Sensor Network Example” show, how-
ever, that there exist other instances where separation does not
hold. In particular, in “Camera Sensor Network,” we assume
sensors are digital cameras, and we show that we incur a small
penalty by doing separation. “Digital Architectures for Sensor
Network Example,” finally, concerns the wireless sensor net-
work (WSN) with a structure as given in Figure 3. For this case,
we explicitly evaluate the performance to compare it to analog
architectures. As it will become evident in the next section, the
digital architecture of this second example does not scale prop-
erly with the number of sensors and this leads to vastly subopti-
mal performance.

Si

Sensor 1

Sensor 2

Sy | SensorN

[FIG6] Distributed transform coding: The full data vector
(51, ..., Swm) is observed in multiple partitions. Each terminal
provides a compressed version of its observation.
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The case of transmission of correlated sources through net-
worked independent channels has been investigated in [16],
[37], and [38]. Other digital
approaches have been studied

noted that analog is not taken to imply linear processing
nor any other constraint of this form. Rather, analog
should be defined negatively
as nondigital, and the point

for example in [39]-[42]. WHILE DIGITAL IS CONVENIENT, of the article is to show that
ANALOG MIGHT BE OPTIMAL. some sensor network sce-
ANALOG ARCHITECTURES narios strictly require

By contrast to the digital

architectures discussed earlier, there are ways of “coding”
that are not based on the representation of all information
in terms of discrete messages (such as bit streams). For
the purpose of this exposition, we will refer to any such
approach as analog architecture. Specifically, it should be

A GLIMPSE AT DISTRIBUTED SOURCE CODING

Consider two discrete memoryless sources X and Y that have to
be encoded at rates Ry and R,, respectively. Clearly, this can be
achieved with no loss of information using Ry > H(X) and
R, > H(Y) bits where H(-) denotes the source entropy. If X and
Y are correlated and a single encoder has access to both sources,
lossless compression is achieved when Ry + R, > H(X, Y).

Now assume that these two sources are separated, and two
separate encoders need to be used as illustrated in Figure 7(a).
Slepian and Wolf [23] showed that lossless compression can still
be achieved with R; and R; satisfying:

X Jencoder 1}t
Decoder =i
Y
—{Encoder 2 i
()
Ry
H(X7Y) H(X) H(X)Y) R,

(b)

[FIG7] (a) The Slepian-Wolf problem: distributed encoding of
X and Y. (b) The Slepian-Wolf rate region.

nondigital architectures.

Such nondigital architectures are, in certain contexts, also
referred to as joint source-channel coding.

As we have argued, a set of powerful tools has been

developed over the past five decades that facilitates the

design of algorithms for handling discrete information,

Ri = HX[Y), Ry=H(Y|X), Ri+R;=HX)Y).

This means, surprisingly, that there is no loss in terms of the over-
all rates even though the encoders are separated. The Slepian-
Wolf rate region is sketched in Figure 7(b).

Of particular interest is the asymmetric case
(R1, R2) = (HIX|Y), H(Y)). Since R, = H(Y), Y can be assumed
available at the decoder and the only challenge is to find an effi-
cient way to encode X. This is normally known as the source cod-
ing problem with side information at the decoder. This case is
important because, if we can show that the rate pair
(R1, Ry) = (H(X|Y), H(Y)) is achievable, then by exchanging the
role of X and Y we can achieve (H(X), H(Y|X) as well and, final-
ly, all the points on the line connecting (H(X|Y), H(Y)) with
(H(X), H(Y|X)) can be achieved using time-sharing arguments.

The proof of Slepian and Wolf of the achievability of
(H(X|Y), H(Y)) is based on classical information theoretic
arguments. However, it contains already all the main
ingredients and intuitions that have been used more
recently to design practical distributed source codes. The
Slepian and Wolf main intuition goes along the following
lines: Since X and Y are correlated and Y is available at the
decoder, one can view X as the input and Y as the output
of a noisy communication channel. To quote [23, p. 474]:
“from the fact that pxy(x,¥) = pyx(¥IX)px(X), we can
think of the Y-sequences of the correlated source as being
generated by applying successive characters of the X-
sequence as inputs to a discrete memoryless channel with
transition probabilities pyx(y|x)."

This means that, if we design a capacity-achieving chan-
nel code for that channel, we can ensure reliable transmis-
sion of a sub-set of X. More precisely, a capacity-achieving
code contains on average 2/X:Y) = 2HO-HYIX) glements that
can be used as inputs to this channel and decoded with van-
ishing error probability when Y is observed. Now, the good
news is that we can design many such codes and, since the
source X produces on average 27X different symbols, by
designing 21X disjoint capacity-achieving codes, we can
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including source codes as well as channel codes. No simi-
larly general tools are known for the design of analog
architectures. Rather, these
techniques are wusually
designed on a case-by-case
basis, and it is often hard to
analyze their performance
in a precise fashion.

We focus on paradigmatic exemplary cases that illustrate the
need for the development of a more systematic framework for
the design of nondigital communication system architectures.

The key case is the wireless refining sensor network exam-
ple that was introduced earlier. In “Digital Architectures

associate any symbol produced by X to one capacity-achiev-
ing channel code. Then the coding strategy is as follows:
Encoder 2 transmits Y using R, = H(Y) bits. Encoder 1 does
not need to send the code word representing X, instead the
encoder simply indicates which channel code X belongs to.
This requires on average H(X|Y) bits. The receiver can then
use the decoder appropriate for the channel code specified
by Encoder 1 to retrieve X from Y with no error. The rate
pair (H(X|Y), H(Y)) is thus achievable.

This connection between source coding with side infor-
mation and channel coding principles, which is highlighted
in Figure 8, was made more evident by Wyner [43] and
Berger [44], and has been used recently to design construc-
tive distributed codes, see [25],
[28], and [29] for early examples.
Extensions to an arbitrary number
of correlated sources and ergodic
processes were presented by

NO GENERAL TOOLS ARE KNOWN
FOR THE DESIGN OF ANALOG
ARCHITECTURES.

Channel Coding

Sensor Network Example,” we used known techniques to
bound the best possible performance of any digital architec-
ture. Specifically, from (10),
we concluded that as the
number of sensors becomes
large, the distortion decays at
best like 1/log(MP;ot). The
question, then, is whether
there is any nondigital approach that can outperform this or
whether this is a fundamental bound for the considered com-
munication problem. While the optimal strategy for this case
to date is unknown, we consider a very simple analog architec-
ture: Each sensor basically scales its noisy observation by an

X ~N(@,0) and Y = X + U with U independent of X and
U ~ N (0, o), we have that

Rwz(D) =Rxy(D)

1 ool o2c?
_ |0 _"X"U |f 0<D< _ X"U
B R R )
- 2.2
0 .
(0% +00)-

The exact solution to the fully distributed compression prob-
lem (i.e., when both X and Y are compressed) is unknown to
date. The best known bounds where provided by Berger in [44].

Distributed Source Coding

Cover in [45], [46]. c (k bits) Joint Distribution p(x,y)
The case of lossy coding of corre- e N -
lated sources, in particular, of con- x (n bits) v (n bits)
tinuous-valued sources is more
involved and much less is known. x (n bits)
An important case studied by
Wyner and Ziv [24] is the one — — — |Noisy ?/Ihannel L= =
where Y is available at the Py) s (n-k bits)
decoder and X has to be recon- y (n bits) .‘ Perfect
structed within a certain distor- -t T T T T T ~ T T "Channels
tion D. Even though the minimum
rate Ry necessary to achieve this
distortion is usually greater than s (n-k bits) v Decoder
the rate used in the case where . . l l
Y is available at both the Comrector R X

encoder and the decoder, Wyner
and Ziv showed that there is no
rate loss in the particular case of
MSE distortion and jointly

Gaussian sources. In particular, if  reconstruct X.

[FIG8] Channel coding and distributed source coding. In channel coding, the syndrome of
Y is used to retrieve the original symbol X. In distributed source coding, the syndrome of
X is transmitted to the decoder. By observing Y and the syndrome, the decoder can
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appropriately chosen factor
and transmits this on the
channel. This generates very
strong interference between
all the sensors, but this inter-
ference is designed so that a

cooperation gain results. To make this explicit, we reconsider
the simple version of the WSN example that we studied in

FOR THIS EXAMPLE, THE DIGITAL
ARCHITECTURE REQUIRES
EXPONENTIALLY MORE SENSORS
THAN THE ANALOG ONE.

detail in the context of digital
architectures in “Digital Archi-
tectures for Sensor Network
Example.” Specifically, in
“Analog Architectures for
Sensor Network Example,” we

present a detailed argument that shows that there is an analog
architecture that incurs a distortion that scales like

CAMERA SENSOR NETWORK

Consider the simplified camera sensor network setup shown
in Figure 9. There are M digital pinhole cameras that are
located along a line. We assume that camera locations are
known and denote with « the distance between two consecu-
tive cameras. The visual scene that is perpendicular to this line

cameras observing the visual scene without suffering occlu-

sion. This means that, in this particular context, there exists
an exact answer to the sampling problem.

Now assume that no occlusion occurs at any of the M cam-

eras. The perspective projections have been reconstructed

and each projection is piecewise constant

with L pieces and 2L discontinuities. Each

7 projection is therefore specified by 3L
_______________________ max parameters. The distributed compression is
/W then Performed as foIIows.: each sensor

/4 | quantizes the 3L parameters independently

4 \/J_’ e 20 _ and then a Slepian and Wolf (S-W) encoder

_____ '_\/JCY; “ A T 7T T === = 1 Zmin is used to remove the remaining redundan-
|| ////// > <\: \,I/ y (cjy. The ir;z(:]ressti\r;\? elemdent Eere isdthat :Ee

Ve \ /7 esign of the S-W encoders depends on the

Cam//1 ‘/ CEm Cam3 o Camde 0 properties of the physical phenomenon

257 M ////I\ N N o I f and, since we are assuming that Zmin, Zmax
AL 22 ' and a are known, the practical implementa-
Image 1 -I_I—U-ui— e 2 tion of the S-W encoders is almost straight-
0 0 forward [49]. It is then possible to show

[FIG9] Our camera sensor network configuration.

is made of L Lambertian planes. Plane locations are unknown,
but the minimum and maximum possible distances of the
planes to the line are known and are denoted by z.;, and
Zmax (Zmax can be infinity and zpj, > 0). Cameras communi-
cate to a single base station through a classical multiaccess
Gaussian channel with capacity C = 1/210g,(1 + [Pot/0%])
where o2 is the variance of the noise and P is the total
power used by the sensors (see “Multiuser Information
Theory and Source-Channel Separation” for more details).
Because of the pinhole model, each camera observes a
perspective projection of the visual scene. Since the scene is
made of Lambertian planes, these projections are piecewise
constant functions. The acquisition process at each camera
can be modeled as a linear filtering followed by sampling
(we assume noiseless measurements for the sake of simplici-
ty). Thus, each camera observes a blurred and sampled ver-
sion of the original piecewise constant projection, and it is
possible to show that, in many cases, exact reconstruction
of the original projection from the samples is possible [48].
The reconstruction of the original visual scene is then
obtained by back-projecting the reconstructed perspective
projections and is exact when there are at least M > L + 1

that, if the total bit budget is R, the distor-
tion-rate behavior at high rates is given by

D(R) ~ ¢;272R7,

where 7 = 1/[9L + (36/5)L?] [50]. Notice that D(R) does not
depend on the number of sensors involved, but only on the
total bit budget. We thus have an exact bit conservation
principle in this case.

Since we can transmit only R=C=(1/2)
log,[1 + (Pwot(M)/02)] bits per channel use, we obtain that
the distortion at the base station behaves like
Dygigital (M) ~ ¢1(1/(1 + Pyt (M) /52))7, which implies the fol-
lowing scaling behavior for a (distributed) digital code:

1

Ddigital(M) ~ W

)

A lower bound to the distortion can be obtained by considering
the scenario where all the cameras are linked with ideal cables.
For this idealized scenario, it can be shown that the optimal dis-
tortion behaves like

1

Diowerbound (M) ~ m,

®

where y = 1/(9L).
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DIGITAL ARCHITECTURES FOR SENSOR NETWORK EXAMPLE

For the sensor network topology illustrated in Figure 3, suppose
that we use a digital architecture. The corresponding (sum-)rate-
distortion function for the case L = 1 and when S is distributed
according to a Gaussian law is called the quadratic Gaussian CEO
problem [51], [52] and can be expressed as

2
Mo

woz—ct (1)) "

2
RE°(D) = log, <%5> + Mlog,

2N

The rate available is no larger than the capacity of the
Gaussian MIMO channel with input vector (X, ..., Xy) and

1

Danalog(M ) ~ W
0

(11

To compare this to the digital architectures discussed earlier,
suppose now that a minimum tolerable distortion Dy and a
power budget Pot(M) = Py is fixed. How many sensors Myn,jog
and Myigita do the analog and the digital architectures, respec-
tively, require? By comparing (10) and (15), we find that

Miigita) ~ nalos 12)
That is, the digital architecture will require exponentially more
sensors than the analog.

This shows that the question of how much information is
acquired by a sensor network cannot be generally expressed
in terms of bits, a somewhat counterintuitive insight.
Assessing in an operationally meaningful way the “amount”
of information depends on the overall structure of the net-
work under consideration.

ANALOG ARCHITECTURES FOR SENSOR NETWORK EXAMPLE

Consider the sensor network topology illustrated in Figure 3
withL=J=1and A=B" =(1,1,..., 1), and let the underly-
ing source sequence {S[i]}*, be a sequence of independent
Gaussian random variables of mean zero and variance o?.
Consider the analog architecture where each sensor, at time n,
transmits Xm[n] = \/Piot/M(0Z + o) Um[n]. Hence, the receiver
observes

M
YIn] =Z[n]+ ) Xnln]
m=1

MProt M Prot
=7 — S —— W, I[nl.
e T v o)t 2\ Wz p gy

(13)

Clearly, for this scenario, the optimum estimator of S[n] given
the entire received sequence {Y[i]}}°, needs to only take
into account Y[n] and due to the fact that all random vari-

output vector (Yq,..., Y;), with reference to Figure 3.
Assuming that J is held fixed, this rate increases logarithmical-
ly with M. Then, it can be shown easily that the distortion, as
a function of the number of sensors M and the total sensor
power Pyt behaves as

1

Dgigital (M) ~ log(MPiot (M)

(10)

The same scaling behavior can be established for the case where
the distribution of S is more general [53]. This example is
explained in more detail in [54].

The fact that pure analog transmission outperforms the most
sophisticated digital architecture may seem counterintuitive at
first, but there is definitely no reason to believe that pure analog
transmission should be the best possible strategy. The latter is
unknown at this point, and one has to resort to lower bounds to
the distortion instead. The currently available tools to develop
such lower bounds are rather limited in their generality.
Specifically, the only general techniques are of the cuf-set type,
i.e., they essentially partition the network into two sides and ana-
lyze the performance of the resulting point-to-point system. That
performance cannot be worse than the performance of the origi-
nal network. In fact, it will generally be much better, leading to
overly optimistic bounds. This is discussed in more detail in [54].
Somewhat surprisingly, in spite of the overly optimistic nature of
the bounds, they are sufficient to confirm that for the sensor net-
work of Figure 3, the “scaling behavior” of the simple analog
architecture considered above, i.e., the dependence of its perform-
ance on the number M of sensors as given in (11), coincides with
the optimum scheme insofar as the dominant term is concerned.

ables are jointly Gaussian, it is merely a linear operation,
given by S[n] = (E[SY1/E[Y?])Y[n]. The resulting distortion is
the well-known formula

(E[SY])?
D = 0‘52 = E[YZ] N

4

where we can evaluate (E[SY])? = MPyo? /(02 + o) and
E[Y?] = 02 + MPyot0 /(02 + o) + Pioto, /(02 + o)), leading
to the following overall distortion:

o3y M (007 /o)

Mo? + o2 Mo? + o2
s w Hptot(M) +03
o5 +oy

(15

Danalog =

The information-theoretic optimality of this simple approach
was first pointed out in [10].
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CONCLUSIONS AND KEY CHALLENGES

FOR FUTURE RESEARCH

We have considered sensor networks acquiring data from the
physical world to reproduce a physical phenomenon at a cen-
tral location. Since discrete representations of information
are at the heart of current technology, a fundamental ques-
tion concerns the problem of whether any signal can be suffi-
ciently characterized in discrete form. For sensor networks,
there are three fundamental dimensions: time, space, and
amplitude. All three are typically best thought of as continu-
ous initially, and we have illustrated that there are reasons to
believe that in interesting cases, discrete-time and discrete-
space representations are sufficient. The question of discrete-
amplitude representations is a more subtle one, and, in the
WSN case, a double answer must be accepted. In some cases,
discrete-amplitude representations are sufficient, but in other
cases, analog architectures using joint source-channel com-
munication perform optimally in a scaling sense, while digital
architectures would lead to a vastly suboptimal solution.

The challenge now is to understand precisely when a separa-
tion principle holds in a scaling sense. While the fully general
solution to this problem is still open, our findings suggest the
following overall picture:

B Expanding sensor network (with rich communication

infrastructure): For the example presented in “Expanding

Sensor Network,” we were able to show that the distortion

behaves at best like D(M) ~ M/Pi,t(M), which can be

achieved via separately designed source and channel codes.

Hence, it appears that for such scenarios, a (scaling-law) sepa-

ration theorem holds.

B Refining sensor network (with poor communication infra-

structure): If the number of degrees of freedom in the source

network increases slowly with the number of sensors, then

— If the sensor observations are noiseless, a conclusive
answer appears more difficult to obtain in general.
However, as the example presented in “Camera Sensor
Network” suggests, separately designed source and chan-
nel codes incur a polynomial gap, and hence, a slightly
weaker form of a scaling-law separation theorem may
apply. In our example, we showed that a distortion that
behaves as Dy;gital (M) ~ 1/ (Pt (M))7 is achievable, and
that the distortion may scale no better than
Diowerbound M) ~ 1/(MPyor(M))Y. If we assume that
Prot(M) ~ M and that y < 1 (as in the specific example
in “Camera Sensor Network”), then these two bounds are
not far apart from each other, suggesting that an approx-
imate (scaling-law) separation theorem applies.

— If the sensor observations are subject to noise, then
no (scaling-law) separation theorem seems to apply.
Indeed, the example discussed in “Digital Architectures
for Sensor Network Example” and “Analog Architecture
for Sensor Network Example” shows that a distortion
that behaves like D ~ 1/(M Pyt (M)) is optimal, but sepa-
rately designed source and channel codes only achieve
Dyigital (M) ~ 1/ log(MPiot(M)).

When separation does not hold, the exponential gap between
the two architectures points to a vast space for new, creative
designs. Are there multiuser joint source-channel codes that
could reap some of that exponential gain? These are certainly
among the most intriguing research challenges for WSNs.
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