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Abstract. Despite many good (secure) key agreement protocols based on public-
key cryptography exist, secure associations between two wireless devices are of-
ten established using symmetric-key cryptography for cost reasons. The conse-
quence is that common daily used security protocols such as Bluetooth pairing
are insecure in the sense that an adversary can easily extract the main private key
from the protocol communications. Nevertheless, we show that a feature in the
Bluetooth standard provides a pragmatic and costless protocol that can eventu-
ally repair privateless associations, thanks to mobility. This proves (in the ran-
dom oracle model) the pragmatic security of the Bluetooth pairing protocol when
repairing is used.

1 Setting up Secure Communications

Digital communications are often secured by means of symmetric encryption
and message authentication codes. This provided high throughput and security.
However, setting up this channel requires agreeing on a private key with large
entropy. Private key agreement between remote peers through insecure chan-
nel is a big challenge. A first (impractical) solution was proposed in 1975 by
Merkle [19]. A solution was proposed by Diffie and Hellman in 1976 [12]. It
works, provided that the two peers can communicate over an authenticated chan-
nel which protects the integrity of messages and that a standard computational
problem (namely, the Diffie-Hellman problem) is hard.

To authenticate messages of the Diffie-Hellman protocol is still expensive
since those messages are pretty long (typically, a thousand bits, each) and that
authentication is often manually done by human beings. Folklore solutions con-
sist of shrinking this amount of information by means of a collision-resistant
hash function and of authenticating only thedigestof the protocol transcript.
The amount of information to authenticate typically reduces to 160 bits. How-
ever, collision-resistant hash functions are threatened species these days due to
collapses of MD5, RIPEMD, SHA, SHA-1, etc. [9,23,24,25,26]. Furthermore,
160 bits is still pretty large for human beings to authenticate. Another solution
using shorter messages have been proposed by Pasini and Vaudenay [20] using



a hash function which resists second preimage attacks (like MD5 [21]; namely:
collision resistance is no longer required) and a commitment scheme. Other so-
lutions such as MANA protocols [13,14] have been proposed. They can reduce
the amount of information to be authenticated down to 20 bits, but they work as-
suming a stronger hypothesis on the authenticated channel, namely that the au-
thentication occurs without any latency for the delivery. Some protocols based
on the Diffie-Hellman one were proposed [11,15] with an incomplete security
analysis. A provably secure solution was finally proposed by Vaudenay [22].
This protocol can work with only 20 bits to authenticate and is based on a com-
mitment scheme. Those authentication protocolscanbe pretty cheap (namely:
without public-key cryptography) and provably secure (at least in the random
oracle model). So, the remaining overwhelming cost is still the Diffie-Hellman
protocol. Since key agreement is the foundation to public-key cryptography, it
seems that setting up secure communications with an authenticated channel only
cannot be solved at a lower expense than regular public-key algorithms.

The Bluetooth standard starts from a slightly different assumption, namely
that there is a private channel between the two devices involving the human
user. Of course, this channel should be used to transmit as few bits as possible.
This would, in principle, be possible by using password-based authenticated
key agreement. A first protocol family was proposed (without security proof)
in 1992 by Bellovin and Merritt [8]. SRP [27,28] is another famous protocol,
available as the RFC 2945, proposed in 1998 by Wu. The security analysis fol-
lowed a long research program initiated by Bellare and Rogaway [5,6]. Specific
instances of the Bellovin-Merritt protocols with security based on the random
oracle model were provided in [3,4,7,10,18] starting in 2000. Finally, another
protocol without random oracles were proposed in 2001 by Katz, Ostrovsky,
and Yung [16]. All those protocols are however at least as expensive as the
Diffie-Hellman protocol.

Despite all this nice and extensive piece of theory, standards such as Blue-
tooth [1,2] stick to symmetric-key techniques (for cost reasons) and continue to
use insecure protocols.

In this paper, we review the Bluetooth pairing protocol and its insecurity.
The Bluetooth version 1.2 [1] mentioned (in a single sentence) the possibility to
refresh keys. More details (namely, how to do so) were provided in Bluetooth
version 2.0 in 2004 [2]. We finally show that this feature (that we callrepairing)
substantially increases the security and may be considered as a pragmatic cost-
less solution. Security is based on the assumption that the radio channel (consid-
ered to be insecure by default)sometimesprovides privacy in an unpredictable
way, i.e. that the adversary Eve can in principle easily listen to the channel from
time to time, but it is unlikely that she can do itall the timethroughout the his-
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tory of the devices association. This assumption is quite reasonable due to the
mobility context of Bluetooth applications.

2 Bluetooth-like Pre-Pairing and the Security Issue

We assume a set ofN possible participants with identifier stringsIDi . (Note
that the notion of identity is rather weak since authentication will be based on a
human user manipulating physical devices: it can just be a mnemonic identifier
like “ laser printer”, maybe extended by a MAC address.) We assume that they
all manage a local database of(K j , ID j) pairs, meaning that the current private
key to be used with participantID j is K j . The goal of a pairing protocol between
Alice of identity IDA and Bob of identityIDB is to create (or replace) an entry
(K, IDB) in the database ofIDA and an entry(K, IDA) in the database ofIDB so
that the keyK is the same and private to both participants.

For cost reasons, nowadays wireless devices (e.g. Bluetooth devices) only
use symmetric-key cryptographic protocols for establishing secure communi-
cations over insecure channels. When they connect to each other for the first
time, they establish some initial private key materialsK i . Both devices, Alice
and Bob, start with their identitiesIDA andIDB, pick some random numbersRi

A
andRi

B. Additionally, a user types some random one-time private codeπ on both
devices and both devices run aπ-based authenticated key agreement protocol.
When they prompt the user to typeπ, they may display a piece of the identifier
strings (a mnemonic) for user-friendliness reasons. Due to the state of the art on
symmetric-key primitives, the protocol must leakRi

A andRi
B so that we have

K i = G(IDA, IDB,Ri
A,Ri

B,π)

for some functionG. In a one-move variant,Ri
B is void so that onlyRi

A (which
is rather denotedRi) needs to be sent. (See Fig. 1.)1

Following our setting model,π has low entropy. Indeed, the private code
is typed by a human user and is typically pretty small. Eventually, exhaustive
search leads to guessingπ. Hence, an adversary can typically computeK i from
Ri by guessingπ. The adversary only needs some information aboutK i to check
whetherπ is correct or not to run anoffline dictionary attack. Peer authenti-
cation protocols based onK i are based on symmetric-key cryptography. They
eventually leak such an information by releasing someSandF(S,K i) for some
function F from the protocol. In the Bluetooth case, this attack was described
by Jakobsson and Wetzel [17].

1 By convention, notations without a hat are sent values and notations with a hat are received
values. If no attack occurs, the value should not be changed by putting a hat.
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This attack can be completed by a man-in-the-middle attack. Namely, an
adversary can claim to have identityIDB to Alice of identity IDA and to have
identity IDA to Bob of identity IDB. Even though the adversary does not get
π from the user who wants to pair the real Alice and Bob, the adversary can
easily infer it from the previous attack. The consequence is that Alice and Bob
would be independently paired with the adversary even though they think they
are paired together.

Those protocols can nevertheless be securein principleprovided that

– either enumerating all possible values for the codeπ is infeasible
– or the transmission ofRi is confidential.

In Section 6 we prove it in the random oracle model.

Alice Bob
input : ÎDB input : ÎDA

private input : πA private input : πB

pick Ri ∈U {0,1}ρ Ri−−−−−−−−−−−−−−−−→
K i

A←G(IDA, ÎDB,Ri ,πA) K i
B←G(ÎDA, IDB, R̂i ,πB)

final key for ÎDB: K i
A final key for ÎDA: K i

B

Fig. 1. A One-Move Preparing Protocol.

3 The Two-Round Bluetooth Pairing

The Bluetooth standard [1,2] is quite interesting in the sense that it uses a 2-
round pairing protocol that we callpreparingandrepairing. Fig. 1 and Fig. 2
illustrate the two rounds, respectively. In a first round, a 128-bit (ephemeral)
initialization keyK i is established from some random numbersRi andπ. In a
second round, the final key is established from new random numbersRA andRB,
the identities of Alice and Bob, andK i . More precisely, the second round works
as follows.

1. Bob picks a randomRB and sendsCB = RB⊕K i to Alice.
2. Alice picks a randomRA and sendsCA = RA⊕K i to Bob.2

3. Both computeK = H(IDA, IDB,RA,RB) = H(IDA, IDB,CA⊕K i ,CB⊕K i).

We assume that(K, IDB) (resp.(K, IDA)) replaces(K i , IDB) (resp.(K i , IDA)) in
the database ofIDA (resp.IDB) so thatK i is discarded.

2 It is worth noticing that Alice and Bob actually exchangeRA andRB by using a (safe) two-time
pad.
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Alice Bob
input : ÎDB input : ÎDA

initial key for ÎDB: K i
A initial key for ÎDA: K i

B
pick RA ∈U {0,1}ρ pick RB ∈U {0,1}ρ

CA← RA⊕K i
A

CA−−−−−−−−−−−−−−−−→ R̂A← ĈA⊕K i
B

R̂B← ĈB⊕K i
A

CB←−−−−−−−−−−−−−−−− CB← RB⊕K i
B

KA← H(IDA, ÎDB,RA, R̂B) KB← H(ÎDA, IDB, R̂A,RB)
final key for ÎDB: KA final key for ÎDA: KB

Fig. 2. The Bluetooth Repairing Protocol.

Note that the internal structure ofH in Bluetooth is of the form

H(IDA, IDB,RA,RB) = H ′(IDA,RA)⊕H ′(IDB,RB).

Obviously, this doesnot instantiate a random oracle since we have unexpected
relations such as

H(IDA, IDB,RA,RB)⊕H(IDB, IDC,RB,RC) = H(IDA, IDC,RA,RC).

We further note that if Alice and Bob were already the victims of a man-in-
the-middle attack, they can remain in the same attacked state if the adversary
can continue an active attack. When the adversary becomes out of reach, the
repairing protocol fails and Alice and Bob end in a state so that they can no
longer communicate.

In Section 6 we prove that the repairing protocol alone is secure if either the
initialization key is private or the communication of eitherCA or CB is private.
We deduce that the preparing and repairing together achieve a secure pairing
protocol provided that eitherπ is large or the communication is private: repairing
does not decrease the security. The incremental role of the repairing protocol
will be made clear in the following section.

4 Repairing and Forward Secrecy

The Bluetooth standard [1,2] already suggests that a keyK could be refreshed.
Indeed, new pairing protocols could just skip the first round and use the oldK
as theK i initialization key. (Note that the user no longer needs to type a private
code in this protocol.) If the old key was not known by the adversary, it could
not be guessed likeπ. So the new link key would be safe as well. Now, if the
old key K had leaked out, but the adversary did not listen to the new pairing
protocol, then the new key would be safe: the secure communication would be
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repaired. This way, we claim that the new link key is at least as safe as the old
one.

Similarly, mobility and repairing can detect man-in-the-middle attacks as
previously discussed. This repairs the weak notion of authentication.

Furthermore, frequent repairs providesforward secrecywhen we make sure
that old link keys are destroyed. Indeed, if we letK j denote the link key gen-
erated by thejth pairing protocol, assuming that this pairing was safe and that
K j+t is the first key which is leaked after thejth pairing, then none of the link
keys K j ,K j+1, . . . ,K j+t−1 can be recovered by the adversary. In the mobility
context of Bluetooth, it is reasonable that the adversary does not listen toall
pairing protocols. Since security only increases here, communications are even-
tually secure between Alice and Bob. It is indeed the case where mobility can
help security.

What can happen in the case of active attacks? The two devices will end up
in an unpaired state. Due to the mobility and the inability for the adversary to
follow both devices, the user will eventually realize that the two devices are not
paired and launch a new pairing protocol. An adversary could use this behavior
and try a denial of service attack combined with social engineering: indeed the
adversary could make sure that the two devices are unable to communicate,
making as if the two devices were not well paired. The consequence would be
for the user to launch a new pairing protocol with a humanly selectedπ. This
would clearly provide openings to the adversary. This problem can only be fixed
by clear human-machine interfaces and education of users. A pairing should not
be perceived a benign action.

Another helpful feature would be, if possible, to enlarge the database by
adding a new field telling the length ofπ in the preparing protocol and the num-
ber of repairs. Keys with low length forπ and low number of repairs would have
a low security confidence, but would become more trustable as the number of
repairs increase.

To conclude, we believe that the repairing protocols provide a truly prag-
matic and costless security solution for lightweight wireless communications.

5 Adversarial Model

The launch and send oracles. We adapt the security model of [5,6] and [22].
We assume that the powerful adversary can launch instances of the prepar-
ing/repairing protocol on chosen inputs by making a chosen participant to play
the (chosen) role of Alice or Bob with a chosen input. For instance, theΠ←
launch(n,Alice, ID) query creates an instanceπ of Alice with input ID, played
by noden. We assume that the adversary can play with all participants in a con-
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current way and basically run the protocol step by step. The adversary is the cen-
tral node of the communication channels, can send an arbitrary message to any
instance and get the response message in return. For instance,y← send(Π,x)
sends the messagex as being the current protocol message to instanceΠ, makes
this instance step the protocol, and tells the protocol answery of Π.

The test oracle. We assume that the adversary can maketest(n,k, ID) oracle
calls which tell whether(k, ID) is an entry of the database of noden. We say that
an adversary wins if onetest query positively answered. Note that contrarily to
the traditional Bellare-Rogaway [5,6] model, the adversary can make as many
test queries as he wants. The reason is that, in practice, information leaks so that
the adversary can simulate this oracle in an offline way.

Every keyK in a database can be seen as a random variable. In that case,
every (unsuccessful)test query reduced the entropy by telling the adversary that
K is not equal to a givenk.

Theremove oracle. We also assume that the adversary can makeremove(n, ID)
oracle queries which make noden remove any entry withID from its database.
This simulates a user managing the database of paired devices.

TheinputPIN oracle. The preparing protocol assumes a special channel which
privately sends the same random valueπ to two instances. We model this by the
ability for the adversary to make someσ← inputPIN(n1) andinputPIN(σ,n2)
oracle calls which maken1 receive a new random inputπ attached to a fresh
tag σ, then n2 receive the same inputπ. We assume thatπ is discarded by
inputPIN(σ,n2) after that (namely, a singleπ cannot be input more than twice).
The distribution ofπ (namely, the entropy) will play a role in the analysis.

Thereveal and corrupt oracles. Participating nodes are assumed to be honest
by default. In the traditional Bellare-Rogaway model [5,6], the adversary can
nevertheless makereveal(n) queries which simply dump the private database of
a noden, andcorrupt(n,code) queries which go beyond that by further installing
a malicious code on the node so that this node can no longer be assumed to
follow the protocols. For simplicity reasons we assume that adversaries have no
access to these oracles here. Extensions of our results is left to further work.
Note that excluding malicious participants de facto exclude the adversary from
getting anyπ form inputPIN.

The secureLaunch oracle. The repairing protocol assumes that communica-
tion between two prepared participants can sometimes be private. Addition-
ally, we sometimes consider instances of the preparing protocol that are also
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run in a private environment. In such a case, we assume that an oracle query
secureLaunch(nA,nB,xA,xB) launches a complete run of the protocol on nodes
nA andnB with input xA andxB respectively. The adversary has no access to the
transcript of the protocol.

6 Security of the Preparing Protocol

Theorem 1. Given an integerρ and a random oracleG which outputsu-bit
strings, we consider the preparing protocol of Fig. 1. We assume thatinputPIN
selectsπ uniformly distributed in a set ofSelements. For any adversary limited
to t test queries, the wining probability is at mostt/S+ 1

2t22−u.
A key that was set up bysecureLaunch can only be successfully tested with

probability at mostmin(2−ρ,2−u).

We can easily tuneu so thatt2¿ 2u. This result thus tells us that the protocol is
secure whenSis large. Typically, forS= 280 andu= 128, an adversary requires
at least nearly264 trials so succeed. The theorem also says that ifρ andu are
large andRi is privately sent, then the protocol is secure.

Proof. Let us consider theith test query test(ni ,ki , ID
′
i) and assume that all

previoustest queries were negative. We want to compute the probability that
the answer is positive. Due to the protocol, it relates to some random variable
Ki = G(IDi , ID

′
i ,Ri ,πi) whereRi is known butπi is a priori not.

Let L be the number of pairwise different(IDi , ID
′
i ,Ri) triplets. Lets̀ be the

number of occurrences for the`th triplet, for ` = 1, . . . ,L. SinceG is a random
oracle, it produces no collisionG(IDi , ID

′
i ,Ri ,α) = G(IDi , ID

′
i ,Ri ,β) with proba-

bility higher than1− 1
2s2

`2−u where` is the number of the triplet for theith test.
Let us focus in this case.

Clearly, the protocol leaks no information about anyπ, so information only
comes from previoustest oracles. SinceG is a random oracle, any previous
test query (let say thejth one) leaks some useful information aboutKi only if
(ID j , ID

′
j ,Rj ,π j) = (IDi , ID

′
i ,Ri ,πi). Hence, the maximal information is thatKi

is one value out ofS− s̀ + 1. The wining probability for this query is thus at
most1/(S− s̀ +1). The loosing probability for all queries related to this triplet
is thus1− s̀ /S.

The overall loosing probability is thus at least

∏̀ S− s̀
S
− 1

2 ∑̀s2
`2−u

with constraint∑` s̀ = t. The probability is the lowest forL = 1 for which it is
1− t/S− 1

2t22−u.
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When a key was set up bysecureLaunch, we can best assume that the ad-
versary caughtπ but no other information leaked. The best strategy to guessK i

is either to guessK i or to guessRi . with probability at mostmin(2−ρ,2−u). ut
We similarly prove the following result.

Theorem 2. Given an integerρ and a random oracleH which outputsu-bit
strings, we consider the preparing protocol of Fig. 2. We assume that initializa-
tion keys are randomly preset. For any adversary limited tot test queries, the
wining probability is at mostt22−u.

A key that was repaired bysecureLaunch can only be successfully tested
with probability at mostmin(2−ρ,2−u).

7 Conclusion

We have shown that the pairing concept of Bluetooth can in principle lead to
a secure protocol, provided that repairing is frequently done and is eventually
privately run. This is proven provided thatG andH behave like random oracles.
This provides a pragmatic costless alternative to key agreement based on public-
key cryptography.

We also proposed to store the length of the used PIN in the preparing pro-
tocol and the number of performed repairs in order to better assess the security
of a given link key. This could help audit and increase the confidence in the
Bluetooth security.

One open question would be to extend this result to the specific structure
of the Bluetooth primitives. Another challenge would be to consider (namely to
model and prove) security when the adversary has access toreveal or corrupt
oracles.
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