Finding Near-Duplicate Web Pages: A Large-Scale
Evaluation of Algorithms

Monika Henzinger
Google Inc. & Ecole Fédérale de Lausanne (EPFL)

monika@google.com

ABSTRACT

Broder et al.’s [3] shingling algorithm and Charikar’s [4] ran-
dom projection based approach are considered “state-of-the-
art” algorithms for finding near-duplicate web pages. Both
algorithms were either developed at or used by popular web
search engines. We compare the two algorithms on a very
large scale, namely on a set of 1.6B distinct web pages. The
results show that neither of the algorithms works well for
finding near-duplicate pairs on the same site, while both
achieve high precision for near-duplicate pairs on different
sites. Since Charikar’s algorithm finds more near-duplicate
pairs on different sites, it achieves a better precision overall,
namely 0.50 versus 0.38 for Broder et al. ’s algorithm. We
present a combined algorithm which achieves precision 0.79
with 79% of the recall of the other algorithms.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.5.4 [Information Interfaces and
Presentation]: Hypertext/Hypermedia

General Terms

Algorithms, Measurement, Experimentation

Keywords

Near-duplicate documents, content duplication, web pages

1. INTRODUCTION

Duplicate and near-duplicate web pages are creating large
problems for web search engines: They increase the space
needed to store the index, either slow down or increase the
cost of serving results, and annoy the users. Thus, algo-
rithms for detecting these pages are needed.

A naive solution is to compare all pairs to documents.
Since this is prohibitively expensive on large datasets, Man-
ber [11] and Heintze [9] proposed first algorithms for de-
tecting near-duplicate documents with a reduced number

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SGIR 06, August 6-11, 2006, Seattle, Washington, USA.

Copyright 2006 ACM 1-59593-369-7/06/0008 ...$5.00.

of comparisons. Both algorithms work on sequences of ad-
jacent characters. Brin et al. [1] started to use word se-
quences to detect copyright violations. Shivakumar and
Garcia-Molina [13, 14] continued this research and focused
on scaling it up to multi-gigabyte databases [15]. Broder
et al. [3] also used word sequences to efficiently find near-
duplicate web pages. Later, Charikar [4] developed an ap-
proach based on random projections of the words in a doc-
ument. Recently Hoad and Zobel [10] developed and com-
pared methods for identifying versioned and plagiarised doc-
uments.

Both Broder et al. ’s and Charikar’s algorithm have ele-
gant theoretical justifications, but neither has been exper-
imentally evaluated and it is not known which algorithm
performs better in practice. In this paper we evaluate both
algorithms on a very large real-world data set, namely on
1.6B distinct web pages. We chose these two algorithms as
both were developed at or used by successful web search en-
gines and are considered “state-of-the-art” in finding near-
duplicate web pages. We call them Algorithm B and C.

We set all parameters in Alg. B as suggested in the liter-
ature. Then we chose the parameters in Alg. C so that it
uses the same amount of space per document and returns
about the same number of correct near-duplicate pairs, i.e.,
has about the same recall. We compared the algorithms ac-
cording to three criteria: (1) precision on a random subset,
(2) the distribution of the number of term differences per
near-duplicate pair, and (3) the distribution of the number
of near-duplicates per page.

The results are: (1) Alg. C has precision 0.50 and Alg. B
0.38. Both algorithms perform about the same for pairs
on the same site (low precision) and for pairs on different
sites (high precision.) However, 92% of the near-duplicate
pairs found by Alg. B belong to the same site, but only 74%
of Alg. C. Thus, Alg. C finds more of the pairs for which
precision is high and hence has an overall higher precision.
(2) The number of term differences per near-duplicate pair
are very similar for the two algorithms, but Alg. B returns
fewer pairs with extremely large term differences. (3) The
distribution of the number of near-duplicates per page fol-
lows a power-law for both algorithms. However, Alg. B has
a higher “spread” around the power-law curve. A possible
reason for that “noise” is that the bit string representing
a page in Alg. B is based on a randomly selected subset
of terms in the page. Thus, there might be “lucky” and
“unlucky” choices, leading to pages with an artificially high
or low number of near-duplicates. Alg. C does not select a
subset of terms but is based on all terms in the page.

Finally, we present a combined algorithm that allows for
different precision-recall tradeoffs. The precision of one trade-
off is 0.79 with 79% of the recall of Alg. B.

It is notoriously hard to determine which pages belong
to the same site. Thus we use the following simplified ap-
proach. The site of a page is (1) the domain name of the
page if the domain name has at most one dot, i.e., at most
two levels; and (2) it is the domain name minus the string
before the first dot, if the domain name has two or more
dots, i.e., three or more levels. For example, the site of
www.cs.berkeley.edu/index.html is cs.berkeley.edu.

The paper is organized as follows: Section 2 describes the
algorithms in detail. Section 3 presents the experiments and
the evaluation results. We conclude in Section 4.

2. DESCRIPTION OF THE ALGORITHMS

For both algorithms every HT'ML page is converted into
a token sequence as follows: All HTML markup in the page
is replaced by white space or, in case of formatting instruc-
tions, ignored. Then every maximal alphanumeric sequence
is considered a term and is hashed using Rabin’s fingerprint-
ing scheme [12, 2] to generate tokens, with two exceptions:
(1) Every URL contained in the text of the page is broken
at slashes and dots, and is treated like a sequence of individ-
ual terms. (2) In order to distinguish pages with different
images the URL in an IMG-tag is considered to be a term
in the page. More specifically, if the URL points to a dif-
ferent host, the whole URL is considered to be a term. If
it points to the host of the page itself, only the filename of
the URL is used as term. Thus if a page and its images on
the same host are mirrored on a different host, the URLs of
the IMG-tags generate the same tokens in the original and
mirrored version.

Both algorithms generate a bit string from the token se-
quence of a page and use it to determine the near-duplicates
for the page. We compare a variant of Broder et al.’s al-
gorithm as presented by Fetterly et al. [7]' and a slight
modification of the algorithm in [4] as communicated by
Charikar [5]. We explain next these algorithms.

Let n be the length of the token sequence of a page. For
Alg. B every subsequence of k tokens is fingerprinted us-
ing 64-bit Rabin fingerprints, which results in a sequence of
n — k + 1 fingerprints, called shingles. Let S(d) be the set
of shingles of page d. Alg. B makes the assumption that the
percentage of unique shingles on which the two pages d and
[S(d)NS(d)]
[S(d)us(an]’
of d and d'. To approximate this percentage every shingle
is fingerprinted with m different fingerprinting functions f;
for 1 < ¢ < m that are the same for all pages. This leads
to n — k + 1 values for each f;. For each i the smallest of
these values is called the i-th minvalue and is stored at the
page. Thus, Alg. B creates an m-dimensional vector of min-
values. Note that multiple occurrences of the same shingle
will have the same effect on the minvalues as a single occur-
rence. Broder et al. showed that the expected percentage of
entries in the minvalues vector that two pages d and d’ agree
on is equal to the percentage of unique shingles on which d
and d’ agree. Thus, to estimate the similarity of two pages
it suffices to determine the percentage of agreeing entries in
the minvalues vectors. To save space and speed up the simi-

d' agree, i.e. is a good measure for the similarity

The only difference is that we omit the wrapping of the
shingling “window” from end to beginning described in [7].

larity computation the m-dimensional vector of minvalues is
reduced to a m’-dimensional vector of supershingles by fin-
gerprinting non-overlapping sequences of minvalues: Let m
be divisible by m’ and let { = m/m’. The concatentation of
minvalue j*l, ..., (j+1)xl—1 for 0 < j < m/ is fingerprinted
with yet another fingerprinting function and is called super-
shingle.? This creates a supershingle vector. The number of
identical entries in the supershingle vectors of two pages is
their B-similarity. Two pages are near-duplicates of Alg. B
or B-similar iff their B-similarity is at least 2.

The parameters to be set are m, [, m’, and k. Following
prior work [7, 8] we chose m = 84, | = 14, and m’ = 6.
We set k = 8 as this lies between k¥ = 10 used in [3] and

=5 used in [7, 8]. For each page its supershingle vector is
stored, which requires m’ 64-bit values or 48 bytes.

Next we describe Alg. C. Let b be a constant. Each token
is projected into b-dimensional space by randomly choosing
b entries from {—1,1}. This projection is the same for all
pages. For each page a b-dimensional vector is created by
adding the projections of all the tokens in its token sequence.
The final vector for the page is created by setting every pos-
itive entry in the vector to 1 and every non-positive entry to
0, resulting in a random projection for each page. It has the
property that the cosine similarity of two pages is propor-
tional to the number of bits in which the two corresponding
projections agree. Thus, the C-similarity of two pages is the
number of bits their projections agree on. We chose b = 384
so that both algorithms store a bit string of 48 bytes per
page. Two pages are near-duplicates of Alg. C or C-similar
iff the number of agreeing bits in their projections lies above
a fixed threshold t. We set t = 372, see Section 3.3.

We briefly compare the two algorithms. In both algo-
rithms the same bit string is assigned to pages with the
same token sequence. Alg. C ignores the order of the to-
kens, i.e., two pages with the same set of tokens have the
same bit string. Alg. B takes the order into account as the
shingles are based on the order of the tokens. Alg. B ignores
the frequency of shingles, while Alg. C takes the frequency
of terms into account. For both algorithms there can be
false positives (non near-duplicate pairs returned as near-
duplicates) as well as false negatives (near-duplicate pairs
not returned as near-duplicates.) Let T" be the sum of the
number of tokens in all pages and let D be the number of
pages. Alg. B takes time O(T'm + Dm’) = O(T'm). Alg. C
needs time O(T'd) to determine the bit string for each page.
As described in Section 3.3 the C-similar pairs are computed
using a trick similar to supershingles. It takes time O(D) so
that the total time for Alg. C is O(Tb).

3. EXPERIMENTS

Both algorithms were implemented using the mapreduce
framework [6]. Mapreduce is a programming model for sim-
plified data processing on machine clusters. Programs writ-
ten in this functional style are automatically parallelized and
executed on a large cluster of commodity machines. The
algorithms were executed on a set of 1.6B unique pages col-
lected during a crawl of Google’s crawler. A preprocessing
step grouped pages with the same token sequence into iden-
tity sets and removed for every identity set all but one page.

2 Megashingles were introduced in [3] to speed up the algo-
rithm even further. Since they do not improve precision or
recall, we did not implement them.

About 25-30% of the pages were removed in this step - we do
not know the exact number as the preprocessing was done
before we received the pages.

Alg. B and C found that between 1.7% and 2.2% of the
pages after duplicate removal have a near-duplicate. Thus
the total number of near-duplicates and duplicates is roughly
the same as the one reported by Broder et al. [3] (41%)
and by Fetterly et al. [7] (29.2%) on their collections of
web pages. The exact percentage of duplicates and near-
duplicates depends on the crawler used to gather the web
pages and especially on its handling of session-ids, which
frequently lead to exact duplicates. Note that the focus of
this paper is not on determining the percentage of near-
duplicates on the web, but to compare Alg. B and C on
the same large real-world data set. The web pages resided
on 46.2M hosts with an average of 36.5 pages per host. The
distribution of the number of pages per host follows a power-
law. We believe that the pages used in our study are fairly
representative of the publically available web and thus form
a useful large-scale real-world data set for the comparison.

As it is not possible to determine by hand all near-duplicate
pairs in a set of 1.6B pages we cannot determine the recall of
the algorithms. Instead we chose the threshold ¢ in Alg. C
so that both algorithms returned about the same number
of correct near-duplicate pairs, i.e., they have about the
same recall (without actually knowing what it is). Then
we compared the algorithms based on (1) precision, (2) the
distribution of the number of term differences in the near-
duplicate pairs, and (3) the distribution of the number of
near-duplicates per page. Comparison (1) required human
evaluation and will be explained next.

3.1 Human Evaluation

We randomly sampled B-similar and C-similar pairs and
had them evaluated by a human?®, who labeled each near-
duplicate pair either as correct, incorrect, or undecided. We
used the following definition for a correct near-duplicate:
Two web pages are correct near-duplicates if (1) their text
differs only by the following: a session id, a timestamp, an
execution time, a message id, a visitor count, a server name,
and/or all or part of their URL (which is included in the doc-
ument text), (2) the difference is invisible to the visitors of
the pages, (3) the difference is a combination of the items
listed in (1) and (2), or (4) the pages are entry pages to the
same site. The most common example of URL-only differ-
ences are “parked domains”, i.e. domains that are for sale.
In this case the URL is a domain name and the HTML page
retrieved by the URL is an advertisement page for buying
that domain. Pages of domains for sale by the same organi-
zation differ usually only by the domain name, i.e., the URL.
Examples of Case (4) are entry pages to the same porn site
with some different words.

A near-duplicate pair is incorrect if the main item(s) of
the page was (were) different. For example, two shopping
pages with common boilerplate text but a different product
in the page center is an incorrect near-duplicate pair.

3A different approach would be to check the correctness of
near-duplicate pages, not pairs, i.e., sample pages for which
the algorithm found at least one near-duplicate and then
check whether at least one of its near-duplicates is correct.
However, this approach seemed to require too many human
comparisons since a page with at least one B-similar page
has in the average 135 B-similar pages.

1000 10000 100000

100 Degree

Figure 1: The degree distribution in the B-similarity
graph in log-log scale.

B-similarity | Number of near-duplicates | Percentage
2 958,899,366 52.4%
3 383,076,019 20.9%
4 225,454,277 12.3%
5 158,989,276 8.7%
6 104,628,248 5.7%

Table 1: Number of near-duplicate pairs found for
each B-similarity value.

The remaining near-duplicate pairs were rated undecided.
The following three reasons covered 95% of the undecided
pairs: (1) prefilled forms with different, but erasable values
such that erasing the values results in the same form; (2) a
different “minor” item, like a different text box on the side
or the bottom; (3) pairs which could not be evaluated. To
evaluate a pair the pages as stored at the time of the crawl
were visually compared and a Linux diff operation was per-
formed on the two token sequences. The diff output was
used to easily find the differences in the visual comparison.
However, for some pages the diff output did not agree with
visual inspection. This happened, e.g., because one of these
pages automatically refreshed and the fresh page was differ-
ent from the crawled page. In this case the pair was labeled
as “cannot evaluate”. A pair was also labeled as “cannot
evaluate” when the evaluator could not discern whether the
difference in the two pages was major or minor. This hap-
pened mostly for Chinese, Japanese, or Korean pages.

3.2 TheResultsfor Algorithm B

Alg. B generated 6 supershingles per page, for a total of
10.1B supershingles. They were sorted and for each pair of
pages with an identical supershingle we determined its B-
similarity. This resulted in 1.8B B-similar pairs, i.e., pairs
with B-similarity at least 2.

Let us define the following B-similarity graph: Every page
is a node in the graph. There is an edge between two nodes
iff the pair is B-similar. The label of an edge is the B-
similarity of the pair, i.e., 2, 3, 4, 5, or 6. The graph has
1.8B edges, about half of them have label 2 (see Table 1.) A
node is considered a near-duplicate page iff it is incident to
at least one edge. Alg. B found 27.4M near-duplicate pages.
The average degree of the B-similarity graph is abount 135.
Figure 1 shows the degree distribution in log-log scale. It
follows a power-law with exponent about -1.3.

We randomly sampled 96556 B-similar pairs. In 91.9% of
the cases both pages belonged to the same site. We then

Near Number of | Correct Not Undecided
dups pairs correct

all 1910 0.38 0.53 0.09 (0.04)
same site 1758 0.34 0.57 | 0.09 (0.04)
diff. sites 152 0.86 0.06 0.08 (0.01)
B-sim 2 1032 0.24 0.68 0.08 (0.03)
B-sim 3 389 0.42 0.48 0.1 (0.04)
B-sim 4 240 0.55 0.36 0.09 (0.05)
B-sim 5 143 0.71 0.23 0.06 (0.02)
B-sim 6 106 0.85 0.05 0.1 (0.08)

Table 2: Alg. B: Fraction of correct, not correct,
and undecided pairs, with the fraction of prefilled,
erasable forms out of all pairs in that row in paren-
thesis.

All pairs | Same site
URL only 302 (41%) | 194 (32%)
Time stamp only 123 (17%) | 119 (20%)
Combination 161 (22%) | 145 (24%)
Execution time only | 118 (16%) | 114 (19%)
Visitor count only 22 (3%) 20 (3%)
Rest 5 (0%) 5 (1%)

Table 3: The distribution of differences for correct
B-similar pairs.

subsampled these pairs and checked each of the resulting
1910 pairs for correctness (see Table 2.) The overall preci-
sion is 0.38. However, the errors arise mostly for pairs on
the same site: There the precision drops to 0.34, while for
pairs on different sites the precision is 0.86. The reason is
that very often pages on the same site use the same boil-
erplate text and differ only in the main item in the center
of the page. If there is a large amount of boilerplate text,
chances are good that the algorithm cannot distinguish the
main item from the boilerplate text and classifies the pair
as near-duplicate.

Precision improves for pairs with larger B-similarity. This
is expected as larger B-similarity means more agreement in
supershingles. While the correctness of B-similarity 2 is only
0.24, this value increases to 0.42 for B-similarity 3, and to
0.66 for B-similarity larger than 3. However, less than half
of the pairs have B-similarity 3 or more.

Table 3 analyzes the correct B-similar pairs. It shows that
URL-only differences account for 41% of the correct pairs.
For pairs on different sites 108 out of the 152 B-similar pairs
differ only in the URL. This explains largely the high pre-
cision in this case. Time stamps-only differences, execution
time-only differences, and combinations of differences are
about equally frequent. The remaining cases account for
less than 4% of the correct pairs.

Only 9% of all pairs are labeled undecided. Table 4 shows
that 92% of them are on the same site. Almost half the cases
are pairs that could not be evaluated. Prefilled, erasable
forms are the reason for 41% of the cases. Differences in
minor items account for only 11%.

Next we analyze the distribution of term differences for
the 1910 B-similar pairs. To determine the term difference
of a pair we executed the Linux diff command over the two
token sequences and used the number of tokens that were
returned. The average term difference is 24, the mean is

All pairs | Same site
Cannot evaluate 78 (47%) | 66 (43%)
Form 69 (41%) | 67 (43%)
Different minor item | 19 (11%) | 19 (12%)
Other 1 (1%) 1 (1%)

Table 4: Reasons for undecided B-similar pairs.

400

350

300

250

200 H

150

100

Number of near-duplicate pairs

0 100)
Differencein terms

Figure 2: The distribution of term differences in the
sample of Alg. B.

11, 21% of the pairs have term difference 2, 90% have term
difference less than 42. For 17 pairs the term difference is
larger than 200. None of them are correct near-duplicates.
They mostly consist of repeated text in one page (like re-
peated lists of countries) that is completely missing in the
other page and could probably be avoided if the frequency
of shingles was taken into account. Figure 2 shows the dis-
tribution of term difference up to 200. The spike around
19 to 36 consists of 569 pages and is mostly due to two
data bases on the web. It contains 326 pairs from the NIH
Nucleotide database and 103 pairs from the Historic Here-
fordshire database. These two databases are a main source
of errors for Alg. B. All of the evaluated pairs between pages
of one of these database were rated as incorrect. However,
19% of the pairs in the random sample of 96556 pairs came
from the NIH database and 9% came from the Herefordshire
database®. The pages in the NIH database consist of 200-400
tokens and differ in 10-30 consecutive tokens, the pages in
the Herefordshire database consist of 1000-2000 tokens and
differ in about 20 consecutive tokens. In both cases Alg. B
has a good chance of picking two out of the six supershin-
gles from the long common token sequences originating from
boilerplate text. However, the number of different tokens is
large enough so that Alg. C returned only three of the pairs
in the sample as near-duplicate pairs.

3.3 TheResultsfor Algorithm C

We partitioned the bit string of each page into 12 non-
overlapping 4-byte pieces, creating 20B pieces, and com-
puted the C-similarity of all pages that had at least one
piece in common. This approach is guaranteed to find all
pairs of pages with difference up to 11, i.e., C-similarity 373,
but might miss some for larger differences.

Alg. C returns all pairs with C-similarity at least ¢ as
near-duplicate pairs. As discussed above we chose ¢ so that
both algorithms find about the same number of correct near-

1A second independent sample of 170318 near-duplicate
pairs confirmed these percentages.

5 8

1L

1 10

§

100000

100 100
Number of nodes

Figure 3: The degree distribution in the C-similarity
graph in log-log scale.

duplicate pairs. Alg. B found 1,831M near-duplicate pairs

containing about 1, 831M*0.38 ~ 696 M correct near-duplicate

pairs. For ¢t = 372 Alg. C found 1,630M near-duplicate
pairs containing about 1,630M * 0.5 = 815M correct near-
duplicate pairs. Thus, we set ¢ = 372. In a slight abuse of
notation we call a pair C-similar iff it was returned by our
implementation. The difference to before is that there might
be some pairs with C-similarity 372 that are not C-similar
because they were not returned by our implementation.
We define the C-similarity graph analog to the B-similarity
graph. There are 35.5M nodes with at least one incident
edge, i.e., near-duplicate pages. This is almost 30% more
than for Alg. B. The average degree in the C-similarity graph
is almost 92. Figure 3 shows the degree distribution in log-
log scale. It follows a power-law with exponent about -1.4.
We randomly sampled 172,464 near-duplicate pairs. Out
of them 74% belonged to the same site. In a random subsam-
ple of 1872 near-duplicate pairs Alg. C achieves an overall
precision of 0.50 with 27% incorrect pairs and 23% unde-
cided pairs (see Table 5.) For pairs on different sites the
precision is 0.9 with only 5% incorrect pairs and 5% unde-
cided pairs. For pairs on the same site the precision is only
0.36 with 34% incorrect pairs and 30% undecided pairs. The
number in parenthesis gives the percentage of pairs out of
all pairs that were marked Undecided because of prefilled,
but erasable forms. It shows that these pages are the main
reason for the large number of undecided pairs of Alg. C.
Table 5 also lists the precision for different C-similarity
ranges. Surprisingly precision is highest for C-similarity be-
tween 372 and 375. This is due to the way we break URLs
at slashes and dots. Two pages that differ only in the URL
usually differ in 2 to 4 tokens since these URLs are frequently
domain names. This often places the pair in the range be-
tween 372 and 375. Indeed 57% of the pairs that differ only
in the URL fall into this range. This explains 387 out of the
470 correct near-duplicates for this C-similarity range.
Table 6 analyzes the correct near-duplicate pairs. URL-
only differences account for 72%, combinations of differences
for 11%, time stamps and execution time for 9% together
with about half each. The remaining reasons account for
8%. For near-duplicate pairs on the same site only 53%
of the correct near-duplicate pairs are caused by URL-only
differences, while 19% are due to a combination of reasons
and 8% to time stamps and execution time. For pairs on
different sites 406 of the 479 C-similar pairs differ only in
the URL. This explains the high precision in that case.
Table 7 shows that 95% of the undecided pairs are on the

Near Number of | Correct Not Undecided
dups pairs correct

all 1872 0.50 0.27 0.23 (0.18)
same site 1393 0.36 0.34 | 0.30 (0.25)
different site 479 0.90 0.05 0.05 (0)
C-sim > 382 179 0.47 0.37 0.16 (0.10)
382 >

C-sim > 379 407 0.40 0.37 0.23 (0.18)
379 >

C-sim > 376 532 0.37 0.27 0.35 (0.30)
C-sim < 376 754 0.62 0.19 0.19 (0.12)

Table 5: Alg. C: Fraction of correct, not correct,
and undecided pairs, with the fraction of prefilled,
erasable forms out of all pairs in that row in paren-
thesis.

All pairs | Same site
URE only 676 (72%) | 270 (53%)
Combination 100 (11%) | 95 (19%)
Time stamp only 42 (4%) 40 (8%)
Execution time only | 41 (4%) 39 (8%)
Message id only 21 (2%) 18 (4%)
Rest 57 (6%) 43 (8%)

Table 6: The distribution of differences for correct
C-similar pairs.

same site and 80% of the undecided pairs are due to forms.
Only 15% are could not be evaluated. The total number of
such cases (64) is about the same as for Alg. B (78).

We also analyzed the term difference in the 1872 near-
duplicate pairs sampled from Alg. C. Figure 4 shows the
number of pairs for a given term difference up to 200. The
average term differences is 94, but this is only due to outliers,
the mean is 7, 24% had a term difference of 2, and 90% had
a term difference smaller than 44. There were 90 pairs with
term differences larger than 200.

The site which causes the largest number of incorrect C-
similar pairs is http://www.businessline.co.uk/, a UK
business directory that lists in the center of each page the
phone number for a type of business for a specific area code.
Two such pages differ in about 1-5 not necessarily consec-
utive tokens and agree in about 1000 tokens. In a sample
of 172,464 C-similar pairs, 9.2% were pairs that came from
this site®, all such pairs that were evaluated in the subsam-
ple of 1872 were incorrect. Since the token differences are
non-consecutive, shingling helps: If x different tokens are
separated by y common tokens s.t. any consecutive sequence
of common tokens has length less than k, then x +y+k —1
different shingles are generated. Indeed, none of these pairs
in the sample was returned by Alg. B.

3.4 Comparison of AlgorithmsB and C
3.4.1 Graph Structure

The average degree in the C-similarity graph is smaller
than in the B-similarity graph (92 vs. 135) and there are
fewer high-degree nodes in the C-similarity graph: Only

5In a second independent random sample of 23475 near-
duplicate pairs we found 9.4% such pairs.

All pairs | Same site
Form 345 (80%) | 343 (84%)
Cannot evaluate 64 (15%) | 54 (13%)
Other 21 (5%) 12 (3%)
Different minor item 2 (0%) 1 (0%)

Table 7: Reasons for undecided C-similar pairs.

8

rs

400
350
300
250
200

150

100
50
0

0 50

Number of near-duplicate pai

Differencéin terms o

Figure 4: The distribution of term differences in the
sample of Alg. C.

7.5% of the nodes in the C-similarity graph have degree at
least 100 vs. 10.8% in the B-similarity graph. The plots
in Figures 1 and 3 follow a power-law distribution, but the
one for Alg. B “spreads” around the power-law curve much
more than the one for Alg. C. This can be explained as fol-
lows: Each supershingle depends on 112 terms (14 shingles
with 8 terms each.) Two pages are B-similar iff two of its
supershingles agree. If the page is “lucky”, two of its super-
shingles consist of common sequences of terms (like lists of
countries in alphabetical order) and the corresponding node
has a high degree. If the page is “unlucky”, all supershin-
gles consist of uncommon sequences of terms, leading to low
degree. In a large enough set of pages there will always be a
certain percentage of pages that are “lucky” and “unlucky”,
leading to a deviation from the power-law. Alg. C does not
select subsets of terms, its bit string depends on all terms
in the sequence, and thus the power-law is stricter followed.

3.4.2 Manual Evaluation

Alg. C outperforms Alg. B with a precision of 0.50 ver-
sus 0.38 for Alg. B. A more detailed analysis shows a few
interesting differences.

Pairs on different sites: Both algorithms achieve high pre-
cision (0.86 resp. 0.9), 8% of the B-similar pairs and 26%
of the C-similar pairs are on different sites. Thus, Alg. C
is superior to Alg. B (higher precision and recall) for pairs
on different sites. The main reason for the higher recall is
that Alg. C found 406 pairs with URL-only differences on
different sites, while Alg. B returned only 108 such pairs.

Pairs on the same site: Neither algorithm achieves high
precision for pages on the same site. Alg. B returned 1752
pairs with 597 correct pairs (precision 0.34), while Alg. C’
returns 1386 pairs with 500 correct pairs (precision 0.37).
Thus, Alg. B has 20% higher recall, while Alg. C achieves
slightly higher precision for pairs on the same site. However,
a combination of the two algorithms as described in the next
section can achieve a much higher precision for pairs on the
same site without sacrificing much recall.

Evaluation | Alg B | Alg C
Incorrect 11 20
Undecided 8 53
Correct 0 17

Table 8: The evaluations for the near-duplicate pairs
with term difference larger than 200.

B-similarity | C-similarity average
331.5
3424
352.4
358.9
370.9

S Tk WD

Table 9: For a given B-similarity the average C-
similarity.

All pairs: Alg. C found more near-duplicates with URL-
only differences (676 vs. 302), while Alg. B found more cor-
rect near-duplicates whose differences lie only in the time
stamp or execution time (241 vs. 83). Alg. C found many
more undecided pairs due to prefilled, erasable forms than
Alg. B (345 vs. 69). In many applications these forms would
be considered correct near-duplicate pairs. If so the overall
precision of Alg. C would increase to 0.68, while the overall
precision of Alg. B would be 0.42.

3.4.3 TermDifferences

The results for term differences are quite similar, except
for the larger number (19 vs. 90) of pairs with term differ-
ences larger than 200. To explain this we analyzed each of
these 109 pairs (see Table 8). However, there are mistakes in
our counting methods due to a large number of image URLs
that were used for layout improvements and are counted by
diff, but are invisible for the user. They affect 9 incorrect
pairs and 25 undecided pairs of Alg. C, but no pair of Alg. B.
Subtracting them leaves both algorithms with 11 incorrect
pairs with large term differences, and Alg. B with 8 and
Alg. C with 28 undecided pairs with large term differences.
Seventeen pairs of Alg. C with large term differences were
rated as correct - they are entry pages to the same porn site.

Altogether we conclude that the performance of the two
algorithms with respect to term differences is quite similar,
but Alg. B returns fewer pairs with very large term differ-
ences. However, with 20 incorrect and 17 correct pairs with
large term difference the precision of Alg. C is barely influ-
enced by its performance on large term differences.

3.4.4 Correlation

To study the correlation of B-similarity and C-similarity
we determined the C-similarity of each pair in a random
sample of 96,556 B-similar pairs. About 4% had C-similarity
at least 372. The average C-similarity was almost 341. Ta-
ble 9 gives for different B-similarity values the average C-
similarity. As can be seen the larger the B-similarity the
larger the average C-similarity. To show the relationship
more clearly Figure 5 plots for each B-similarity level the
distribution of C-similarity values. For B-similarity 2, most
of the pairs have C-similarity below 350 with a peak at 323.
For higher B-similarity values the peaks are above 350.

1200

1000

800 |

600 |

Number of pages

400 |

200 |

PR
i, i m =N -,
150 200 250 300 350 400
C-similarity

Figure 5: The C-similarity distribution for various
fixed B-similarities.

C-similarity | B-similarity average
372-375 0.10
376-378 0.22
379-381 0.32
382-384 0.32

Table 10: For a given C-similarity range the average
B-similarity.

We also determined the B-similarity for a random sample
of 169,757 C-similar pairs. Again about 4% of the pairs were
B-similar, but for 95% of the pairs the B-similarity was 0.
Table 10 gives the details for various C-similarity ranges.

3.5 The Combined Algorithm

The algorithms wrongly identify pairs as near-duplicates
either (1) because a small difference in tokens causes a large

semantic difference or (2) because of unlucky random choices.

As the bad cases for Alg B showed pairs with a large amount
of boilerplate text and a not very small number (like 10 or
20) of different tokens that are all consecutive are at risk of
being wrongly identified as near-duplicates by Alg. B, but
are at much less risk by Alg. C. Thus we studied the follow-
ing combined algorithm: First compute all B-similar pairs.
Then filter out those pairs whose C-similarity falls below
a certain threshold. To choose a threshold we plotted the
precision of the combined algorithm for different threshold
values in Figure 6. It shows that precision can significantly
improve if a fairly high value of C-similarity, like 350, is
used.

To study the impact of different threshold values on recall
let us define R to be the number of correct near-duplicate
pairs returned by the combined algorithm divided by the
number of correct near-duplicate pairs returned by Alg. B.
We chose Alg. B because the combined algorithm tries to
filter out the false positives of Alg. B. We randomly sub-
sampled 948 pairs out of the 1910 pairs that were scored for
Alg. B, creating the sample Si. The remaining pairs from
the 1910 pairs form sample S2. We used S to choose a cut-
off threshold and S5 as testing set to determine the resulting
precision and R-value. Figure 7 plots for S; precision versus
R for all C-similar thresholds between 0 and 384. As ex-

Precision

T m may T o™
Figure 6: For each C-similarity threshold the corre-
sponding precision of the combined algorithm.

Precision

03

0 o1 02 _os o0z 05 _or 07 08 o3 1
Percentage of correct near-dupﬁ cate pairs returned

Figure 7: For the training set S; the R-value versus
precision for different cutoff thresholds t.

pected precision decreases with increasing R. The long flat
range corresponds to different thresholds between 351 and
361 for which precision stays roughly the same while recall
increases significantly. For the range between 351 and 359
Table 11 gives the resulting precision and R-values. It shows
that a C-similarity threshold of 353, 354, or 355 would be a
good choice, achieving a precision of 0.77 while keeping R
over 0.8. We picked 355.

The resulting algorithm returns on the testing set S2 363
out of the 962 pairs as near-duplicates with a precision of
0.79 and an R-value of 0.79. For comparison consider us-
ing Alg. B with a B-similarity cutoff of 3. That algorithm

Percentage of | Precision | C-similarity
correct pairs threshold
returned

0.869 0.754 351
0.858 0.763 352
0.836 0.768 353
0.825 0.771 354
0.808 0.770 355
0.789 0.776 356
0.775 0.784 357
0.747 0.784 358
0.736 0.789 359

Table 11: On the training set S; for different C-
similarity thresholds the corresponding precision
and percentage of returned correct pairs.

Near Number | Correct In- Un- R
dups of correct | deci-

pairs ded
all 363 0.79 0.15 0.06 | 0.79
same site 296 0.74 0.19 0.07 | 0.73
different site 65 0.99 0.00 0.01 | 0.97

Table 12: The combined Algorithm on the testing
set S2: Fraction of correct, incorrect, and undecided
pairs and R-value.

only returns 244 correct near-duplicates with a precision of
0.56, while the combined algorithm returns 287 correct near-
duplicates with a precision of 0.79. Thus, the combined al-
gorithm is superior in both precision and recall to using a
stricter cutoff for Alg. B. Note that the combined algorithm
can be implemented with the same amount of space since the
bit strings for Alg. C can be computed “on the fly” during
filtering.

Table 12 also shows that 82% of the returned pairs are on
the same site and that the precision improvement is mostly
achieved for these pairs. With 0.74 this number is much
better than either of the individual algorithms.

A further improvement could be achieved by running both
Alg. C and the combined algorithm and returning the pairs
on different sites from Alg. C and the pairs for the same
site from the combined algorithm. This would generate
1.6B%0.26 ~ 416M pairs one the same site with 374M cor-
rect pairs and 1.6B%0.919 % 0.79 ~ 1163M pairs on different
sites with about 919M correct pairs. Thus approximately
1335M correct pairs would be returned with a precision of
0.85, i.e., both recall and precision would be superior to the
combined algorithm alone.

4. CONCLUSIONS

We performed an evaluation of two near-duplicate algo-
rithms on 1.6B web pages. Neither performed well on pages
from the same site, but a combined algorithm did without
sacrificing much recall.

Two changes might improve the performance of Alg. B
and deserve further study: (1) A weighting of shingles by
frequency and (2) using a different number & of tokens in a
shingle. For example, following [7, 8] one could try k = 5.
However, recall that 28% of the incorrect pairs are caused by
pairs of pages in two databases on the web. In these pairs the
difference is formed by one consecutive sequence of tokens.
Thus, reducing k would actually increase the chances that
pairs of pages in these databases are incorrectly identified
as near-duplicates.

Note that Alg. C also could work with much less space.
It would be interesting to study how this affects its per-
formance. Additionally it would be interesting to explore
whether applying Alg. C to sequences of tokens, i.e., shin-
gles, instead of individual tokens would increase its perfor-
mance.

As our results show both algorithms perform poorly on
pairs from the same site, mostly due to boilerplate text. Us-
ing a boilerplate detection algorithm would probably help.
Another approach would be to use a different, potentially
slower algorithm for pairs on the same site and apply (one
of) the presented algorithms to pairs on different sites.

5. ACKNOWLEDGMENTS

I want to thank Mike Burrows, Lars Engebretsen, Abhay
Puri and Oren Zamir for their help and useful discussions.

6. REFERENCES

[1] S. Brin, J. Davis, and H. Garcia-Molina. Copy
Detection Mechanisms for Digital Documents. In 1995
ACM SIGMOD International Conference on
Management of Data (May 1995), 398—409.

[2] A. Broder. Some applications of Rabin’s fingerprinting
method. In Renato Capocelli, Alfredo De Santis, and
Ugo Vaccaro, editors, Sequences II: Methods in
Communications, Security, and Computer Science,
1993:143-152.

[3] A. Broder, S. Glassman, M. Manasse, and G. Zweig.
Syntactic Clustering of the Web. In 6th International
World Wide Web Conference (Apr. 1997), 393—404.

[4] M. S. Charikar. Similarity Estimation Techniques
from Rounding Algorithms. In 34th Annual ACM
Symposium on Theory of Computing (May 2002).

[5] M. S. Charikar. Private communication.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In 6th Symposium
on Operating System Design and Implementation
(Dec. 2004), 137-150.

[7] D. Fetterly, M. Manasse, and M. Najork. On the
Evolution of Clusters of Near-Duplicate Web Pages. In
1st Latin American Web Congress (Nov. 2003), 37-45.

[8] D. Fetterly, M. Manasse, and M. Najork. Detecting
Phrase-Level Duplication on the World Wide Web. To
appear in 28th Annual International ACM SIGIR
Conference (Aug. 2005).

[9] N. Heintze. Scalable Document Fingerprinting. In
Proc. of the 2nd USENIX Workshop on Electronic
Commerce (Nov 1996).

[10] T. C. Hoad and J. Zobel. Methods for identifying
versioned and plagiarised documents. Journal of the
American Society for Information Science and
Technology 54(3):203-215, 2003.

[11] U. Manber. Finding similar files in a large file system.
In Proc. of the USENIX Winter 1994 Technical
Conference (Jan. 1994).

[12] M. Rabin. Fingerprinting by random polynomials.
Report TR-15-81, Center for Research in Computing
Technology, Harvard University, 1981.

[13] N. Shivakumar and H. Garcia-Molina. SCAM: a copy
detection mechanism for digital documents. In Proc.
International Conference on Theory and Practice of
Digital Libraries (June 1995).

[14] N. Shivakumar and H. Garcia-Molina. Building a
scalable and accurate copy detection mechanism. In
Proc. ACM Conference on Digital Libraries (March
1996), 160-168.

[15] N. Shivakumar and H. Garcia-Molina. Finding
near-replicas of documents on the web. In Proc.
Workshop on Web Databases (March 1998), 204-212.

